

A Frame Decomposition of the Funk-Radon Transform

Michael Quellmalz | TU Berlin | SSVM, Sardinia, 22 May 2023
joint work with Lukas Weissinger (RICAM Linz), Simon Hubmer (RICAM Linz), Paul Erchinger (TU Berlin)

Funk-Radon Transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Funk-Radon transform (or spherical Radon transform)

$$
R f(\boldsymbol{\xi}):=\frac{1}{2 \pi} \int_{\boldsymbol{\xi}^{\top} \boldsymbol{\eta}=0} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}, \quad \forall \boldsymbol{\xi} \in \mathbb{S}^{2} .
$$

(integrals of f along all great circles)

Goal

Reconstruct the function f from integrals $\mathcal{F} f$

- Possible for even functions $f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$

Funk-Radon Transform

- Applications
- Diffusion MRI [Tuch 2004] [Rauff et al. 2022]
- Geometric tomography [Gardner 2006]
- Synthetic aperture radar [Yarman Yazici 2011]
- Photoacoustic tomography [Hristova Moon Steinhauer 2016]
- Comption camera imaging [Terzioglu 2023]
- Inversion methods
- Singular value decomposition via spherical harmonics [Minkowski 1904] [Funk 1911]
- Analytic inversion formulas [Funk 1913] [Helgason 1990] [Gindikin Reeds Shepp 1994] [Bailey et al. 2003] [Salman 2016] [Kazantsev 2018]
- Mollifier methods [Louis et al. 2011] [Riplinger, Spiess 2013]
- Discretization on the cubed sphere [Bellet 2023]

Singular Value Decomposition (SVD)

The singular value decomposition of a bounded linear operator A : $X \rightarrow Y$ between Hilbert spaces X and Y has the form

$$
A x=\sum_{k=1}^{\infty} \sigma_{k}\left\langle x, u_{k}\right\rangle_{x} v_{k}, \quad \forall x \in X
$$

where $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{v_{k}\right\}_{k \in \mathbb{N}}$ are orthonormal bases over X and Y.
Inversion:

$$
A^{\dagger} y=\sum_{k=1}^{\infty} \frac{1}{\sigma_{k}}\left\langle y, v_{k}\right\rangle_{Y} u_{k}
$$

SVD of the Funk-Radon transform

Denoting by Y_{ℓ}^{m} the spherical harmonics of degree $\ell \in \mathbb{N}_{0}$ and order $m=-\ell, \ldots, \ell$, we have

$$
R Y_{\ell}^{m}= \begin{cases}\frac{(-1)^{\ell / 2}(\ell-1)!!}{\ell!!} Y_{\ell}^{m}, & \ell \text { even } \\ 0, & \ell \text { odd }\end{cases}
$$

[^0]Page 4

Frame Decompositions

A frame decomposition of a bounded linear operator $A: X \rightarrow Y$ between Hilbert spaces X and Y has the form

$$
A x=\sum_{k=1}^{\infty} \sigma_{k}\left\langle x, e_{k}\right\rangle_{x} \tilde{f}_{k}, \quad \forall x \in X
$$

where $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ form frames over X and Y, and $\left\{\tilde{f}_{k}\right\}_{k \in \mathbb{N}}$ is the dual frame of $\left\{f_{k}\right\}_{k \in \mathbb{N}}$.
The main requirement on e_{k} and f_{k} is the quasi-singular relation

$$
\begin{equation*}
\overline{\sigma_{k}} e_{k}=A^{*} f_{k}, \quad \forall k \in \mathbb{N} \tag{1}
\end{equation*}
$$

Advantage: More flexible than an SVD (singular value decomposition), but retains important properties: approximate solutions of $A x=y$, filter-based regularization [Frikel Haltmeier 2020] [Hubmer Ramlau 2021] [Hubmer Ramlau Weissinger 2022] [Ebner et al. 2023]
Question: Can frames satisfying (1) be found?
Possible in many examples [Donoho 1995] [Frikel 2013] [Frikel Haltmeier 2018] [Hubmer Ramlau 2020]

Background: Frames in Hilbert Spaces

A sequence $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ in a Hilbert space X is called a frame if there exist frame bounds $B_{1}, B_{2}>0$ such that

$$
B_{1}\|x\|_{x}^{2} \leq \sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle_{X}\right|^{2} \leq B_{2}\|x\|_{X}^{2}, \quad \forall x \in X
$$

Furthermore, we define

$$
S_{x}:=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle_{x} e_{k}
$$

and the dual frame $\tilde{e}_{k}:=S^{-1} e_{k}$, which forms a frame over X with frame bounds B_{2}^{-1}, B_{1}^{-1}. Then

$$
x=\sum_{k=1}^{\infty}\left\langle x, \tilde{e}_{k}\right\rangle_{x} e_{k}=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle_{x} \tilde{e}_{k}, \quad \forall x \in X
$$

Construction of Frame Decompositions

Need two conditions on the bounded linear operator $A: X \rightarrow Y$ between Hilbert spaces X, Y :
(1) For some $c_{1}, c_{2}>0$ and a Hilbert space $Z \subseteq Y$:

$$
c_{1}\|x\|_{x} \leq\|A x\|_{z} \leq c_{2}\|x\|_{x}, \quad \forall x \in X
$$

(2) Z is a dense subspace of Y, and $\left\{f_{k}\right\}$ is a frame on Y with $f_{k} \in Z$ (i.e. $\left\|f_{k}\right\|_{Z}<\infty$) and

$$
\|y\|_{Y} \leq\|y\|_{Z}, \quad \forall y \in Z
$$

Theorem

Under the above assumptions, the unique solution of $A x=y$ is

$$
A^{\ddagger} y:=\sum_{k=1}^{\infty}\left\langle L y, f_{k}\right\rangle_{Y} \tilde{e}_{k},
$$

where

$$
e_{k}:=A^{*} L f_{k}, \quad L:=\left(E E^{*}\right)^{-1 / 2},
$$

and $E: Z \rightarrow Y$ denotes the embedding operator.

Select Suitable Spaces

The Sobolev space $H^{s}\left(\mathbb{S}^{2}\right), s \in \mathbb{R}$, is the completion of $C^{\infty}\left(\mathbb{S}^{2}\right)$ with respect to the norm

$$
\|f\|_{H^{s}\left(\mathbb{S}^{2}\right)}:=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(\ell+\frac{1}{2}\right)^{2 s}\left|\left\langle f, Y_{\ell}^{m}\right\rangle_{L^{2}\left(\mathbb{S}^{2}\right)}\right|^{2}
$$

where $\langle f, g\rangle_{L^{2}\left(\mathbb{S}^{2}\right)}:=\int_{\mathbb{S}^{2}} f(\boldsymbol{\xi}) g(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}$. Denote by $H_{\text {even }}^{s}\left(\mathbb{S}^{2}\right)$ its restriction to even functions.

Lemma

The Funk-Radon transform is a continuous, bijective operator

$$
R: X=L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\text {even }}^{1 / 2}\left(\mathbb{S}^{2}\right)=Z
$$

It satisfies condition (1) with the bounds $c_{1}=\sqrt{1 / 2}$ and $c_{2}=\sqrt{2 / \pi}$.

Technische

Searching for a Suitable Frame

Define the trigonometric basis

$$
b_{n, k}: \mathbb{S}^{2} \rightarrow \mathbb{R}, b_{n, k}(\varphi, \theta):=\frac{e^{i n \varphi} \sin (k \theta)}{\pi \sqrt{\sin \theta}}, \quad \forall n \in \mathbb{Z}, k \in \mathbb{N}
$$

Lemma

[Q., Weissinger, Hubmer, Erchinger 2023]
The sequence $\left\{b_{n, k}\right\}_{n \in \mathbb{Z}, k \in \mathbb{N}}$ forms an orthonormal basis of $Y=L^{2}\left(\mathbb{S}^{2}\right)$ and $b_{n, k} \in H^{1 / 2}\left(\mathbb{S}^{2}\right)$.

(a) Frame $b_{n, k}$

(b) Frame $e_{n, k}=R L b_{n, k}$

(c) Dual frame $\tilde{e}_{n, k}$

[^1]
Frame Inversion of the Funk-Radon Transform

Theorem

Let $E: H_{\text {even }}^{1 / 2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right)$ be the embedding operator, and $L:=\left(E E^{*}\right)^{-1 / 2}$. Then

$$
e_{n, k}:=R L b_{n, k}, \quad(n, k) \in J:=\{(n, k) \in \mathbb{Z} \times \mathbb{N}: n+k \text { odd }\}
$$

is a frame in $L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right)$.
For any $g \in H_{\text {even }}^{1 / 2}\left(\mathbb{S}^{2}\right)$, the unique solution $f \in L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right)$ of the inverse problem $R f=g$ satisfies

$$
f=R^{\ddagger} g:=\sum_{(n, k) \in J}\left\langle L g, b_{n, k}\right\rangle_{L^{2}\left(\mathbb{S}^{2}\right)} \tilde{e}_{n, k},
$$

where $\tilde{e}_{n, k}$ is the dual frame of $e_{n, k}$. It holds that $\left\|R^{\ddagger} g\right\|_{L^{2}\left(\mathbb{S}^{2}\right)} \leq 2\|L g\|_{L^{2}\left(\mathbb{S}^{2}\right)}$.

[^2]
Filter-Based Regularization

With $\lambda_{\ell}=\left(\ell+\frac{1}{2}\right)^{-1 / 2}$, we have

$$
L y=\left(E E^{*}\right)^{-1 / 2} y=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{\lambda_{\ell}}\left\langle y, Y_{\ell}^{m}\right\rangle_{L^{2}\left(\mathbb{S}^{2}\right)} Y_{\ell}^{m}
$$

For noisy data y^{δ}, define the regularized solution

$$
x_{\alpha}^{\delta}:=R^{\ddagger} U_{\alpha} y^{\delta}, \quad \text { and } \quad L U_{\alpha} y^{\delta}:=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \lambda_{\ell} h_{\alpha}\left(\lambda_{\ell}^{2}\right)\left\langle y^{\delta}, Y_{\ell}^{m}\right\rangle_{L^{2}\left(\mathbb{S}^{2}\right)} Y_{\ell}^{m}
$$

L^{2} Error depending on regularization parameter α

Filter function $h_{\alpha}(s)=1 /(\alpha+s)$

[^3]
Reconstruction Evaluation, Exact Data

(a) The test function x

(d) Data $y=R x$

(b) $R^{\ddagger} y$ for $N=25$

(e) $R^{\ddagger} y$ for $N=40$

(c) $\left|x-R^{\ddagger} y\right|$ for $N=25$

(f) $\left|x-R^{\ddagger} y\right|$ for $N=40$

A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

Reconstruction Evaluation, Noise Level 20%

A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

Conclusions

- We derived a novel frame decomposition of the Funk-Radon transform utilizing trigonometric basis functions $b_{n, k}$ on the unit sphere and suitable embedding operators in Sobolev spaces.
- This decomposition does not involve the spherical harmonics and leads to an explicit inversion formula for the Funk-Radon transform.
- Our numerical examples show promising reconstruction results even in the case of very large noise by including regularization.

Future research

- Apply other forms of regularization (e.g. filter applied to the frame coefficients) to avoid the computationally expensive spherical harmonics entirely
- Investigate the possibility of better localized frames
Thank you for your attention!

[^4]Page 14

Conclusions

- We derived a novel frame decomposition of the Funk-Radon transform utilizing trigonometric basis functions $b_{n, k}$ on the unit sphere and suitable embedding operators in Sobolev spaces.
- This decomposition does not involve the spherical harmonics and leads to an explicit inversion formula for the Funk-Radon transform.
- Our numerical examples show promising reconstruction results even in the case of very large noise by including regularization.

Future research

- Apply other forms of regularization (e.g. filter applied to the frame coefficients) to avoid the computationally expensive spherical harmonics entirely
- Investigate the possibility of better localized frames

Thank you for your attention!

[^5]Page 14

[^0]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

[^1]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

[^2]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

[^3]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

[^4]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

[^5]: A Frame Decomposition of the Funk-Radon Transform | Michael Quellmalz | 22 May 2023

