Sliced Optimal Transport on the Sphere

Michael Quellmalz | TU Berlin | CSIP 2023
Chemnitz Symposium on Inverse Problems, Würzburg, 8 November 2023
Joint work with Robert Beinert and Gabriele Steidl

Content

(1) Introduction to Optimal Transport

(2) Sliced and 1-dimensional Optimal Transport
(3) Sliced Optimal Transport on the Sphere
(4) Numerics

Introductory Example: Water Your Plants Optimal Transport Style

Introductory Example: Water Your Plants Optimal Transport Style

Images Courtesy of Florian Beier (TU Berlin)

Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023
Page 3

Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023
Page 3

Kantorovich Problem

- positions water: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{2}$
- positions plants: $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n} \in \mathbb{R}^{2}$
- cost between \boldsymbol{x}_{i} and $\boldsymbol{y}_{j}: c\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right) \in[0, \infty)$
- amount of water at $\boldsymbol{x}_{i}: \mu\left(\left\{\boldsymbol{x}_{i}\right\}\right) \in[0,1]$
- demand of plant $\boldsymbol{y}_{j}: \nu\left(\left\{y_{j}\right\}\right) \in[0,1]$
- water moved from \boldsymbol{x}_{i} to \boldsymbol{y}_{j} : transport plan $\pi_{i, j}$

Kantorovich Problem

- positions water: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{2}$
- positions plants: $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n} \in \mathbb{R}^{2}$
- cost between \boldsymbol{x}_{i} and $\boldsymbol{y}_{j}: c\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right) \in[0, \infty)$
- amount of water at $\boldsymbol{x}_{i}: \mu\left(\left\{\boldsymbol{x}_{i}\right\}\right) \in[0,1]$
- demand of plant $\boldsymbol{y}_{j}: \nu\left(\left\{y_{j}\right\}\right) \in[0,1]$
- water moved from \boldsymbol{x}_{i} to \boldsymbol{y}_{j} : transport plan $\pi_{i, j}$
- Kantorovich Optimal Transport (OT) problem (1942):

$$
\min _{\pi \in \mathbb{R}_{\geq 0}^{n \times m}}\{\sum_{i=1}^{n} \sum_{j=1}^{m} \underbrace{c\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right) \pi_{i, j}}_{\begin{array}{c}
\text { weighted transport- } \\
\text { costs between } \boldsymbol{x}_{i} \text { and } \boldsymbol{y}_{i}
\end{array}}: \sum_{j=1}^{m} \pi_{i, j}=\mu_{i}, \sum_{i=1}^{n} \pi_{i, j}=\nu_{j}\}
$$

where $\mu_{i}=\mu\left(\left\{\boldsymbol{x}_{i}\right\}\right), \nu_{j}=\nu\left(\left\{\boldsymbol{y}_{j}\right\}\right)$.

Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023
Page 4

Kantorovich Problem (Formulation with Measures)

- $\mathcal{P}(\mathbb{X})$ probability measures on compact metric space \mathbb{X}
- $P_{1}(x, y):=x$ projection to the first component
- Pushforward of $f: \mathbb{X} \rightarrow \mathbb{Y}$ and $\mu \in \mathcal{P}(\mathbb{X})$ is

$$
f_{\#} \mu:=\mu \circ f^{-1} \in \mathcal{P}(\mathbb{Y})
$$

- $\mu \in \mathcal{P}(\mathbb{X}), \nu \in \mathcal{P}(\mathbb{Y})$

$$
\min _{\pi \in \mathcal{P}(\mathbb{X} \times \mathbb{Y})}\left\{\int_{\mathbb{X} \times \mathbb{Y}} c(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d} \pi(\boldsymbol{x}, \boldsymbol{y}): P_{1 \#} \pi=\mu, P_{2 \#} \pi=\nu\right\}
$$

- If $\mathbb{X}, \mathbb{Y} \subset \mathbb{R}^{d}$ and $c(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{p}$, the minimum is the Wasserstein- p distance

$$
W_{p}^{p}(\mu, \nu):=\min _{\pi \in \mathcal{P}(\mathbb{X} \times \mathbb{Y})}\left\{\int_{\mathbb{X} \times \mathbb{Y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{p} \mathrm{~d} \pi(\boldsymbol{x}, \boldsymbol{y}): P_{1 \#} \pi=\mu, P_{2 \#} \pi=\nu\right\}
$$

Wasserstein Barycenters

- $\mu_{i} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ and $t_{i} \in[0,1], i=1, \ldots, N$ with $\sum_{i=1}^{N} t_{i}=1$
- Wasserstein Barycenter

$$
\underset{\nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)}{\operatorname{argmin}} \sum_{i=1}^{N} t_{i} \mathrm{~W}_{2}^{2}\left(\mu_{i}, \nu\right)
$$

- For $N=2$ inputs, a barycenter $\hat{\nu}$ can be computed by

$$
\hat{\nu}=\sum_{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \in \operatorname{supp}(\hat{\pi})} \hat{\pi}\left(\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right\}\right) \delta_{\left\{t_{1} \boldsymbol{x}_{1}+t_{2} \boldsymbol{x}_{2}\right\}}
$$

where $\hat{\pi}$ solves $W_{2}\left(\mu_{1}, \mu_{2}\right)$

- Wasserstein distances and barycenters on \mathbb{R}^{d} are computationally expensive

Content

(1) Introduction to Optimal Transport

(2) Sliced and 1-dimensional Optimal Transport

(3) Sliced Optimal Transport on the Sphere
(4) Numerics

Sliced Optimal Transport on \mathbb{R}^{d}
[Rabin Peyré Delon Bernot 2012] [Kolouri Park Rohde 2016]

- Absolutely continuous measure $\mu \in \mathcal{P}_{\mathrm{ac}}\left(\mathbb{R}^{d}\right)$ with density f_{μ}, i.e.

$$
\mu(A)=\int_{A} f_{\mu}(x) \mathrm{d} x \quad \forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right)
$$

- Radon transform

$$
\mathcal{R}_{\boldsymbol{\theta}} f(t):=\int_{\boldsymbol{\theta}^{\top} \boldsymbol{x}=t} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{\theta} \in \mathbb{S}^{d-1}, t \in \mathbb{R}
$$

- Sliced Wasserstein distance

$$
\mathrm{SW}_{p}^{p}(\mu, \nu):=\int_{\mathbb{S}^{d-1}} \mathrm{~W}_{p}^{p}\left(\mathcal{R}_{\boldsymbol{\theta}} f_{\mu}, \mathcal{R}_{\boldsymbol{\theta}} f_{\nu}\right) \mathrm{d} \boldsymbol{\xi}
$$

- Integral over Wasserstein distances of one-dimensional measures (density functions)
- Absolutely continuous measure $\mu \in \mathcal{P}_{\mathrm{ac}}(\mathbb{R})$
- Cumulative distribution function $F_{\mu}(x):=\mu((-\infty, x])$
- Quantile function $F_{\mu}^{-1}(r):=\min \left\{x \in \mathbb{R}: F_{\mu}(x) \geq r\right\}, r \in[0,1]$
- Wasserstein distance

$$
W_{p}^{p}(\mu, \nu)=\int_{0}^{1}\left|\tilde{F}_{\mu}^{-1}(r)-\tilde{F}_{\nu}^{-1}(r)\right|^{p} \mathrm{~d} r
$$

- Unique OT plan

$$
\pi=\left(\operatorname{Id}, T^{\mu, \nu}\right)_{\# \mu} \quad \text { with } \quad T^{\mu, \nu}(x):=F_{\nu}^{-1}\left(F_{\mu}(x)\right), \quad x \in \mathbb{R}
$$

- Circle $\mathbb{T}:=\mathbb{R} /(2 \pi \mathbb{Z})$
- Idea: Cut \mathbb{T} at the right position to get an OT problem on the interval
- Wasserstein distance

$$
W_{p}^{p}(\mu, \nu)=\min _{\theta \in \mathbb{R}} \int_{0}^{1}\left|\tilde{F}_{\mu}^{-1}(r)-\left(\tilde{F}_{\nu}-\theta\right)^{-1}(r)\right|^{p} \mathrm{~d} r
$$

- Compute optimal θ via bisection

Barycenters of measures μ, ν on \mathbb{T}, see [Hundrieser Klatt Munk 2022]

Content

(1) Introduction to Optimal Transport
(2) Sliced and 1-dimensional Optimal Transport

(3) Sliced Optimal Transport on the Sphere

Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023
Page 9

Sliced OT on the Sphere $\mathbb{S}^{2}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$

Vertical Slices ("egg cutter")

Semicircles ("orange segments")

Vertical Slices

- Slicing operator for fixed $\psi \in \mathbb{T} \sim[0,2 \pi)$

$$
\mathcal{S}_{\psi}: \mathbb{S}^{2} \rightarrow[-1,1], \quad \mathcal{S}_{\psi}(\boldsymbol{\xi}):=\boldsymbol{\xi}^{\top}(\cos \psi, \sin \psi, 0)
$$

- Circle

$$
\mathcal{S}_{\psi}^{-1}(t)=\left\{\boldsymbol{\xi} \in \mathbb{S}^{2}: \mathcal{S}_{\psi}(\boldsymbol{\xi})=t\right\}, \quad t \in[-1,1]
$$

is the intersection of \mathbb{S}^{2} and the plane with normal ψ and distance t from the origin.

- Vertical slice transform
[Gindikin Reeds Shepp 1994] [Zangerl Scherzer 2010]

$$
\mathcal{V} f(\psi, t):=\frac{1}{\left|\mathbb{S}^{2}\right| \sqrt{1-t^{2}}} \int_{\mathcal{S}_{\psi}^{-1}(t)} f(\boldsymbol{\xi}) \mathrm{d} s(\boldsymbol{\xi}), \quad \psi \in \mathbb{T}, t \in(-1,1)
$$

- Restriction $\mathcal{V}_{\psi}:=2 \pi \mathcal{V}(\psi, \cdot)$ transforms a function on \mathbb{S}^{2} to many functions on $[-1,1]$
- Singular value decomposition of \mathcal{V} is known

Vertical Slices (Definition for Measures)
We generalize the vertical slice transform \mathcal{V}_{ψ} for measures by

$$
\begin{aligned}
\mathcal{V}: \mathcal{M}\left(\mathbb{S}^{2}\right) & \rightarrow \mathcal{M}(\mathbb{T} \times[-1,1]), & & \mu \mapsto T_{\#}\left(u_{\mathbb{T}} \times \mu\right) \quad \text { with } \quad T(\psi, \boldsymbol{\xi}):=\left(\psi, \mathcal{S}_{\psi}(\boldsymbol{\xi})\right), \\
\mathcal{V}_{\psi}: \mathcal{M}\left(\mathbb{S}^{2}\right) & \rightarrow \mathcal{M}([-1,1]), & & \mu \mapsto\left(\mathcal{S}_{\psi}\right)_{\#} \mu=\mu \circ \mathcal{S}_{\psi}^{-1}
\end{aligned}
$$

where $u_{\mathbb{T}}$ is the normalized Lebesgue measure on \mathbb{T}.
Theorem (absolutely continuous measures)
For $f \in L^{1}\left(\mathbb{S}^{2}\right)$,

$$
\mathcal{V}\left[f \sigma_{\mathbb{S}^{2}}\right]=(\mathcal{V} f) \sigma_{\mathbb{T} \times[-1,1]},
$$

where σ is the Lebesgue measure.

Theorem

The vertical slice transform $\mathcal{V}: \mathcal{M}_{\text {sym }}\left(\mathbb{S}^{2}\right) \rightarrow \mathcal{M}(\mathbb{T} \times[-1,1])$ is injective, where

$$
\mathcal{M}_{\mathrm{sym}}\left(\mathbb{S}^{2}\right):=\left\{\mu \in \mathcal{M}\left(\mathbb{S}^{2}\right):\langle\mu, f\rangle=\langle\mu, \check{f}\rangle \forall f \in C\left(\mathbb{S}^{2}\right)\right\}, \quad \check{f}(\boldsymbol{x})=f\left(x_{1}, x_{2},-x_{3}\right),
$$

[^0]Page 12

Semicircle transform

- Spherical coordinates $\Phi: \mathbb{T} \times[0, \pi] \rightarrow \mathbb{S}^{2}$,

$$
\Phi(\varphi, \vartheta):=(\cos \varphi \sin \vartheta, \sin \varphi \sin \vartheta, \cos \vartheta) \in \mathbb{S}^{2}
$$

- Rotation group
$\mathrm{SO}(3):=\left\{\boldsymbol{Q} \in \mathbb{R}^{3 \times 3}: \boldsymbol{Q}^{\top} \boldsymbol{Q}=I, \operatorname{det} \boldsymbol{Q}=1\right\}$
- Euler angles

$$
\Psi(\alpha, \beta, \gamma):=R_{3}(\alpha) R_{2}(\beta) R_{3}(\gamma) \in \mathrm{SO}(3)
$$

where $R_{i}(\alpha)$ is the rotation around the i-th axis with angle α

- Normalized semicircle transform \mathcal{W} of $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$

$$
\mathcal{W} f(\alpha, \beta, \gamma):=\frac{1}{4 \pi} \int_{0}^{\pi} f(\Psi(\alpha, \beta, 0) \Phi(\gamma, \vartheta)) \sin \vartheta \mathrm{d} \vartheta
$$

- Restriction $\mathcal{W}_{\alpha, \beta} f:=4 \pi \mathcal{W} f(\alpha, \beta, \cdot)$
- Unnormalized semicircle transform (without $\sin \vartheta$) due to [Groemer 1998]

The normalized semicircle transform fulfills

$$
\mathcal{W} Y_{n}^{k}=\mathrm{w}_{n} Z_{n}^{k}, \quad n \in \mathbb{N}_{0}, k \in\{-n, \ldots, n\}
$$

with the singular values $\mathrm{w}_{n}:=\left\|\mathcal{W} Y_{n}^{k}\right\|_{L^{2}\left(\mathbb{S}^{2}\right)} \in \mathcal{O}\left(n^{-1 / 2}\right)$ and the orthonormal functions

$$
Z_{n}^{k}:=\mathrm{w}_{n}^{-1} \sum_{j=-n}^{n} \lambda_{n}^{j} \overline{D_{n}^{k, j}} \in L^{2}(\mathrm{SO}(3))
$$

where $\lambda_{0}^{0}:=2(4 \pi)^{-3 / 2}$ and, for $n \in \mathbb{N}$ and $j \in\{1, \ldots, n\}$ with $n+j$ even,

$$
\lambda_{n}^{j}:=\frac{(-1)^{j}}{4 \pi} \sqrt{\frac{2 n+1}{4 \pi} \frac{(n-j)!}{(n+j)!}} \frac{j(n-2)!!(n+j-1)!!}{(n-j)!!(n+1)!!} \begin{cases}2: & n \text { even }, \\ \pi: & n \text { odd }\end{cases}
$$

$\lambda_{n}^{-j}:=(-1)^{j} \lambda_{n}^{j}$, and $\lambda_{n}^{j}=0$ otherwise. Here Y_{n}^{k} denote the spherical harmonics and $D_{n}^{k, j}$ the rotational harmonics (Wigner D-functions). Moreover, there are constants $C_{1}, C_{2}>0$ such that $C_{1}(n+1)^{-1 / 2} \leq \mathrm{w}_{n} \leq C_{2}(n+1)^{-1 / 2} \quad \forall n \in \mathbb{N}_{0}$.

Semicircle Transform of Measures

For $\Phi(\alpha, \beta) \in \mathbb{S}^{2}$, we define the azimuth operator

$$
\mathcal{A}_{\alpha, \beta}: \mathbb{S}^{2} \rightarrow \mathbb{T}, \quad \mathcal{A}_{\alpha, \beta}(\boldsymbol{\xi}):=\operatorname{azi}\left(\Psi(\alpha, \beta, 0)^{\mathrm{T}} \boldsymbol{\xi}\right)
$$

where azi denotes the first component of the inverse of the spherical coordinate transform Φ, i.e.

$$
\operatorname{azi}(\Phi(\varphi, \theta))=\varphi \quad \forall \varphi, \theta
$$

We generalize the (restricted) semicircle transform $\mathcal{W}_{\alpha, \beta}$ by

$$
\begin{aligned}
\mathcal{W}_{\alpha, \beta}: \mathcal{M}\left(\mathbb{S}^{2}\right) \rightarrow \mathcal{M}(\mathbb{T}), & & \mu \mapsto\left(\mathcal{A}_{\alpha, \beta}\right)_{\#} \mu=\mu \circ \mathcal{A}_{\alpha, \beta}^{-1} \\
\mathcal{W}: \mathcal{M}\left(\mathbb{S}^{2}\right) \rightarrow \mathcal{M}(\operatorname{SO}(3)), & & \mu \mapsto\left(T_{\mathcal{W}}\right)_{\#}\left(u_{\mathbb{S}^{2}} \times \mu\right) \quad \text { with } \quad T_{\mathcal{W}}(\Phi(\alpha, \beta), \boldsymbol{\xi}):=\Psi\left(\alpha, \beta, \mathcal{A}_{\alpha, \beta}(\boldsymbol{\xi})\right)
\end{aligned}
$$

Theorem (injectivity)
The normalized semicircle transform is injective $\mathcal{M}\left(\mathbb{S}^{2}\right) \rightarrow \mathcal{M}(\mathrm{SO}(3))$.

Sliced Spherical Wasserstein Distances

Definition

Let $p \in[1, \infty)$ and $\mu, \nu \in \mathcal{M}\left(\mathbb{S}^{2}\right)$. We define the vertical sliced Wasserstein distance

$$
\operatorname{VSW}_{p}^{p}(\mu, \nu):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~W}_{p}^{p}\left(\mathcal{V}_{\psi} \mu, \mathcal{V}_{\psi} \nu\right) \mathrm{d} \psi
$$

and the semicircular sliced Wasserstein distance

$$
\operatorname{SSW}_{p}^{p}(\mu, \nu):=\int_{\mathbb{S}^{2}} W_{p}^{p}\left(\mathcal{W}_{\alpha, \beta} \mu, \mathcal{W}_{\alpha, \beta} \nu\right) \mathrm{d} u_{\mathbb{S}^{2}}(\Phi(\alpha, \beta))
$$

which are integrals over Wasserstein distances on $[-1,1]$ and \mathbb{T}, respectively.
SSW was defined in [Bonet Berg Courty Septier Drumetz Pham 2023]
Theorem (metric properties)
[Q. Beinert Steidl 2023]
Let $p \in[1, \infty)$. The vertical sliced Wasserstein distance VSW_{p} is a metric on $\mathcal{M}_{\mathrm{sym}}\left(\mathbb{S}^{2}\right)$, and the semicircular Wasserstein distance SSW_{p} is a metric on $\mathcal{M}\left(\mathbb{S}^{2}\right)$.

[^1]Page 16

Invariance to Rotations

Theorem

Let $p \in[1, \infty)$. The vertical sliced Wasserstein distance VSW_{p} is invariant to rotations \boldsymbol{R}_{3} around the vertical axis, i.e., for all $\mu, \nu \in \mathcal{M}\left(\mathbb{S}^{2}\right)$ and $\alpha \in \mathbb{T}$,

$$
\operatorname{VSW}_{p}(\mu, \nu)=\operatorname{VSW}_{p}\left(\mu \circ \boldsymbol{R}_{3}(\alpha), \nu \circ \boldsymbol{R}_{3}(\alpha)\right)
$$

Theorem

Let $p \in[1, \infty)$. The semicircular sliced Wasserstein distance SSW_{p} is rotationally invariant, i.e., for all $\mu, \nu \in \mathcal{M}\left(\mathbb{S}^{2}\right)$ and $\boldsymbol{Q} \in \mathrm{SO}(3)$,

$$
\operatorname{SSW}_{p}(\mu, \nu)=\operatorname{SSW}_{p}(\mu \circ \boldsymbol{Q}, \nu \circ \boldsymbol{Q}) .
$$

Content

(1) Introduction to Optimal Transport
(2) Sliced and 1-dimensional Optimal Transport
(3) Sliced Optimal Transport on the Sphere

(4) Numerics

Sliced (Radon) barycenter

- Compute pseudoinverse \mathcal{V}^{\dagger} via SVD
- Quadrature on SO(3) [Graef Potts 2011]

Inversion of \mathcal{W} by Variational Approach

- Barycenter of probability measures is again probability measure
- $\mathcal{W}^{\dagger} g$ might be negative even if $g \geq 0$, therefore not a probability density
- Find approximate solution f of the inversion problem $\mathcal{W} f=g$ via

$$
\underset{\substack{f \geq 0 \\ \int_{\mathbb{S}^{2}} f=1} \underset{\operatorname{argminin}}{\operatorname{KL}}(\mathcal{W} f, g)+\rho \mathrm{KL}(f, 1),}{ }
$$

with the Kullback-Leibler (KL) divergence

$$
\mathrm{KL}(f, \tilde{f}):=\langle f, \log f-\log \tilde{f}\rangle+\langle\tilde{f}-f, 1\rangle
$$

for $f, \tilde{f} \geq 0$ with $f(x)=0$ whenever $\tilde{f}(x)=0$ and $0 \log 0:=0$.

- Primal-dual splitting [Chambolle Pock 2016] yields converging iteration

$$
\begin{aligned}
\boldsymbol{f}^{k+1} & :=\operatorname{proj}_{\Delta}\left(\boldsymbol{f}^{k}-\tau \mathcal{W}^{*} \boldsymbol{y}_{1}^{k}-\tau \boldsymbol{y}_{2}^{k}\right) \\
\boldsymbol{y}_{1}^{k+1} & :=\operatorname{prox}_{\sigma \mathrm{KL}^{*}(\cdot, \boldsymbol{g})}\left(\boldsymbol{y}_{1}^{k}+\sigma \mathcal{W} \tilde{\boldsymbol{f}}^{k+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\boldsymbol{f}}^{k+1} & :=\boldsymbol{f}^{k+1}+\theta\left(\boldsymbol{f}^{k+1}-\boldsymbol{f}^{k}\right) \\
\boldsymbol{y}_{2}^{k+1} & :=\operatorname{prox}_{\sigma(\rho \mathrm{KL})^{*}(\cdot, \mathbf{1})}\left(\boldsymbol{y}_{2}^{k}+\sigma \tilde{\boldsymbol{f}}^{k+1}\right) .
\end{aligned}
$$

(a) Given measure μ (van Mises-Fischer distribution)

(d) Given measure ν

(b) \mathcal{V}-sliced barycenter (0.01 s)

(e) Regularized Wasserstein barycenter (PythonOT, 19s)

(c) \mathcal{W}-sliced barycenter (3.2 s)

(f) Unregularized Wasserstein barycenter (PythonOT, 33 h)

(a) Density of vMF distribution μ

(b) Density of ν (quadratic spline)

Conclusions

- We defined the vertical slice and normalized semicircle transform, and generalized them to measures.
- For absolutely continuous measures, the generalized and initial definitions coincide
- We showed an SVD of the normalized semicircle transform, which provides an approach for numerical computations and inversion.
- The normalized semicircle transform is injective for measures, hence the sliced Wasserstein distance fulfills the properties of a metric.

M Quellmalz, R Beinert, G Steidl. Sliced optimal transport on the sphere. Inverse Problems 39, 2023.

Future

- Modify vertical slice transform to support any direction (not just on the equator)
- Other manifolds, \mathbb{S}^{d} or $\mathrm{SO}(3)$

Conclusions

- We defined the vertical slice and normalized semicircle transform, and generalized them to measures.
- For absolutely continuous measures, the generalized and initial definitions coincide
- We showed an SVD of the normalized semicircle transform, which provides an approach for numerical computations and inversion.
- The normalized semicircle transform is injective for measures, hence the sliced Wasserstein distance fulfills the properties of a metric.

M Quellmalz, R Beinert, G Steidl. Sliced optimal transport on the sphere. Inverse Problems 39, 2023.

Future

- Modify vertical slice transform to support any direction (not just on the equator)
- Other manifolds, \mathbb{S}^{d} or $\mathrm{SO}(3)$

Thank you for your attention!

[^0]: Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023

[^1]: Sliced Optimal Transport on the Sphere | Michael Quellmalz | CSIP 2023

