Mittagsseminar Algorithms for sampling random pseudoline arrangements

Sandro M. Roch

16.12.2021

• Def: $v_1, \ldots, v_r \in \mathbb{R}^2$ pw. indep. define *zonotope*

$$Z(v_1,\ldots,v_r):=\left\{\sum\lambda_iv_i:\lambda_i\in [-1,1]
ight\}$$
 .

• Def: $v_1, \ldots, v_r \in \mathbb{R}^2$ pw. indep. define *zonotope*

$$Z(\mathbf{v}_1,\ldots,\mathbf{v}_r):=\left\{\sum\lambda_i\mathbf{v}_i:\lambda_i\in[-1,1]
ight\}$$
 .

• **Def:** $v_1, \ldots, v_r \in \mathbb{R}^2$ pw. indep. define *zonotope*

$$Z(\mathbf{v}_1,\ldots,\mathbf{v}_r):=\left\{\sum\lambda_i\mathbf{v}_i:\lambda_i\in[-1,1]
ight\}$$

• **Def:** $v_1, \ldots, v_r \in \mathbb{R}^2$ pw. indep. define *zonotope*

$$Z(\mathbf{v}_1,\ldots,\mathbf{v}_r):=\left\{\sum\lambda_i\mathbf{v}_i:\lambda_i\in[-1,1]
ight\}$$
 .

• Zonotopes $Z(v_i, v_j)$, $v_i \neq v_j$ are *rhombi* (also *lozenges*).

• **Def:** $v_1, \ldots, v_r \in \mathbb{R}^2$ pw. indep. define *zonotope*

$$Z(v_1,\ldots,v_r):=\left\{\sum \lambda_i v_i:\lambda_i\in [-1,1]\right\}$$

- Zonotopes $Z(v_i, v_j)$, $v_i \neq v_j$ are *rhombi* (also *lozenges*).
- *Rhombic tiling*: For fixed shape $n_1, \ldots, n_r \in \mathbb{N}$, tiling of $Z(v_1, \ldots, v_r)$ by rhombi of type $Z\left(\frac{v_i}{n_i}, \frac{v_j}{n_j}\right)$.

Rhombic tilings and pseudoline arrangements

• Draw curves through ribbons of parallel edges:

Rhombic tilings and pseudoline arrangements

• Draw curves through ribbons of parallel edges:

- Yields "generalized" simple pseudoline arrangement:
 - *r* classes of n_1, \ldots, n_r non-intersecting pseudolines.
 - Pseudolines of different classes cross each other exactly once.

Rhombic tilings and pseudoline arrangements

• Draw curves through ribbons of parallel edges:

- Yields ,,generalized" *simple pseudoline arrangement*:
 - ▶ *r* classes of n_1, \ldots, n_r non-intersecting pseudolines.
 - Pseudolines of different classes cross each other exactly once.
- Generalizable to non-simple arrangements

Uniform sampling of pseudoline arrangements

- Big open problem: Polynomial algorithm for uniform sampling PLA.
 - Motivation: Quasicrytals in physics
 - Motivation: Determine average characteristics
 - Motivation: Approximate counting
 - Motivation: Islamic art (Adding symmetry)

Uniform sampling of pseudoline arrangements

- Big open problem: Polynomial algorithm for uniform sampling PLA.
 - Motivation: Quasicrytals in physics
 - Motivation: Determine average characteristics
 - Motivation: Approximate counting
 - Motivation: Islamic art (Adding symmetry)
- Idea: Use Markov chains with *flips* as transitions:

Uniform sampling of pseudoline arrangements

- Big open problem: Polynomial algorithm for uniform sampling PLA.
 - Motivation: Quasicrytals in physics
 - Motivation: Determine average characteristics
 - Motivation: Approximate counting
 - Motivation: Islamic art (Adding symmetry)
- Idea: Use Markov chains with *flips* as transitions:

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

- If P symmetric: π equals uniform distribution.
- Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu-\mu'\|_{\mathsf{TV}} := \sup_{M\subseteq\mathcal{X}} |\mu(M)-\mu'(M)|$$

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

- If P symmetric: π equals uniform distribution.
- Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|$$

• Define $d(t) := \max_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi\|_{\mathsf{TV}}$

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

- If P symmetric: π equals uniform distribution.
- Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|$$

- Define $d(t) := \max_{x \in \mathcal{X}} \| P^t(x, \cdot) \pi \|_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 : \forall t' \ge t : d(t') \le \varepsilon\}$

Markov chain (X_t) , state space \mathcal{X} , transition prob. $P : \mathcal{X} \times \mathcal{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to *stationary distribution* π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

- If P symmetric: π equals uniform distribution.
- Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|$$

- Define $d(t) := \max_{x \in \mathcal{X}} \| P^t(x, \cdot) \pi \|_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 : \forall t' \ge t : d(t') \le \varepsilon\}$

Definition

A class of Markov chains is *rapidly mixing* if for each of them $\tau(\varepsilon) \in \mathcal{O}\left(p\left(\log \frac{|\mathcal{X}|}{\varepsilon}\right)\right)$ for some $p \in \mathbb{R}[X]$.

Pseudoline arrangements with 3 parallel classes

- Ruby, Randall, Sinclair, 2001: Rapidly mixing Marcov chain for sampling PLA with 3 parallel classes
- Idea: Extension of grid along non-crossing monotonic paths

• On non-crossing path systems perform flips over grid cells.

- Technique: Monotone coupling
 - Partial order on paths: $p \leq q$ iff p below q.

- Technique: Monotone coupling
 - Partial order on paths: $p \leq q$ iff p below q.
 - X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$

- Technique: Monotone coupling
 - Partial order on paths: $p \leq q$ iff p below q.
 - X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$
 - Choose (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip.

- Technique: Monotone coupling
 - Partial order on paths: $p \leq q$ iff p below q.
 - X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$
 - Choose (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip.
 - Preserves $X_t \leq Y_t$ for all t.

• Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$
- Choose (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$

• Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$
- Choose (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$
- Get polynomial bound on E[τ_C] by upper bounding expected change of area between X_t and Y_t: E[△d(X_t, Y_t)] ≤ 0.

• Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path, Y_0 highest path, $X_0 \leq Y_0$
- Choose (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$
- Get polynomial bound on E[τ_C] by upper bounding expected change of area between X_t and Y_t: E[△d(X_t, Y_t)] ≤ 0.
- From theory: $\tau(\varepsilon) \leq 6 \cdot \mathbb{E}[\tau_C] \left(1 + \log\left(\frac{1}{\varepsilon}\right)\right)$

- Given: Pseudoline arrangement with r parallel classes
- Task: Insert (r + 1)-th parallel class with n_{r+1} pseudolines (uniformly by random among all possibilities)

- Given: Pseudoline arrangement with r parallel classes
- Task: Insert (r + 1)-th parallel class with n_{r+1} pseudolines (uniformly by random among all possibilities)
- Have seen this for r = 2, for r > 2?

- Given: Pseudoline arrangement with r parallel classes
- Task: Insert (r + 1)-th parallel class with n_{r+1} pseudolines (uniformly by random among all possibilities)
- Have seen this for r = 2, for r > 2?
- Same idea: Markov chain with flips on non-crossing mon. paths

- Given: Pseudoline arrangement with r parallel classes
- Task: Insert (r + 1)-th parallel class with n_{r+1} pseudolines (uniformly by random among all possibilities)
- Have seen this for r = 2, for r > 2?
- Same idea: Markov chain with flips on non-crossing mon. paths

Bottlenecks in path insertion chain

Extension of r = 4 classes

Extension of r = 3 classes

- Partition of paths into two classes:
 - A: Paths above blue cell, never going through green cells
 - ► A^C: Paths **below blue cell**, never going through red cells
- Flip on blue cell is only transition between A and A^{\complement} .
- **Result**: Path insertion Markov chain not rapidly mixing for $r \ge 3$.

• Reinsertion of randomly chosen pseudoline defines Markov chain:

• Rapidly mixing?

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

• Reinsertion of randomly chosen pseudoline defines Markov chain:

- Rapidly mixing?
- From every PLA to every PLA by touching each pseudline once:

For all s, t ∈ X find canonical path γ_{st} of transitions from s to t.
Define path congestion:

$$\rho := \max_{\substack{x,y \in \mathcal{X} \\ P(x,y) \neq 0}} \frac{1}{\pi(x)P(x,y)} \sum_{\gamma_{st} \ni (x,y)} \pi(s)\pi(t)$$

Low path congestion ρ ⇒ No bottlenecks ⇒ Low mixing time τ(ε)
Could be useful tool for "Reinsertion markov chain".

• PLAs of shape $(n_1, ..., n_r) = (1, ..., 1)$ as Sorting networks:

• Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks
- If $|s_i s_{i+1}| \ge 2$, then

$$(s_1, ..., s_i, s_{i+1}, ..., s_{\binom{r}{2}}) \sim (s_1, ..., s_{i+1}, s_i, ..., s_{\binom{r}{2}})$$

• PLAs of shape $(n_1, ..., n_r) = (1, ..., 1)$ as Sorting networks:

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks
- If $|s_i s_{i+1}| \ge 2$, then

$$(s_1, ..., s_i, s_{i+1}, ..., s_{\binom{r}{2}}) \sim (s_1, ..., s_{i+1}, s_i, ..., s_{\binom{r}{2}})$$

• Def: Sequence $(s_1, ..., s_{\binom{r}{2}})$ left extreme iff $\nexists(s_i, s_{i+1}) : s_i \ge s_{i+1} + 2$.

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks
- If $|s_i s_{i+1}| \ge 2$, then

$$(s_1, ..., s_i, s_{i+1}, ..., s_{\binom{r}{2}}) \sim (s_1, ..., s_{i+1}, s_i, ..., s_{\binom{r}{2}})$$

- Def: Sequence $(s_1, ..., s_{\binom{r}{2}})$ left extreme iff $\nexists(s_i, s_{i+1}) : s_i \ge s_{i+1} + 2$.
- Idea: Sample SYT and accept PLA if sequence is left extreme.

• PLAs of shape $(n_1, ..., n_r) = (1, ..., 1)$ as Sorting networks:

- Efficient sampling of Std. Young Tableaux (SYT) possible. (Greene, Nijenhuis, Wilf, 1979)
- No direct bijection! PLAs = Equivalence classes of Sorting networks
- If $|s_i s_{i+1}| \ge 2$, then

$$(s_1,...,s_i,s_{i+1},...,s_{\binom{r}{2}}) \sim (s_1,...,s_{i+1},s_i,...,s_{\binom{r}{2}})$$

• Def: Sequence $(s_1, ..., s_{\binom{r}{2}})$ left extreme iff $\nexists(s_i, s_{i+1}) : s_i \ge s_{i+1} + 2$.

- Idea: Sample SYT and accept PLA if sequence is left extreme.
- Experimental result: Sampling PLAs with $r \leq 8$ in reasonable time

Sandro M. Roch

Optimal plane partitions

Def: Matrix [h_{i,j}] ∈ N₀^{r×s} is called *plane partition*, if rows and columns are monotonically increasing.

Optimal plane partitions

- Def: Matrix [h_{i,j}] ∈ N₀^{r×s} is called *plane partition*, if rows and columns are monotonically increasing.
- For objective functions $f_{i,j}: \{0,...,h\} \to \mathbb{Q}$ consider the problem

$$\begin{array}{ll} \min & \sum_{i=1}^{r} \sum_{j=1}^{s} f_{i,j}(h_{i,j}) \\ \text{s.t.} & h_{i,j} \leq h_{i,j+1} & \text{für alle } i \in [r], j \in [s-1] \\ & h_{i,j} \leq h_{i+1,j} & \text{für alle } i \in [r-1], j \in [s] \\ & 0 \leq h_{i,j} \leq h \\ & h_{i,j} \in \mathbb{Z} \end{array}$$

• *Plane partitions, rhombic tilings* and *systems of non-crossing paths* in bijection:

Rhombic tiling (shape 3,2,3)

• *Plane partitions, rhombic tilings* and *systems of non-crossing paths* in bijection:

• *Plane partitions, rhombic tilings* and *systems of non-crossing paths* in bijection:

• Equivalent problem: On set \mathcal{P} of systems of h non-crossing monotonic paths in $(r \times s)$ -grid graph:

min
$$\sum_{k=1}^{h} \sum_{e \in p_k} w_k(e)$$

s.t. $(p_1, \dots, p_h) \in \mathcal{P}$

where $w_k : E \to \mathbb{Q}$ some weights determined by $f_{i,j}$.

• Equivalent problem: On set \mathcal{P} of systems of h non-crossing monotonic paths in $(r \times s)$ -grid graph:

min
$$\sum_{k=1}^{h} \sum_{e \in p_k} w_k(e)$$

s.t. $(p_1, \dots, p_h) \in \mathcal{P}$

where $w_k : E \to \mathbb{Q}$ some weights determined by $f_{i,j}$.

 Can be solved by dynamic programming approach in time polynomial in r, s but exponential in h.

Questions

Exact references in submitted thesis or on demand.

Sandro M. Roch