THE BOXICITY OF GRAPHS

The concept of the Boxicity

G = (V, E) a simple, undirected graph.

Box-representation of a graph: An assignment of each vertex $v \in V$ to an axis parallel box $\chi(v) \subset \mathbb{R}^d$, so that $\chi(v_1) \cap \chi(v_2) \neq \emptyset \Leftrightarrow \{v_1, v_2\} \in E$ for all $v_1, v_2 \in V$.

2-dimensional box-representation

3-dimensional box-representation

Boxicity: Minimal dimension needed for a box representation. (Notation: box(G))

Equivalent: Smallest number n so that there are interval graphs $I_1, ..., I_n, I_i = (V, E_i)$ with $E = E_1 \cap ... \cap E_n$.

(Where an interval graph is a graph that has a 1-dimensional box-representation)

To see the equivalence:

By projection onto the axis, a n-dimensional box representation yields the n interval graphs $I_1, ..., I_n$ as needed.

The concept of the Cubicity

Cube-representation: A box-representation, where the boxes are cubes (equal lengths) and all have the same size.

Cubicity: Minimal dimension needed for a cube-representation. (Notation: $\operatorname{cub}(G)$)

Equivalent: Smallest number n so that there are unit interval graphs $I_1, ..., I_n, I_i = (V, E_i)$ with $E = E_1 \cap ... \cap E_n$.

(Where a unit interval graph is a graph that has a 1-dimensional cube-representation)

Clearly: $box(G) \le cub(G)$

2-dimensional cube-representation

An upper bound on the boxicity

- Calculation of box(G), cub(G) is NP-complete (*Cozzens*, 1981).
- Roberts, 1969: |V| = n, then $\operatorname{cub}(G) \leq \lfloor \frac{2n}{3} \rfloor$, $\operatorname{box}(G) \leq \lfloor \frac{n}{2} \rfloor$
- This implies: $\operatorname{cub}(G), \operatorname{box}(G) \in \mathcal{O}(n)$
- Simple examples of equality exist (Roberts, 1969).
- Adiga, Chandran, Mathew 2013: G k-degenerate, then $\operatorname{cub}(G) \leq (k+2)\lceil 2e \cdot \log n \rceil$ (e eulerian number)
- They also provide this useful tool for general graphs G = (V, E):
 S ⊂ V, G[S] the subgraph induced by S, H the graph obtained from G by removing all edges in G[S]. Then:
 box(G) ≤ 2 · box(H) + box(G[S])
- By choosing S in a specific way so that H becomes k-degenerate Esperet (2015) deduces from the previous theorems:

$$box(G) \le (15e+1)\sqrt{m \cdot \log n} \qquad (m = |E|, n = |V|)$$

• This implies $box(G) \in \mathcal{O}(\sqrt{m \cdot \log m})$

k-degenerate graphs

G k-degenerate: Every subgraph S contains a vertex v with degree $deg(v) \le k$ in S.

Examples:

3-degenerate

2-degenerate