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Introduction

Abelian categories are a class of categories that share some of the well known proper-
ties of the category of abelian groups Ab, such as the existence of kernels, cokernels and
images as well as the validity of some isomorphism theorems. The category Ab is abelian
itself. Therefore abelian categories can be thought as a generalization of abelian groups.

In the first chapter of this short introduction to abelian categories we go step by step
towards the definition of abelian groups and show that Ab indeed satisfies it. In the
secound chapter we develop some theory that aims to give further motivation for the
study of abelian categories.
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Chapter 1

Path towards the definition of
abelian categories

The goal of this chapter is to define abelian categories step by step. We will demon-
strate the single parts of the definition on the category of abelian groups Ab, hence prov-
ing that Ab is abelian on the fly. This chapter is based on chapter 7 of [Osb00], unless
otherwise mentioned.

Definition 1.0.1. Let C be a category, A ∈ Obj(C).

1) A is an initial object if for every B ∈ Obj(C) there is exactly one morphism f ∈ HomC(A, B).

2) A is a final object if for every B ∈ Obj(C) there is exactly one morphism f ∈ HomC(B, A).

3) A is a zero object if A is both an initial object and a final object.

One easily checks that initial, final and zero objects are unique up to isomorphism, if
they exist. In Sets the only initial object is ∅, final objects are exactly sets of cardinality
one and there is no zero object. In Ab but also in the category of all groups Gr the only
zero object is the trivial group {e}.

Definition 1.0.2. Let C be a category, A, B ∈ Obj(C), f : A→ B a morphism.

1) The morphism f is called left zero morphism if for any X ∈ Obj(C) and any morphisms
g, h : X → A it holds that f ◦ g = f ◦ h.

2) The morphism f is called right zero morphism if for any Y ∈ Obj(C) and any morphisms
g, h : B→ Y it holds that g ◦ f = h ◦ f .

3) The morphism f is a zero morphism if it is both a left zero morphism and a right zero morphism.

Proposition 1.0.3. Let C be a category in which a zero object Z ∈ Obj(C) exists. Then for
any objects A, B ∈ Obj(C) with their unique morhpisms fAZ : A → Z and fZB : Z → B the
morphism 0AB : A → B defined by 0AB := fZB ◦ fAZ is a zero morphism. Moreover, 0AB is
independent of the choice of Z.
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2 Path towards the definition of abelian categories

Proof. 0AB is a left zero morphism: Let X ∈ Obj(C), g, h ∈ HomC(X, A). Since Z is a final
object, we get fAZ ◦ g = fAZ ◦ h. Therefore:

0AB ◦ g = fZB ◦ fAZ ◦ g = fZB ◦ fAZ ◦ h = 0AB ◦ h

0AB is a right zero morphism follows silimarly by using that Z is an initial object, so 0AB
is indeed a zero morphism. Now let Z′ ∈ Obj(C) be another zero object with its unique
morphisms fAZ′ : A → Z′ and fZ′B : Z′ → B and define 0′AB : A → B in the same way as
0′AB := fZ′B ◦ fAZ′ . There is a (unique) morphism fZZ′ : Z → Z′. By using that Z is a final
object and that Z′ is an initial object the following diagram commutes:

Z

A B

Z′

fZZ′

fZBfAZ

fAZ′ fZ′B

Hence 0′AB = fZ′B ◦ fAZ′ = fZ′B ◦ fZZ′ ◦ fAZ = fZB ◦ fAZ = 0AB.

In Gr, given two groups A and B, the morphism 0AB : A→ B as in proposition 1.0.3 is
the group morphism that maps everything to the identity element. The same holds in Ab
of course. This coincides with our previous understanding of „zero morphisms“.

Definition 1.0.4. A category C is called pre-additive if

1) There is a zero object in C.

2) For any pair of objects A, B ∈ Obj(C) there is a binary operation + on HomC(A, B) so that
(HomC(A, B),+) is an abelian group.

3) Composition of morphisms in C is compatible with the group structures from 2), that means the
mapping

◦ : HomC(B, C)×HomC(A, B)→ HomC(A, C) ( f , g) 7→ f ◦ g

is Z-bilinear with respect to the group structures on HomC(B, C), HomC(A, B), HomC(A, C).

Is is easy to see that in a pre-additive category C for A, B ∈ Obj(C) the neutral ele-
ment in HomC(A, B) is given by 0AB, as defined in proposition 1.0.3: For a zero object
Z ∈ Obj(C) the morphism fAZ ∈ HomC(A, Z) is the neutral element, because its group
HomC(A, Z) is trivial, so by bilinearity of composition 0AB = fZB ◦ fAZ is the neutral ele-
ment of HomC(A, B). From now on, for pre-additive categories we will simply denote by
0 ∈ Obj(C) any zero object and by 0AB or 0 the neutral element of HomC(A, B).

In Ab, given two abelian groups A, B ∈ Obj(C), there is the obvious group structure
on HomC(A, B): For f , f ′ ∈ HomC(A, B) one sets ( f + f ′)(a) := f (a) + f ′(a) for a ∈ A.
Clearly, for f , f ′ ∈ HomC(A, B), g, g′ ∈ HomC(B, C) we have g ◦ ( f + f ′) = (g ◦ f )+ (g ◦ f ′)
and (g + g′) ◦ f = (g ◦ f ) + (g′ ◦ f ), which means that the group structures are compatible
with composition. Therefore Ab is pre-additive. However, the same construction cannot
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be applied to Gr. Without commutativity f + f ′ does not need to be a group homomor-
phism. The following theorem aims to give motivation for pre-additive categories. The
idea of its proof is taken from [Sta].

Theorem 1.0.5. Let C be a pre-additive category. Then finite products and finite coproducts
coincide. That means:

1) If {πi : P → Ai : i ∈ I} is a product in C with |I| < ∞, then there exist φi ∈ HomC(Ai, P)
for i ∈ I so that {φi : Ai → P : i ∈ I} is a coproduct in C.

2) If {φi : Ai → P : i ∈ I} is a coproduct in C with |I| < ∞, then there exist πi ∈ HomC(P, Ai)

for i ∈ I so that {πi : P→ Ai : i ∈ I} is a product in C.

Proof. For 1) let us first assume |I| = 2, so let A1, A2 ∈ Obj(C) so that the product
P := A1 × A2 with projections π1 : P→ A1 and π2 : P→ A2 exists.

We apply the universal property of P on IdA1 : A1 → A1 and 0A1 A2 : A1 → A2 and
obtain a morphism k1 : A1 → P so that π1 ◦ k1 = IdA1 and π2 ◦ k1 = 0A1 A2 . We apply
the universal property of P also on IdA2 : A2 → A2 and 0A2 A1 : A2 → A1 and obtain
a morphism k2 : A2 → P so that π1 ◦ k2 = 0A2 A1 and π2 ◦ k2 = IdA2 . Alltogether the
following diagram commutes:

A1

A1 P A2

A2

IdA1
0A1 A2k1

π1 π2

IdA2
0A2 A1

k2

For any X ∈ Obj(C) and morphisms j1 ∈ HomC(A1, X), j2 ∈ HomC(A2, X) we define
f(j1,j2) : P → P′ by f(j1,j2) := j1 ◦ π1 + j2 ◦ π2. By the commutativity of the diagram above
we have:

π1 ◦ f(k1,k2)
= π1 ◦ k1 ◦ π1 + π1 ◦ k2 ◦ π2 = IdA1 ◦π1 + 0A2 A1 ◦ π2 = π1

Similarly, we get π2 ◦ f(k1,k2)
= π2, hence the following diagram commutes:

A1

P P

A2

π1

π2

f(k1,k2)

π1

π2

Instead of f(k1,k2)
the morphism IdP also lets this diagram commute. Therefore, by the

universal property of the product P (uniqueness), we have f(k1,k2)
= IdP. Now, with this

observation, we claim that {ki : Ai → P : i = 1, 2} is a coproduct of A1, A2. Suppose



4 Path towards the definition of abelian categories

we have P′ ∈ Obj(C) and k′1 ∈ HomC(A1, P′), k′2 ∈ HomC(A2, P′). Then we show that
f(k′1,k′2)

: P→ P′ is a connecting morphism. By the commutativity of the first diagram:

f(k′1,k′2)
◦ k1 = k′1 ◦ π1 ◦ k1 + k′2 ◦ π2 ◦ k1 = k′1 ◦ IdA1 +k′2 ◦ 0A1 A2 = k′1

Similarly we get f(k′1,k′2)
◦ k2 = k′2. So indeed the following diagram commutes:

A1

P P′

A2

k1 k′1

f(k′1,k′2)

k2 k′2

In order to show that the connecting morphism is unique, suppose f ′
(k′1,k′2)

: P → P′ is
another morphism so that the last diagram commutes. Then we have:

( f(k′1,k′2)
− f ′(k′1,k′2)

) = ( f(k′1,k′2)
− f ′(k′1,k′2)

) ◦ IdP

= ( f(k′1,k′2)
− f ′(k′1,k′2)

) ◦ f(k1,k2)

= ( f(k′1,k′2)
− f ′(k′1,k′2)

) ◦ (k1 ◦ π1 + k2 ◦ π2)

= ( f(k′1,k′2)
◦ k1 − f ′(k′1,k′2)

◦ k1) ◦ π1 + ( f(k′1,k′2)
◦ k2 − f ′(k′1,k′2)

◦ k2) ◦ π2

= (k′1 − k′1) ◦ π1 + (k′2 − k′2) ◦ π2 = 0PP′

Hence f(k′1,k′2)
= f ′

(k′1,k′2)
, so the connecting morphism is unique and therefore the universal

property of the coproduct is satisfied. For |I| > 2, apply induction. We will not prove 2),
because it is very similar.

Another concept that we are used to in Ab and which is very important for homo-
logical algebra is the one of kernels, images and cokernels of morphisms. The problem
with defining them in the language of category theory is that we are on a very abstract
level. We cannot assume that morphisms are actually sets of mappings (as in concrete
categories), and we cannot assume that objects contain something like a zero element. But
pre-additive categories have some additional structure that allows us to define at least
kernels and cokernels in such a way that it will coincide in Ab with what we already
know to be a kernel or a cokernel.
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Definition 1.0.6. Let C be a category with a zero object with the zero morphisms 0XY for any two
objects X, Y ∈ Obj(C) as in proposition 1.0.3. Let f : A→ B be a morphism in C.

1) A pair (K, i : K → A) where K ∈ Obj(C) is a kernel of f if f ◦ i = 0KB and whenever there is
another such object K′ ∈ Obj(C) with a morphism i′ : K′ → A and f ◦ i′ = 0K′B then there is
a unique morphism γ : K′ → K such that i ◦ γ = i′.

K

A B

K′

i

0KB

f

i′

0K′B

∃!γ

2) A pair (C, j : B → C) where C ∈ Obj(C) is a cokernel of f if j ◦ f = 0AC and whenever there
is another such object C′ ∈ Obj(C) with a morphism j′ : B → C′ and j′ ◦ f = 0AC′ then there
is a unique morphism γ : C → C′ such that γ ◦ j = j′.

C

A B

C′

∃!γ
f

0AC′

0AC

j

j′

Having defined kernels, one could also define a cokernel as a pair (C, j : B → C) so
that j ∈ HomC◦(C, B) is a kernel in the opposite category of f ∈ HomC◦(B, A). This is
equivalent to the definition above.

Proposition 1.0.7. Let f ∈ HomC(A, B) in a category C with zero objects. Then kernels of f are
unique up to isomorphism: Given two kernels (K, i : K → A) and (K′, i′ : K′ → A) of f then
there exists an isomorphism γ : K′ → K. Moreover, i ◦ γ = i′. A similar statement holds for
cokernels.

Proof. Let (K, i : K → A) and (K′, i′ : K′ → A) be two kernels of f . Applying the definition
of K yields a morphism γ : K′ → K such that i ◦ γ = i′. Applying the definition of K′

yields a morphism γ′ : K → K′ such that i′ ◦ γ′ = i. So the following diagram commutes:

K

K′ A B

K

γ′ i

γ
i′ f

i



6 Path towards the definition of abelian categories

Applying the uniqueness part of the definition of K on K itself gives that there can only be
one morphism φ : K → K such that i ◦ φ = i. But IdK and also γ ◦ γ′ satisfy this property,
so γ ◦γ′ = IdK. By applying analogously the definition of K′ one gets γ′ ◦γ = IdK′ . Hence
γ : K′ → K is an isomorphism. The statement can be proven similarly about cokernels.

In the categories Gr and Ab kernels and cokernels always exist. For example, let
f : A → B be a group morphism. Then we know that Ker( f ) := {a ∈ A : f (a) = 0} is
again a group. Any group K ∼= Ker( f ) that is isomorphic to the set theoretical kernel is
together with the inclusion morphism i : K → A a kernel in the new category theoretical
sense.

We want to note that there is a slightly more general way to define kernels and coker-
nels that also applies to categories without zero objects. One has to replace in definition
1.0.6 the concrete zero morphisms 0XY, which are defined via zero objects, by a collection
of zero morphisms, i.e. one morphism for each pair of objects, that satisfies some more
general commutativity condition. A category with such a collection of zero morphisms is
then called category with zero morphisms. In the following we will only cover pre-additive
categories, in which by definition zero objects exist, so we will not need this generalization.

Before going further in the definitions towards abelian categories, we will show that
kernels and cokernels in the category theoretical sense have indeed some of the properties
that we are familiar with.

Proposition 1.0.8. Let f ∈ HomC(A, B) in a pre-additive category and let (K, i : K → A) a
kernel of f and (C, j : B→ C) a cokernel of f .

1) i is a monomorphism and j is an epimorphism.

2) If φ ∈ HomC(B, Y) is a monomorphism for some Y ∈ Obj(C), then (K, i : K → A) is also a
kernel of φ ◦ f . Similarly, if φ ∈ HomC(X, A) is an epimorphism for some X ∈ Obj(C), then
(C, j : B→ C) is also a cokernel of f ◦ φ.

3) f is a monomorphism if and only if K is a zero object. f is an epimorphism if and only if C is a
zero object.

Proof. We only show the first parts of 1), 2), 3), the secound parts are the dual in the
opposite category.

Ad 1): Suppose g, g′ ∈ HomC(X, K) for some X ∈ Obj(C) with i ◦ g = i ◦ g′. Then
i ◦ (g− g′) = 0XA. Because of f ◦ 0XA = 0XB there is by the kernel property of K only one
morphism γ : X → K with i ◦ γ = 0XA. But both morphisms 0XK and (g− g′) satisfy this,
so g− g′ = 0XK. Hence g = g′.

K A B

X

i f

0XK

0XA

g−g′

Ad 2): Suppose K′ ∈ Obj(C), i′ : K′ → A with φ ◦ f ◦ i′ = 0K′Y. Then, because φ is a
monomorphism, f ◦ i′ = 0K′B. Then by the kernel property of K, there is indeed a unique
morphism γ : K′ → K so that i ◦ γ = i′.
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Ad 3): Let Z ∈ Obj(C) be a zero object. Assume that f is a monomorphism. Suppose
there is an object K′ ∈ Obj(C) and i′ : K′ → A with f ◦ i′ = 0. Then, since f is a
monomorphism, i′ = 0. The morphism γ = 0K′Z is the only morphism γ : K′ → Z, and it
satisfies 0ZA ◦ γ = i′. Hence (Z, 0ZA) is a kernel of f . So K ∼= Z is also a zero object.

For the other direction: Assume K is a zero object, so i = 0KA. Suppose there are
g, g′ ∈ HomC(X, A) for some X ∈ Obj(C) with f ◦ g = f ◦ g′. Then f ◦ (g− g′) = 0XB and
by the kernel property of K there is a unique morphism γ : X → K with 0KA ◦ γ = g− g′.
Hence g− g′ = 0XA and g = g′, so f is a monomorphism.

Definition 1.0.9. A category C is pre-abelian if:

1) The category C is pre-additive.

2) For any finite family of objects {Ai}i∈I ⊂ Obj(C), |I| < ∞ the product ∏i∈I Ai exists.

3) For any morhpism f ∈ HomC(A, B) both kernel and cokernel of f exist.

Of course by theorem 1.0.5 2) is equivalent to the existence of finite coproducts. For
abelian groups it is well-known that finite products and coproducts of abelian groups are
given by their direct sums together with the natural projections resp. injections, so Ab is
a pre-abelian category. Now the final step to abelian categories comes.

Definition 1.0.10. Let C be a pre-abelian category.

1) Category C is Ab-monic, if for every monomorphism f ∈ HomC(A, B) for any A, B ∈ Obj(C)
there is an object C ∈ Obj(Y) and a morphism g ∈ HomC(B, Y) so that (A, f ) is a kernel of g.

2) Category C is Ab-epic, if for every epimorphism f ∈ HomC(A, B) for any A, B ∈ Obj(C) there
is an object X ∈ Obj(C) and a morphism g ∈ HomC(X, A) so that (B, f ) is a cokernel of g.

3) Category C is abelian, if it is both Ab-monic and Ab-epic.

In other words, abelian categories are pre-additive categories in which finite products
(and coproducts) exist and in which morphisms have kernels and cokernels and also
appear as kernels and cokernels.

Proposition 1.0.11. The category Ab is abelian.

Proof. We have already seen that Ab is a pre-abelian category.
Ab is Ab-monic: Let f : A→ B be a monomorphism between abelian groups. Consider

the projection π : B→ B�Im f . Then (A, f ) is a kernel of π: Suppose there are A′ ∈ Obj(C)
and f ′ : A′ → B with π ◦ f ′ = 0, so Im f ′ ⊂ Ker π = Im f . The mapping f is injective, so
there is an inverse morphism f−1 : Im f → A. Then the morphism γ := f−1 ◦ f ′ is the
unique morphism with f ◦ γ = f ′.

Ab is Ab-epic: Let f : A → B be an epimorphism between abelian groups. Consider
the inclusion i : Ker f → A. Then (B, f ) is a cokernel of i: Suppose there are B′ ∈ Obj(C)
and f ′ : A→ B′ with f ′ ◦ i = 0. The mapping f is surjective and because of Ker f ⊂ Ker f ′

we can properly define the morphism γ : B→ B′ so that γ ◦ f = f ′, which is unique with
this property.



Chapter 2

Some theory about abelian
categories

This chapter is based on chapter 7 of [Osb00] and its exercises. We will learn more
examples of abelian categories and we will investigate further convenient properties.

2.1 More analogies to abelian groups

In the category Ab of abelian groups, a morphism is an isomorphism iff it is injective
and surjective. In cagetory theory, the concept of monomorphisms and epimorphisms
generalize injective and surjective morphisms such as in Ab. Therefore it is natural
to expect that a morphism in category theory is an isomorphism if and only if it is a
monomorphism and an epimorphism. Indeed isomorphisms are monomorphisms and
epimorphisms. However in general the reverse does not hold. But we will see that in
abelian categories, or slightly more general, in Ab-monic pre-abelian categories, it does.

Definition 2.1.1. Let C be a category.

1) A morphism f ∈ HomC(A, B) is a bimorphism, if it is both monic and epic.

2) The category C is a balanced category, if every bimorphism is an isomorphism.

Theorem 2.1.2. Every Ab-monic pre-abelian category is balanced.

Proof. Let f : A → B be a bimorphism, where A, B ∈ Obj(C). Because f is a monomor-
phism, there is an object C ∈ Obj(C) and a morphism g : B → C so that (A, f ) is a kernel
of g. Then by definition g ◦ f = 0AC, hence g = 0BC, because f is an epimorphism. But
then (B, IdB : B → B) is also a kernel of g. According to proposition 1.0.7 there is an
isomorphism p : A→ B with p = IdB ◦p = f :

A B C

B
∼p

f g=0BC

IdB

Hence f is an isomorphism.
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2.1 More analogies to abelian groups 9

Let f : A → B be a group morphism between abelian groups. Then Im( f ) ⊂ B is also
an abelian group. We directly get a surjective morphism p : A → Im( f ), a 7→ f (a) and
an (injective) embedding j : Im( f ) → B, f (a) 7→ f (a) so that f = j ◦ p. This means that
in the category Ab every morphism can be decomposed into a monomorphism and an
epimorphism. This property holds for abelian categories in general:

Theorem 2.1.3. Let C be an Ab-monic pre-abelian category and f ∈ HomC(A, B) for some
A, B ∈ Obj(C). Then there is an object C ∈ Obj(C), an epimorphism p : A → C and a
monomorphism j : C → B so that f = j ◦ p.

Proof. Let f : A→ B. Let (D, q : B→ D) be a cokernel of f and (C, j : C → B) be a kernel
of q. Since by the definition of cokernel we have q ◦ f = 0AD and by the definition of
kernel, there is a unique morphism p : A→ C so that the following diagram commutes:

A B D

C

f

∃!p

q

j

This is already the desired decomposition of f . By proposition 1.0.8 1) the morphism
j is indeed a monomorphism, so all that remains to show is that p is an epimorphism.
To that end, assume there are morphisms g1, g2 : C → E for some E ∈ Obj(C) with
g1 ◦ p = g2 ◦ p. Put g := g1 − g2, so g ◦ p = (g1 − g2) ◦ p = g1 ◦ p− g2 ◦ p = 0AE.

A B D

C E

f

p

q

j

g

Let (K, e : K → C) be a kernel of g. By definition and because of g ◦ p = 0AE there is a
unique morphism d : A→ K so that the following diagram commutes:

A B D

K C E

f

p
∃!d

q

e

j

g

The morphisms j and e are monomorphisms, because both of them come from kernels
(prop. 1.0.8). Then j ◦ e is also a monomorphism and because C is Ab-monic there is an
object F ∈ Obj(C) and a morphism h : B→ F so that (K, j ◦ e : K → B) is a kernel of h.

F

A B D

K C E

f

p
d

qh

e

j

g
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From h ◦ j ◦ e = 0KF we get h ◦ j ◦ e ◦ d = 0AF and by the commutativity of the diagram
h ◦ f = 0AF. Because (D, q : B → D) is a cokernel of f , there is a unique morphism
k : D → F so that the following diagram commutes:

F

A B D

K C E

f

p
d

qh ∃!k

e

j

g

We have q ◦ j = 0CD, because (C, j) was chosen as a kernel of q, so h ◦ j = k ◦ q ◦ j = 0CF.
Since (K, j ◦ e : K → B) is a kernel of h, there is a morphism φ : C → K with j ◦ e ◦ φ = j:

F

A B D

K C E

f

p
d

qh k

e

j

g

φ

Since j is a monomorphism, e ◦ φ = IdC. Therefore g = g ◦ IdC = g ◦ e ◦ φ = 0KE ◦ φ = 0CE,
since (K, e) was chosen as a kernel of g. So g1 − g2 = g = 0CE and g1 = g2. So p is indeed
an epimorphism.

In the next section we will see that the intermediate object C in theorem 2.1.3 is unique
up to isomorphism. For this reason it can be thought as a generalization of the image of a
group morphism in Ab.

2.2 Homology on abelian categories

Homological algebra deals with exact sequences. We would like to have a notion of
exactness on the level of abelian categories. There are the following two concepts.

Definition 2.2.1. Let C be a pre-abelian category, A, B, C ∈ Obj(C) objects and f : A → B,
g : B→ C morphisms with g ◦ f = 0AC, so we have the following diagram:

A B C
f g

1) This diagram is called kernel-exact, if for every kernel (K, j : K → B) of g the unique morphism
f̄ : A→ K with j ◦ f̄ = f is an epimorphism.

A B C

K

f

∃! f̄

g

j
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2) This diagram is called cokernel-exact, if for every cokernel (D, p : B → D) of f the unique
morphism ḡ : D → C with ḡ ◦ p = g is a monomorphism.

A B C

D

f g

p
∃!ḡ

Lemma 2.2.2. Consider the following diagram:

0 A B
f g

Then the following are equivalent:

1) The diagram is kernel-exact.

2) g is a monomorphism.

3) The diagram is cokernel-exact.

Proof. 1) =⇒ 2): Let (K, j : K → A) be a kernel of g. Then, since the diagram is kernel
exact, the unique f̄ : 0 → K with j ◦ f̄ = f = 00A is an epimorphism, therefore j = 0KA.
Now let C ∈ Obj(C) and γ1, γ2 : C → A arbitrary with g ◦ γ1 = g ◦ γ2. This means
g ◦ (γ1 − γ2) = 0CB. Then by definition of the kernel there is a morphism φ : C → K so
that γ1 − γ2 = j ◦ φ = 0KA ◦ φ = 0CA. Hence γ1 = γ2 and g is a monomorphism.

2) =⇒ 1): Let (K, j : K → A) be a kernel of g and f̄ : 0→ K the unique morphism with
j ◦ f̄ = f = 00A. To show that f̄ is an epimorphism, suppose for any object C ∈ Obj(C)
there are morphisms γ1, γ2 : K → C with γ1 ◦ f̄ = γ2 ◦ f̄ . According to proposition
1.0.8 3) K is a zero object, which means γ1 − γ2 = 0KC. Therefore, γ1 = γ2 and f̄ is an
epimorphism.

2) ⇐⇒ 3): Up to isomorphism, (A, IdA: A→ A) is the cokernel of g and g itself is
the unique morphism so that g ◦ IdA = g. Then the diagram satisfies the definition of
cokernel-exactness for this kernel if and only if g is a monomorphism. One easily ckecks
that this is a property which does not depend on the choice of the kernel.

Theorem 2.2.3. Let C be a pre-abelian category. Then the following are equivalent:

1) C is an Ab-monic category.

2) C is a balanced category and cokernel-exact sequences are kernel-exact sequences.

3) Let 0→ A→ B→ C be a cokernel-exact sequence, then A→ B is a kernel of B→ C.

4) If A→ B is a monomorphism with cokernel B→ C, then A→ B is a kernel of B→ C.
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Proof. 1) =⇒ 2): Since C is Ab-monic, by proposition 2.1.2 C is balanced. Assume we
have a cokernel-exact sequence:

A B C
f g

Let (K, j : K → B) be a kernel of g and (D, q : B → D) be a cokernel of f , and let
f̄ ∈ HomC(A, K) and ḡ ∈ HomC(D, C) the unique morphisms so that the following dia-
gram commutes:

A B C

K D

f

∃! f̄

g

qj
∃!ḡ

By definition of cokernel-exactness, ḡ is a monomorphism. By proposition 1.0.8 2) a kernel
of q is also a kernel of ḡ ◦ q. Then, because of the uniqueness of kernels up to isomorphism,
(K, j : K → B), which is a kernel of g = ḡ ◦ q, is also a kernel of q. Now we are in the
situation of the proof of theorem 2.1.3 a), in which j was also defined as a kernel of a
cokernel, and in which it was shown that f̄ (denoted in the proof as p) is an epimorphism.
Hence the sequence is kernel-exact.

2) =⇒ 3): Assume we have a cokernel-exact sequence:

0 A B C
f g

Then, if we assume that cokernel-exact sequences are kernel-exact, this sequence is also
kernel exact. Let (K, j : K → B) a kernel of g and let f̄ ∈ HomC(A, K) be the homomor-
phism so that the following diagram commutes:

0 A B C

K

f

∃! f̄

g

j

By kernel-exactness, f̄ is an epimorphism. By lemma 2.2.2 2) we have that f = j ◦ f̄ is
a monomorphism, hence f̄ is a monomorphism as well, so f̄ is a bimorphism. Thus, by
assuming that C is balanced, f̄ is an isomorphism, and therefore (A, f : A→ B) is a kernel
of g.

3) =⇒ 4): If (C, q : B → C) is a cokernel of a morphism f : A → B, then the

sequence A
f−→ B

q−→ C is cokernel-exact (The connecting morphism is the isomorphism

IdC : C → C). By lemma 2.2.2 the sequence 0 −→ A
f−→ B is also cokernel-exact, because f

is a monomorphism. Then the total sequence 0→ A
f−→ B

q−→ C is cokernel-exact. Then by
assuming 3) (A, f : A→ B) is a kernel of q : B→ C.

4) =⇒ 3): For an arbitrary monomorphism f : A→ B, a cokernel (C, q : B→ C) of f
has f as its kernel assuming 3).

By applying theorem 2.2.3 on the opposite category Co one receives the following
corollary.
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Corollary 2.2.4. Let C be a pre-abelian category. Then the following are equivalent:

1) C is an Ab-epic category.

2) C is a balanced category and kernel-exact sequences are cokernel-exact sequences.

3) Let A→ B→ C → 0 be a kernel-exact sequence, then B→ C is a cokernel of A→ B.

4) If A→ B is an epimorphism with kernel K → A, then A→ B is a cokernel of K → A.

By using the equivalence between the first and secound parts of both theorem 2.2.3 and
its corollary 2.2.4 we know that in abelian categories, which are by definition Ab-monic
and Ab-epic, the notions of kernel-exactness and cokernel-exactness coincide, which is
one more nice feature of abelian categories. The following theorem extends theorem 2.1.3.

Theorem 2.2.5. Let C be an Ab-monic pre-abelian category and f ∈ HomC(A, B) for some
A, B ∈ Obj(C). Then f can be decomposed into f = j ◦ p, where p : A → C is an epimorphism
and j : C → B is a monomorphism, for some C ∈ Obj(C) which is unique up to isomorphism.

Proof. We are only missing the part that the intermediate object C is unique up to isomor-
phism.

Let (D, q : B → D) be a cokernel of f , and let the decomposition from theorem 2.1.3
given by an object C ∈ Obj(C), a monomorphism j ∈ HomC(C, B) and an epimorphism
p ∈ HomC(A, C) with j ◦ p = f .

Now suppose C′ ∈ Obj(C), a monomorphism j′ ∈ HomC(C, B) and an epimorphism
p′ ∈ HomC(A, C) are also a decomposition of f , i.e. j′ ◦ p′ = f ′. By proposition 1.0.8 2), a
cokernel of j′ is also a cokernel of j′ ◦ p′ = f . Then, because of the uniqueness of cokernels
up to isomorphism, (D, q : B → D) is a cokernel of j′. By the part 4) of the previous
theorem 2.2.3, (C′, j′ : C′ → B) is a kernel of q. Remember that in the construction of
theorem 2.1.3 (C, j : C → B) was also chosen as a kernel of q. By the uniquness of kernels
we get C ∼= C′.

2.3 More abelian categories

So far, the only example of an abelian category was Ab itself. For some ring R, another
example of an abelian category is R-Mod, the category of (left-) modules over R. This is
quite clear, since modules are also abelian groups and all the proofs of the first chapter
remain valid for R-modules.

There is also a simple way of constructing new abelian categories from already known
ones. Let C be an arbitrary category for which Obj(C) is a proper set. Such a category
is called small category1. Let D be an abelian category. Then one can consider the so
called functor category DC . Its objects are the covariant functors F : C → D and the
morphisms between any two such functors F, G are the natural transformations from F to
G. In the following we will sketch the proof that DC is abelian. We will focus rather on
the constructions than on proving everything in detail.

1As in the lecture we assume for all categories that for A, B ∈ Obj(C) the class HomC (A, B) is a proper set.
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Lemma 2.3.1. Let C be a small category and D an abelian category. Then the functor category
DC is pre-additive.

Proof. DC has a zero object: Let F : C → D be the functor that maps every X ∈ Obj(C) to
the zero object 0 ∈ Obj(D) and maps every morphism in D to Id0. Then for any covariant
functor G : C → D there is exactly one natural transformation η : F → G, ηX : 0 → G(X)

for X ∈ Obj(C), and there is exactly one natural transformation η′ : G → F, η′X : G(X)→ 0
for X ∈ Obj(C). Therefore, F is a zero object in DC .

Given two covariant functors F, G : C → D and natural transformations η1, η2 : F → G
one defines η1 + η2 by (η1 + η2)X = η1

X + η2
X , where the addition on the right hand side is

the addition on HomD(F(X), G(X)). One checks that this defines a group structure and
is compatible with composition of natural transformations.

Lemma 2.3.2. Let C be a small category and D an abelian category. Then the functor category
DC is pre-abelian.

Proof. By lemma 2.3.1 we know that DC is pre-additive.
Finite products exist: Let {Fi : C → D : i ∈ I} a family of covariant functors for

an index set I with |I| < ∞. Let F : C → D be the covariant functor that maps an
object X ∈ Obj(C) to the product ∏i∈I Fi(X), which exists because D is pre-abelian. Let
πi

X : ∏i∈I Fi(X) → Fi(X) denote the i-th projection of F(X). For f ∈ HomC(X, Y) let
F( f ) : F(X) → F(Y) be the unique morphism that lets the following diagram for all i ∈ I
commute:

F(X) = ∏i∈I Fi(X) ∏i∈I Fi(Y) = F(Y)

Fi(X) Fi(Y)

πi
X

∃!F( f )

πi
Y

Fi( f )

Then F is a covariant functor. We claim that F is the product of {Fi : i ∈ I}. What are
its projections? These have to be natural transformations ηi : F → Fi. As the diagram
suggests, we can simply set ηi

X := πi
X . We skip the part of showing that (F, ηi : F → Fi)

indeed satisfies the universal property of products, which is straight forward.
Kernels exist: Let A, B : C → D be covariant functors and η : A → B a natural

transformation. For X ∈ Obj(C) let (K(X), κX : K(X) → A(X)) with K(X) ∈ Obj(D) be a
kernel of ηX : A(X)→ B(X). Now take a morphism f ∈ HomC(X, Y). We claim that there
is a unique morphism K( f ) : K(X)→ K(Y) that lets the following diagram commute:

K(X) A(X) B(X)

K(Y) A(Y) B(Y)

κX

∃!K( f )

ηX

A( f ) B( f )

κY ηy

This is because ηY ◦ A( f ) ◦ κX = B( f ) ◦ ηX ◦ κX = B( f ) ◦ 0 = 0 and by the property of
(K(Y), κY : K(Y) → A(Y)) to be a kernel of ηY. By this construction, K : C → D becomes
a covariant functor and κ : K → A a natural transformation. We claim that (K, κ : K → A)
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is a kernel of η : A → B. Clearly, η ◦ κ is the natural transformation whose components
(η ◦ κ)X : K(X) → B(X) are zero morphisms. This is indeed the zero morphism in
HomDC (K, B), as one can easily check. Again, we skip the part of showing that (K, κ)

satisfies the universal property of kernels.
Using a dual argument one can show that cokernels exist as well. Therefore, DC is

pre-abelian.

The idea of the following proof is taken from [Fre66].

Theorem 2.3.3. Let C be a small category and D an abelian category. Then the functor category
DC is abelian.

Proof. By lemma 2.3.2 we know that DC is a pre-abelian category. In here, we only show
that DC is Ab-monic. Let η ∈ HomDC (A, B) be a monomorphism, so η : A → B is a
natural transformation between two covariant functors A, B : C → D.

Since η is a monomorphism, by part 3 of 1.0.8 the kernel (K, κ : K → A) is a zero object
in DC , so K(X) = 0 for all X ∈ Obj(C). Remember how the kernels in DC were constructed
componentwise in the previous lemma 2.3.2. Then again by part 3 of 1.0.8 we know that
ηX is a monomorphism for all X ∈ C. Now for X ∈ C let (C(X), τ : B(X) → C(X))

be a cokernel of ηX . Since D is Ab-monic, by part 4 of theorem 2.2.3 we know that
(A(X), ηX : A(X) → B(X)) is a kernel of τX : B(X) → C(X). Let f ∈ HomC(X, Y) be a
morphism, then we claim that there is a unique morphism C( f ) : C(X) → C(Y) so that
the following diagram commutes:

A(X) B(X) C(X)

A(Y) B(Y) C(Y)

ηX

A( f )

τX

B( f ) ∃!C( f )

ηY τY

This is because τY ◦ B( f ) ◦ ηX = τY ◦ ηY ◦ A( f ) = 0 ◦ A( f ) = 0 and by the universal
property of the cokernel (C(X), τX) of ηX . By this construction, C : C → D becomes a
covariant functor and τ : B→ C a natural transformation. By the way we constructed the
kernels in DC componentwise in the previous lemma 2.3.2, (A, η : A → B) is indeed a
kernel of τ.

2.4 Mitchell’s embedding theorem

We now state the most famous result about abelian categories. The proof is too com-
plex for this short introduction and we will skip it.

Theorem 2.4.1 (Mitchell’s Embedding Theorem). Let C be a small abelian category. Then there
is a ring R and a full and faithful functor F : C → R-Mod.

Proof. The proof can be found in [Wei94].
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Informally, Mitchell’s Theorem states that every abelian category can be embedded into
a category of modules over a ring. For the category Ab this is trivial. The astonishing point
of Mitchell’s theorem is that abelian categories are in some sense contained in categories
whose objects are sets with some extra structure and whose morphisms are mappings
between those (So called concrete categories). This is something very pleasant, because
abelian categories in the first hand might be very abstract, whereas categories of modules
are considered to be well understood.
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