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pseudoline arrangements

Def: pseudoline arrangement:
• Family of continuous curves f1, ..., fn : R→ R2 with

lim
t→∞
‖fi(t)‖ = lim

t→−∞
‖fi(t)‖ =∞

• Each two cross in exactly one point.



pseudoline arrangements

Def: pseudoline arrangement:
• Family of continuous curves f1, ..., fn : R→ R2 with

lim
t→∞
‖fi(t)‖ = lim

t→−∞
‖fi(t)‖ =∞

• Each two cross in exactly one point.
• No 3 pseudolines cross at a single point.
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Encoding by permutations:
Permutation πi ∈ Sn−1 encodes intersection order of fi.

f1
f2
f3
f4 (4, 3, 2)

(4, 3, 1)

(4, 2, 1)

(3, 2, 1)
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Wiring diagrams as sorting networks:
in out

min(a, b)

max(a, b)

a

b

Sorting networks encode minimal sorting algorithms that
are based on comparison & exchange of neighbor elements.
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rhombic tilings

⇒ generalized pseudoline arrangement:
• parallel class of n1, ..., nr pseudolines
• (Only) pseudolines of different classes cross

n1 = 3

n2 = 2

n3 = 3



generalized arrangements

Aslan Pasha Mosque
Ioannina, Greece



rhombic tilings

Topkapı Palace, Istanbul, Turkey



pseudoline arrangements

wiring diagrams

sorting networks

oriented matroid of rank 3

signotopes

Standard Young tableaux

families of monotonic
non-crossing paths

rhombic
tilings

plane partitions permutations

higher Bruhat
orders



pseudoline arrangements

wiring diagrams

sorting networks

oriented matroid of rank 3

signotopes

Standard Young tableaux

families of monotonic
non-crossing paths

rhombic
tilings

plane partitions permutations

higher Bruhat
orders

Problem:
How can pseudoline

arrangements be
efficiently generated

uniformly at random?
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rapidly mixing Markov chains

Markov chain (Xt), state space X, transition prob. P : X ×X → [0, 1]
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• If irreducible and aperiodic : Converges to stationary distribution π:

P[Xt = x]→ π(x)
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rapidly mixing Markov chains

Markov chain (Xt), state space X, transition prob. P : X ×X → [0, 1]
• If irreducible and aperiodic : Converges to stationary distribution π:

P[Xt = x]→ π(x)

• If P symmetric : π equals uniform distribution.
• Total variation distance of distributions µ, µ′ on X:

‖µ− µ′‖TV := sup
M⊆X

|µ(M)− µ′(M)|

• Define d(t) := maxx∈X‖P t(x, ·)− π‖TV
• Mixing time τ(ε) := min{t ∈ N0 | ∀t′ ≥ t : d(t′) ≤ ε}



rapidly mixing Markov chains

Def: A class of Markov chains is rapidly mixing if for each of them

τ(ε) ∈ O
(
p
(

log |X|ε

))
for some p ∈ R[X].

Markov chain (Xt), state space X, transition prob. P : X ×X → [0, 1]
• If irreducible and aperiodic : Converges to stationary distribution π:

P[Xt = x]→ π(x)

• If P symmetric : π equals uniform distribution.
• Total variation distance of distributions µ, µ′ on X:

‖µ− µ′‖TV := sup
M⊆X

|µ(M)− µ′(M)|

• Define d(t) := maxx∈X‖P t(x, ·)− π‖TV
• Mixing time τ(ε) := min{t ∈ N0 | ∀t′ ≥ t : d(t′) ≤ ε}
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• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement
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Markov chain I: random reinsertion of pseudoline
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Markov chain II: random triangle flip
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random generation using Markov chains

Markov chain II: random triangle flip

Idea:
• States X = {arrangements of fixed size}
• Symmetric transition probabilities

=⇒ After many steps get almost uniform arrangement



bottleneck

Markov chain having a
”
bottleneck“:
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flips on single pseudoline

• Partition of states into two classes:
◦ paths above the blue rhombus
◦ paths below the blue rhombus

• Only a flip on the blue rhombus connects both classes!

r = 5 parallel classes:
(generalizable to more)

r = 4 parallel classes:



flips on single pseudoline

Theorem (R., 2021):
The Markov chain which operates on generalized
pseudoline arrangements and flips random triangles with
involvement of a distinguished parallel class is
• . . . rapidly-mixing on 3 parallel classes, and. . .
• . . . in general not rapidly-mixing on 4 or more

parallel classes.

Statement for 3 classes follows from
(Luby, Randall & Sinclair, 1995)



flips on single pseudoline

Destainville, 2001: Mixing times of plane rhombus tilings

”
Nevertheless, the above arguments do not exclude

definitively the existence of rare slow fibers, [...]“

Now we know:
”
slow fibers“ do exist!
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Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonically increasing.
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Def: matrix [hi,j ] ∈ N0
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three parallel classes

Def: matrix [hi,j ] ∈ N0
r×s is called plane partition, if rows

and columns are monotonically increasing.
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plane partition
with entries
hi,j ≤ 2

rhombic tiling
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min
∑
fi,j(Ai,j)

s.t. A p.p., Ai,j ≤ h
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three parallel classes

Theorem: (Luby, Randall & Sinclair, 1995)
The Markov chain that flips triangles in generalized pseudoline
arrangements of 3 parallel classes is rapidly mixing.

s
t

Simple case: Only one s-t-path
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Technique: Monotone coupling
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X0Technique: Monotone coupling
• Partial order on paths: p ≤ q iff p below q.
• X0 lowest path; Y0 highest path; X0 ≤ Y0
• Generate (Xt+1, Yt+1) from (Xt, Yt) by choosing same flip cell.
• Preserves Xt ≤ Yt for all t.
• Random variable τC := min{t : Xt = Yt}

Get upper bound on E[τc] by upper bounding expected change of area
between Xt and Yt: E[∆d(Xt, Yt)] ≤ 0.

Theory =⇒ τ(ε) ≤ 6 · E[τC ]
(
1 + log

(
1
ε

))
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bichromatic triangle conjecture

A
B

triangle A bichromatic

triangle B monochromatic

Conjecture:

Every truly two-colored arrangement of at least three
pseudolines contains a bichromatic triangle.

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)



¿Preguntas?


