

Mini course at Universidad Distrital Francisco José de Caldas INTRODUCTION TO ARRANGEMENTS OF PSEUDOLINES

Sandro M. Roch

Def: Family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ (pseudolines)

Def: Family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ (pseudolines) • $\lim_{x \to \infty} ||f_i(x)|| = \lim_{x \to -\infty} ||f_i(x)|| = \infty$

Def: Family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ (pseudolines)

- $\lim_{x \to \infty} ||f_i(x)|| = \lim_{x \to -\infty} ||f_i(x)|| = \infty$
- Each two $f_i \neq f_j$ intersect in exactly one point where they cross.

Def: Family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ (pseudolines)

- $\lim_{x \to \infty} ||f_i(x)|| = \lim_{x \to -\infty} ||f_i(x)|| = \infty$
- Each two $f_i \neq f_j$ intersect in exactly one point where they cross.
- At each point, no more than two pseudolines cross. (simple arrangement)

alternative definition via x-monotonic curves

Def: Family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}$ (pseudolines)

- Each two $f_i \neq f_j$ intersect in exactly one point where they cross.
- At each point, no more than two pseudolines cross. *(simple arrangement)*

Def: Family of simple closed curves $f_1, \dots, f_n : [0, 1] \to \mathbb{P}^2$

- Each f_i does not separate \mathbb{P}^2
- Each $f_i \neq f_j$ intersect in at most (i.e. exactly) one point.
- At each point, no more than two pseudolines cross. (simple arrangement)

Def: Family of simple closed curves $f_1, \dots, f_n : [0, 1] \to \mathbb{P}^2$

- Each f_i does not separate \mathbb{P}^2
- Each $f_i \neq f_j$ intersect in at most (i.e. exactly) one point.
- At each point, no more than two pseudolines cross. (simple arrangement)

Def: Family of simple closed curves $f_1, \dots, f_n : [0, 1] \to \mathbb{P}^2$

- Each f_i does not separate \mathbb{P}^2
- Each $f_i \neq f_j$ intersect in at most (i.e. exactly) one point.
- At each point, no more than two pseudolines cross. (simple arrangement)

Equality relation: Consider two (marked) arrangements as equal, if they differ only by homeomorphic transformation.

Equality relation: Consider two (marked) arrangements as equal, if they differ only by homeomorphic transformation.

Two marked arrangements are equal iff all intersection orders coincide!

Equality relation: Consider two (marked) arrangements as equal, if they differ only by homeomorphic transformation.

Two marked arrangements are equal iff all intersection orders coincide!

Case n = 4: Exist 8 different marked arrangements

Stretchable pseudoline arrangements can be drawn using straight lines.

Stretchable pseudoline arrangements can be drawn using straight lines.

Stretchable pseudoline arrangements can be drawn using straight lines.

– **Theorem** (Goodman & Pollack, 1980) – All arrangements of $n \leq 7$ pseudolines are stretchable.

Stretchable pseudoline arrangements can be drawn using straight lines.

– **Theorem** (Goodman & Pollack, 1980) – All arrangements of $n \leq 7$ pseudolines are stretchable.

non-stretchable arrangement with multicrossings (non-simple) (Ringel, 1957) **Pappus Theorem:** Orange intersections are colinear.

Stretchable pseudoline arrangements can be drawn using straight lines.

- **Theorem** (Goodman & Pollack, 1980)

All arrangements of $n \leq 7$ pseudolines are stretchable.

- **Theorem** (Shor, 1991)

It is NP-hard to decide whether a given arrangement is stretchable.

Wiring diagram: canonical drawing of a pseudoline arrangement

- pseudolines \sim horizontal wires
- crossings \sim sequence of switches between wires
- North cell N lies above all wires.

Will see: Every arrangement can be drawn as a wiring diagram!

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

Sorting networks encode sorting algorithms that are based on *comparison & exchange* of neighbor elements.

monotonic paths on permutahedron

Permutahedron of order *n*:

$$P_n := \operatorname{conv}(\{(\pi(1), \cdots, \pi(n)) \in \mathbb{R}^n \mid \pi \in S_n\})$$

Example: n = 3

$$x_1 + \dots + x_n = n(n+1)/2$$
$$\implies \dim(P_n) = n-1$$

monotonic paths on permutahedron

monotonic paths on permutahedron

Def: allowable sequence: sequence of permutations $\pi_0, \dots, \pi_{\binom{n}{2}}$

- Starts with $\pi_0 = [1, \cdots, n]$.
- Ends with $\pi_{\binom{n}{2}} = [n, \cdots, 1].$
- $\pi_i = \tau_i \circ \pi_{i-1}$ for some neighbor transposition $\tau_i = (s_i, s_i + 1)$.

Def: allowable sequence: sequence of permutations $\pi_0, \dots, \pi_{\binom{n}{2}}$

- Starts with $\pi_0 = [1, \cdots, n]$.
- Ends with $\pi_{\binom{n}{2}} = [n, \cdots, 1].$
- $\pi_i = \tau_i \circ \pi_{i-1}$ for some neighbor transposition $\tau_i = (s_i, s_i + 1)$.

Suffices to write only transposition indices $(s_1, \dots, s_{\binom{n}{2}})!$ Example: $(s_1, \dots, s_6) = (3, 2, 1, 3, 2, 3)$

Marked arrangement \mathscr{A} defines digraph $G_{\mathscr{A}}$ on set of crossings.

Marked arrangement \mathscr{A} defines digraph $G_{\mathscr{A}}$ on set of crossings.

Local intersection orders $\sigma_1, \dots, \sigma_n$ and $G_{\mathscr{A}}$ determine each other.

– Lemma

The arrangement graph $G_{\mathscr{A}}$ is acyclic.

– Lemma

The arrangement graph $G_{\mathscr{A}}$ is acyclic.

Consequence: There exists a topological sorting of the crossings.

Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic). Will construct *sweep* (γ_i) of \mathscr{A} :

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

Will construct sweep γ_i of \mathscr{A} :

• Family of internally disjoint sweep curves $\gamma_0, \cdots, \gamma_{\binom{n}{2}}$ from $p \in N$ to $q \in S$.

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

Will construct *sweep* γ_i of \mathscr{A} :

- Family of internally disjoint sweep curves $\gamma_0, \cdots, \gamma_{\binom{n}{2}}$ from $p \in N$ to $q \in S$.
- No γ_i goes through a crossing.

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

Will construct sweep γ_i of \mathscr{A} :

- Family of internally disjoint sweep curves $\gamma_0, \dots, \gamma_{\binom{n}{2}}$ from $p \in N$ to $q \in S$.
- No γ_i goes through a crossing.
- Each γ_i crosses each pseudoline exactly once.

- Lemma

Every pseudoline arrangement can be drawn as a wiring diagram.

Proof sketch:

Fix top. sorting of $G_{\mathscr{A}}$ ($G_{\mathscr{A}}$ acyclic).

Will construct sweep γ_i of \mathscr{A} :

- Family of internally disjoint sweep curves $\gamma_0, \cdots, \gamma_{\binom{n}{2}}$ from $p \in N$ to $q \in S$.
- No γ_i goes through a crossing.
- Each γ_i crosses each pseudoline exactly once.
- Exactly one crossing lies in area between γ_i and γ_{i+1} .

If we can sweep \mathscr{A} , then we can draw \mathscr{A} as a wiring diagram!

Iteratively obtain γ_i from γ_{i-1} :

Iteratively obtain γ_i from γ_{i-1} :

Different allowable sequences correspond to the same arrangement!

Different allowable sequences correspond to the same arrangement!

Def: • Allowable sequences

$$S = (s_1, \cdots, s_i, s_{i+1}, \cdots, s_{\binom{n}{2}})$$

and
$$S' = (s_1, \cdots, s_{i+1}, s_i, \cdots, s_{\binom{n}{2}})$$

are called *directly equivalent*, if $|s_i - s_{i+1}| \ge 2$.

Different allowable sequences correspond to the same arrangement!

Def: • Allowable sequences

$$S = (s_1, \cdots, s_i, s_{i+1}, \cdots, s_{\binom{n}{2}})$$

and
$$S' = (s_1, \cdots, s_{i+1}, s_i, \cdots, s_{\binom{n}{2}})$$

are called *directly equivalent*, if $|s_i - s_{i+1}| \ge 2$.

• S and S' are called equivalent $(S \sim S')$, if there are $S = S_1, \dots, S_r = S'$ with S_i and S_{i+1} directly equivalent.

 Theorem
There is a one-to-one correspondence between marked arrangements of pseudolines and equivalence classes of allowable sequences.

 Theorem
There is a one-to-one correspondence between marked arrangements of pseudolines and equivalence classes of allowable sequences.

Ingredients for a formal proof:

- Arrangement \mathscr{A} together with a top. sorting π of $G_{\mathscr{A}}$ yields an allowable sequence $S_{\mathscr{A},\pi}$.
- Every allowable sequence can be obtained this way.
- Different top. sortings of $G_{\mathscr{A}}$ correspond exactly to allowable sequences equivalent to $S_{\mathscr{A},\pi}$.
"brick wall conjecture"

 Conjecture (Gutierres, Mamede, Santos, 2020)
The wall arrangements are the marked arrangements that maximize the number of corresponding allowable sequences.

wall arrangement of 8 pseudolines

"brick wall conjecture"

— Conjecture (Gutierres, Mamede, Santos, 2020) The wall arrangements are the marked arrangements that maximize the number of corresponding allowable sequences.

wall arrangement of 8 pseudolines

"brick wall conjecture"

— Conjecture (Gutierres, Mamede, Santos, 2020) The wall arrangements are the marked arrangements that maximize the number of corresponding allowable sequences.

wall arrangement of 8 pseudolines

Def: $v_1, \cdots, v_n \in \mathbb{R}^2$ pw. lin. indep.

Def: $v_1, \cdots, v_n \in \mathbb{R}^2$ pw. lin. indep.

• Two-dimensional zonotope spanned by v_1, \dots, v_n :

$$Z(v_1, \cdots, v_n) := \left\{ \sum_{i=1}^n \lambda_i v_i : \lambda_1, \cdots, \lambda_n \in [-1, 1] \right\}$$

Def: $v_1, \cdots, v_n \in \mathbb{R}^2$ pw. lin. indep.

• Two-dimensional zonotope spanned by v_1, \dots, v_n :

$$Z(v_1, \cdots, v_n) := \left\{ \sum_{i=1}^n \lambda_i v_i : \lambda_1, \cdots, \lambda_n \in [-1, 1] \right\}$$

• Rhombic tiling of $Z(v_1, \cdots, v_n)$: Tesselation of $Z(v_1, \cdots, v_n)$ by rhombi $Z(v_i, v_j)$, $i \neq j$.

Def: $v_1, \cdots, v_n \in \mathbb{R}^2$ pw. lin. indep.

• Two-dimensional zonotope spanned by v_1, \dots, v_n :

$$Z(v_1, \cdots, v_n) := \left\{ \sum_{i=1}^n \lambda_i v_i : \lambda_1, \cdots, \lambda_n \in [-1, 1] \right\}$$

• Rhombic tiling of $Z(v_1, \cdots, v_n)$: Tesselation of $Z(v_1, \cdots, v_n)$ by rhombi $Z(v_i, v_j)$, $i \neq j$.

Lemma $Vol(Z(v_1, \cdots, v_n)) = \sum_{i < j} 4 \cdot |det([v_i, v_j])|$

Lemma $\operatorname{Vol}\left(Z(v_1, \cdots, v_n)\right) = \sum_{i < j} 4 \cdot \left|\det([v_i, v_j])\right|$

"Touching on the right relation" defines tiling graph $G_{\mathcal{T}}$.

Lemma $\operatorname{Vol}\left(Z(v_1, \cdots, v_n)\right) = \sum_{i < j} 4 \cdot \left|\det([v_i, v_j])\right|$

"Touching on the right relation" defines tiling graph $G_{\mathcal{T}}$.

- **Lemma** (Guibas & Yao, 1980) The tiling graph $G_{\mathcal{T}}$ is acyclic.

Claim: There exists a tile whose left side is completely lit.

Claim: There exists a tile whose left side is completely lit.

Claim: There exists a tile whose left side is completely lit.

Claim: There exists a tile whose left side is completely lit.

Claim: There exists a tile whose left side is completely lit.

Claim: There exists a tile whose left side is completely lit.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

$$\pi_0 = [1, 2, 3, 4]$$

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

$$\pi_0 = [1, 2, 3, 4]$$
$$\pi_1 = [2, 1, 3, 4]$$
$$\pi_2 = [2, 1, 4, 3]$$
$$\pi_3 = [2, 4, 1, 3]$$

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

- Theorem

There is a one-to-one correspondence between rhombic tilings and equivalence classes of allowable sequences.

Proof: Assoc. (tiling \mathcal{T} , top. sorting of $G_{\mathcal{T}}$) \mapsto allowable sequence by doing a sweep in the order of a topological sorting of $G_{\mathcal{T}}$.

valid allowable sequence???

Claim: In obtained permutation sequence, every pair $i \neq j$ is swapped exactly once (\Rightarrow obtain valid allowable sequence).

Claim: In obtained permutation sequence, every pair $i \neq j$ is swapped exactly once (\Rightarrow obtain valid allowable sequence).

- At least once: Clear! Because get from $[1, \cdots, n]$ to $[n, \cdots, 1]$.
- Swap of pair $i \neq j$ happens on flip over rhombus $Z(v_i, v_j)$ with $\operatorname{Vol}(Z(v_i, v_j)) = 4 \cdot |\det([v_i, v_j])|.$
- These swaps exhaust entire volume, because

$$\sum_{i < j} 4 \cdot |\det([v_i, v_j])| = \operatorname{Vol}(Z(v_1, \cdots, v_n)).$$

• Hence, there cannot have been further swaps.

Claim: This way, every allowable sequence S can be obtained from a unique rhombic tiling \mathcal{T} and unique top. sorting of $G_{\mathcal{T}}$.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

- Current path γ_i contains vectors v_1, \cdots, v_n in order π_i .
- Two successive vectors v_i, v_j with i < j form concave angle.

Claim: Under this construction, different top. sortings of $G_{\mathcal{T}}$ correspond exactly to equivalent allowable sequences.

"brick wall conjecture"

Def: Partition of N: Integers $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$, $\sum \lambda_i = N$.

Def: Partition of N: Integers $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$, $\sum \lambda_i = N$.

Ex: $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (4, 2, 2, 1, 1), |\lambda| = 10.$

Def: Partition of N: Integers $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$, $\sum \lambda_i = N$.

Ex: $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (4, 2, 2, 1, 1), |\lambda| = 10.$

Def: Partition of N: Integers $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$, $\sum \lambda_i = N$.

Ex: $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (4, 2, 2, 1, 1), |\lambda| = 10.$

Def: Standard Young tableau: Assignment $C(\lambda) \rightarrow \{1, \dots, |\lambda|\}$ of numbers to cells of Young diagram so that:

- Every number $1, \cdots, |\lambda|$ appears exactly once (bijective)
- Rows are monotonically increasing
- Columns are monotonically increasing

Def: Standard Young tableau of staircase shape: Standard Young tableau for partition $\lambda = (n, n - 1, \dots, 1)$.

Def: Standard Young tableau of staircase shape: Standard Young tableau for partition $\lambda = (n, n - 1, \dots, 1)$.

Theorem (Edelman & Greene, 1987) — There is a bijection between allowable sequences of size n and standard Young tableaux of staircase shape $(n - 1, n - 2, \dots, 1)$.

Schensted insertion

Input: Original tableau $T : C(\lambda) \to \mathbb{N}$; insertion number $u \in \mathbb{N}$ **Output:** Enlarged tableau $T : C(\lambda') \to \mathbb{N}$ with $|\lambda'| = |\lambda| + 1$ **Convention:** For $(i, j) \notin C(\lambda)$ say $T(i, j) = \infty$

initialize:
$$i \leftarrow 1$$
; $q \leftarrow u$
while $q \neq \infty$
 $j_0 \leftarrow \min\{j \in \mathbb{N} : T(i,j) \ge q\}$
if $T(i,j_0) = q$ then $q \leftarrow q + 1$
if $T(i,j_0) > q$ then $q' \leftarrow T(i,j_0)$; $T(i,j_0) \leftarrow q$; $q \leftarrow q'$
 $i \leftarrow i + 1$

end

Edelman-Greene bijection

Input: Allowable sequence $(s_1, \dots, s_{\binom{n}{2}})$ **Output:** Standard Young tableau T of shape $(n - 1, \dots, 1)$

initialize Tableau $T \leftarrow \emptyset$; Tableau $R \leftarrow \emptyset$ (empty tableaux)

for
$$k = 1, \dots, \binom{n}{2}$$

 $T' \leftarrow \text{SchenstedInsertion}(T, s_k)$
Let (i, j) be the index of the new cell in $C(T') \setminus C(T)$.
 $T \leftarrow T'$

Add cell (i, j) with entry k to R.

output R

Example: Edelman-Greene bijection applied on (3, 2, 3, 1, 2, 3).

Schützenberger operator: Transforms standard Young tableau into new standard Young tableau of same shape.

Schützenberger operator: Transforms standard Young tableau into new standard Young tableau of same shape.

Step I: Construct tableau path

- Start with cell that has largest entry
- Continue with top or left neighbor cell that has the larger entry
- Will end in cell (1,1) with entry 1.

Schützenberger operator: Transforms standard Young tableau into new standard Young tableau of same shape.

Step II: Shift path

- Along path, move any entry one position further towards bottom or right
- At cell (1,1) insert 0; on the other end drop out highest entry

Schützenberger operator: Transforms standard Young tableau into new standard Young tableau of same shape.

Step III: Add 1 to all entries.

Applying the Schützenberg operator $\binom{n}{2}$ times:

Applying the Schützenberg operator $\binom{n}{2}$ times:

Observe: Recording the *j*-coordinate of largest entry gives back allowable sequence (reversed order): (3, 2, 3, 1, 2, 3)

hook lengths in a Young diagram:

$$h_{3,2} = 7$$

hook lengths in a Young diagram:

- hook length formula (Frame, Robinson, Thrall, 1953) — The number of standard Young tableaux of shape λ is given by $\frac{|\lambda|!}{\prod_{(i,j)\in C(\lambda)}h_{i,j}}.$

Corollary —

The number of allowable sequences of size n is given by

$$\frac{\binom{n}{2}!}{\prod_{i=1}^{n-1} (2n-1-2i)^i}$$

٠
standard Young tableaux

- Corollary

The number of allowable sequences of size n is given by

$$\frac{\binom{n}{2}!}{\prod_{i=1}^{n-1}(2n-1-2i)^i}$$

٠

Uniformly sampled wiring diagram. Taken from (Angel, Holroys, Romik, Virág, 2007)

Two cases for every triple i < j < k in marked arrangement:

Two cases for every triple i < j < k in marked arrangement:

arrangement \mathscr{A} defines map: $\chi_{\mathscr{A}} : {\binom{[n]}{3}} \to \{-,+\}$ "fingerprint" of \mathscr{A}

Two cases for every triple i < j < k in marked arrangement:

arrangement \mathscr{A} defines map: $\chi_{\mathscr{A}} : {[n] \choose 3} \to \{-,+\}$ "fingerprint" of \mathscr{A}

• Local intersection order σ_j of each pseudoline j determined by $\chi_{\mathscr{A}}$

Two cases for every triple i < j < k in marked arrangement:

arrangement \mathscr{A} defines map: $\chi_{\mathscr{A}} : {[n] \choose 3} \to \{-,+\}$ "fingerprint" of \mathscr{A}

- Local intersection order σ_j of each pseudoline j determined by $\chi_{\mathscr{A}}$
- Hence, entire arrangement \mathscr{A} uniquely determined by $\chi_{\mathscr{A}}$

Two cases for every triple i < j < k in marked arrangement:

arrangement \mathscr{A} defines map: $\chi_{\mathscr{A}} : {\binom{[n]}{3}} \to \{-,+\}$ "fingerprint" of \mathscr{A}

- Local intersection order σ_j of each pseudoline j determined by $\chi_{\mathscr{A}}$
- Hence, entire arrangement ${\mathscr A}$ uniquely determined by $\chi_{{\mathscr A}}$
- Not all $2^{\binom{n}{3}}$ possible assignments are arrangements.

- Definition-

For $1 \le r \le n$, a signotope of rank r on n elements is a sign function

$$\chi: \binom{[n]}{r} \to \{-,+\}$$

s.t. for every (r+1)-subset $X = \{x_1, \dots, x_{r+1}\} \subseteq [n]$ with $x_1 < \dots < x_{r+1}$ there is at most one sign change in the sequence

 $\chi(X \setminus \{x_1\}), \chi(X \setminus \{x_2\}), \cdots, \chi(X \setminus \{x_{r+1}\})$.

- Theorem

Signotopes of rank 3 are exactly the sign functions of marked arrangements of pseudolines.

(without proof)

- Theorem

Signotopes of rank 3 are exactly the sign functions of marked arrangements of pseudolines.

(without proof)

Consequence: For any arrangement \mathscr{A} and pseudolines $1 \le i < j < k < l \le n$ we have:

 $(\chi_{\mathscr{A}}(jkl), \chi_{\mathscr{A}}(ikl), \chi_{\mathscr{A}}(ijl), \chi_{\mathscr{A}}(jkl)) \in \left\{ (++++), (+++-), (++--), (++--), (---), (----), (----), (---+), (--++), (-+++) \right\}$

all-minus-arrangement: $\chi_{\mathscr{A}} = -$

all-plus-arrangement: $\chi_{\mathscr{A}} = +$

triangle: cell bounded by exactly three pseudolines.

triangle flip: move any involved pseudoline over opposite crossing.

flip graph G_n :

- vetices \sim marked arrangements of fixed size n
- edges \sim triangle flips

Taken from (Felsner & Ziegler, 1999)

– Lemma

Unless \mathscr{A} is the all-plus-arrangement, there exists a triple of pseudolines i < j < k with $\chi_{\mathscr{A}}(\{ijk\}) = -$ that form a triangle.

– Lemma

Unless \mathscr{A} is the all-plus-arrangement, there exists a triple of pseudolines i < j < k with $\chi_{\mathscr{A}}(\{ijk\}) = -$ that form a triangle.

- **Theorem** (Ringel, 1957) - The triangle flip graph G_n consisting of marked pseudoline arrangements of size n is connected and has diameter $\binom{n}{3}$.

triangles

- **Theorem** (Felsner & Kriegel, 1991) - Every Euclidean arrangement of n pseudolines contains at least n-2 triangles. This bound is tight.

#triangles = n-2

#triangles $\in \Omega(n^2)$

triangles

- **Theorem** (Felsner & Kriegel, 1991) - Every Euclidean arrangement of n pseudolines contains at least n-2 triangles. This bound is tight.

- Theorem

The flip graph G_n is (n-2)-connected.

(A. Radtke, Felsner, Obenaus, R., Scheucher, Vogtenhuber, 2024)

 Conjecture
Every truly two-colored arrangement of at least three pseudolines contains a bichromatic triangle.

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)

Proposition

Let \mathscr{A} be an arrangement of $n\geq 3$ pseudolines.

The following are equivalent:

- Every coloring of the pseudolines using exactly two colors produces a bichromatic triangle (Conjecture).
- The pseudoline-triangle-graph $G_l(\mathcal{A})$ is connected.
- The triangle-pseudoline-graph $G_{\Delta}(\mathcal{A})$ is connected.

- \Rightarrow generalized pseudoline arrangement:
 - parallel class of $n_1, ..., n_r$ pseudolines
 - (Only) pseudolines of different classes cross
generalized arrangements

Aslan Pasha Mosque Ioannina, Greece

generalized arrangements

Topkapı Palace, Istanbul, Turkey

systems of monotonic vertex-disjoint $s_i \rightarrow t_i$ paths in lifted grid

systems of monotonic non-crossing $s \rightarrow t$ paths in grid

Lindström-Gessel-Viennot Lemma • Let G = (V, E) acyclic directed graph, edge weights $\{w_e\}_{e \in E}$. • Let $A = \{a_1, \dots, a_n\} \subset V$ (start points) • Let $B = \{b_1, \dots, b_n\} \subset V$ (end points) • For any path P define its weight $w(P) := \prod_{e \in P} w_e$. • For any pair $a, b \in V$ define $e(a, b) := \sum_{P:a \to b} w(P)$. • Any system of n vertex-disjoint paths $P_1, \dots, P_n : A \to B$ from A to B defines permutation $\sigma(P_1, \dots, P_n)$. Then: $\det([e(a_i, b_j)]_{i,j}) = \sum_{(P_1, \cdots, P_n): A \to B} \operatorname{sgn}(\sigma(P_1, \cdots, P_n) \prod_{i=1} w(P_i))$

Lindström-Gessel-Viennot Lemma • Let G = (V, E) acyclic directed graph, edge weights $\{w_e\}_{e \in E}$. • Let $A = \{a_1, \dots, a_n\} \subset V$ (start points) • Let $B = \{b_1, \dots, b_n\} \subset V$ (end points) • For any path P define its weight $w(P) := \prod_{e \in P} w_e$. • For any pair $a, b \in V$ define $e(a, b) := \sum_{P : a \to b} w(P)$. • Any system of n vertex-disjoint paths $P_1, \dots, P_n : A \to B$ from A to B defines permutation $\sigma(P_1, \dots, P_n)$. Then: $\det([e(a_i, b_j)]_{i,j}) = \sum \operatorname{sgn}(\sigma(P_1, \cdots, P_n) \prod w(P_i))$ $(P_1, \cdots, P_n): A \to B$ i=1

 $\delta_2 \qquad \sigma(P_1, P_2, P_3) = (1, 3, 2)$

$$\det_{1 \le i,j \le n} \left(\left[\binom{a+b}{a-i+j} \right] \right) = \prod_{i=1}^{n} \prod_{j=1}^{a} \prod_{k=1}^{b} \frac{i+j+k-1}{i+j+k-2} \, .$$

expression symmetric in a, b, n!

This formula also counts:

- Number of ways to tile a hexagon of side lengths *a*, *b*, *n* with rhombics of unit length.
- Number of generalized arrangements of three classes with a, b and n pseudolines.

Theorem: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.

Theorem: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.

Theorem: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **on the boundary of any cell**.

Proof idea: Greedily color the wiring diagram!

Claim: Every crossing has at most n-1 conflict ancestors.

Theorem: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **along any pseudoline**.

Example:

Theorem: Let \mathscr{A} be an arrangement of n pseudolines. The crossings of \mathscr{A} can be colored using n colors so that no color appears twice **along any pseudoline**.

Example: 2 5 3 3 5

proof:

proof:

Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

proof:

Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

proof:

Hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices \sim pseudolines
- hyperedges \sim crossings

direct proof? deterministic algorithm?

Theorem (Kang, Kelly, Kⁿ, Methuku, Osthus, 2023) Every simple hypergraph n vertices can be edge-colored using n colors.

Recent breakthrough in hypergraph coloring!!!

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A}

Example:

 $mx(\mathscr{A}) = 4$

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A} **Fact:** number of pseudolines $n \leq 845 \cdot mx(\mathscr{A})$ (Dumitrescu, 2023)

Example:

 $mx(\mathscr{A}) = 4$

Def: $mx(\mathscr{A}) := max.$ number of crossings per pseudoline in \mathscr{A} **Fact:** number of pseudolines $n \leq 845 \cdot mx(\mathscr{A})$ (Dumitrescu, 2023)

Example:

 $mx(\mathscr{A}) = 4$ need $mx(\mathscr{A}) + 3 = 7$ colors

Conjecture:

There exists some constant c so that one can color the crossings of every arrangement using $mx(\mathscr{A}) + c$ colors.

Example:

 $mx(\mathscr{A}) = 4$ need $mx(\mathscr{A}) + 3 = 7$ colors

Def: *pseudoline coloring* of arrangement *A*:

- ${\hfill \bullet}$ color the pseudolines of ${\mathscr A}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

 $\chi_{pl}(\mathscr{A}) = 3$

Def: *pseudoline coloring* of arrangement \mathscr{A} :

- ${\hfill \bullet}$ color the pseudolines of ${\mathscr A}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

 $\chi_{pl}(\mathscr{A}) = 3$

First observations:

• $2 \le \chi_{pl}(\mathscr{A}) \le n$ (unless n < 2)

Def: *pseudoline coloring* of arrangement *A*:

- ${\mbox{\circ}}$ color the pseudolines of ${\mathscr A}$
- avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

 $\chi_{pl}(\mathscr{A}) = 3$

First observations:

• $2 \le \chi_{pl}(\mathscr{A}) \le n$ (unless n < 2)

•
$$\mathscr{A}$$
 simple $\Leftrightarrow \chi_{pl}(\mathscr{A}) = n$

Theorem:

Let \mathscr{A} be an arrangement of n pseudolines.

The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4.
pseudoline coloring

Theorem:

Let \mathscr{A} be an arrangement of n pseudolines.

The pseudolines of \mathscr{A} can be colored using $\mathscr{O}(\sqrt{n})$ colors avoiding monochromatic crossings of degree at least 4.

Proposition:

Given an arrangement \mathscr{A} of n pseudolines, it is NP-hard to compute $\chi_{pl}(\mathscr{A})$.

Questions?

