
SFB F68
Tomography Across the Scales

Generalized Fourier Diffraction Theorem and Filtered Backpropagation for
Tomographic Reconstruction
Michael Quellmalz | TU Berlin | GIP Meeting, Siegen, 25 September 2024
joint work with Clemens Kirisits, Eric Setterqvist



Outline

1 Introduction

2 Helmholtz Equation and Fourier Diffraction Theorem

3 Motion of the Object

4 Reconstruction of the Object

Generalized Fourier Diffraction Theorem and Filtered Backpropagation for Tomographic Reconstruction | Michael Quellmalz
25 September 2024
Page 1



Optical Diffraction Tomography (ODT)

f = 0

object (f ̸= 0)

x3

x1

x2

Measurement plane
x3 = rM

Incident field: Plane wave with normal x3

u inc
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Optical Diffraction

Optical diffraction occurs when the wavelength of the incident wave is large
≈ the size of the object (µm scale)

Simulation of the scattered field from
spherical particles (size ≈ wavelength)

Image with diffraction
© Medizinische Universität Innsbruck
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Model of Optical Diffraction Tomography (for one direction)

• We have: field utot(x̃ , rM), x̃ ∈ Rd−1, at measurement plane xd = rM

• We want: scattering potential f on Rd with compact support
• Illumination by plane wave u inc(x) = eik0x·s with direction s ∈ Sd−1 and wave number k0

• Total field utot(x) = u(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0
• Rearranging yields

− (∆ + k2
0 ) u(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

u(x) + u inc(x)
)

Born approximation

Assuming |u| ≪ |u inc|, we obtain the Helmholtz equation

−
(
∆ + k2

0
)

u(x) = f(x)u inc(x)
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• Helmholtz equation
− (∆ + k2

0 )u(x) = g(x), x ∈ Rd (1)
• The outgoing solution satisfies the Sommerfeld radiation condition

lim
r→∞

r
d−1

2

(
∂u(x)

∂r
− ik0u(x)

)
= 0

uniformly in s, where x = rs, r = |x|, and ∂/∂r denotes the radial derivative
• It has the fundamental solution

G(x) = i

4

(
k0

2π|x|

) d−2
2

H(1)
d−2

2
(k0 |x|),

where H(1)
a is the Hankel function of the first kind and order a.

Lemma
For g ∈ L1(Rd ) with compact support,

u = g ∗ G ∈ L1
loc(Rd ) ∩ S ′(Rd )

is the unique outgoing solution of the Helmholtz equation (1).
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Some Auxiliary Lemmas

Lemma
If gn → 0 in L1(Rd ) and

⋃
n
supp gn is bounded, then gn ∗ G → 0 in S ′(Rd ).

• Set F̃ as partial Fourier transform in the first d − 1 coordinates
• For x ∈ Rd , set x̃ = (x1, ... , xd−1)
• κ(x) :=

√
k2

0 − |x|2, x ∈ Rd−1

Lemma
Let d ≥ 2. Then F̃G is given by the locally integrable function

F̃G(x) = (2π)
1−d

2
ieiκ(̃r)|xd |

2κ(x̃) .

In contrast: FG exists as tempered distribution, but is not regular
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Define h±(x) :=
(

x
±κ(x)

)
=

(
x

±
√

k2
0 − |x|2

)
, x ∈ Rd−1 (hemisphere)

Generalized Fourier Diffraction Theorem [Kirisits, Q, Setterqvist 2024]

Let d ≥ 2 and g ∈ L1(Rd ) has compact support. Then F̃u, where u = g ∗ G, is given by the locally integrable
function

F̃u(x) =
√

π

2
i

κ(x̃)
(

eiκ(x̃)rd F ((1 − χxd )g) (h+(x̃)) + e−iκ(x̃)xd F (χrd g) (h−(x̃))
)

,

where x̃ = (x1, ... , xd−1), F̃ is the d − 1 dimensional partial Fourier transform and χxd is the indicator function
of {y ∈ Rd : yd ≥ xd }.
If xd is sufficiently large or sufficiently small such that

± (xd − yd ) > 0 for all y ∈ supp g,

then
F̃u(x) =

√
π

2
ie±iκ(x̃)xd

κ(x̃) ĝ(h±(x̃)).
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(Classical) Fourier Diffraction Theorem

Additional assumptions:
• the incident field is a plane wave u inc(x) = eik0x·s

• the measurement plane xd = rM not intersect supp f

Then √
2
π

κie−iκrM F̃ u(x̃ , rM)︸ ︷︷ ︸
measured

= F f(h(x̃) − k0s), x̃ ∈ Rd−1,

where h(x̃) :=
(

x̃
κ

)
and κ =

√
k2

0 − |x̃|2.

Formula well-known from [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney
2001]

x1

x2

x3

−k0

Semisphere h(k) of available
data in Fourier space
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Focused Beams
• The generalized version allows for other incidence fields
• For an incident Herglotz wave

u inc(r) =
∫
Sd−1

a(s)eik0s·r ds(s), where a ∈ L2(Sd−1),

it yields

F̃u(x , rM) =
√

π

2
ie±iκ(x)rM k2

0
κ(x)

∫
Sd−1

a(s)̂f(h±(x) − k0s) ds(s).

• Reconstruction algorithms for focused beams (see images below) in [Kirisits Naujoks Scherzer 2024]

Plane wave Re(uinc) Focused wave Tightly focused wave
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Moving the Object and Incidence Direction

• Rigid motion of the object causes scattering potential f(Rt(x − d t)) with
• Rotation Rt ∈ SO(d) (with R0 := id)
• Translation d t ∈ Rd (with d0 := 0)

• Incidence direction st ∈ Sd−1

• Position of the measurement plane is kept fixed (equivalent to moving object and incidence
simultaneously)

Fourier diffraction theorem (with motion)

The quantity

µt(x) :=
√

2
π

κie−iκrM F̃u(k , rM) = F f(Rt h(x) − k0st︸ ︷︷ ︸
Fourier cover

) e−i⟨d t ,h(x)⟩, ∥x∥ < k0,

depends only on the measurements of u.

Generalized Fourier Diffraction Theorem and Filtered Backpropagation for Tomographic Reconstruction | Michael Quellmalz
25 September 2024
Page 10



Fourier Cover: Angle Scan
y2

y1

k0−k0

Quarter turn t ∈ [π/4, 3π/4]

y2

y1

k0−k0

Half turn t ∈ [0, π]

y2

y1

k0−k0

2k0

Full turn t ∈ [0, 2π]

2D Fourier coverage for incidence direction s(t) = (cos t , sin t). Measurements are taken at r2 = rM . The
Fourier coverage (light red) is a union of infinitely many semicircles, whose centers lie on the dashed blue
curve.
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Fourier coverage: Object Rotation (Incidence Parallel to Measurement Plane)

y1

y2

√
2k0

k0

−k0

(a) Quarter turn

y1

y2

√
2k0

k0

−k0

(b) Half turn

y1

y2

√
2k0

(c) Full turn (d) 3D cover, full turn

Figure: 2D Fourier coverage for a rotating object, incidence direction s = (0, 1) and measurements taken at r2 = rM .
The Fourier coverage (light red) is a union of infinitely many semicircles, some of which are depicted in red.
(d): 3D Fourier coverage for incidence s = (0, 0, 1) and rotation around first axis.
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Fourier Cover: Object Rotation (Incidence Perpendicular to Measurement Plane)

y1

y2

k0 2k0

k0

(a) Quarter turn

y1

y2

k0 2k0

k0

(b) Half turn

y1

y2

k0 2k0

k0

(c) Three-quarter turn

y1

y2

k0 2k0

k0

(d) Full turn
Figure: 2D Fourier coverage for a rotating object, incidence direction s = (1, 0) and measurements taken at r2 = rM .

y1

y2

k0−k0

Figure: 3D Fourier coverage for a full rotation of the object about the r1-axis with incidence direction s = (0, 1, 0).
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Fourier cover: Angle scan & Rotation

1

2

y2

y1

2D Fourier cover
(colors represent Banch indicatrix) 3D Fourier cover

• Incidence is rotated along a half circle
• and the experiment is repeated with the object rotated by 90◦.
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Apprach 1: Filtered Backpropagation

Idea: Inverse Fourier transform of F f restricted to the set of available data Y,

fbp(r) := (2π)− d
2

∫
Y

F f(y) eiy·r dy

with the transformation T(x , t) := Rt h(x)

Theorem [Kirisits, Q, Setterqvist 2024]

Let the rotation Rt ∈ SO(d), translation d t and incidence st ∈ Sd−1 be piecewice C1. Then

fbp(r) = (2π)− d
2

∫ T

0

∫
Bk0

F f(T(x , t)) ei T(x ,t)·(r+d t ) |det ∇T(x , t)|
Card T −1(T(x , t)) dx dt ,

where det ∇T(x , t) = k0(t)k ′
0(t) − Rt h(x , t) (k0(t)Rt st)′

κ
.

Banach indicatrix Card(T −1(y)) needs to be estimated (except for special cases).
Well-known for rotation around coordinate axis [Devaney 1982]
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Discretization
• Object f(xk ) with xk = k 2Ls

K , k ∈ Id
K := {−K/2, ... , K/2 − 1}d

• Measurements utot
tm (yn, rM) with yn = n 2LM

N , n ∈ Id−1
N

• discrete Fourier transform (DFT)

[F DFT utm ]ℓ :=
∑

n∈Id−1
N

utm (yn, rM) e−2πin·ℓ/N , ℓ ∈ Id−1
N ,

• Non-uniform discrete Fourier transform (NDFT)

[F NDFTf ]m,ℓ :=
∑
k∈Id

K

fk e−ixk ·(Rtm h(yℓ)), m ∈ JM , ℓ ∈ Id−1
N

Discretized forward operator

Dtotf := F −1
DFT(c ⊙ F NDFTf) + eik0rM , f ∈ RK d

,

where c =
[

i
κ(yℓ) ei κ(yℓ) rM

(
N
LM

)d−1 (
Ls
K

)d
]

ℓ∈Id−1
N
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Reconstruction of f

Inverse
f ≈ F −1

NDFT

(
(F DFTutot − eik0rM

)
⊘ c)

Crucial part: inversion of NDFT F −1
NDFT

x1

t

x2

ut1

ut2

F DFT

⊘ c g1

g2

Rt h

F f

inverse
NDFT

f
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Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

arg min
f∈RK3

∥F NDFT(f) − g∥2
2

• NFFT (Non-uniform fast Fourier transform) for computing F NDFT(f) in O
(

N3 log N
)

steps
[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization
• Regularized inverse

arg min
f∈RK3

χRK3
≥0

(f) + 1
2 ∥F NDFT(f) − g∥2

2 + λTV(f),

• Primal-dual (PD) iteration [Chambolle & Pock 2010]
• Adaptive selection of step sizes [Yokota & Hontani 2017]
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3D Reconstruction: Moving Rotation Axis

Ground truth f
(240 × 240 × 240 grid)

Backpropagation
PSNR 24.17
SSIM 0.171
5 s

Backpropagation
(with inticatrix estima-
tion)
PSNR 31.84
SSIM 0.350
5 s +22 s precopmpute

CG Reconstruction
PSNR 35.84
SSIM 0.962
82 s

0

1

TV (λ = 0.02)
PSNR 40.95
SSIM 0.972
1395 s
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3D Reconstruction: Moving Rotation Axis and 5 % Gaussian Noise

Ground truth f Backpropagation
PSNR 21.19
SSIM 0.075

Backpropagation
(with indicatrix estima-
tion)
PSNR 25.50
SSIM 0.157

CG Reconstruction
PSNR 24.10
SSIM 0.193

0

1

TV (λ = 0.05)
PSNR 38.01
SSIM 0.772
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Conclusions

• Generalized Fourier diffraction theorem on L1(Rd )
• Filtered backpropagation formula for a wide range of experimental setups
• Compared image reconstruction methods

Thank you for your attention!
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Estimation of the Banach indicatrix
• Banach indicatrix Card(T −1

± (y)) counts how often a point y ∈ Bd
2k0 is “hit” by T+.

• In a discrete setting, it is unlikely that a point y is exactly hit by any grid point T+(x̃m, tn).
• The coverage for fixed time t is the hemisphere

{T+(x̃ , t) : x̃ ∈ Bd−1
k0 } =

{
z ∈ Rd : ∥z + k0(t)Rt st∥ = k0(t), z · Rt e

d > −k0(t)st · ed
}

,

which moves continuously with t.
• Idea: a point y is hit by T+ between the time steps tn−1 and tn, if the sign of ∥y − Rt st∥ − k0(t) changes

between these time steps. We use the approximation

Card(T −1
+ (y)) ≈

N∑
n=1

χ(n)
2 |sgn(∥y + k0(tn−1)Rtn−1 stn−1 ∥ − k0(tn−1)) − sgn(∥y + k0(tn)Rtn stn ∥ − k0(tn))| ,

where

χ(n) :=

{
1, if y · (Rt ed ) > −k0(tn)stn · ed ,

0, otherwise.

with the sign function sgn(x) := x
|x| for x ̸= 0 and sgn(0) := 0.
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