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pseudoline arrangements

Def: Family of continuous curves fi,---, f, : R — R? (pseudolines)

o limg oo fi(z)| = limg—s oo || fs(2)]| = o0
e Each two f; # f; intersect in exactly one point where they cross.

e At each point, no more than two pseudolines cross.
(simple arrangement)
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alternative definition via x-monotonic curves

N,

R

>

Def: Family of continuous curves fy, -, f, : R — R (pseudolines)
o Each two f; # f; intersect in exactly one point where they cross.
e At each point, no more than two pseudolines cross.

(simple arrangement)
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alternative definition via projective plane

Real projective plane

IP)Z

Def: Family of simple closed curves fi,---, f, : [0,1] — P?
e Each f; does not separate P?
e Each f; # f; intersect in at most (i.e. exactly) one point.
e At each point, no more than two pseudolines cross.
(simple arrangement)
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Equality relation: Consider two (marked) arrangements as equal, if
they differ only by homeomorphic transformation.

1 N 1 N
2 = 2
3 3
™R
: N Case n = 3:
2 Exist 2 different

marked arrangements

3

Two marked arrangements are equal iff all intersection orders coincide!



Case n = 4:
Exist 8 different
marked arrangements
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stretchability

Stretchable pseudoline arrangements can be drawn using straight
lines.

Theorem (Goodman & Pollack, 1980)
|7AII arrangements of n < 7 pseudolines are stretchable.

z NN

c
non-stretchable arrangement Pappus Theorem:
with multicrossings (non-simple) Orange intersections

(Ringel, 1957) are colinear.



stretchability

Stretchable pseudoline arrangements can be drawn using straight
lines.

Theorem (Goodman & Pollack, 1980)
|7AII arrangements of n < 7 pseudolines are stretchable.

Theorem (Shor, 1991)
|Tt Is NP-hard to decide whether a given arrangement is stretchable.
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wiring diagrams

S : S

Wiring diagram: canonical drawing of a pseudoline arrangement
e pseudolines ~ horizontal wires

e crossings ~ sequence of switches between wires

e North cell N lies above all wires.

Will see: Every arrangement can be drawn as a wiring diagram!
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wiring diagrams

: N ;
3 3
1
B S : ]

Wiring diagrams as sorting networks:

In  out
a - | min(a,b)

b 4 |+ max(a,b)




wiring diagrams

N
3 > 1
_’1 i > )
21} L3
4 - - 4

S

Wiring diagrams as sorting networks:

In  out
a < | min(a,b)

b 4 | max(a,b)

Sorting networks encode sorting algorithms that are based on
comparison & exchange of neighbor elements.



monotonic paths on permutahedron

Permutahedron of order n:

P, :=conv({(7(1),--- ,w(n)) e R" | w € S,})

Example: n =3

1+ +x, =n(n+1)/2

— dim(P,) =n—1
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monotonic paths on permutahedron

1 .
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monotonic paths on permutahedron
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monotonic paths on permutahedron
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monotonic paths on permutahedron
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allowable sequences

vV v v v VvV v v
o 711 T T3 T4 Ty Te

Def: allowable sequence: sequence of permutations 7, - - - ()
2

e Starts with my = [1,--- ,n].
e Ends with 7T(n) — [n, ,1].

2
o m; = T; om;_1 for some neighbor transposition 7; = (s;,; + 1).



allowable sequences

5,2, 1,383,233,

u

vV v v v VvV v v
o 711 T T3 T4 Ty Te

Def: allowable sequence: sequence of permutations 7, - - - ()
2

e Starts with mg = [1,--- ,n].
e Ends with 7T(n) — [n, e ,1].
2
e m; = T; om;_1 for some neighbor transposition 7; = (s;,s; + 1).

Suffices to write only transposition indices (s, - - - ,s(n))!
Example: (s1, - ,s6) = (3,2,1,3,2,3)
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Marked arrangement & defines digraph G4 on set of crossings.
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arrangement graph

Marked arrangement & defines digraph G4 on set of crossings.

1.
N

o4 =1[5,2,3,1]

- :

Local intersection orders o1, --- , 0, and G4 determine each other.
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arrangement graph

Lemma
|irhe arrangement graph Gy is acyclic.




arrangement graph

Lemma
|irhe arrangement graph Gy is acyclic.

Consequence: There exists a topological sorting of the crossings.
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sweeping arrangements

— Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:
Fix top. sorting of Gy (G acyclic).
Will construct sweep ~; of «:

e Family of internally disjoint sweep
CUrves Yo, ,Y(m) frompe N 3 -
toges.

e No ~; goes through a crossing.

e Each ~; crosses each pseudoline
exactly once.




sweeping arrangements

— Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:
Fix top. sorting of Gy (G acyclic).
Will construct sweep ~; of «:
e Family of internally disjoint sweep
CUrves Yo, ,Y(m) frompe N 3 .
2
toges.
e No ~; goes through a crossing.
e Each ~; crosses each pseudoline
exactly once.

e Exactly one crossing lies in area
between v; and ;1.




If we can sweep &, then we can draw & as a wiring diagram!

10
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lteratively obtain v; from ~;_1:




equivalence of allowable sequences

Different allowable sequences correspond to the same arrangement!

3.2,1,5,23,

=

AR N R

v ¥V ¥ VvV v v 9 v ¥ ¥ v OV v ¥
TTQ 71 Tl T3 T4 T g TTQ 71 Tt T3 T4 75 Tlg



equivalence of allowable sequences

Different allowable sequences correspond to the same arrangement!

:3:2:1:3:2:3:

=

=~ QO DN =

~
v ¥ v vV v v ¥ v v ¥V v v v
To 1 T2 T3 T4 T'5 T To 11 T2 T3 T4 T'5 Tg
Def: o Allowable sequences
S:<817°°'7Si78i—|—17°°'78(n))
2
/
and S :(517”' s Si41,ySiy " 75(';”))

are called directly equivalent, if |s; — s;11| > 2.



equivalence of allowable sequences

Different allowable sequences correspond to the same arrangement!

:3:2:1:3:2:3 :3:2:3:1:2:3:

1 [ ] E_’ 1_l
E Y :

3 -5 Vs — 3 Vs
45 | | | | | | | | Eiu 45 | | | | | | | | Eiu
vV vV ¥V v v Vv ¥ vV vV v v Vv Vv Vv
g 71 T2 T3 T4 T Tg T T T2 T3 T4 T'5 Tg

Def: o Allowable sequences
S:<817"'75i787j—|—1,’°'73(n))
2
/
and S :(817”' y Si+1y 54, """ 78(;"))

are called directly equivalent, if |s; — s;11| > 2.

e S and S’ are called equivalent (S ~ S"), if there are
S=5,---,5. =5 with S; and S;, 1 directly equivalent.



equivalence of allowable sequences
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equivalence of allowable sequences

(2,3,4,1)

(2,3.1.4) — (3,241)

(3,2,1,4)

(2,4,3,1)"
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-
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— Theorem
There is a one-to-one correspondence between marked

arrangements of pseudolines and equivalence classes of allowable
sequences.




equivalence of allowable sequences

— Theorem

There is a one-to-one correspondence between marked

arrangements of pseudolines and equivalence classes of allowable
sequences.

Ingredients for a formal proof:

e Arrangement o together with a top. sorting m of G yields an
allowable sequence Sy .

e Every allowable sequence can be obtained this way.

e Different top. sortings of Gy correspond exactly to allowable
sequences equivalent to Sy .
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,brick wall conjecture”

bl > [ >< [ >4

pol <[ >< [ >4

<l <[> [>¢
>

S <SPy

AAAAAAAL

X

X

X

X

X

X

wall arrangement of 8 pseudolines
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rhombic tilings

Def: vy, - ,v, € R? pw. lin. indep.
e [wo-dimensional zonotope spanned by vy, -, vp,:

Z(v1y ,Up) = {Z)‘ivi C A, LA, € [1,1]}
i=1

e Rhombic tiling of Z(vy1,--- ,vy,): Tesselation of Z(vy,--- ,v,) by
rhombi Z(v;,v;), © # j.
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marked arrangements rhombic tilings of
of pseudolines 2-dim zonotopes
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— Lemma

rhombic tilings

Vol (Z(v1,-++ ,0a)) = D4 ldet([vs,v5])

1<J

, Touching on the right relation™ defines tiling graph G4 .

U1

rhombic tiling &




— Lemma

rhombic tilings

Vol (Z(v1,-++ ,va)) = D4+ det([vs,v5])

1<J

, Touching on the right relation™ defines tiling graph G4 .

— Lemma (Guibas & Yao, 1980)
The tiling graph G is acyclic.

U1

rhombic tiling &




Proof: There is a topological sorting of G .
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Proof: There is a topological sorting of G .

Claim: There exists a tile whose left side is completely lit.

= Among the tiles with lit top point the one with lowest top point.
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rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G5 ) +— allowable sequence
by doing a sweep in the order of a topological sorting of Gg.

p
(%]
U2 ‘
U3 h
Vg
q



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

p o — [1,2,3,4}



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p Ty — [1,2,3,4}
T — [2,1,3,4]
U2
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rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p Ty — 1,2,3,4
1 — _2,1,3,4_
U2 Ty = :2,1,4, 3
U3
Vg



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p Ty — ;1,2,3,4;
M1 — _2,1,3,4_
U2 Ty = :2,1,4, 3
0 3 = 2747173
v
V4



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

o — :1,2,3,4:
T — 2,1,3,4
2,1,4,3

p
U1
1}
0 2,413
v Ty = |2,4,3, 1]
V4
e 9

N
DO
|

=
w
|




rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p Ty — :1,2,3,4:
m = 12,1,3,4
U T = (2,1,4,3
0 w3 = [2,4,1, 3]
U Ty = [2,4,3,1]
s = |4,2,3, 1

V4

vs 4



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p Ty — :1,2,3,4:
m = 12,1,3,4
U T = (2,1,4,3
0 w3 = [2,4,1, 3]
U T = [2,4,3,1]
s = |4,2,3, 1
U4 Tg = :4,3,2,1:

Y6 4



rhombic tilings

— Theorem
There is a one-to-one correspondence between rhombic tilings and

equivalence classes of allowable sequences.

Proof: Assoc. (tiling &, top. sorting of G ) — allowable sequence
by doing a sweep in the order of a topological sorting of G.

V1 p o = 1727374

T — _2,1,3,4_

v T = (2,1,4,3

0 T 22’4’ 1’32 valid allowable

v = :2’4’3’ 1: sequence???

Ty — _4,2,3, 1

U4 e — 47 37 27 1

v 4



Claim: In obtained permutation sequence, every pair ¢ # j is
swapped exactly once (= obtain valid allowable sequence).



Claim: In obtained permutation sequence, every pair ¢ # j is
swapped exactly once (= obtain valid allowable sequence).

e At least once: Clear! Because get from [1,--- ,n] to [n,---,1].
e Swap of pair i # j happens on flip over rhombus Z(v;,v;) with
Vol (Z(vi,v;)) = 4 - |det([vs, v4])|-
e These swaps exhaust entire volume, because
24- |det([vs, v;])| = Vol (Z(v1,--- ,vp)) .
i<j
e Hence, there cannot have been further swaps.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.
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unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — [1,2,3,4]
U2
U3
U4
Yo 9
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.
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Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — 2, 1,3,4
U2 Mo — 2,1,4,3
U3
U4
v 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — 2, 1,3,4
U2 Mo — 2,1,4,3
U3
U4
vy 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — _2,1,3,4_
U2 Ty — 2, 1,4,3
m3 — :2,4, 1,3
U3
Uyg
vy 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

1 p T =[1,2,3,4
m =12,1,3,4
V2 o = 1[2,1,4, 3
w3 = 1[2,4,1, 3
U3
U4
vz 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — :1,2,3,4:
m1 — _2,1,3,4_
U2 Mo — 2, 1,4,3
m3 — :2,4, 1,3
V3 Ty — _2,4,3, 1_

Uyg

vz 9
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — _2,1,3,4_
U2 Ty — 2, 1,4,3
0 T3 = :2747 173
V3 Ty — _2,4,3, 1_

Uyg

e 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — _2,1,3,4_
U2 Ty — 2, 1,4,3
0 T3 = [2,4,1,3]
V3 T4 — :2,4,3, 1
s — _4,2,3, 1

U4

e 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

V1 p o — 1,2,3,4
m1 — _2, 1,3,4_
v o = 1[2,1,4, 3
0 w3 = [2,4,1,3
U Ty = [2,4,3,1]
my — _4, 2, 3, 1

Uyg

v 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

1 p T =[1,2,3,4
m =12,1,3,4
U o = 1[2,1,4, 3
0 w3 = [2,4,1,3
U Ty = [2,4,3,1]
s = 14,2,3,1
(0] g — 4,3,2,1
v 4
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling & and unique top. sorting of Gs;.

1 p T =[1,2,3,4
m =12,1,3,4
U o = 1[2,1,4, 3
0 w3 = [2,4,1,3
U Ty = [2,4,3,1]
s = 14,2,3,1
(0] g — 4,3,2,1
Y6 9
Invariant:
e Current path ~; contains vectors vy, --- , v, Iin order ;.

e Two successive vectors v;, v; with ¢ < j form concave angle.



Claim: Under this construction, different top. sortings of G
correspond exactly to equivalent allowable sequences.



,brick wall conjecture”

rhombic tiling corresponding
to wall arrangement
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marked arrangements rhombic tilings of
of pseudolines 2-dim zonotopes

equivalence classes of
allowable sequences

allowable sequences

I

standard Young
tableaux (staircase)




standard Young tableaux
Def: Partition of N: Integers Ay > Ao > --- > X >0, > \; = N.
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Def: Partition of N: Integers A\;y > Ao > --- > A\ >0, Y A\, = N.
Ex: \ = ()\1,)\2,)\3,)\4,)\5) — (4,2,2, 1, 1), ‘)\’ = 10.
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standard Young tableaux
Def: Partition of N: Integers A\;y > Ao > --- > A\ >0, Y A\, = N.
Ex: \ = ()\1,)\2,)\3,)\4,)\5) — (4,2,2, 1, 1), ‘)\’ = 10.
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standard Young tableaux
Def: Partition of N: Integers A\;y > Ao > --- > A\ >0, Y A\, = N.
Ex: \ = ()\1,)\2,)\3,)\4,)\5) — (4,2,2, 1, 1), ‘)\’ = 10.

112131519 ,,Young diagram“
416 |8
7 C(A) =1{(1,1),(1,2),(1,3),(1,4),(1,5),
10 (2,1),(2,2),(2,3),(3,1),(4,1);
Def: Standard Young tableau: Assignment C'(A) — {1,--- ,|\|} of
numbers to cells of Young diagram so that:
e Every number 1,--- ,|\| appears exactly once (bijective)

e Rows are monotonically increasing
e Columns are monotonically increasing



standard Young tableaux

Def: Standard Young tableau of staircase shape: Standard Young
tableau for partition A = (n,n —1,--- ,1).

10

O[3 ||




standard Young tableaux

Def: Standard Young tableau of staircase shape: Standard Young
tableau for partition A = (n,n —1,--- ,1).

10

O[3 ||

— Theorem (Edelman & Greene, 1987)
There is a bijection between allowable sequences of size n and

standard Young tableaux of staircase shape (n —1,n—2,--- ,1).




standard Young tableaux

Schensted insertion

Input: Original tableau T': C(\) — N; insertion number u € N
Output: Enlarged tableau T : C(\') — N with |[\| = |A| + 1
Convention: For (i,5) ¢ C(\) say T'(¢,7) = o©

initialize: 1 <+ 1; q + u
while ¢ # ¢
jo+min{j e N : T(i,j) > q}
if T(¢,70) =q then g+ ¢+ 1
if T(i,j0) > q then ¢ < T(i,50); T(i,50) < q; q < ¢
1 <1+ 1
end



standard Young tableaux

Edelman-Greene bijection

Input: Allowable sequence (s1, - - - 75(";))

Output: Standard Young tableau T of shape (n —1,---,1)

initialize Tableau T' < (); Tableau R < () (empty tableaux)

for k=1,---,(})

T’ < SchenstedInsertion(7T, s )
Let (¢,7) be the index of the new cell in C(T") \ C(T).
T+ T

Add cell (¢,7) with entry k to R.

output R



standard Young tableaux

Example: Edelman-Greene bijection applied on (3,2,3,1,2,3).

@?3—’2—’23

2 3
3 3
13
1y 2|5
3 2 4
1|23 = (12| = |1|3
3 213 2




standard Young tableaux

Schiitzenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.



standard Young tableaux

Schiitzenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

Step I: Construct tableau path
e Start with cell that has largest entry
e Continue with top or left neighbor cell that has the larger entry
e Will end in cell (1,1) with entry 1.




standard Young tableaux

Schiitzenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

Step Il: Shift path
e Along path, move any entry one position further towards bottom
or right
e At cell (1,1) insert 0; on the other end drop out highest entry




standard Young tableaux

Schiitzenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

Step I1l: Add 1 to all entries.




standard Young tableaux

Applying the Schiitzenberg operater (g) times:

o

11316 124 1
215 —» 3|0 —> | 2
4 H §
11316 1[2]5 1
2 14 < 3|0 - |2




standard Young tableaux

Applying the Schiitzenberg operater (g) times:

1(31]6 1(24 1315
215 — |5 |0 — |2 |4
41716 =3 [d]j'6)=2 |[B]i'(6)=1
1(31]6 1(21|5 1416
2 |4 <+ (J |0 < 2|5

5|7 16)=3 |4]|ji6)=2 |3|;6)=3

Observe: Recording the j-coordinate of largest entry gives back
allowable sequence (reversed order): (3,2,3,1,2,3)



standard Young tableaux

hook lengths in a Young diagram:
2




standard Young tableaux

hook lengths in a Young diagram:
2

A

— hook length formula (Frame, Robinson, Thrall, 1953) ——
The number of standard Young tableaux of shape A is given by

Al
H(i,j)EC(A) hi,j




standard Young tableaux




standard Young tableaux

— Corollary

The number of allowable sequences of size n is given by

Uniformly sampled wiring diagram.
Taken from (Angel, Holroys, Romik, Virag, 2007)
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marked arrangements rhombic tilings of
of pseudolines 2-dim zonotopes
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allowable sequences

I

standard Young
tableaux (staircase)




signotopes
Two cases for every triple ¢ < 5 < k in marked arrangement:
1 1

J J
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signotopes

Two cases for every triple 2 < 7 < k£ in marked arrangement:
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J J
k k

arrangement & defines map: xy : ([g]) —{—,+}
»fingerprint” of o

e Local intersection order o; of each pseudoline j determined by x4



signotopes

Two cases for every triple 2 < 7 < k£ in marked arrangement:

0 i
J J
k k

arrangement & defines map: xy : ([g]) —{—,+}
»fingerprint” of o

e Local intersection order o; of each pseudoline j determined by x4

e Hence, entire arrangement o uniquely determined by Y



signotopes

Two cases for every triple 2 < 7 < k£ in marked arrangement:

0 i
J J
k k

arrangement & defines map: xy : ([g]) —{—,+}
»fingerprint” of o

e Local intersection order o; of each pseudoline j determined by x4
e Hence, entire arrangement o uniquely determined by Y

o Not all 2(3) possible assignments are arrangements.



signotopes

— Definition
For 1 < r < n, a signotope of rank v on n elements is a sign

function
X : (@) = {=+}

s.t. for every (r + 1)-subset X = {z1, -+ , 2,11} C [n] with
x1 < -+ < xr11 there is at most one sign change in the sequence

X (X \{z1), x (X \za}) - X (X \ &g )) -




signotopes

— Theorem
Signotopes of rank 3 are exactly the sign functions of marked

arrangements of pseudolines.

(without proof)



signotopes

— Theorem
Signotopes of rank 3 are exactly the sign functions of marked

arrangements of pseudolines.

(without proof)

Consequence: For any arrangement & and pseudolines
1 <1< 9 <k<l<n we have:



signotopes

all-minus-arrangement: xy = — all-plus-arrangement: xy = +
1 1
909999,
2 2 — XKL
; s =5
%
5 L 5
D00
D¢ % %% 0



triangle flip

triangle: cell bounded by exactly three pseudolines.

triangle flip: move any involved pseudoline over opposite crossing.

N <
/N









=~ QO b

triangle flip

——h
A/ (23.1.4) 232D Goan
v v ¥V OV YT VY (3,4,2,1)

(2,1,3,4)
(3,1,2,4)

(2,1,43)-- /4" (4,3.2,1)

(1,2,3,4) (3,4,1,2)

(1,3,2,4)

(1,2,4,3) (4,3,1,2)

/(41,23
L4123

a
o
s
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triangle flip

P ioi AL L (2,3,1,4) @341 a4y
i i i i i i i (2,1,3,4) (3,4,2,1)
(3,1.2,4)
(2,1,4,35}—— """"" (4,3,2,1)
(1,2,3,4) ‘ (3,4,1,2)

/II (1'3'2’4)

(1,2,4,3) (4,3,1,2)
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triangle flip

P ioi AL L (2,3,1,4) @341 a4y
i i i i i i i (2,1,3,4) (3,4,2,1)
(3,1.2,4)
(2,1,4,35}—— """"" (4,3,2,1)
(1,2,3,4) ‘ (3,4,1,2)

/II (1'3'2’4)

(1,2,4,3) (4,3,1,2)
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triangle flip

Pt AL G (23.1.4) 232D Goan
i i i i i i i (2,1,3,4) (3,4,2,1)
(3,1,2,4)
(2,1,4,35‘;—— """"" (4,3,2,1)
(1,2,3,4) ‘ (3,4,1,2)

7(1,3,2,4)

(1,2,4,3) (4,3,1,2)



triangle flip

flip graph G,,:
e vetices ~ marked arrangements of fixed size n
e edges ~ triangle flips

SPD.
B8
..



Taken from (Felsner & Ziegler, 1999)

triangle flip

BB
$60 0D BBOHE
D@D
DD



triangle flip

— Lemma
Unless of is the all-plus-arrangement, there exists a triple of

pseudolines ¢ < j < k with x4 ({ijk}) = — that form a triangle.




triangle flip

— Lemma
Unless & is the all-plus-arrangement, there exists a triple of
pseudolines ¢ < j < k with x4 ({ijk}) = — that form a triangle.

— Theorem (Ringel, 1957)
The triangle flip graph G,, consisting of marked pseudoline

arrangements of size n is connected and has diameter (%).




triangles

— Theorem (Felsner & Kriegel, 1991)

Every Euclidean arrangement of n pseudolines contains at least

n — 2 triangles. This bound is tight.
/
///

#triangles = n — 2 #triangles € Q(n?)



triangles

— Theorem (Felsner & Kriegel, 1991)
Every Euclidean arrangement of n pseudolines contains at least

n — 2 triangles. This bound is tight.
/
///

#triangles = n — 2 #triangles € Q(n?)

— Theorem
The flip graph G,, is (n — 2)-connected.

(A. Radtke, Felsner, Obenaus, R., Scheucher, Vogtenhuber, 2024)




bichromatic triangle conjecture
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bichromatic triangle conjecture

triangle A bichromatic

triangle B monochromatic



bichromatic triangle conjecture

triangle A bichromatic
triangle B monochromatic




bichromatic triangle conjecture

— Proposition
Let 4 be an arrangement of n > 3 pseudolines.
The following are equivalent:

o Every coloring of the pseudolines using exactly two colors

produces a bichromatic triangle (Conjecture).

o The pseudoline-triangle-graph G;(s{) is connected.

o The triangle-pseudoline-graph Ga (%) is connected.

2
=0
Ga(A)




generalized arrangements
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generalized arrangements

= generalized pseudoline arrangement:
e parallel class of n1,...,n, pseudolines
e (Only) pseudolines of different classes cross



Aslan Pasha Mosque
loannina, Greece

Vp
4
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generalized arrangements

Topkapi Palace, Istanbul, Turkey
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Def: matrix [h; ;] € No" "% is called plane partition, if rows
and columns are monotonic increasing.
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plane partitions and grid paths

Def: matrix [h; ;] € No" "% is called plane partition, if rows
and columns are monotonic increasing.
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plane partitions and grid paths

Def: matrix [h; ;] € No" "% is called plane partition, if rows
and columns are monotonic increasing.

rhombic tiling

of size (3, 2, 3) plane partition

i 1 1|1 with entries
I1 * 1 2 hi,j < 2

'~
~,
~.
~,
~,
~



plane partitions and grid paths

Def: matrix [h; ;] € No" "% is called plane partition, if rows
and columns are monotonic increasing.

L2
rhombic tiling @, 00T »>
of size (3, 2, 3) plane partition
with entries
hi,j < 2

'~
~,
~.
~,
~,
~

monotone, non-
crossing grid paths



plane partitions and grid paths

AT
7> - %ﬁ ’

systems of monotonic systems of monotonic
non-crossing s — t paths vertex-disjoint s; — t; paths in
in grid lifted grid



plane partitions and grid graphs

— Lindstrom-Gessel-Viennot Lemma

o Let G = (V, E) acyclic directed graph, edge weights {we}ecp.
o Let A={ay,--- ,a,} CV (start points)
o Let B={b1,---,b,} CV (end points)
» For any path P define its weight w(P) := | [, p we.
o For any pair a,b € V define e(a,b) :=> 5., ., w(P).
e Any system of n vertex-disjoint paths P;,--- ,P,: A— B
from A to B defines permutation o(Py,--- , Py,).
Then:

n

det([e(ai,b)liz) = Y, sen(o(Pi,-, Pa) [ w(P)

(Py, ,Pp):A—B i=1




plane partitions and grid graphs

— Lindstrom-Gessel-Viennot Lemma

o Let G = (V, E) acyclic directed graph, edge weights {we}ecp.
o Let A={ay,--- ,a,} CV (start points)
o Let B={b1,---,b,} CV (end points)
» For any path P define its weight w(P) := | [, p we.
o For any pair a,b € V define e(a,b) :=> 5., ., w(P).
e Any system of n vertex-disjoint paths P;,--- ,P,: A— B
from A to B defines permutation o(Py,--- , Py,).
Then: .
det([e(as, bj)i,;) = > sgn(o(Pr, -, Po) | [ w(P)
(P, ,Pn):A>B i=1

Ex. %\/" by
2

b2 O(P17P27P3)2(1,3,2)

a9 \/\
as PS bg



plane partitions and grid graphs

— Theorem [MacMahon, 1916]
The number of plane partitions of size a x b with entries at
most n equals

n a b . .
a+b i+j+k—1
HLhiZ ([(a—z+g)]) HHH2+]+k—2

i=14=1k=1




plane partitions and grid graphs

— Theorem [MacMahon, 1916]
The number of plane partitions of size a x b with entries at
most n equals

enzue (|0 2715)))

\—/
expression symmetric in a, b, n!



plane partitions and grid graphs

— Theorem [MacMahon, 1916]
The number of plane partitions of size a x b with entries at
most n equals

enzue (|0 2715)))

\—//
expression symmetric in a, b, n!

This formula also counts:
e Number of ways to tile a hexagon of side lengths a, b, n with
rhombics of unit length.
e Number of generalized arrangements of three classes with a, b
and n pseudolines.



face respecting colorings

Theorem: Let 9 be an arrangement of n pseudolines.

The crossings of & can be colored using n colors so that
no color appears twice on the boundary of any cell.

Example:
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face respecting colorings

Theorem: Let 9 be an arrangement of n pseudolines.

The crossings of & can be colored using n colors so that
no color appears twice on the boundary of any cell.

Example:




face respecting colorings

Proof idea: Greedily color the wiring diagram!

~ A

S

=
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Proof idea: Greedily color the wiring diagram!

~ A




face respecting colorings

Proof idea: Greedily color the wiring diagram!

~ A

conflict ancestors of ¢



face respecting colorings

Proof idea: Greedily color the wiring diagram!

~ a

conflict ancestors of ¢

Claim: Every crossing has at most n — 1 conflict ancestors.

[]



line respecting colorings

Theorem: Let 9 be an arrangement of n pseudolines.

The crossings of & can be colored using n colors so that
no color appears twice along any pseudoline.

Example:




line respecting colorings

Theorem: Let 9 be an arrangement of n pseudolines.

The crossings of & can be colored using n colors so that
no color appears twice along any pseudoline.

Example:




line respecting colorings

proof:



line respecting colorings

proof:
Hypergraph #€(d):
e vertices ~ pseudolines
e hyperedges ~ crossings



line respecting colorings

proof:
Hypergraph #€(d):
e vertices ~ pseudolines
e hyperedges ~ crossings

Theorem (Kang, Kelly, Kithn, Methuku, Osthus, 2023)

Every simple hypergraph on n vertices can be
edge-colored using n colors.

Recent breakthrough in
hypergraph coloring!!!




line respecting colorings

proof:
Hypergraph #6€(sA): direct proof?
e vertices ~ pseudolines

| deterministic algorithm?
e hyperedges ~ crossings

Theorem (Kang, Kelly, Ki*  wlethuku, Osthus, 2023)

Every simple hypergraph™ | n vertices can be
edge-colored using n colors.

Recent breakthrough in
hypergraph coloring!!!




line respecting colorings

Def:
mx (&) := max. number of crossings per pseudoline in o

Example:




line respecting colorings

Def:
mx(sf) := max. number of crossings per pseudoline in o

Fact: number of pseudolines n < 845 - mx (o)
(Dumitrescu, 2023)
Example:




line respecting colorings

Def:
mx(sf) := max. number of crossings per pseudoline in o

Fact: number of pseudolines n < 845 - mx (o)
(Dumitrescu, 2023)
Example:

mx(sf) = 4

O need mx(«) + 3 = 7 colors
o\\




line respecting colorings

Conjecture:
There exists some constant ¢ so that one can color the
crossings of every arrangement using mx(s{ ) + ¢ colors.

Example:

N~
@

mx(sf) = 4

O @ need mx(«) + 3 = 7 colors
o\\




pseudoline coloring

Def: pseudoline coloring of arrangement o :
e color the pseudolines of «
e avoiding monochromatic crossings

Xpi (&) minimal number of colors in pseudoline coloring

Example:

Xpi(d) =3




pseudoline coloring

Def: pseudoline coloring of arrangement o :
e color the pseudolines of «
e avoiding monochromatic crossings

Xpi (&) minimal number of colors in pseudoline coloring

Example:

Xpi(d) =3

\

N—

First observations:
o 2 < xp(d)<n (unlessn < 2)




pseudoline coloring

Def: pseudoline coloring of arrangement o :
e color the pseudolines of «
e avoiding monochromatic crossings

Xpi (&) minimal number of colors in pseudoline coloring

Example:

Xpi(d) =3

\

N—

First observations:
o 2 < xp(d)<n (unlessn < 2)
o o simple & x,i(d) =n




pseudoline coloring

Theorem:
Let &/ be an arrangement of n pseudolines.

The pseudolines of ¢/ can be colored using € (1/n) colors
avoiding monochromatic crossings of degree at least 4.




pseudoline coloring

Theorem:
Let &/ be an arrangement of n pseudolines.

The pseudolines of ¢/ can be colored using € (1/n) colors
avoiding monochromatic crossings of degree at least 4.

Proposition:

Given an arrangement & of n pseudolines, it is NP-hard
to compute X, ().







