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alternative definition via x-monotonic curves

R

Def: Family of continuous curves f1, · · · , fn : R→ R (pseudolines)
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Real projective plane



Equality relation: Consider two (marked) arrangements as equal, if
they differ only by homeomorphic transformation.
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Equality relation: Consider two (marked) arrangements as equal, if
they differ only by homeomorphic transformation.
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Two marked arrangements are equal iff all intersection orders coincide!
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Stretchable pseudoline arrangements can be drawn using straight
lines.

Theorem (Goodman & Pollack, 1980)

All arrangements of n ≤ 7 pseudolines are stretchable.

a b c

A B C
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h

non-stretchable arrangement
with multicrossings (non-simple)

(Ringel, 1957)

Pappus Theorem:
Orange intersections

are colinear.



stretchability

Stretchable pseudoline arrangements can be drawn using straight
lines.

Theorem (Goodman & Pollack, 1980)

All arrangements of n ≤ 7 pseudolines are stretchable.

Theorem (Shor, 1991)

It is NP-hard to decide whether a given arrangement is stretchable.
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Wiring diagram: canonical drawing of a pseudoline arrangement
• pseudolines ∼ horizontal wires
• crossings ∼ sequence of switches between wires
• North cell N lies above all wires.

Will see: Every arrangement can be drawn as a wiring diagram!
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wiring diagrams
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Wiring diagrams as sorting networks:

in out

min(a, b)

max(a, b)

a

b

Sorting networks encode sorting algorithms that are based on
comparison & exchange of neighbor elements.
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monotonic paths on permutahedron

Permutahedron of order n:

Pn := conv({(π(1), · · · , π(n)) ∈ Rn | π ∈ Sn})

x1 + · · ·+ xn = n(n+ 1)/2

Example: n = 3

=⇒ dim(Pn) = n− 1
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• Ends with π(n
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• πi = τi ◦ πi−1 for some neighbor transposition τi = (si, si + 1).
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Def: allowable sequence: sequence of permutations π0, · · · , π(n
2)

• Starts with π0 = [1, · · · , n].
• Ends with π(n

2)
= [n, · · · , 1].

• πi = τi ◦ πi−1 for some neighbor transposition τi = (si, si + 1).

π0 π1 π2 π3 π4 π5 π6

3 2 1 3 2 3

Suffices to write only transposition indices (s1, · · · , s(n
2)

)!

Example: (s1, · · · , s6) = (3, 2, 1, 3, 2, 3)
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Marked arrangement A defines digraph GA on set of crossings.
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arrangement graph

σ4 = [5, 2, 3, 1]

4

Marked arrangement A defines digraph GA on set of crossings.
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Local intersection orders σ1, · · · , σn and GA determine each other.
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arrangement graph

Lemma

The arrangement graph GA is acyclic.

Consequence: There exists a topological sorting of the crossings.
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sweeping arrangements

Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:
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Fix top. sorting of GA (GA acyclic).

Will construct sweep γi of A:
• Family of internally disjoint sweep

curves γ0, · · · , γ(n
2)

from p ∈ N
to q ∈ S.

• No γi goes through a crossing.
• Each γi crosses each pseudoline

exactly once.
• Exactly one crossing lies in area

between γi and γi+1.
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If we can sweep A, then we can draw A as a wiring diagram!
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Different allowable sequences correspond to the same arrangement!
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• Allowable sequences

S = (s1, · · · , si, si+1, · · · , s(n
2)

)

and S′ = (s1, · · · , si+1, si, · · · , s(n
2)

)

are called directly equivalent, if |si − si+1| ≥ 2.

Def:

• S and S′ are called equivalent (S ∼ S′), if there are
S = S1, · · · , Sr = S′ with Si and Si+1 directly equivalent.
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equivalence of allowable sequences

Theorem
There is a one-to-one correspondence between marked
arrangements of pseudolines and equivalence classes of allowable
sequences.

Ingredients for a formal proof:
• Arrangement A together with a top. sorting π of GA yields an

allowable sequence SA,π.
• Every allowable sequence can be obtained this way.
• Different top. sortings of GA correspond exactly to allowable

sequences equivalent to SA,π.
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The wall arrangements are the marked arrangements that
maximize the number of corresponding allowable sequences.
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• Two-dimensional zonotope spanned by v1, · · · , vn:

Z(v1, · · · , vn) :=

{
n∑
i=1

λivi : λ1, · · · , λn ∈ [−1, 1]

}
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• Rhombic tiling of Z(v1, · · · , vn): Tesselation of Z(v1, · · · , vn) by
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∑
i<j

4 · |det([vi, vj ])|
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rhombic tilings

Lemma

Vol (Z(v1, · · · , vn)) =
∑
i<j

4 · |det([vi, vj ])|

v1

v2

v3

v4

”
Touching on the right relation“ defines tiling graph GT .

Lemma (Guibas & Yao, 1980)

The tiling graph GT is acyclic.

rhombic tiling T
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Claim: There exists a tile whose left side is completely lit.

⇒ Among the tiles with lit top point the one with lowest top point.
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rhombic tilings

Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .
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Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.
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Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .
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Theorem
There is a one-to-one correspondence between rhombic tilings and
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Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .

v1

v2

v3

v4

p

qγ3

π3 = [2, 4, 1, 3]

π2 = [2, 1, 4, 3]

π1 = [2, 1, 3, 4]

π0 = [1, 2, 3, 4]

1

2

3

4

5

6



rhombic tilings

Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .
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Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .
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Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.
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rhombic tilings

Theorem
There is a one-to-one correspondence between rhombic tilings and
equivalence classes of allowable sequences.

Proof: Assoc. (tiling T, top. sorting of GT) 7→ allowable sequence
by doing a sweep in the order of a topological sorting of GT .

v1

v2

v3

v4

p

qγ6

π6 = [4, 3, 2, 1]

π5 = [4, 2, 3, 1]

π4 = [2, 4, 3, 1]

π3 = [2, 4, 1, 3]

π2 = [2, 1, 4, 3]

π1 = [2, 1, 3, 4]

π0 = [1, 2, 3, 4]

1

2

3

4

5

6 valid allowable
sequence???



Claim: In obtained permutation sequence, every pair i 6= j is
swapped exactly once (⇒ obtain valid allowable sequence).



Claim: In obtained permutation sequence, every pair i 6= j is
swapped exactly once (⇒ obtain valid allowable sequence).

• At least once: Clear! Because get from [1, · · · , n] to [n, · · · , 1].

• Swap of pair i 6= j happens on flip over rhombus Z(vi, vj) with

Vol (Z(vi, vj)) = 4 · |det([vi, vj ])|.

• These swaps exhaust entire volume, because∑
i<j

4 · |det([vi, vj ])| = Vol (Z(v1, · · · , vn)) .

• Hence, there cannot have been further swaps.
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Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling T and unique top. sorting of GT .
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Claim: This way, every allowable sequence S can be obtained from a
unique rhombic tiling T and unique top. sorting of GT .
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π6 = [4, 3, 2, 1]

π5 = [4, 2, 3, 1]

π4 = [2, 4, 3, 1]

π3 = [2, 4, 1, 3]
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π0 = [1, 2, 3, 4]

Invariant:
• Current path γi contains vectors v1, · · · , vn in order πi.
• Two successive vectors vi, vj with i < j form concave angle.



Claim: Under this construction, different top. sortings of GT

correspond exactly to equivalent allowable sequences.
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brick wall conjecture“
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to wall arrangement
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standard Young tableaux

Def: Partition of N : Integers λ1 ≥ λ2 ≥ · · · ≥ λk > 0,
∑
λi = N .

Ex: λ = (λ1, λ2, λ3, λ4, λ5) = (4, 2, 2, 1, 1), |λ| = 10.

”
Young diagram“

Def: Standard Young tableau: Assignment C(λ)→ {1, · · · , |λ|} of
numbers to cells of Young diagram so that:
• Every number 1, · · · , |λ| appears exactly once (bijective)
• Rows are monotonically increasing
• Columns are monotonically increasing

1 2 3 5

4 6 8

7

10

9

C(λ) = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 1), (2, 2), (2, 3), (3, 1), (4, 1)}



standard Young tableaux

Def: Standard Young tableau of staircase shape: Standard Young
tableau for partition λ = (n, n− 1, · · · , 1).
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standard Young tableaux

Def: Standard Young tableau of staircase shape: Standard Young
tableau for partition λ = (n, n− 1, · · · , 1).

1 2 3

4 5

7

9

10

8

6

Theorem (Edelman & Greene, 1987)
There is a bijection between allowable sequences of size n and
standard Young tableaux of staircase shape (n− 1, n− 2, · · · , 1).



standard Young tableaux

Schensted insertion

Input: Original tableau T : C(λ)→ N; insertion number u ∈ N
Output: Enlarged tableau T : C(λ′)→ N with |λ′| = |λ|+ 1

Convention: For (i, j) /∈ C(λ) say T (i, j) =∞

initialize: i← 1; q ← u

while q 6=∞
j0 ← min{j ∈ N : T (i, j) ≥ q}
if T (i, j0) = q then q ← q + 1

if T (i, j0) > q then q′ ← T (i, j0); T (i, j0)← q; q ← q′

i← i+ 1

end



standard Young tableaux

Edelman-Greene bijection

Input: Allowable sequence (s1, · · · , s(n
2)

)

Output: Standard Young tableau T of shape (n− 1, · · · , 1)

for k = 1, · · · ,
(
n
2

)initialize Tableau T ← ∅; Tableau R← ∅ (empty tableaux)

T ′ ← SchenstedInsertion(T, sk)

Let (i, j) be the index of the new cell in C(T ′) \ C(T ).

T ← T ′

Add cell (i, j) with entry k to R.

output R



standard Young tableaux

Example: Edelman-Greene bijection applied on (3, 2, 3, 1, 2, 3).

∅
3

3
2

2

3
3

2

3

3

1

1 3

2

3

2
1 2

2

3

3

3
1 2

2

3

3

3

631

2 5

4 R
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standard Young tableaux

Schützenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

421

3 6

5

Step I: Construct tableau path
• Start with cell that has largest entry
• Continue with top or left neighbor cell that has the larger entry
• Will end in cell (1, 1) with entry 1.
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3 6
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3 6

5



standard Young tableaux

Schützenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

420

1 3

5

Step II: Shift path
• Along path, move any entry one position further towards bottom

or right
• At cell (1, 1) insert 0; on the other end drop out highest entry

421

3 6

5

421

3 6

5

421

3 6

5



standard Young tableaux

Schützenberger operator: Transforms standard Young tableau
into new standard Young tableau of same shape.

531

2 4

6

Step III: Add 1 to all entries.

420

1 3

5

421

3 6

5

421

3 6

5

421

3 6

5



standard Young tableaux
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1 3 6
2
4

6
1 2 4
3
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4
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5
1 4 6
2
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6
1 2 5
3
4

4
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Applying the Schützenberg operater
(
n
2

)
times:



standard Young tableaux

5
1 3 6
2
4

6
1 2 4
3
5

4
1 3 5
2
6

5
1 4 6
2
3

6
1 2 5
3
4

4
1 3 6
2
5

j−1(6) = 3 j−1(6) = 2 j−1(6) = 1

j−1(6) = 3j−1(6) = 2j−1(6) = 3

Applying the Schützenberg operater
(
n
2

)
times:

Observe: Recording the j-coordinate of largest entry gives back
allowable sequence (reversed order): (3, 2, 3, 1, 2, 3)
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standard Young tableaux

hook lengths in a Young diagram:

3

2

h3,2 = 7

λ

hook length formula (Frame, Robinson, Thrall, 1953)

The number of standard Young tableaux of shape λ is given by

|λ|!∏
(i,j)∈C(λ) hi,j

.



standard Young tableaux

Corollary

The number of allowable sequences of size n is given by(
n
2

)
!∏n−1

i=1 (2n− 1− 2i)i
.



standard Young tableaux

Corollary

The number of allowable sequences of size n is given by(
n
2

)
!∏n−1

i=1 (2n− 1− 2i)i
.

Uniformly sampled wiring diagram.
Taken from (Angel, Holroys, Romik, Virág, 2007)
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signotopes

i

j j

kk

i

Two cases for every triple i < j < k in marked arrangement:

− +

arrangement A defines map: χA :
(

[n]
3

)
→ {−,+}

”
fingerprint“ of A

• Local intersection order σj of each pseudoline j determined by χA

• Hence, entire arrangement A uniquely determined by χA

• Not all 2(n
3) possible assignments are arrangements.



signotopes
WARNING

A bit technical!

Definition
For 1 ≤ r ≤ n, a signotope of rank r on n elements is a sign
function

χ :

(
[n]

r

)
→ {−,+}

s.t. for every (r + 1)-subset X = {x1, · · · , xr+1} ⊆ [n] with
x1 < · · · < xr+1 there is at most one sign change in the sequence

χ (X \ {x1}) , χ (X \ {x2}) , · · · , χ (X \ {xr+1}) .



signotopes

Theorem
Signotopes of rank 3 are exactly the sign functions of marked
arrangements of pseudolines.

(without proof)



signotopes

Theorem
Signotopes of rank 3 are exactly the sign functions of marked
arrangements of pseudolines.

Consequence: For any arrangement A and pseudolines
1 ≤ i < j < k < l ≤ n we have:

(χA(jkl), χA(ikl), χA(ijl), χA(jkl)) ∈
{

(+ + ++), (+ + +−),

(+ +−−), (+−−−),

(−−−−), (−−−+),

(−−++), (−+ ++)
}

(without proof)



signotopes

1
2
3
4
5
6
7

1
2
3
4
5
6
7

all-minus-arrangement: χA = − all-plus-arrangement: χA = +



triangle flip

triangle: cell bounded by exactly three pseudolines.

triangle flip: move any involved pseudoline over opposite crossing.
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triangle flip

1

2

3

4

(1,2,3,4)

(2,1,3,4)

(2,3,1,4)
(2,3,4,1)

(3,2,4,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(4,1,3,2)

(1,4,3,2)

(1,4,2,3)

(1,3,4,2)

(3,1,4,2)

(4,2,1,3)

(4,2,3,1)(2,4,1,3)

(3,1,2,4)

(2,1,4,3)

(1,3,2,4)

(1,2,4,3)

(4,1,2,3)

(2,4,3,1)

(3,2,1,4)

(1,2,3,4)

(1,2,4,3)

(1,4,2,3)

(4,1,2,3)

(4,1,3,2)

(4,3,1,2)

(4,3,2,1)

(3,4,1,2)



triangle flip

(1,2,3,4)

(2,1,3,4)

(2,3,1,4)
(2,3,4,1)

(3,2,4,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(4,1,3,2)

(1,4,3,2)

(1,4,2,3)

(1,3,4,2)

(3,1,4,2)

(4,2,1,3)

(4,2,3,1)(2,4,1,3)

(3,1,2,4)

(2,1,4,3)

(1,3,2,4)

(1,2,4,3)

(4,1,2,3)

(2,4,3,1)

(3,2,1,4)

(1,2,3,4)

(1,2,4,3)

(1,4,2,3)

(4,1,2,3)

(4,1,3,2)

(4,3,1,2)

(4,3,2,1)

(3,4,1,2)

1

2

3

4



triangle flip

(1,2,3,4)

(2,1,3,4)

(2,3,1,4)
(2,3,4,1)

(3,2,4,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(4,1,3,2)

(1,4,3,2)

(1,4,2,3)

(1,3,4,2)

(3,1,4,2)

(4,2,1,3)

(4,2,3,1)(2,4,1,3)

(3,1,2,4)

(2,1,4,3)

(1,3,2,4)

(1,2,4,3)

(4,1,2,3)

(2,4,3,1)

(3,2,1,4)

(1,2,3,4)

(1,2,4,3)

(1,4,2,3)

(4,1,2,3)

(4,1,3,2)

(4,3,1,2)

(4,3,2,1)

(3,4,1,2)

1

2

3

4



triangle flip

(1,2,3,4)

(2,1,3,4)

(2,3,1,4)
(2,3,4,1)

(3,2,4,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(4,1,3,2)

(1,4,3,2)

(1,4,2,3)

(1,3,4,2)

(3,1,4,2)

(4,2,1,3)

(4,2,3,1)(2,4,1,3)

(3,1,2,4)

(2,1,4,3)

(1,3,2,4)

(1,2,4,3)

(4,1,2,3)

(2,4,3,1)

(3,2,1,4)

(1,2,3,4)

(1,2,4,3)

(1,4,2,3)

(4,1,2,3)

(4,1,3,2)

(4,3,1,2)

(4,3,2,1)

(3,4,1,2)

1

2

3

4



triangle flip

flip graph Gn:
• vetices ∼ marked arrangements of fixed size n
• edges ∼ triangle flips

G4



triangle flip

G5

Taken from (Felsner & Ziegler, 1999)



triangle flip

Lemma
Unless A is the all-plus-arrangement, there exists a triple of
pseudolines i < j < k with χA ({ijk}) = − that form a triangle.



triangle flip

Lemma
Unless A is the all-plus-arrangement, there exists a triple of
pseudolines i < j < k with χA ({ijk}) = − that form a triangle.

Theorem (Ringel, 1957)
The triangle flip graph Gn consisting of marked pseudoline
arrangements of size n is connected and has diameter

(
n
3

)
.



triangles

Theorem (Felsner & Kriegel, 1991)

Every Euclidean arrangement of n pseudolines contains at least
n− 2 triangles. This bound is tight.

#triangles = n− 2 #triangles ∈ Ω(n2)



triangles

Theorem (Felsner & Kriegel, 1991)

Every Euclidean arrangement of n pseudolines contains at least
n− 2 triangles. This bound is tight.

#triangles = n− 2 #triangles ∈ Ω(n2)

Theorem
The flip graph Gn is (n− 2)-connected.

(A. Radtke, Felsner, Obenaus, R., Scheucher, Vogtenhuber, 2024)



bichromatic triangle conjecture



bichromatic triangle conjecture



bichromatic triangle conjecture



bichromatic triangle conjecture

A
B

triangle A bichromatic

triangle B monochromatic



bichromatic triangle conjecture

A
B

triangle A bichromatic

triangle B monochromatic

Conjecture
Every truly two-colored arrangement of at least three pseudolines
contains a bichromatic triangle.

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)



bichromatic triangle conjecture

Proposition

Let A be an arrangement of n ≥ 3 pseudolines.
The following are equivalent:

• Every coloring of the pseudolines using exactly two colors
produces a bichromatic triangle (Conjecture).

• The pseudoline-triangle-graph Gl(A) is connected.
• The triangle-pseudoline-graph G∆(A) is connected.

1

2

3

4

t1 t2

1 2

3 4

Gl(A)

t1 t2
2

3

G∆(A)A



generalized arrangements



generalized arrangements

n1 = 3

n2 = 2

n3 = 3



generalized arrangements

n1 = 3

n2 = 2

n3 = 3



generalized arrangements

n1 = 3

n2 = 2

n3 = 3



generalized arrangements

⇒ generalized pseudoline arrangement:
• parallel class of n1, ..., nr pseudolines
• (Only) pseudolines of different classes cross

n1 = 3

n2 = 2

n3 = 3



generalized arrangements

Aslan Pasha Mosque
Ioannina, Greece



generalized arrangements

Topkapı Palace, Istanbul, Turkey



plane partitions and grid paths



plane partitions and grid paths

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonic increasing.
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rhombic tiling
of size (3, 2, 3)



plane partitions and grid paths

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonic increasing.

x1

x2

rhombic tiling
of size (3, 2, 3)



plane partitions and grid paths

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonic increasing.

x1

x2

rhombic tiling
of size (3, 2, 3)



plane partitions and grid paths

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonic increasing.

2

1

1

2

1

0

1

0

0

x1

x2

x1

x2

2

1

1

2

1

0

1

0

0

x1

x2

plane partition
with entries
hi,j ≤ 2

rhombic tiling
of size (3, 2, 3)



plane partitions and grid paths

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonic increasing.

2

1

1

2

1

0

1

0

0

s
tx1

x2

x1

x2

x1

x2

2

1

1

2

1

0

1

0

0

x1

x2

plane partition
with entries
hi,j ≤ 2

rhombic tiling
of size (3, 2, 3)

monotone, non-
crossing grid paths



plane partitions and grid paths

t

s

t1

s1 t2

s2

systems of monotonic
non-crossing s→ t paths

in grid

systems of monotonic
vertex-disjoint si → ti paths in

lifted grid

bij



plane partitions and grid graphs

Lindström-Gessel-Viennot Lemma
• Let G = (V,E) acyclic directed graph, edge weights {we}e∈E .
• Let A = {a1, · · · , an} ⊂ V (start points)
• Let B = {b1, · · · , bn} ⊂ V (end points)
• For any path P define its weight w(P ) :=

∏
e∈P we.

• For any pair a, b ∈ V define e(a, b) :=
∑
P :a→b w(P ).

• Any system of n vertex-disjoint paths P1, · · · , Pn : A→ B
from A to B defines permutation σ(P1, · · · , Pn).

Then:

det([e(ai, bj)]i,j) =
∑

(P1,··· ,Pn):A→B

sgn(σ(P1, · · · , Pn)
n∏
i=1

w(Pi)



plane partitions and grid graphs

Lindström-Gessel-Viennot Lemma
• Let G = (V,E) acyclic directed graph, edge weights {we}e∈E .
• Let A = {a1, · · · , an} ⊂ V (start points)
• Let B = {b1, · · · , bn} ⊂ V (end points)
• For any path P define its weight w(P ) :=

∏
e∈P we.

• For any pair a, b ∈ V define e(a, b) :=
∑
P :a→b w(P ).

• Any system of n vertex-disjoint paths P1, · · · , Pn : A→ B
from A to B defines permutation σ(P1, · · · , Pn).

Then:

det([e(ai, bj)]i,j) =
∑

(P1,··· ,Pn):A→B

sgn(σ(P1, · · · , Pn)
n∏
i=1

w(Pi)

a1

a2

a3

b1
b2

b3

P1
P2

P3

σ(P1, P2, P3) = (1, 3, 2)
Ex.



plane partitions and grid graphs

Theorem [MacMahon, 1916]
The number of plane partitions of size a× b with entries at
most n equals

det1≤i,j≤n

([(
a+ b

a− i+ j

)])
=

n∏
i=1

a∏
j=1

b∏
k=1

i+ j + k − 1

i+ j + k − 2
.
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Theorem [MacMahon, 1916]
The number of plane partitions of size a× b with entries at
most n equals

det1≤i,j≤n

([(
a+ b

a− i+ j

)])
=

n∏
i=1

a∏
j=1

b∏
k=1

i+ j + k − 1

i+ j + k − 2
.

expression symmetric in a, b, n!



plane partitions and grid graphs

Theorem [MacMahon, 1916]
The number of plane partitions of size a× b with entries at
most n equals

det1≤i,j≤n

([(
a+ b

a− i+ j

)])
=

n∏
i=1

a∏
j=1

b∏
k=1

i+ j + k − 1

i+ j + k − 2
.

This formula also counts:
• Number of ways to tile a hexagon of side lengths a, b, n with

rhombics of unit length.
• Number of generalized arrangements of three classes with a, b

and n pseudolines.

expression symmetric in a, b, n!



face respecting colorings

Theorem: Let A be an arrangement of n pseudolines.

The crossings of A can be colored using n colors so that
no color appears twice on the boundary of any cell.

Example:
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face respecting colorings

Theorem: Let A be an arrangement of n pseudolines.

The crossings of A can be colored using n colors so that
no color appears twice on the boundary of any cell.

Example:



face respecting colorings

Proof idea: Greedily color the wiring diagram!



face respecting colorings
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face respecting colorings

c

Proof idea: Greedily color the wiring diagram!

conflict ancestors of c



face respecting colorings

c

Proof idea: Greedily color the wiring diagram!

conflict ancestors of c

Claim: Every crossing has at most n− 1 conflict ancestors.



line respecting colorings

Theorem: Let A be an arrangement of n pseudolines.

The crossings of A can be colored using n colors so that
no color appears twice along any pseudoline.

Example:



line respecting colorings

Theorem: Let A be an arrangement of n pseudolines.

The crossings of A can be colored using n colors so that
no color appears twice along any pseudoline.

Example:

2
1

5

4
3

1

2

3

4

5
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• vertices ∼ pseudolines
• hyperedges ∼ crossings



line respecting colorings

proof:

Hypergraph H(A):
• vertices ∼ pseudolines
• hyperedges ∼ crossings

Theorem (Kang, Kelly, Kühn, Methuku, Osthus, 2023)

Every simple hypergraph on n vertices can be
edge-colored using n colors.

Recent breakthrough in
hypergraph coloring!!!



line respecting colorings

proof:

Hypergraph H(A):
• vertices ∼ pseudolines
• hyperedges ∼ crossings

Theorem (Kang, Kelly, Kühn, Methuku, Osthus, 2023)

Every simple hypergraph on n vertices can be
edge-colored using n colors.

Recent breakthrough in
hypergraph coloring!!!

direct proof?

deterministic algorithm?
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Def:
mx(A) := max. number of crossings per pseudoline in A

Example:

mx(A) = 4
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line respecting colorings

Def:
mx(A) := max. number of crossings per pseudoline in A

Example:

mx(A) = 4

need mx(A) + 3 = 7 colors

Fact: number of pseudolines n ≤ 845 ·mx(A)

(Dumitrescu, 2023)



line respecting colorings

Conjecture:
There exists some constant c so that one can color the
crossings of every arrangement using mx(A) + c colors.

Example:

mx(A) = 4

need mx(A) + 3 = 7 colors



pseudoline coloring

Def: pseudoline coloring of arrangement A:
• color the pseudolines of A
• avoiding monochromatic crossings

χpl(A): minimal number of colors in pseudoline coloring

Example:

χpl(A) = 3
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pseudoline coloring

Def: pseudoline coloring of arrangement A:
• color the pseudolines of A
• avoiding monochromatic crossings

χpl(A): minimal number of colors in pseudoline coloring

Example:

χpl(A) = 3

First observations:
• 2 ≤ χpl(A) ≤ n (unless n < 2)
• A simple ⇔ χpl(A) = n



pseudoline coloring

Theorem:

Let A be an arrangement of n pseudolines.

The pseudolines of A can be colored using O(
√
n) colors

avoiding monochromatic crossings of degree at least 4.



pseudoline coloring

Proposition:

Given an arrangement A of n pseudolines, it is NP-hard
to compute χpl(A).

Theorem:

Let A be an arrangement of n pseudolines.

The pseudolines of A can be colored using O(
√
n) colors

avoiding monochromatic crossings of degree at least 4.



Questions?


