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Rhombic tilings of zonotopes

Def: v1, . . . , vr ∈ R2 pw. indep. define zonotope

Z (v1, . . . , vr ) :=
{∑

λivi : λi ∈ [−1, 1]
}
.

Zonotopes Z (vi , vj), vi 6= vj are rhombi (also lozenges).
Rhombic tiling : For fixed shape n1, . . . , nr ∈ N, tiling of Z (v1, . . . , vr )

by rhombi of type Z
(
vi
ni
,
vj
nj

)
.
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Rhombic tilings and pseudoline arrangements

Draw curves through ribbons of parallel edges:

Yields „generalized“simple pseudoline arrangement:
I r classes of n1, . . . , nr non-intersecting pseudolines.
I Pseudolines of different classes cross each other exactly once.

Generalizable to non-simple arrangements
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Uniform sampling of pseudoline arrangements

Big open problem: Polynomial algorithm for uniform sampling PLA.
I Motivation: Quasicrytals in physics
I Motivation: Determine average characteristics
I Motivation: Approximate counting
I Motivation: Islamic art (Adding symmetry)

Idea: Use Markov chains with flips as transitions:
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Rapidly mixing Markov chains

Markov chain (Xt), state space X , transition prob. P : X × X → [0, 1]
If irreducible and aperiodic : Converges to stationary distribution π:

P[Xt = x ]→ π(x)

If P symmetric: π equals uniform distribution.
Total variation distance of distributions µ, µ′ on X :

‖µ− µ′‖TV := sup
M⊆X
|µ(M)− µ′(M)|

Define d(t) := maxx∈X ‖Pt(x , ·)− π‖TV

Mixing time τ(ε) := min{t ∈ N0 : ∀t ′ ≥ t : d(t ′) ≤ ε}

Definition
A class of Markov chains is rapidly mixing if for each of them
τ(ε) ∈ O

(
p
(
log |X |ε

))
for some p ∈ R[X ].
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Pseudoline arrangements with 3 parallel classes

Ruby, Randall, Sinclair, 2001:
Rapidly mixing Marcov chain for sampling PLA with 3 parallel classes
Idea: Extension of grid along non-crossing monotonic paths

On non-crossing path systems perform flips over grid cells.

Sandro M. Roch Mittagsseminar 6 / 16



Simple case: Only one insertion path

Technique: Monotone coupling

I Partial order on paths: p ≤ q iff p below q.
I X0 lowest path, Y0 highest path, X0 ≤ Y0
I Choose (Xt+1,Yt+1) from (Xt ,Yt) by choosing same flip.
I Preserves Xt ≤ Yt for all t.
I Random variable τC := min{t : Xt = Yt}

Get polynomial bound on E[τC ] by upper bounding expected change
of area between Xt and Yt : E[4d(Xt ,Yt)] ≤ 0.
From theory: τ(ε) ≤ 6 · E[τC ]

(
1+ log

(1
ε

))
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Insertion of new parallel class

Given: Pseudoline arrangement with r parallel classes
Task: Insert (r + 1)-th parallel class with nr+1 pseudolines

(uniformly by random among all possibilities)

Have seen this for r = 2, for r > 2?
Same idea: Markov chain with flips on non-crossing mon. paths
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Bottlenecks in path insertion chain

Extension of r = 4 classes Extension of r = 3 classes

Partition of paths into two classes:
I A: Paths above blue cell, never going through green cells
I A{: Paths below blue cell, never going through red cells

Flip on blue cell is only transition between A and A{.
Result: Path insertion Markov chain not rapidly mixing for r ≥ 3.

Sandro M. Roch Mittagsseminar 9 / 16



Repeated reinsertion of pseudolines

Reinsertion of randomly chosen pseudoline defines Markov chain:

Rapidly mixing?
From every PLA to every PLA by touching each pseudline once:
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Canonical paths

For all s, t ∈ X find canonical path γst of transitions from s to t.
Define path congestion:

ρ := max
x ,y∈X

P(x ,y)6=0

1
π(x)P(x , y)

∑
γst3(x ,y)

π(s)π(t)

Low path congestion ρ ⇒ No bottlenecks ⇒ Low mixing time τ(ε)
Could be useful tool for „Reinsertion markov chain“.

Sandro M. Roch Mittagsseminar 11 / 16



Rejection sampling via Standard-Young-Tableaux

PLAs of shape (n1, ..., nr ) = (1, ..., 1) as Sorting networks:

Efficient sampling of Std. Young Tableaux (SYT) possible.
(Greene, Nijenhuis, Wilf, 1979)
No direct bijection! PLAs = Equivalence classes of Sorting networks
If |si − si+1| ≥ 2, then

(s1, ..., si , si+1, ..., s(r2)
) ∼ (s1, ..., si+1, si , ..., s(r2)

)

Def: Sequence (s1, ..., s(r2)
) left extreme iff @(si , si+1) : si ≥ si+1 + 2.

Idea: Sample SYT and accept PLA if sequence is left extreme.
Experimental result: Sampling PLAs with r ≤ 8 in reasonable time
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Idea: Sample SYT and accept PLA if sequence is left extreme.
Experimental result: Sampling PLAs with r ≤ 8 in reasonable time
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Optimal plane partitions

Def: Matrix [hi ,j ] ∈ N0
r×s is called plane partition, if rows and

columns are monotonically increasing.

For objective functions fi ,j : {0, ..., h} → Q consider the problem

min
r∑

i=1

s∑
j=1

fi ,j(hi ,j)

s.t. hi ,j ≤ hi ,j+1 für alle i ∈ [r ], j ∈ [s − 1]
hi ,j ≤ hi+1,j für alle i ∈ [r − 1], j ∈ [s]

0 ≤ hi ,j ≤ h

hi ,j ∈ Z
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Plane partitions, rhombic tilings and systems of non-crossing paths in
bijection:
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Equivalent problem: On set P of systems of h non-crossing
monotonic paths in (r × s)-grid graph:

min
h∑

k=1

∑
e∈pk

wk(e)

s.t. (p1, . . . , ph) ∈ P

where wk : E → Q some weights determined by fi ,j .

Can be solved by dynamic programming approach in time polynomial
in r , s but exponential in h.
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Questions

Exact references in submitted thesis or on demand.
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