
World of

Pseudoline Arrangements

Sandro M. Roch

Universidade de Coimbra

Andreas Trepte, CC BY-SA 2.5 〈https://creativecommons.org/licenses/by-sa/2.5〉



pseudoline arrangements

Def: pseudoline arrangement:
• Family of continuous curves f1, ..., fn : R → R2 with

lim
t→∞

∥fi(t)∥ = lim
t→−∞

∥fi(t)∥ = ∞

• Each two cross in exactly one point.



pseudoline arrangements

Def: pseudoline arrangement:
• Family of continuous curves f1, ..., fn : R → R2 with

lim
t→∞

∥fi(t)∥ = lim
t→−∞

∥fi(t)∥ = ∞

• Each two cross in exactly one point.
• No 3 pseudolines cross at a single point.
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Encoding by permutations:
Permutation πi ∈ Sn−1 encodes intersection order of fi.

f1
f2
f3
f4 (4, 3, 2)

(4, 3, 1)

(4, 2, 1)

(3, 2, 1)
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are called directly equivalent, if |si − si+1| ≥ 2.
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are called directly equivalent, if |si − si+1| ≥ 2.
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S = S1, · · · , Sr = S′, where Si and Si+1 are directly equivalent.
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”
brick wall conjecture“

Conjecture (Gutierres, Mamede, Santos, 2020)

The wall arrangements are the arrangements that maximize the
number of corresponding wiring diagrams.
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rhombic tilings

⇒ generalized pseudoline arrangement:
• parallel class of n1, ..., nr pseudolines
• (Only) pseudolines of different classes cross

n1 = 3

n2 = 2

n3 = 3



rhombic tilings

Aslan Pasha Mosque
Ioannina, Greece



rhombic tilings

Topkapı Palace, Istanbul, Turkey
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plane partitions

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonically increasing.
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rhombic tiling
of size (3, 2, 3)

monotonic, non-
crossing grid paths

min
∑

fi,j(Ai,j)

s.t. A p.p., Ai,j ≤ h
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• Every face contains a unique source and a
unique sink (unique sink orientation USO).

• Holt-Klee-property: On every face F ,
there exist dimF many internally disjoint
paths from unique source to unique sink.
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(d, d+ 2)-polytopes

Fact:

Every simple d-polytope with d+ 2 facets is
combinatorially equivalent to a product of two simplices.

(Felsner, Gärtner, Tschirschnitz, 2005)

∆1 ∆2 ∆1 ×∆2

× =
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unique sink orientations (USOs)

(4, 2) (0, 0) (2, 1) (4, 4) (4, 3)
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(4, 2)

rf(i, j) := (outdegv(i, j), outdegh(i, j))
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USOs with Holt-Klee ↔ red-blue-arrangements

Theorem

1) USOs with Holt-Klee-property are exactly the orientations
induced by red-blue-arrangements.

2) They are linear orientations if and only if the arrangement is
stretchable.

(Felsner, Gärtner, Tschirschnitz, 2005)



USOs with Holt-Klee ↔ red-blue-arrangements

Theorem

1) USOs with Holt-Klee-property are exactly the orientations
induced by red-blue-arrangements.

2) They are linear orientations if and only if the arrangement is
stretchable.

(Felsner, Gärtner, Tschirschnitz, 2005)

Acyclic USO which violates Holt-Klee-property:

double twist!

s

t



USOs with Holt-Klee ↔ red-blue-arrangements

Generalize this to
higher dimensional grids ???

∼= ∆2 ×∆4 ×∆2



arrangements ↔ 3-signotopes

i

j j

kk

i

Two cases for pseudolines i < j < k:

− +

Pseudoline arrangement A defines map: χA :
(
[n]
3

)
→ {−,+}



arrangements ↔ 3-signotopes

Definition:
A map χ :

(
[n]
3

)
→ {−,+} is called 3-signotope if for

all 4-tuples 1 ≤ i < j < k < l ≤ n we have:

(χ(jkl), χ(ikl), χ(ijl), χ(jkl)) ∈
{
(+ + ++), (+ + +−),

(+ +−−), (+−−−),

(−−−−), (−−−+),

(−−++), (−+++)
}



arrangements ↔ 3-signotopes

Definition:
A map χ :

(
[n]
3

)
→ {−,+} is called 3-signotope if for

all 4-tuples 1 ≤ i < j < k < l ≤ n we have:

(χ(jkl), χ(ikl), χ(ijl), χ(jkl)) ∈
{
(+ + ++), (+ + +−),

(+ +−−), (+−−−),

(−−−−), (−−−+),

(−−++), (−+++)
}

• Bijection: pseudoline arrangements ↔ 3-signotopes
• Define more generally r-signotopes χ :

(
[n]
r

)
→ {−,+}



3-signotopes ↔ USOs

1
2

3

4

5

6

7

8
9

10

2 3 4 5
6

7

8

9

10

1



3-signotopes ↔ USOs

1
2

3

4

5

6

7

8
9

10

2 3 4 5
6

7

8

9

10

1

χ(3, 6, 9) = −



3-signotopes ↔ USOs

1
2

3

4

5

6

7

8
9

10

2 3 4 5
6

7

8

9

10

1

χ(3, 6, 9) = +



4-signotopes ↔ 3-dimensional USOs

Assume 4 signotope χ :
(
[n]
4

)
→ {−,+}

and block partition [n] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
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4-signotopes ↔ 3-dimensional USOs

Theorem (R. 2025)
1) USOs induced by 4-signotopes are acyclic USOs with

Holt-Klee-property.
2) There exist 3-dimensional acyclic USOs with

Holt-Klee-property that are not induced by 4-signotopes.

acyclic USO with
Holt-Klee. But not induced

by signotope ):



4-signotopes ↔ 3-dimensional USOs

Theorem (R. 2025)
1) USOs induced by 4-signotopes are acyclic USOs with

Holt-Klee-property.
2) There exist 3-dimensional acyclic USOs with

Holt-Klee-property that are not induced by 4-signotopes.

acyclic USO with
Holt-Klee. But not induced

by signotope ):

Open problem:
(r + 1)-signotopes / r-dimensional grids ??



pseudoline arrangements

wiring diagrams

sorting networks

oriented matroid of rank 3

signotopes

Standard Young tableaux

families of monotonic
non-crossing paths

rhombic
tilings

plane partitions permutations

higher Bruhat
orders



pseudoline arrangements

wiring diagrams

sorting networks

oriented matroid of rank 3

signotopes

Standard Young tableaux

families of monotonic
non-crossing paths

rhombic
tilings

plane partitions permutations

higher Bruhat
orders

Problem:
How can pseudoline
arrangements be

efficiently generated
uniformly at random?
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rapidly mixing Markov chains

Markov chain (Xt), state space X, transition prob. P : X ×X → [0, 1]
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random generation using Markov chains

Idea:
• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement
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random generation using Markov chains

Markov chain I: random reinsertion of pseudoline

Idea:
• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement



random generation using Markov chains

Markov chain II: random triangle flip

Idea:
• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement



random generation using Markov chains

Markov chain II: random triangle flip

Idea:
• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement



bottleneck

Markov chain having a
”
bottleneck“:
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• Partition of states into two classes:
◦ paths above the blue rhombus
◦ paths below the blue rhombus
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flips on single pseudoline

• Partition of states into two classes:
◦ paths above the blue rhombus
◦ paths below the blue rhombus

• Only a flip on the blue rhombus connects both classes!

r = 5 parallel classes:
(generalizable to more)

r = 4 parallel classes:



flips on single pseudoline

Theorem (R., 2021):
The Markov chain which operates on generalized
pseudoline arrangements and flips random triangles with
involvement of a distinguished parallel class is
• . . . rapidly-mixing on 3 parallel classes, and. . .
• . . . in general not rapidly-mixing on 4 or more

parallel classes.

Statement for 3 classes follows from
(Luby, Randall & Sinclair, 1995)



flips on single pseudoline

Destainville, 2001: Mixing times of plane rhombus tilings

”
Nevertheless, the above arguments do not exclude
definitively the existence of rare slow fibers, [...]“

Now we know:
”
slow fibers“ do exist!
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bichromatic triangle conjecture

A
B

triangle A bichromatic

triangle B monochromatic



bichromatic triangle conjecture

A
B

triangle A bichromatic

triangle B monochromatic

Conjecture:

Every truly two-colored arrangement of at least three
pseudolines contains a bichromatic triangle.

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)



¿Preguntas?
er


