

Motion Detection in Diffraction Tomography

Michael Quellmalz | TU Berlin | IPMS Conference, Malta, 28 May 2024
joint work with Robert Beinert, Peter Elbau, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele SteidI

Outline

(1) Introduction

(2) Reconstruction of the object
(3) Reconstructing the motion

Optical Diffraction Tomography (ODT)

Incident field: Plane wave with normal x_{3}

Measurement plane

$$
x_{3}=r_{\mathrm{M}}
$$

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text {tot }}\left(\tilde{\boldsymbol{x}}, r_{\mathrm{M}}\right), \tilde{\boldsymbol{x}} \in \mathbb{R}^{d-1}$, at measurement plane $x_{d}=r_{\mathrm{M}}$
- We want: scattering potential f on \mathbb{R}^{d} with compact support
- Illumination by plane wave $u^{\text {inc }}(\boldsymbol{x})=\mathrm{e}^{\mathrm{i} k_{0} \boldsymbol{x} \cdot \boldsymbol{s}}$ with direction $\boldsymbol{s} \in \mathbb{S}^{d-1}$ and wave number k_{0}
- Total field $u^{\text {tot }}(\boldsymbol{x})=u(\boldsymbol{x})+u^{\text {inc }}(\boldsymbol{x})$ solves the wave equation
- Rearranging yields

Born approximation

Assuming \mid.. $|\approx|$,inc| we obtain

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text {tot }}\left(\tilde{\boldsymbol{x}}, r_{\mathrm{M}}\right), \tilde{\boldsymbol{x}} \in \mathbb{R}^{d-1}$, at measurement plane $x_{d}=r_{\mathrm{M}}$
- We want: scattering potential f on \mathbb{R}^{d} with compact support
- Illumination by plane wave $u^{\text {inc }}(\boldsymbol{x})=\mathrm{e}^{\mathrm{i} k_{0} \boldsymbol{x} \cdot \boldsymbol{s}}$ with direction $\boldsymbol{s} \in \mathbb{S}^{d-1}$ and wave number k_{0}
- Total field $u^{\text {tot }}(\boldsymbol{x})=u(\boldsymbol{x})+u^{\text {inc }}(\boldsymbol{x})$ solves the wave equation

$$
-\left(\Delta+f(\boldsymbol{x})+k_{0}^{2}\right) u^{\text {tot }}(\boldsymbol{x})=0
$$

- Rearranging yields

Born approximation

Ascuming \mid,u $\mathbb{<} \mid$, inc| \mid we obtain

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text {tot }}\left(\tilde{\boldsymbol{x}}, r_{\mathrm{M}}\right), \tilde{\boldsymbol{x}} \in \mathbb{R}^{d-1}$, at measurement plane $x_{d}=r_{\mathrm{M}}$
- We want: scattering potential f on \mathbb{R}^{d} with compact support
- Illumination by plane wave $u^{\mathrm{inc}}(\boldsymbol{x})=\mathrm{e}^{\mathrm{i} k_{0} \boldsymbol{x} \cdot \boldsymbol{s}}$ with direction $\boldsymbol{s} \in \mathbb{S}^{d-1}$ and wave number k_{0}
- Total field $u^{\text {tot }}(\boldsymbol{x})=u(\boldsymbol{x})+u^{\text {inc }}(\boldsymbol{x})$ solves the wave equation

$$
-\left(\Delta+f(\boldsymbol{x})+k_{0}^{2}\right) u^{\text {tot }}(\boldsymbol{x})=0
$$

- Rearranging yields

$$
-\left(\Delta+k_{0}^{2}\right) u(\boldsymbol{x})-\underbrace{\left(\Delta+k_{0}^{2}\right) u^{\mathrm{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u(\boldsymbol{x})+u^{\mathrm{inc}}(\boldsymbol{x})\right)
$$

Born approximation

Assuming $|u| \ll\left|u^{\text {inc }}\right|$, we obtain

$$
\begin{equation*}
-\left(\Delta+k_{0}^{2}\right) u(\boldsymbol{x})=f(\boldsymbol{x}) u^{\mathrm{inc}}(\boldsymbol{x}) \tag{1}
\end{equation*}
$$

Lemma

For $g \in L^{1}\left(\mathbb{R}^{d}\right)$ with compact support,

$$
u=g * G \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right) \cap \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

is the unique outgoing solution of the Helmholtz equation (1), with fundamental solution

$$
G(\boldsymbol{x})=\frac{\mathrm{i}}{4}\left(\frac{k_{0}}{2 \pi|\boldsymbol{x}|}\right)^{\frac{d-2}{2}} H_{\frac{d-2}{2}}^{(1)}\left(k_{0}|\boldsymbol{x}|\right),
$$

where $H_{a}^{(1)}$ is the Hankel function of the first kind and order a.

Lemma

If $g_{n} \rightarrow 0$ in $L^{1}\left(\mathbb{R}^{d}\right)$ and $\bigcup_{n} \operatorname{supp} g_{n}$ is bounded, then $g_{n} * G \rightarrow 0$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

Fourier diffraction theorem

Let

- u be the outgoing solution of the Helmholtz equation (1),
- $f \in L^{1}\left(\mathbb{R}^{d}\right)$ have compact support,
- the incident field $u^{\text {inc }}(\boldsymbol{x})=\mathrm{e}^{\mathrm{i} \mathrm{k}_{0} \boldsymbol{x} \cdot \mathbf{s}}$, and
- the measurement plane $x_{d}=r_{M}$ not intersect $\operatorname{supp} f$.

Then

$$
\sqrt{\frac{2}{\pi}} \kappa \mathrm{ie}^{-\mathrm{i} \kappa \mathrm{M}_{\mathrm{M}}} \tilde{\mathcal{F}} \underbrace{u\left(\tilde{\boldsymbol{x}}, r_{\mathbb{M}}\right)}_{\text {measured }}=\mathcal{F} f\left(\boldsymbol{h}(\tilde{\boldsymbol{x}})-k_{0} \boldsymbol{s}\right), \quad \tilde{\boldsymbol{x}} \in \mathbb{R}^{d-1},
$$

where $\tilde{\mathcal{F}}$ is the Fourier transform in $d-1$ coordinates, $\boldsymbol{h}(\tilde{\boldsymbol{x}}):=\binom{\tilde{\boldsymbol{x}}}{\kappa}$ and $\kappa:=\sqrt{k_{0}^{2}-|\tilde{\boldsymbol{x}}|^{2}}$.
based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]
this L^{p} version from [Kirisits Q. Setterqvist 2024]

Semisphere $\boldsymbol{h}(\boldsymbol{k})$ of available data in Fourier space

Rigid Motion of the Object

- Scattering potential of the moved object: $f\left(R_{t}\left(\boldsymbol{x}-\boldsymbol{d}_{t}\right)\right)$
- Rotation $R_{t} \in \mathrm{SO}(d)$ (with $R_{0}:=\mathrm{id}$)
- Translation $\boldsymbol{d}_{t} \in \mathbb{R}^{d}$ (with $\boldsymbol{d}_{0}:=\mathbf{0}$)
- Incidence direction $\boldsymbol{s}_{t} \in \mathbb{S}^{d-1}$

Fourier diffraction theorem (with motion)

The quantity

$$
\mu_{t}(\boldsymbol{x}):=\sqrt{\frac{2}{\pi}} \kappa \mathrm{i}^{-\mathrm{i} \kappa \kappa_{M}} \tilde{\mathcal{F}} u\left(\boldsymbol{k}, r_{M}\right)=\mathcal{F} f(\underbrace{R_{t} \boldsymbol{h}(\boldsymbol{x})-k_{0} \boldsymbol{s}_{t}}_{\text {Fourier cover }}) \mathrm{e}^{-\mathrm{i}\left\langle\boldsymbol{d}_{t}, \boldsymbol{h}(\boldsymbol{x})\right\rangle}, \quad\|\boldsymbol{x}\|<k_{0},
$$

depends only on the measurements.

Fourier cover: Angle scan

Quarter turn $t \in[\pi / 4,3 \pi / 4]$

Half turn $t \in[0, \pi]$

Full turn $t \in[0,2 \pi]$

2D Fourier coverage for incidence direction $\boldsymbol{s}(t)=(\cos t, \sin t)$. Measurements are taken at $r_{2}=r_{M}$. The Fourier coverage (light red) is a union of infinitely many semicircles, whose centers lie on the dashed blue curve.

Fourier cover: Object rotation

(a) Quarter turn

(b) Half turn

(c) Three-quarter turn

(d) Full turn

Figure: 2D Fourier coverage for a rotating object, incidence direction $\boldsymbol{s}=(1,0)$ and measurements taken at $r_{2}=r_{M}$.

Figure: 3D Fourier coverage for a full rotation of the object about the r_{1}-axis with incidence direction $\boldsymbol{s}=(0,1,0)$.

[^0]Page 8

Fourier cover: Angle scan \& Rotation

2D Fourier cover (colors represent Banch indicatrix)

3D Fourier cover

- Incidence is rotated along a half circle
- and the experiment is repeated with the object rotated by 90°.

Outline

(1) Introduction
(2) Reconstruction of the object
(3) Reconstructing the motion

Filtered Backpropagation

Idea: Inverse Fourier transform of $\mathcal{F} f$ restricted to the set of available data \mathcal{Y},

$$
f_{\mathrm{bp}}(\boldsymbol{r}):=(2 \pi)^{-\frac{d}{2}} \int_{\mathcal{Y}} \mathcal{F} f(\boldsymbol{y}) \mathrm{e}^{\mathrm{i} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{y}
$$

with the transformation $T(\boldsymbol{x}, t):=R_{t} \boldsymbol{h}(\boldsymbol{x})$

\square
Theorem
Let the rotation $R_{t} \in S O(d)$, translation d_{t} and incidence $s_{t} \in \mathbb{S}^{d-1}$ be piecewice C^{1}. Then

where $\operatorname{det} \nabla T(\boldsymbol{x}, t)=k_{0}(t) k_{0}^{\prime}(t)-\boldsymbol{R}_{t} \boldsymbol{h}(\boldsymbol{x}, t)\left(k_{0}(t) R_{t} \boldsymbol{s}_{t}\right)$

```
Banach indicatrix Card( (T-1}(\boldsymbol{y}))\mathrm{ needs to be estimated (except for special cases)
Well-known for rotation around coordinate axis [Devaney 1982]
```


Filtered Backpropagation

Idea: Inverse Fourier transform of $\mathcal{F} f$ restricted to the set of available data \mathcal{Y},

$$
f_{\mathrm{bp}}(\boldsymbol{r}):=(2 \pi)^{-\frac{d}{2}} \int_{\mathcal{Y}} \mathcal{F} f(\boldsymbol{y}) \mathrm{e}^{\mathrm{i} \cdot \boldsymbol{r}} \mathrm{~d} \boldsymbol{y}
$$

with the transformation $T(\boldsymbol{x}, t):=R_{t} \boldsymbol{h}(\boldsymbol{x})$

Let the rotation $R_{t} \in S O(d)$, translation \boldsymbol{d}_{t} and incidence $\boldsymbol{s}_{t} \in \mathbb{S}^{d-1}$ be piecewice C^{1}. Then

$$
f_{\mathrm{bp}}(\boldsymbol{r})=(2 \pi)^{-\frac{d}{2}} \int_{0}^{T} \int_{\mathcal{B}_{k_{0}}} \mathcal{F} f(T(\boldsymbol{x}, t)) \mathrm{e}^{\mathrm{i} T(\boldsymbol{x}, t) \cdot\left(\boldsymbol{r}+\boldsymbol{d}_{t}\right)} \frac{|\operatorname{det} \nabla T(\boldsymbol{x}, t)|}{\operatorname{Card} T^{-1}(T(\boldsymbol{x}, t))} \mathrm{d} \boldsymbol{x} \mathrm{~d} t
$$

where $\operatorname{det} \nabla T(\boldsymbol{x}, t)=\frac{k_{0}(t) k_{0}^{\prime}(t)-R_{t} \boldsymbol{h}(\boldsymbol{x}, t)\left(k_{0}(t) R_{t} \boldsymbol{s}_{t}\right)^{\prime}}{\kappa}$.
Banach indicatrix $\operatorname{Card}\left(T^{-1}(\boldsymbol{y})\right)$ needs to be estimated (except for special cases).
Well-known for rotation around coordinate axis [Devaney 1982]

Discretization

- Object $f\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$ with $\boldsymbol{x}_{\boldsymbol{k}}=\boldsymbol{k} \frac{2 L_{\mathrm{s}}}{K}, \boldsymbol{k} \in \mathcal{I}_{K}^{3}:=\{-K / 2, \ldots, K / 2-1\}^{3}$
- Measurements $u_{t_{m}}^{\mathrm{tot}}\left(\boldsymbol{y}_{\boldsymbol{n}}, r_{\mathrm{M}}\right)$ with $\boldsymbol{y}_{\boldsymbol{n}}=\boldsymbol{n} \frac{2 L_{M}}{N}, \boldsymbol{n} \in \mathcal{I}_{N}^{2}$
- discrete Fourier transform (DFT)

$$
\left[\boldsymbol{F}_{\mathrm{DFT}} u_{t_{m}}\right]_{\ell}:=\sum_{n \in \mathcal{I}_{N}^{2}} u_{t_{m}}\left(\boldsymbol{y}_{n}, r_{\mathrm{M}}\right) \mathrm{e}^{-2 \pi \mathrm{in} \cdot \ell / N}, \quad \ell \in \mathcal{I}_{N}^{2},
$$

- Non-uniform discrete Fourier transform (NDFT)

$$
\left[\boldsymbol{F}_{\mathrm{NDFT}} \boldsymbol{f}\right]_{m, \ell}:=\sum_{\boldsymbol{k} \in \mathcal{I}_{k}^{3}} f_{k} \mathrm{e}^{-i \boldsymbol{x}_{k} \cdot\left(R_{t_{m}} \boldsymbol{h}\left(\boldsymbol{y}_{\ell}\right)\right)}, \quad m \in \mathcal{J}_{M}, \ell \in \mathcal{I}_{N}^{2}
$$

Discretized forward operator

$$
\boldsymbol{D}^{\mathrm{tot}} \boldsymbol{f}:=\boldsymbol{F}_{\mathrm{DFT}}^{-1}\left(\boldsymbol{c} \odot \boldsymbol{F}_{\mathrm{NDFT}} \boldsymbol{f}\right)+\mathrm{e}^{\mathrm{i} \mathrm{k}_{0} / \mathrm{M}}, \quad \boldsymbol{f} \in \mathbb{R}^{K^{d}},
$$

where $\boldsymbol{c}=\left[\frac{i}{\kappa\left(\boldsymbol{y}_{\ell}\right)} e^{\mathrm{i} \kappa\left(\boldsymbol{y}_{\ell}\right) r_{M}}\left(\frac{N}{L_{M}}\right)^{d-1}\left(\frac{L_{\mathrm{s}}}{K}\right)^{d}\right]_{\ell \in \mathcal{I}_{N}^{2}}$

Reconstruction of f

Inverse

$$
\boldsymbol{f} \approx \boldsymbol{F}_{\mathrm{NDFT}}^{-1}\left(\left(\boldsymbol{F}_{\mathrm{DFT}} \boldsymbol{u}^{\mathrm{tot}}-\mathrm{e}^{\mathrm{i} k_{0} M \mathrm{M}}\right) \oslash \boldsymbol{c}\right)
$$

Crucial part: inversion of NDFT $F_{\text {NDFT }}^{-1}$

Conjugate Gradient (CG) Method

- Conjugate Gradients (CG) on the normal equations

$$
\underset{\boldsymbol{f} \in \mathbb{R}^{\mathfrak{K}^{3}}}{\arg \min } \quad\left\|\boldsymbol{F}_{\mathrm{NDFT}}(\boldsymbol{f})-\boldsymbol{g}\right\|_{2}^{2}
$$

- NFFT (Non-uniform fast Fourier transform) for computing $\boldsymbol{F}_{\text {NDFT }}(\boldsymbol{f})$ in $\mathcal{O}\left(N^{3} \log N\right)$ steps
[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

TV (Total Variation) Regularization

- Regularized inverse
argmin
$\chi_{\mathbb{R}^{k^{3}}}(\boldsymbol{f})+\frac{1}{2}\left\|\boldsymbol{F}_{\mathrm{NDFT}}(\boldsymbol{f})-\boldsymbol{g}\right\|_{2}^{2}+\lambda \operatorname{TV}(\boldsymbol{f})$,
- Primal-dual (PD) iteration [Chambolle \& Pock 2010]
- Adaptive selection of step sizes [Vokota \& Hontani 2017]

Conjugate Gradient (CG) Method

- Conjugate Gradients (CG) on the normal equations

$$
\underset{\boldsymbol{f} \in \mathbb{R}^{3}}{\arg \min } \quad\left\|\boldsymbol{F}_{\mathrm{NDFT}}(\boldsymbol{f})-\boldsymbol{g}\right\|_{2}^{2}
$$

- NFFT (Non-uniform fast Fourier transform) for computing $\boldsymbol{F}_{\text {NDFT }}(\boldsymbol{f})$ in $\mathcal{O}\left(N^{3} \log N\right)$ steps
[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

TV (Total Variation) Regularization

- Regularized inverse

$$
\underset{\boldsymbol{f} \in \mathbb{R}^{\kappa^{3}}}{\arg \min } \quad \chi_{\mathbb{R}_{\geq 0}^{\kappa^{3}}}(\boldsymbol{f})+\frac{1}{2}\left\|\boldsymbol{F}_{\mathrm{NDFT}}(\boldsymbol{f})-\boldsymbol{g}\right\|_{2}^{2}+\lambda \operatorname{TV}(\boldsymbol{f}),
$$

- Primal-dual (PD) iteration [Chambolle \& Pock 2010]
- Adaptive selection of step sizes [Yokota \& Hontani 2017]

Reconstruction: Moving Rotation Axis

Ground truth \boldsymbol{f} $(240 \times 240 \times 240$ grid $)$

Backpropagation
PSNR 24.17 SSIM 0.171
5 s

Backpropagation
(with inticatrix estimation)
PSNR 31.84
SSIM 0.350
$5 s+22$ s precopmpute

CG Reconstruction PSNR 35.84
SSIM 0.962
82 s

TV $(\lambda=0.02)$
PSNR 40.95
SSIM 0.972
1395 s

Reconstruction: Moving Rotation Axis and 5 \% Gaussian Noise

Ground truth \boldsymbol{f}

Backpropagation PSNR 21.19
SSIM 0.075

Backpropagation
(with indicatrix estima-
tion)
PSNR 25.50
SSIM 0.157

CG Reconstruction PSNR 24.10
SSIM 0.193

TV $(\lambda=0.05)$
PSNR 38.01
SSIM 0.772

Outline

(1) Introduction
(2) Reconstruction of the object

(3) Reconstructing the motion

Formal Uniqueness Result

Theorem

Let

- the matrix of second-order moments of f have distinct, real eigenvalues,
- certain third-order moments do not vanish,
- the translation \boldsymbol{d}_{t} be restricted to a known plane,
- the rotations R_{t} cover $\mathrm{SO}(3)$.

Then f is uniquely determined given the diffraction images u_{t} for all (unknown) motions.

We find an algorithm to recover the rotations and translations

Detection of the Rotation in 3D

Goal: Estimate the rotation R_{t} from the transformed measurements $\nu_{t}(\boldsymbol{k})=\left|\mathcal{F} f\left(R_{t} \boldsymbol{h}(\boldsymbol{k})\right)\right|^{2}$ Common circle approach:

- For each t we have the Fourier data $\mathcal{F} f$ on one semisphere
- Two semispheres intersect in a circle (arc), where $\mathcal{F} f$ must agree
- Find the common circle of two semispheres

Dual Common Circles

- f real-valued (no absorption)
- Additional symmetry $\mathcal{F} f(\boldsymbol{y})=\overline{\mathcal{F} f(-\boldsymbol{y})}$
- Additional pair of "dual" common circles

For $\varphi \in[0,2 \pi), \theta \in[0, \pi]$, we can parameterize the common circles in the 2D data by

$$
\begin{aligned}
& \gamma^{\varphi, \theta}(\beta):=\frac{k_{0}}{2} \sin (\theta)(\cos (\beta)-1)\binom{\cos (\varphi)}{\sin (\varphi)}+k_{0} \cos \left(\frac{\theta}{2}\right) \sin (\beta)\binom{-\sin (\varphi)}{\cos (\varphi)}, \quad \beta \in \mathbb{R}, \\
& \check{\gamma}^{\varphi, \theta}(\beta):=-\frac{k_{0}}{2} \sin (\theta)(\cos (\beta)-1)\binom{\cos (\varphi)}{\sin (\varphi)}-k_{0} \sin \left(\frac{\theta}{2}\right) \sin (\beta)\binom{-\sin (\varphi)}{\cos (\varphi)}, \quad \beta \in \mathbb{R} .
\end{aligned}
$$

Theorem (unique reconstruction)
Let $s, t \in[0, T]$. Assume that there exist unique angles $\varphi, \psi \in \mathbb{R} /(2 \pi \mathbb{Z})$ and $\theta \in[0, \pi]$ such that

$$
\begin{array}{ll}
\nu_{s}\left(\gamma^{\varphi, \theta}(\beta)\right)=\nu_{t}\left(\gamma^{\pi-\psi, \theta}(-\beta)\right) & \forall \beta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \text { and } \\
\nu_{s}\left(\check{\gamma}^{\varphi, \theta}(\beta)\right)=\nu_{t}\left(\check{\gamma}^{\pi-\psi, \theta}(\beta)\right) & \forall \beta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
\end{array}
$$

Then the relative rotation $R_{s}^{\top} R_{t}$ is uniquely determined by the Euler angles

$$
R_{s}^{\top} R_{t}=Q^{(3)}(\varphi) Q^{(2)}(\theta) Q^{(3)}(\psi)
$$

where $Q^{(i)}(\alpha)$ denotes the rotation around the i-th coordinate with angle α.

Visualization of the Common Arcs

Here $\gamma_{s, t}:=\gamma^{\varphi, \theta}$ and $\gamma_{t, s}:=\gamma^{\pi-\psi, \theta}$ for $R_{s}^{\top} R_{t}=Q^{(3)}(\varphi) Q^{(2)}(\theta) Q^{(3)}(\psi)$

Infinitesimal Common Circles Method

Theorem

Let the rotation $R \in C^{1}([0, T] \rightarrow \mathrm{SO}(3))$ and $t \in(0, T)$.
We define the associated angular velocity as the vector $\boldsymbol{\omega}_{t} \in \mathbb{R}^{3}$ satisfying

$$
R_{t}^{\top} R_{t}^{\prime} \boldsymbol{y}=\omega_{t} \times \boldsymbol{y}, \quad \boldsymbol{y} \in \mathbb{R}^{3}
$$

and write it in cylindrical coordinates

$$
\boldsymbol{\omega}_{t}=\left(\begin{array}{c}
\rho \cos \varphi \\
\rho \sin \varphi \\
\zeta
\end{array}\right)
$$

Then

$$
-\partial_{t} \nu_{t}(r \varphi)=\left(\left(\sqrt{k_{0}^{2}-r^{2}}-k_{0}\right) \rho+r \zeta\right)\left\langle\nabla \nu_{t}(r \varphi),\binom{-\sin \varphi}{\cos \varphi}\right\rangle \quad \forall r \in\left(-k_{0}, k_{0}\right)
$$

Reconstructing the Translation

Recall: Data $\mu_{t}(\boldsymbol{x})=\mathcal{F} f\left(R_{t} \boldsymbol{h}(\boldsymbol{x})\right) \mathrm{e}^{-\mathrm{i}\left\langle d_{t}, \boldsymbol{h}(\boldsymbol{x})\right\rangle}$

Theorem

Let $s, t \in[0, T]$ be such that $R_{s} \boldsymbol{e}^{3} \neq \pm R_{t} \boldsymbol{e}^{3}$. Assume $f \geq 0, f \not \equiv 0$ and $\boldsymbol{d}_{0}=\mathbf{0}$.
Then \boldsymbol{d}_{t} can be uniquely reconstructed from the two equations:

$$
\begin{array}{ll}
\mathrm{e}^{i\left\langle R_{t} d_{t}-R_{s} d_{s}, R_{s} h\left(\gamma_{s, t}(\beta)\right)\right\rangle}=\frac{\mu_{s}\left(\gamma_{s, t}(\beta)\right)}{\mu_{t}\left(\gamma_{t, s}(-\beta)\right)}, & \beta \in[-\pi, \pi], \mu_{s}\left(\gamma_{s, t}(\beta)\right) \neq 0, \\
\left.\left.\mathrm{e}^{i\left\langle R_{t} d_{t}-R_{s} d_{s}, R_{s} h\right.} \boldsymbol{h} \check{(\check{s}}_{s, t}(\beta)\right)\right\rangle & =\frac{\mu_{s}\left(\check{\gamma}_{s, t}(\beta)\right)}{\overline{\mu_{t}\left(\check{\gamma}_{t, s}(\beta)\right)}}, \quad \beta \in[-\pi, \pi], \mu_{s}\left(\check{\gamma}_{s, t}(\beta)\right) \neq 0 .
\end{array}
$$

Similar reconstruction result for $R_{s} \boldsymbol{e}^{3}= \pm R_{t} \boldsymbol{e}^{3}$

Technische
Numerical Simulation: Test Functions (3D)

Cell phantom

Shepp-Logan phantom

Numerical Simulation: Results

The rotation is around the moving axis $\left(\sqrt{1-a^{2}} \cos (b \sin (t / 2)), \sqrt{1-a^{2}} \sin (b \sin (t / 2)), a\right) \in \mathbb{S}^{2}$ for $a=0.28$ and $b=0.5$. The translation is $\boldsymbol{d}_{t}=2(\sin t, \sin t, \sin t)$.
Left: cell phantom. Right: Shepp-Logan phantom.

Reconstructed Scattering Potential f

Cell phantom (PSNR 32.21, SSIM 0.754)

Shepp-Logan (PSNR 30.85, SSIM 0.772)

Conclusions

- Fourier diffraction theorem on $L^{1}\left(\mathbb{R}^{d}\right)$
- Filtered backpropagation formula for a wide range of experimental setups
- Detection of rotation is mostly possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Conclusions

- Fourier diffraction theorem on $L^{1}\left(\mathbb{R}^{d}\right)$
- Filtered backpropagation formula for a wide range of experimental setups
- Detection of rotation is mostly possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

References

R. Beinert and M. Quellmalz.

Total variation-based reconstruction and phase retrieval for diffraction tomography.
SIAM Journal on Imaging Sciences, 2022.

R Beinert, M Quellmalz.
Total Variation-Based Reconstruction and Phase Retrieval for Diffraction Tomography with an Arbitrarily Moving Object. Proceedings in Applied Mathematics \& Mechanics 22, 2023. doi:10.1002/pamm. 202200135
F. Faucher, C. Kirisits, M. Quellmalz, O. Scherzer, and E. Setterqvist.

Diffraction tomography, Fourier reconstruction, and full waveform inversion.
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, pages 273-312. Springer, 2023.
C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl.
Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations.
Inverse Problems 37, 2021.
P Elbau, M Quellmalz, O Scherzer, G Steidl.
Motion detection in diffraction tomography with common circle methods.
Math Comp., 2024. doi:10.1090/mcom/3869

[^0]: Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 May 2024

