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Optical Diffraction Tomography (ODT)

f = 0

object (f ̸= 0)

x3

x1

x2

Measurement plane
x3 = rM

Incident field: Plane wave with normal x3

u inc
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Optical Diffraction

Optical diffraction occurs when the wavelength of the incident wave is large
≈ the size of the object (µm scale)

Simulation of the scattered field from
spherical particles (size ≈ wavelength)

Image with diffraction
© Medizinische Universität Innsbruck
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Model of Optical Diffraction Tomography (for one direction)

• We have: field utot(x̃ , rM), x̃ ∈ Rd−1, at measurement plane xd = rM

• We want: scattering potential f on Rd with compact support

• Illumination by plane wave u inc(x) = eik0x·s with direction s ∈ Sd−1 and wave number k0

• Total field utot(x) = u(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0

• Rearranging yields
− (∆ + k2

0 ) u(x) − (∆ + k2
0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

u(x) + u inc(x)
)

Born approximation

Assuming |u| ≪ |u inc|, we obtain
−

(
∆ + k2

0
)

u(x) = f(x)u inc(x) (1)
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Fourier diffraction theorem
Let

• u be the outgoing solution of the Helmholtz equation (1),
• f ∈ L1(Rd ) have compact support,
• the incident field u inc(x) = eik0x·s, and
• the measurement plane xd = rM not intersect supp f .

Then √
2
π
κie−iκrM F̃ u(x̃ , rM)︸ ︷︷ ︸

measured

= F f(h(x̃) − k0s), x̃ ∈ Rd−1,

where F̃ is the Fourier transform in d − 1 coordinates, h(x̃) :=
(

x̃
κ

)
and

κ :=
√

k2
0 − |x̃|2.

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]
this L1 version from [Kirisits Q. Setterqvist 2024]

x1

x2

x3

−k0

Semisphere h(k) of available
data in Fourier space
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Rigid Motion of the Object

• Scattering potential of the moved object: f(Rt(x − d t))
• Rotation Rt ∈ SO(d) (with R0 := id)

• Translation d t ∈ Rd (with d0 := 0)

• Incidence direction st ∈ Sd−1

Fourier diffraction theorem (with motion)

The quantity

µt(x) :=
√

2
π
κie−iκrM F̃u(k , rM) = F f(Rt h(x) − k0st︸ ︷︷ ︸

Fourier cover

) e−i⟨d t ,h(x)⟩, ∥x∥ < k0,

depends only on the measurements of u.
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Fourier cover: Angle scan
y2

y1

k0−k0

Quarter turn t ∈ [π/4, 3π/4]

y2

y1

k0−k0

Half turn t ∈ [0,π]

y2

y1

k0−k0

2k0

Full turn t ∈ [0, 2π]

2D Fourier coverage for incidence direction s(t) = (cos t , sin t). Measurements are taken at r2 = rM . The
Fourier coverage (light red) is a union of infinitely many semicircles, whose centers lie on the dashed blue
curve.
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Fourier cover: Object rotation

y1

y2

k0 2k0

k0

(a) Quarter turn

y1

y2

k0 2k0

k0

(b) Half turn

y1

y2

k0 2k0

k0

(c) Three-quarter turn

y1

y2

k0 2k0

k0

(d) Full turn
Figure: 2D Fourier coverage for a rotating object, incidence direction s = (1, 0) and measurements taken at r2 = rM .

y1

y2

k0−k0

Figure: 3D Fourier coverage for a full rotation of the object about the r1-axis with incidence direction s = (0, 1, 0).
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Apprach 1: Filtered Backpropagation

Idea: Inverse Fourier transform of F f restricted to the set of available data Y,

fbp(r) := (2π)− d
2

∫
Y

F f(y) eiy·r dy

with the transformation T(x , t) := Rt h(x)

Theorem [Kirisits, Q, Setterqvist 2024]

Let the rotation Rt ∈ SO(d), translation d t and incidence st ∈ Sd−1 be piecewice C1. Then

fbp(r) = (2π)− d
2

∫ T

0

∫
Bk0

F f(T(x , t)) ei T(x ,t)·(r+d t ) |det ∇T(x , t)|
Card T −1(T(x , t)) dx dt ,

where det ∇T(x , t) = k0(t)k ′
0(t) − Rt h(x , t) (k0(t)Rt st)′

κ
.

Banach indicatrix Card(T −1(y)) needs to be estimated (except for special cases).
Well-known for rotation around coordinate axis [Devaney 1982]
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Discretization
• Object f(xk ) with xk = k 2Ls

K , k ∈ Id
K := {−K/2, ... , K/2 − 1}d

• Measurements utot
tm (yn, rM) with yn = n 2LM

N , n ∈ Id−1
N

• discrete Fourier transform (DFT)

[F DFT utm ]ℓ :=
∑

n∈Id−1
N

utm (yn, rM) e−2πin·ℓ/N , ℓ ∈ Id−1
N ,

• Non-uniform discrete Fourier transform (NDFT)

[F NDFTf ]m,ℓ :=
∑
k∈Id

K

fk e−ixk ·(Rtm h(yℓ)), m ∈ JM , ℓ ∈ Id−1
N

Discretized forward operator

Dtotf := F −1
DFT(c ⊙ F NDFTf) + eik0rM , f ∈ RK d

,

where c =
[

i
κ(yℓ) eiκ(yℓ) rM

(
N
LM

)d−1 (
Ls
K

)d
]

ℓ∈Id−1
N
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Reconstruction of f

Inverse
f ≈ F −1

NDFT

(
(F DFTutot − eik0rM

)
⊘ c)

Crucial part: inversion of NDFT F −1
NDFT

x1

t

x2

ut1

ut2

F DFT

⊘ c g1

g2

Rt h

F f

inverse
NDFT

f
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Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

arg min
f∈RK3

∥F NDFT(f) − g∥2
2

• NFFT (Non-uniform fast Fourier transform) for computing F NDFT(f) in O
(

N3 log N
)

steps
[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization
• Regularized inverse

arg min
f∈RK3

χRK3
≥0

(f) + 1
2 ∥F NDFT(f) − g∥2

2 + λTV(f),

• Primal-dual (PD) iteration [Chambolle & Pock 2010]
• Adaptive selection of step sizes [Yokota & Hontani 2017]
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3D Reconstruction: Moving Rotation Axis

Ground truth f
(240 × 240 × 240 grid)

Backpropagation
PSNR 24.17
SSIM 0.171
5 s

Backpropagation
(with inticatrix estima-
tion)
PSNR 31.84
SSIM 0.350
5 s +22 s precopmpute

CG Reconstruction
PSNR 35.84
SSIM 0.962
82 s

0

1

TV (λ = 0.02)
PSNR 40.95
SSIM 0.972
1395 s
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3D Reconstruction: Moving Rotation Axis and 5 % Gaussian Noise

Ground truth f Backpropagation
PSNR 21.19
SSIM 0.075

Backpropagation
(with indicatrix estima-
tion)
PSNR 25.50
SSIM 0.157

CG Reconstruction
PSNR 24.10
SSIM 0.193

0

1

TV (λ = 0.05)
PSNR 38.01
SSIM 0.772
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Formal Uniqueness Result

Theorem [Kurlberg Zickert 2021]

Let
• the matrix of second-order moments of f have distinct, real eigenvalues,
• certain third-order moments do not vanish,
• the translation d t be restricted to a known plane,
• the rotations Rt cover SO(3).

Then f is uniquely determined given the diffraction images ut for all (unknown) motions.

We find an algorithm to recover the rotations and translations
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Detection of the Rotation in 3D
Goal: Estimate the rotation Rt from the transformed measurements νt(k) = |F f(Rt h(k))|2

Common circle approach:
• For each t we have the Fourier data F f on one hemisphere
• Two hemispheres intersect in a circle (arc), where F f must agree
• Find the common circle of two hemispheres
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Dual Common Circles

• f real-valued (no absorption)
• Additional symmetry F f(y) = F f(−y)
• Additional pair of “dual” common circles
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For φ ∈ [0, 2π), θ ∈ [0,π], we can parameterize the common circles in the 2D data by

γφ,θ(β) := k0

2 sin(θ)(cos(β) − 1)
(

cos(φ)
sin(φ)

)
+ k0 cos( θ2 ) sin(β)

(
− sin(φ)
cos(φ)

)
, β ∈ R,

γ̌φ,θ(β) := − k0

2 sin(θ)(cos(β) − 1)
(

cos(φ)
sin(φ)

)
− k0 sin( θ2 ) sin(β)

(
− sin(φ)
cos(φ)

)
, β ∈ R.

Theorem (unique reconstruction) [Q. Elbau Scherzer Steidl 2024]

Let s, t ∈ [0, T ]. Assume that there exist unique angles φ,ψ ∈ R/(2πZ) and θ ∈ [0,π] such that

νs(γφ,θ(β)) = νt(γπ−ψ,θ(−β)) ∀β ∈ [−π
2 , π2 ] and

νs(γ̌φ,θ(β)) = νt(γ̌π−ψ,θ(β)) ∀β ∈ [−π
2 , π2 ].

Then the relative rotation R⊤
s Rt is uniquely determined by the Euler angles

R⊤
s Rt = Q(3)(φ) Q(2)(θ) Q(3)(ψ),

where Q(i)(α) denotes the rotation around the i-th coordinate with angle α.
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Visualization of the Common Arcs

γs,t

γ̌s,t
0

νs

γ−
t,s

γ̌t,s

0

νt

0

1

−π π−βs,t βs,t

νs ◦ γs,t νt ◦ γ−
t,s

0

1

−π π

νs ◦ γ̌s,t νt ◦ γ̌t,s

Here γs,t := γφ,θ and γ t ,s := γπ−ψ,θ for R⊤
s Rt = Q(3)(φ) Q(2)(θ) Q(3)(ψ)
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Infinitesimal Common Circles Method

Theorem [Q. Elbau Scherzer Steidl 2024]

Let the rotation R ∈ C1([0, T ] → SO(3)) and t ∈ (0, T).
We define the associated angular velocity as the vector ωt ∈ R3 satisfying

R⊤
t R′

t y = ωt × y , y ∈ R3,

and write it in cylindrical coordinates

ωt =

ρ cosφ
ρ sinφ
ζ

 .

Then
− r ∂tνt(rφ) =

((√
k2

0 − r2 − k0

)
ρ+ rζ

)
∂φ∇νt

(
r cosφ
r sinφ

)
∀r ∈ (−k0, k0).
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Reconstructing the Translation

Recall: Data µt(x) = F f(Rt h(x)) e−i⟨d t ,h(x)⟩

Theorem [Q. Elbau Scherzer Steidl 2024]

Let s, t ∈ [0, T ] be such that Rse3 ̸= ±Rt e3. Assume f ≥ 0, f ̸≡ 0 and d0 = 0.
Then d t can be uniquely reconstructed from the two equations:

ei⟨Rt d t −Rsds ,Rsh(γs,t (β))⟩ =
µs(γs,t(β))
µt(γ t ,s(−β)) , β ∈ [−π,π], µs(γs,t(β)) ̸= 0,

ei⟨Rt d t −Rsds ,Rsh(γ̌s,t (β))⟩ =
µs(γ̌s,t(β))
µt(γ̌ t ,s(β))

, β ∈ [−π,π], µs(γ̌s,t(β)) ̸= 0.

Similar reconstruction result for Rse3 = ±Rt e3

Motion Detection in Diffraction Tomography | Michael Quellmalz | 16 September 2024
Page 21



Numerical Simulation: Test Functions (3D)

Cell phantom

−20 −10 0 10 20

−20

0

20

0

0.5

1

Shepp-Logan phantom

−20 −10 0 10 20

−20

0

20

0

0.5

1

2D slices of test functions f
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Numerical Simulation: Results

0 2 4 6
10−5

10−3

10−1

t Rel. error of rotation Rt (infinitesimal method)
Rel. error of rotation Rt (Minimization approach for common circles)
Error of translation d t

0 2 4 6
10−5

10−3

10−1

t

The rotation is around the moving axis (
√

1 − a2 cos(b sin(t/2)),
√

1 − a2 sin(b sin(t/2)), a) ∈ S2 for a = 0.28
and b = 0.5. The translation is d t = 2(sin t , sin t , sin t).
Left: cell phantom. Right: Shepp–Logan phantom.
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Reconstructed Scattering Potential f
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Cell phantom (PSNR 32.21, SSIM 0.754)
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Shepp–Logan (PSNR 30.85, SSIM 0.772)
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Conclusions

• Fourier diffraction theorem on L1(Rd )
• Filtered backpropagation formula for a wide range of experimental setups

• Detection of rotation is mostly possible
• Detection of translation is possible

Future research
• Application to real-world data
• Combining motion detection with phase retrieval

Thank you for your attention!
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