

Pontificia Universidad Javeriana

RANDOM GENERATION OF PSEUDOLINE ARRANGEMENTS

Sandro M. Roch

pseudoline arrangements

Def: *pseudoline arrangement*:

• Family of continuous curves $f_1, ..., f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty$$

• Each two cross in exactly one point.

pseudoline arrangements

Def: *pseudoline arrangement*:

• Family of continuous curves $f_1, ..., f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty$$

- Each two cross in exactly one point.
- No 3 pseudolines cross at a single point.

wiring diagrams

wiring diagrams

wiring diagrams

Encoding by permutations:

Permutation $\pi_i \in S_{n-1}$ encodes intersection order of f_i .

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out

$$a \rightarrow \min(a, b)$$

 $b \rightarrow \max(a, b)$

in out $a \rightarrow \min(a, b)$ $b \rightarrow \max(a, b)$

Sorting networks encode minimal sorting algorithms that are based on *comparison & exchange* of neighbor elements.

growth:

1	3	6
2	5	
4		

- \Rightarrow generalized pseudoline arrangement:
 - parallel class of $n_1, ..., n_r$ pseudolines
 - (Only) pseudolines of different classes cross

generalized arrangements

Aslan Pasha Mosque Ioannina, Greece

Topkapı Palace, Istanbul, Turkey

pseudoline arrangements

wiring diagrams

plane partitions

rhombic tilings

higher Bruhat orders

> families of monotonic non-crossing paths

signotopes

permutations

sorting networks

Standard Young tableaux

oriented matroid of rank $\boldsymbol{3}$

pseudoline arrangements

wiring diagrams signotopes

plane partitions

rhombic tilings

higher Bruhat orders

Problem:

How can pseudoline arrangements be efficiently generated uniformly at random?

permutations

sorting networks

Standard Young tableaux

families of monotonic non-crossing paths

oriented matroid of rank $\boldsymbol{3}$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P: \mathscr{X} \times \mathscr{X} \to [0,1]$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu - \mu'\|_{\mathsf{TV}} := \sup_{M \subseteq \mathfrak{X}} |\mu(M) - \mu'(M)|$$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu - \mu'\|_{\mathsf{TV}} := \sup_{M \subseteq \mathscr{X}} |\mu(M) - \mu'(M)|$$

• Define $d(t) := \max_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi\|_{\mathsf{TV}}$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on \mathcal{X} :

$$\|\mu - \mu'\|_{\mathsf{TV}} := \sup_{M \subseteq \mathscr{X}} |\mu(M) - \mu'(M)|$$

- Define $d(t) := \max_{x \in \mathscr{X}} \|P^t(x, \cdot) \pi\|_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 \mid \forall t' \ge t : d(t') \le \varepsilon\}$

Markov chain (X_t) , state space \mathscr{X} , transition prob. $P : \mathscr{X} \times \mathscr{X} \to [0, 1]$ • If *irreducible* and *aperiodic*: Converges to stationary distribution π :

$$\mathbb{P}[X_t = x] \to \pi(x)$$

• If P symmetric: π equals uniform distribution.

• Total variation distance of distributions μ, μ' on ${\mathscr X}$:

$$\|\mu - \mu'\|_{\mathsf{TV}} := \sup_{M \subseteq \mathscr{X}} |\mu(M) - \mu'(M)|$$

- Define $d(t) := \max_{x \in \mathscr{X}} \|P^t(x, \cdot) \pi\|_{\mathsf{TV}}$
- Mixing time $\tau(\varepsilon) := \min\{t \in \mathbb{N}_0 \mid \forall t' \ge t : d(t') \le \varepsilon\}$

Def: A class of Markov chains is *rapidly mixing* if for each of them $\tau(\varepsilon) \in \mathcal{O}\left(p\left(\log \frac{|\mathcal{X}|}{\varepsilon}\right)\right)$ for some $p \in \mathbb{R}[X]$.

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

Idea:

- States $\mathscr{X} = \{ \text{arrangements of fixed size} \}$
- Symmetric transition probabilities

 \implies After many steps get almost uniform arrangement

Markov chain II: random triangle flip

bottleneck

Markov chain having a "bottleneck":

Partition of states into two classes:
paths above the blue rhombus
paths below the blue rhombus

- Partition of states into two classes:
 - paths above the blue rhombus
 - paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

r = 5 parallel classes: (generalizable to more) r = 4 parallel classes:

- Partition of states into two classes:
 - paths above the blue rhombus
 - paths below the blue rhombus
- Only a flip on the blue rhombus connects both classes!

Theorem (R., 2021):

The Markov chain which operates on generalized pseudoline arrangements and flips random triangles with involvement of a distinguished parallel class is

- ... rapidly-mixing on 3 parallel classes, and ...
- ... in general **not rapidly-mixing** on 4 or more parallel classes.

Statement for 3 classes follows from (Luby, Randall & Sinclair, 1995)

Destainville, 2001: Mixing times of plane rhombus tilings

"Nevertheless, the above arguments do not exclude definitively the existence of rare slow fibers, [...]"

Now we know: "slow fibers" do exist!

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one *s*-*t*-path

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one *s*-*t*-path

Theorem: (Luby, Randall & Sinclair, 1995) The Markov chain that flips triangles in generalized pseudoline arrangements of 3 parallel classes is rapidly mixing.

Simple case: Only one *s*-*t*-path

Technique: Monotone coupling

• Partial order on paths: $p \leq q$ iff p below q.

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$

Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$

Get upper bound on $\mathbb{E}[\tau_c]$ by upper bounding expected change of area between X_t and Y_t : $\mathbb{E}[\Delta d(X_t, Y_t)] \leq 0$.

Technique: Monotone coupling

- Partial order on paths: $p \leq q$ iff p below q.
- X_0 lowest path; Y_0 highest path; $X_0 \leq Y_0$
- Generate (X_{t+1}, Y_{t+1}) from (X_t, Y_t) by choosing same flip cell.
- Preserves $X_t \leq Y_t$ for all t.
- Random variable $\tau_C := \min\{t : X_t = Y_t\}$

Get upper bound on $\mathbb{E}[\tau_c]$ by upper bounding expected change of area between X_t and Y_t : $\mathbb{E}[\Delta d(X_t, Y_t)] \leq 0$.

Theory $\implies \tau(\varepsilon) \leq 6 \cdot \mathbb{E}[\tau_C] \left(1 + \log\left(\frac{1}{\varepsilon}\right)\right)$

Conjecture:

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)

Every truly two-colored arrangement of at least three pseudolines contains a bichromatic triangle.

¿Preguntas?

