

Universidade de Coimbra

WORLD OF PSEUDOLINE ARRANGEMENTS

Sandro M. Roch

Andreas Trepte, CC BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5)

pseudoline arrangements

Def: *pseudoline arrangement*:

• Family of continuous curves $f_1, ..., f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty$$

• Each two cross in exactly one point.

pseudoline arrangements

Def: *pseudoline arrangement*:

• Family of continuous curves $f_1, ..., f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty$$

- Each two cross in exactly one point.
- No 3 pseudolines cross at a single point.

Encoding by permutations:

Permutation $\pi_i \in S_{n-1}$ encodes intersection order of f_i .

wiring diagrams as sorting networks:

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

wiring diagrams as sorting networks:

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

growth:

1	3	6
2	5	
4		

Same pseudoline arrangement, but different wiring diagrams!

Same pseudoline arrangement, but different wiring diagrams!

• Two wiring diagrams

$$S = (s_1, \cdots, s_i, s_{i+1}, \cdots, s_{\binom{n}{2}})$$

and
$$S' = (s_1, \cdots, s_{i+1}, s_i, \cdots, s_{\binom{n}{2}})$$

are called *directly equivalent*, if $|s_i - s_{i+1}| \ge 2$.

Same pseudoline arrangement, but different wiring diagrams!

• Two wiring diagrams

$$S = (s_1, \cdots, s_i, s_{i+1}, \cdots, s_{\binom{n}{2}})$$

and
$$S' = (s_1, \cdots, s_{i+1}, s_i, \cdots, s_{\binom{n}{2}})$$

are called *directly equivalent*, if $|s_i - s_{i+1}| \ge 2$.

• Wiring diagrams S and S' are equivalent $(S \sim S')$, if there exist $S = S_1, \dots, S_r = S'$, where S_i and S_{i+1} are directly equivalent.

"brick wall conjecture"

Conjecture (Gutierres, Mamede, Santos, 2020)
The wall arrangements are the arrangements that maximize the number of corresponding wiring diagrams.

wall arrangement of 8 pseudolines

"brick wall conjecture"

Conjecture (Gutierres, Mamede, Santos, 2020)
The wall arrangements are the arrangements that maximize the number of corresponding wiring diagrams.

wall arrangement of 8 pseudolines

"brick wall conjecture"

Conjecture (Gutierres, Mamede, Santos, 2020)
The wall arrangements are the arrangements that maximize the number of corresponding wiring diagrams.

wall arrangement of 8 pseudolines

- \Rightarrow generalized pseudoline arrangement:
 - parallel class of $n_1, ..., n_r$ pseudolines
 - (Only) pseudolines of different classes cross

Aslan Pasha Mosque Ioannina, Greece

Topkapı Palace, Istanbul, Turkey

Properties of *linear orientations*:

- acyclic
- Every face contains a unique source and a unique sink (*unique sink orientation USO*).
- Holt-Klee-property: On every face F, there exist dim F many internally disjoint paths from unique source to unique sink.

Properties of *linear orientations*:

- acyclic
- Every face contains a unique source and a unique sink (*unique sink orientation USO*).
- Holt-Klee-property: On every face F, there exist dim F many internally disjoint paths from unique source to unique sink.

Properties of *linear orientations*:

- acyclic
- Every face contains a unique source and a unique sink (*unique sink orientation USO*).
- Holt-Klee-property: On every face F, there exist dim F many internally disjoint paths from unique source to unique sink.
(d, d+2)-polytopes

Fact: (Felsner, Gärtner, Tschirschnitz, 2005) Every simple d-polytope with d + 2 facets is combinatorially equivalent to a product of two simplices.

(d, d+2)-polytopes

unique sink orientations (USOs)

unique sink orientations (USOs)

• $(4, 2)^{\bullet}(0, 0)^{\bullet}(2, 1)^{\bullet}(4, 4)^{\bullet}(4, 3)$ • $(1, 4)^{\bullet}(1, 0)^{\bullet}(0, 2)^{\bullet}(0, 3)^{\bullet}(0, 1)$ • $(3, 2)^{\bullet}(2, 0)^{\bullet}(3, 1)^{\bullet}(3, 4)^{\bullet}(3, 3)$ • $(2, 3)^{\bullet}(3, 0)^{\bullet}(1, 1)^{\bullet}(2, 4)^{\bullet}(1, 2)$ • $(0, 4)^{\bullet}(4, 0)^{\bullet}(4, 1)^{\bullet}(1, 3)^{\bullet}(2, 2)$

unique sink orientations (USOs)

 $rf(i,j) := (outdeg_v(i,j), outdeg_h(i,j))$

- $(4,2)^{(0,0)}(2,1)^{(4,4)}(4,3)$
- $(1,4)^{\bullet}(1,0)^{\bullet}(0,2)^{\bullet}(0,3)^{\bullet}(0,1)$
- (3,2)(2,0)(3,1)(3,4)(3,3)
- (2,3)(3,0)(1,1)(2,4)(1,2)

 $(0,4)^{\bullet}(4,0)^{\bullet}(4,1)^{\bullet}(1,3)^{\bullet}(2,2)$

$\mathsf{USO} \to \mathsf{red}\text{-}\mathsf{blue}\text{-}\mathsf{arrangement}$

- (4,2)(0,0)(2,1)(4,4)(4,3)
- (1,4)(1,0)(0,2)(0,3)(0,1)
- (3,2)(2,0)(3,1)(3,4)(3,3)
- (2,3)(3,0)(1,1)(2,4)(1,2)
- (0,4)(4,0)(4,1)(1,3)(2,2)

• $(4, 2)^{\bullet}(0, 0)^{\bullet}(2, 1)^{\bullet}(4, 4)^{\bullet}(4, 3)$ • $(1, 4)^{\bullet}(1, 0)^{\bullet}(0, 2)^{\bullet}(0, 3)^{\bullet}(0, 1)$ • $(3, 2)^{\bullet}(2, 0)^{\bullet}(3, 1)^{\bullet}(3, 4)^{\bullet}(3, 3)$ • $(2, 3)^{\bullet}(3, 0)^{\bullet}(1, 1)^{\bullet}(2, 4)^{\bullet}(1, 2)$ • $(0, 4)^{\bullet}(4, 0)^{\bullet}(4, 1)^{\bullet}(1, 3)^{\bullet}(2, 2)$

• $(4, 2)^{\bullet}(0, 0)^{\bullet}(2, 1)^{\bullet}(4, 4)^{\bullet}(4, 3)$ • $(1, 4)^{\bullet}(1, 0)^{\bullet}(0, 2)^{\bullet}(0, 3)^{\bullet}(0, 1)$ • $(3, 2)^{\bullet}(2, 0)^{\bullet}(3, 1)^{\bullet}(3, 4)^{\bullet}(3, 3)$ • $(2, 3)^{\bullet}(3, 0)^{\bullet}(1, 1)^{\bullet}(2, 4)^{\bullet}(1, 2)$ • $(0, 4)^{\bullet}(4, 0)^{\bullet}(4, 1)^{\bullet}(1, 3)^{\bullet}(2, 2)$

• $(4, 2)^{\bullet}(0, 0)^{\bullet}(2, 1)^{\bullet}(4, 4)^{\bullet}(4, 3)$ • $(1, 4)^{\bullet}(1, 0)^{\bullet}(0, 2)^{\bullet}(0, 3)^{\bullet}(0, 1)$ • $(3, 2)^{\bullet}(2, 0)^{\bullet}(3, 1)^{\bullet}(3, 4)^{\bullet}(3, 3)$ • $(2, 3)^{\bullet}(3, 0)^{\bullet}(1, 1)^{\bullet}(2, 4)^{\bullet}(1, 2)$ • $(0, 4)^{\bullet}(4, 0)^{\bullet}(4, 1)^{\bullet}(1, 3)^{\bullet}(2, 2)$

$USO \rightarrow red$ -blue-arrangement

10

9

8

7

6

 $1 \quad 2 \quad 3 \quad 4 \quad 5$

- (4,2)(0,0)(2,1)(4,4)(4,3) 6
- (1,4)(1,0)(0,2)(0,3)(0,1) 7
- (3,2)(2,0)(3,1)(3,4)(3,3) 8
- (2,3)(3,0)(1,1)(2,4)(1,2) 9
- (0,4)(4,0)(4,1)(1,3)(2,2) 10

$USO \rightarrow red$ -blue-arrangement

USOs with Holt-Klee \leftrightarrow red-blue-arrangements

Theorem

(Felsner, Gärtner, Tschirschnitz, 2005)

- 1) USOs with Holt-Klee-property are exactly the orientations induced by red-blue-arrangements.
- 2) They are linear orientations if and only if the arrangement is *stretchable*.

USOs with Holt-Klee \leftrightarrow red-blue-arrangements

Theorem

(Felsner, Gärtner, Tschirschnitz, 2005)

- 1) USOs with Holt-Klee-property are exactly the orientations induced by red-blue-arrangements.
- 2) They are linear orientations if and only if the arrangement is *stretchable*.

Acyclic USO which violates Holt-Klee-property:

USOs with Holt-Klee \leftrightarrow red-blue-arrangements

Generalize this to higher dimensional grids ???

 $\cong \Delta_2 \times \Delta_4 \times \Delta_2$

arrangements \leftrightarrow 3-signotopes

Two cases for pseudolines i < j < k:

Pseudoline arrangement \mathscr{A} defines map: $\chi_{\mathscr{A}} : {[n] \choose 3} \to \{-,+\}$

Definition:

(--++), (-+++)

Definition:

A map $\chi : {[n] \choose 3} \to \{-,+\}$ is called 3-*signotope* if for all 4-tuples $1 \le i < j < k < l \le n$ we have:

$$(\chi(jkl), \chi(ikl), \chi(ijl), \chi(jkl)) \in \left\{ (++++), (+++-), (++--), (++--), (---+), (---+), (---+), (--++), (-+++) \right\}$$

- Bijection: pseudoline arrangements \leftrightarrow 3-signotopes
- Define more generally *r*-signotopes $\chi : \binom{[n]}{r} \to \{-,+\}$

 $3\text{-signotopes} \leftrightarrow \mathsf{USOs}$

 $3\text{-signotopes} \leftrightarrow \mathsf{USOs}$

 $3\text{-signotopes} \leftrightarrow \mathsf{USOs}$

Theorem (R. 2025)

- 1) USOs induced by 4-signotopes are acyclic USOs with Holt-Klee-property.
- 2) There exist 3-dimensional acyclic USOs with Holt-Klee-property that are **not** induced by 4-signotopes.

acyclic USO with Holt-Klee. But not induced by signotope):

Theorem (R. 2025) 1) USOs induced by 4-signotopes are acyclic USOs with Holt- 1/2 2) T' Open problem: (r+1)-signotopes / r-dimensional grids ?? ^{snotopes.}

acyclic USO with Holt-Klee. But t induced by signotope

•••

pseudoline arrangements

wiring diagrams

plane partitions

rhombic tilings

higher Bruhat orders

> families of monotonic non-crossing paths

signotopes

permutations

sorting networks

Standard Young tableaux

oriented matroid of rank $\boldsymbol{3}$

pseudoline arrangements

wiring diagrams signotopes

plane partitions

rhombic tilings

higher Bruhat orders

Problem:

How can pseudoline arrangements be efficiently generated uniformly at random?

permutations

sorting networks

Standard Young tableaux

families of monotonic non-crossing paths

oriented matroid of rank $\boldsymbol{3}$
rapidly mixing Markov chains

rapidly mixing Markov chains

rapidly mixing Markov chains

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P: \mathscr{X} \times \mathscr{X} \to [0,1]$

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

bottleneck

Markov chain having a "bottleneck":

Partition of states into two classes:
paths above the blue rhombus
paths below the blue rhombus

- Partition of states into two classes:
 - paths above the blue rhombus
 - paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

r = 5 parallel classes: (generalizable to more) r = 4 parallel classes:

- Partition of states into two classes:
 - paths above the blue rhombus
 - paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

Theorem (R., 2021):

The Markov chain which operates on generalized pseudoline arrangements and flips random triangles with involvement of a distinguished parallel class is

- ... rapidly-mixing on 3 parallel classes, and ...
- ... in general **not rapidly-mixing** on 4 or more parallel classes.

Statement for 3 classes follows from (Luby, Randall & Sinclair, 1995)

Destainville, 2001: Mixing times of plane rhombus tilings

"Nevertheless, the above arguments do not exclude definitively the existence of rare slow fibers, [...]"

Now we know: "slow fibers" do exist!

Conjecture:

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)

Every truly two-colored arrangement of at least three pseudolines contains a bichromatic triangle.

