

RANDOM GENERATION OF PSEUDOLINE ARRANGEMENTS Pontificia Universidad Javeriana
NDOM GENERATION
Sandro M. Roch

pseudoline arrangements

Def: pseudoline arrangement:

• Family of continuous curves $f_1,...,f_n:\mathbb{R}\to\mathbb{R}^2$ with

$$
\lim_{t \to \infty} ||f_i(t)|| = \lim_{t \to -\infty} ||f_i(t)|| = \infty
$$

• Each two cross in exactly one point.

pseudoline arrangements

Def: *pseudoline arrangement*:

• Family of continuous curves $f_1,...,f_n:\mathbb{R}\to\mathbb{R}^2$ with

$$
\lim_{t \to \infty} ||f_i(t)|| = \lim_{t \to -\infty} ||f_i(t)|| = \infty
$$

- Each two cross in exactly one point.
- No 3 pseudolines cross at a single point.

wiring diagrams

wiring diagrams

Encoding by permutations:

Permutation $\pi_i \in S_{n-1}$ encodes intersection order of f_i .

$$
\begin{array}{ccc}\n & \text{in} & \text{out} \\
a & \rightarrow & \text{min}(a, b) \\
b & \rightarrow & \text{max}(a, b)\n\end{array}
$$

$$
\begin{array}{ccc}\n & \text{in} & \text{out} \\
a & \rightarrow & \text{min}(a, b) \\
b & \rightarrow & \text{max}(a, b)\n\end{array}
$$

$$
\begin{array}{ccc}\n & \text{in} & \text{out} \\
a & \rightarrow & \text{min}(a, b) \\
b & \rightarrow & \text{max}(a, b)\n\end{array}
$$

in out $\min(a, b)$ $\max(a,b)$ \overline{a} b

Sorting networks encode minimal sorting algorithms that

growth:

- \Rightarrow generalized pseudoline arrangement:
	- parallel class of $n_1, ..., n_r$ pseudolines
	-

generalized arrangements

Aslan Pasha Mosque Ioannina, Greece

Topkapı Palace, Istanbul, Turkey

pseudoline arrangements

wiring diagrams

rhombic plane partitions permutations permutations

rhombic tilings sorting netwo

higher Bruhat orders

> families of monotonic non-crossing paths

signotopes

sorting networks

Standard Young tableaux

oriented matroid of rank 3

pseudoline arrangements

wiring diagrams signotopes

rhombic

higher Bruhat orders

Problem:

plane partitions
 Problem:

Thow can pseudoline

tilings

arrangements be

afficiently concepted

arrangements be

sorting networks How can pseudoline arrangements be efficiently generated uniformly at random?

sorting networks

Standard Young tableaux

families of monotonic non-crossing paths

oriented matroid of rank 3

Markov chain (X_t) , state space $\mathscr X$, transition prob. $P: \mathscr X \times \mathscr X \to [0,1]$

Markov chain (X_t) , state space ${\mathscr X}$, transition prob. $P:{\mathscr X} \times {\mathscr X} \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

Markov chain (X_t) , state space $\mathscr X$, transition prob. $P:\mathscr X \times \mathscr X \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

• If P symmetric: π equals uniform distribution.

Markov chain (X_t) , state space ${\mathscr X}$, transition prob. $P:{\mathscr X} \times {\mathscr X} \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$
\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|
$$

Markov chain (X_t) , state space $\mathscr X$, transition prob. $P: \mathscr X \times \mathscr X \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$
\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|
$$

• Define $d(t) := \max_{x \in \mathcal{X}} ||P^t(x, \cdot) - \pi||_{\mathsf{TV}}$

Markov chain (X_t) , state space ${\mathscr X}$, transition prob. $P:{\mathscr X} \times {\mathscr X} \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$
\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|
$$

- Define $d(t) := \max_{x \in \mathcal{X}} ||P^t(x, \cdot) \pi||_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 \mid \forall t' \geq t \; : \; d(t') \leq \varepsilon\}$

Markov chain (X_t) , state space ${\mathscr X}$, transition prob. $P:{\mathscr X} \times {\mathscr X} \to [0,1]$ • If irreducible and aperiodic: Converges to stationary distribution π :

$$
\mathbb{P}[X_t = x] \to \pi(x)
$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$
\|\mu-\mu'\|_{\mathsf{TV}}:=\sup_{M\subseteq\mathcal{X}}|\mu(M)-\mu'(M)|
$$

- Define $d(t) := \max_{x \in \mathcal{X}} ||P^t(x, \cdot) \pi||_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 \mid \forall t' \geq t \; : \; d(t') \leq \varepsilon\}$

Def: A class of Markov chains is rapidly mixing if for each of them $\tau(\varepsilon) \in \mathcal{O}$ $\sqrt{ }$ \overline{p} $\left(\log \frac{|\mathcal{X}|}{\varepsilon}\right)$ for some $p \in \mathbb{R}[X]$.

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

Idea:

- States $\mathcal{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

bottleneck

Markov chain having a "bottleneck":

• Partition of states into two classes: ◦ paths above the blue rhombus ◦ paths below the blue rhombus

- Partition of states into two classes:
	- paths above the blue rhombus
	- paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

 $r = 5$ parallel classes: $r = 5$ parallel classes: $r = 4$ parallel classes:
(generalizable to more)

- Partition of states into two classes:
	- paths above the blue rhombus
	- paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

Theorem (R., 2021):

The Markov chain which operates on generalized pseudoline arrangements and flips random triangles with involvement of a distinguished parallel class is

- . . . rapidly-mixing on 3 parallel classes, and...
- \bullet ... in general not rapidly-mixing on 4 or more parallel classes.

Statement for 3 classes follows from (Luby, Randall & Sinclair, 1995)

Destainville, 2001: Mixing times of plane rhombus tilings

יי
|
|
| Nevertheless, the above arguments do not exclude definitively the existence of rare slow fibers, [...]'

Now we know: "slow fibers" do exist!

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one s-t-path

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one s-t-path

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one s-t-path

Technique: Monotone coupling

• Partial order on paths: $p \leq q$ iff p below q.

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t \; : \; X_t = Y_t\}$

Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t \; : \; X_t = Y_t\}$

Get upper bound on $\mathbb{E}[\tau_c]$ by upper bounding expected change of area between X_t and Y_t : $\mathbb{E}[\Delta d(X_t,Y_t)] \leq 0$.

Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- \bullet X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t \; : \; X_t = Y_t\}$

Get upper bound on $\mathbb{E}[\tau_c]$ by upper bounding expected change of area between X_t and Y_t : $\mathbb{E}[\Delta d(X_t,Y_t)] \leq 0$.

Theory $\implies \tau(\varepsilon) \leq 6 \cdot \mathbb{E}[\tau_C] \left(1 + \log\left(\frac{1}{\varepsilon}\right)\right)$ ε $\big)$

Conjecture:

Every truly two-colored arrangement of at least three (Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)
Every truly two-colored arrangement of at least
pseudolines contains a bichromatic triangle.

¿Preguntas?

