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Vertical slice transform
Definition:

T : L2(S2)→ L2 ([0, 2π)× [−1, 1]) ,

T f (σ, t) = 1

2π
√
1− t2

∫
ξ·eσ=t

f (ξ) dξ,

where
eσ = (cosσ, sinσ, 0)>.

Symmetry property
T f vanishes for functions f that are odd in the
third coordinate ξ3. Hence, only the even part of f
can be reconstructed.

Task
We have the discrete noisy data
g(σm, tm) = T f (σm, tm) + εm, m = 1, . . . , M,

where ε is a Gaussian random vector.
We want to reconstruct f .

Methods
Singular value decomposition

T Y k
n = λknB

k
n, n ∈ N0, |k| ≤ n.

I Y k
n ... spherical harmonics of degree n

I λkn ... singular values of T
I Bk

n ... orthonormal basis on [0, 2π)× [−1, 1]
Smoothing the inverse T †g with filter
coefficients ψ̂(n)

T †g =
∞∑
n=0

n∑
k=−n

1

λkn

〈
g,Bk

n

〉
Y k
n

 ψ ? T †g =
∞∑
n=0

n∑
k=−n

ψ̂(n)
1

λkn

〈
g,Bk

n

〉
Y k
n .

Use numerical quadrature for the discretized inner
product〈

g,Bk
n

〉
M

=
M∑
m=1

ωmg(σm, tm)Bk
n(σm, tm).

Truncation at degree N to define the estimator

EM,ψg =
N∑
n=0

n∑
k=−n

ψ̂(n)
1

λkn

〈
g,Bk

n

〉
M
Y k
n .

Choice of the filter coefficients
The filter coefficients ψ̂(n) should be
I almost one for small n, and
I zero for large n.
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Results
Source condition. We assume that f is in the
Sobolev space Hs(S2) with bounded norm

‖f‖Hs(S2) ≤ S.

Theorem. There exists a family of optimal filters
ψsL(M) such that for M →∞

min
ψ

max
‖f‖Hs≤S

E ‖f − EM,ψg‖22
' max
‖f‖Hs≤S

E ‖f − EM,ψsL(M)
g‖22

' const ·M
−2s
2s+3.

They have the coefficients

ψ̂sL(n) = 1−
n + 1/2

L + 1/2

s

for n ≤ L.
(right image with s = 2)
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Alternative reconstruction approach

Orthogonal projection along the third coordinate
turns the circular average transform T into the
Radon transformR on the unit disc via

T f = R

 f (ξ1, ξ2)

π
√
1− ξ21 − ξ22

 ,
provided f is even in ξ3 and thus independent of ξ3.

Numerical experiments
The computation of the estimator EM,ψg can be
done with the help of the fast spherical Fourier
transform in onlyO(M log2M) steps.
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Conclusion
We have introduced a new algorithm for inverting
the vertical slice transform. We discovered that the
filter coefficients of the type ψsL are optimal. Our
error estimates were confirmed in numerical tests.
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