

Motion Detection in Diffraction Tomography

Michael Quellmalz | TU Berlin | DMV Meeting, Section on Inverse Problems, Ilmenau, 28 September 2023 joint work with Robert Beinert, Peter Elbau, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele Steidl

Outline

1 Introduction

2 Reconstruction of the object

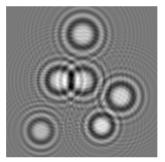
3 Reconstructing the motion

Optical Diffraction Tomography (ODT) x_1 Measurement plane $x_3 = r_M$ f = 0 X_3 u^{inc} object ($t \neq 0$) Incident field: Plane wave with normal x_3

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl. Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations. *Inverse Problems* 37, 2021.

Optical Diffraction

Optical diffraction occurs when the wavelength of the incident wave is large \approx the size of the object (μm scale)



Simulation of the scattered field from spherical particles (size \approx wavelength)

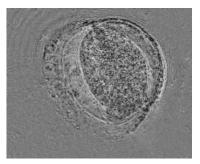


Image with diffraction © Medizinische Universität Innsbruck

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta+f(\boldsymbol{x})+k_0^2\right)u^{\text{tot}}(\boldsymbol{x})=0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{x})}_{=0}=f(\mathbf{x})\left(u^{\mathrm{sca}}(\mathbf{x})+u^{\mathrm{inc}}(\mathbf{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{x}}) = u^{\text{sca}}(\textbf{\textit{x}}) + u^{\text{inc}}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\Delta + f(\boldsymbol{x}) + k_0^2\right) \boldsymbol{u}^{\text{tot}}(\boldsymbol{x}) = 0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{x})}_{=0}=f(\mathbf{x})\left(u^{\mathrm{sca}}(\mathbf{x})+u^{\mathrm{inc}}(\mathbf{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Model of Optical Diffraction Tomography (for one direction)

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{x}}) = u^{\text{sca}}(\textbf{\textit{x}}) + u^{\text{inc}}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{x}) + k_0^2\right) u^{\text{tot}}(\mathbf{x}) = 0$$

• Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\mathrm{sca}}(\boldsymbol{x})+u^{\mathrm{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

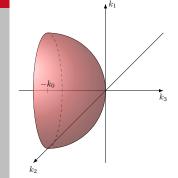
Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Fourier diffraction theorem

Let the previous assumptions hold, $f \in L^{p}(\mathbb{R}^{3})$, p > 1, and u^{sca} satisfy the Sommerfeld radiation condition (u is an outgoing wave).

Then

$$\begin{split} &\sqrt{\frac{2}{\pi}}\kappa \mathrm{i}\mathrm{e}^{-\mathrm{i}\kappa n_{\mathrm{M}}}\mathcal{F}_{1,2}\underbrace{u^{\mathrm{sca}}(k_{1},k_{2},r_{\mathrm{M}})}_{\mathrm{measurements}} = \mathcal{F}f(\pmb{h}(k_{1},k_{2})), \quad (k_{1},k_{2}) \in \mathbb{R}^{2} \end{split}$$
where $\pmb{h}(k_{1},k_{2}) := \begin{pmatrix} k_{1} \\ k_{2} \\ \kappa - k_{0} \end{pmatrix}$ and $\kappa := \sqrt{k_{0}^{2} - k_{1}^{2} - k_{2}^{2}}.$



Semisphere h(k) of available data in Fourier space

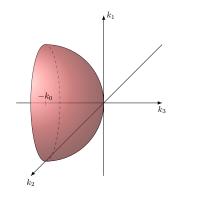
based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001] this L^p version from [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Comparison with Computerized Tomography

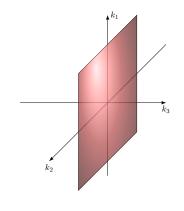
Optical diffraction tomography (ODT)

diffraction of imaging wave Data: Fourier transform on semispheres containing ${\bf 0}$



Computerized tomography (CT)

light travels along straight lines Data: Fourier transform on planes containing ${\bf 0}$



Rigid Motion of the Object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\boldsymbol{d}_t \in \mathbb{R}^3$ (with $\boldsymbol{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_t(k_1, k_2) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i} \mathrm{e}^{-\mathrm{i}\kappa \mathbf{n}} \mathcal{F}_{1,2} \underbrace{u^{\mathrm{sca}}(k_1, k_2, \mathbf{n})}_{\mathrm{measurements}} = \mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_t, \mathbf{h}(k_1, k_2) \rangle}, \quad \|(k_1, k_2)\| < k_0,$$

depends only on the measurements.

- **O** Reconstruct the rotation using $\nu_t(k_1, k_2) \coloneqq |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2))|^2$.
- Reconstruct the translation d_t
- 8 Reconstruct #

Rigid Motion of the Object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\boldsymbol{d}_t \in \mathbb{R}^3$ (with $\boldsymbol{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_{t}(k_{1},k_{2}) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i} \mathrm{e}^{-\mathrm{i}\kappa \mathbf{r}_{\mathrm{M}}} \mathcal{F}_{1,2} \underbrace{u^{\mathrm{sca}}(k_{1},k_{2},\mathbf{r}_{\mathrm{M}})}_{\mathrm{measurements}} = \mathcal{F}f(\mathbf{R}_{t}\mathbf{h}(k_{1},k_{2})) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_{t},\mathbf{h}(k_{1},k_{2})\rangle}, \quad \|(k_{1},k_{2})\| < k_{0},$$

depends only on the measurements.

- Reconstruct the rotation using $\nu_t(k_1, k_2) \coloneqq |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2))|^2$.
- **2** Reconstruct the translation d_t
- 8 Reconstruct f

Outline

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Discretization

- Object $f(\mathbf{x}_k)$ with $\mathbf{x}_k = \mathbf{k} \frac{2L_s}{\kappa}$, $\mathbf{k} \in \mathcal{I}_{\kappa}^3 \coloneqq \{-\kappa/2, \dots, \kappa/2 1\}^3$
- Measurements $u_{t_m}^{\text{tot}}(\pmb{y_n}, r_{\rm M})$ with $\pmb{y_n} = \pmb{n} \frac{2L_{\rm M}}{N}$, $\pmb{n} \in \mathcal{I}_{\rm N}^2$
- discrete Fourier transform (DFT)

$$\left[\mathbf{F}_{\mathsf{DFT}} \, u_{t_m}^{\mathsf{sca}} \right]_{\boldsymbol{\ell}} \coloneqq \sum_{\boldsymbol{n} \in \mathcal{I}_N^2} u_{t_m}^{\mathsf{sca}}(\boldsymbol{y}_{\boldsymbol{n}}, r_{\mathsf{M}}) \, \mathrm{e}^{-2\pi \mathrm{i} \boldsymbol{n} \cdot \boldsymbol{\ell} / N}, \qquad \boldsymbol{\ell} \in \mathcal{I}_N^2,$$

• Non-uniform discrete Fourier transform (NDFT)

$$[\mathbf{F}_{\mathsf{NDFT}}\mathbf{f}]_{m,\ell} \coloneqq \sum_{\mathbf{k}\in\mathcal{I}_{K}^{3}} f_{\mathbf{k}} \, \mathrm{e}^{-\mathrm{i}\mathbf{x}_{\mathbf{k}}\cdot\left(R_{l_{m}}\mathbf{h}(\mathbf{y}_{\ell})\right)}, \qquad m\in\mathcal{J}_{M}, \ \ell\in\mathcal{I}_{N}^{2}$$

Discretized forward operator

$$\boldsymbol{\textit{D}}^{\text{tot}} \boldsymbol{\textit{f}} \coloneqq \boldsymbol{\textit{F}}_{\text{DFT}}^{-1}(\boldsymbol{\textit{c}} \odot \boldsymbol{\textit{F}}_{\text{NDFT}} \boldsymbol{\textit{f}}) + \mathrm{e}^{\mathrm{i} k_0 \, \textit{m}}, \qquad \boldsymbol{\textit{f}} \in \mathbb{R}^{\kappa^d},$$

where $\boldsymbol{c} = \left[\frac{i}{\kappa(\boldsymbol{y}_{\ell})} e^{i \kappa(\boldsymbol{y}_{\ell}) \eta_{M}} \left(\frac{N}{L_{M}}\right)^{d-1} \left(\frac{L_{s}}{K}\right)^{d}\right]_{\ell \in \mathcal{I}_{M}^{2}}$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

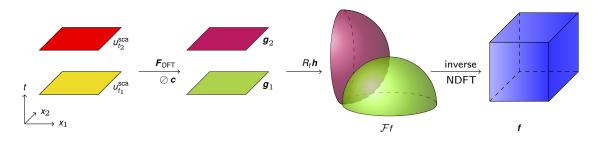
1

Reconstruction of f

Inverse

$$m{r} pprox m{F}_{ extsf{NDFT}}^{-1} ig((m{F}_{ extsf{DFT}}m{u}^{ extsf{tot}} - extsf{e}^{ extsf{i}k_0m{r}_{ extsf{M}}}ig) \oslash m{c} ig)$$

Crucial part: inversion of NDFT $\mathbf{F}_{\text{NDFT}}^{-1}$



Approach 1: Filtered Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\rm bp}(\boldsymbol{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}f(\boldsymbol{y}) \, \mathrm{e}^{\mathrm{i}\boldsymbol{y}\cdot\boldsymbol{x}} \, \mathrm{d}\boldsymbol{y}.$$

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{\rm bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_l \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i} R_l \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(k_1, k_2, t)|}{\operatorname{Card} \mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t,$$

where $T(k_1, k_2, t) := R_t h(k_1, k_2)$ and

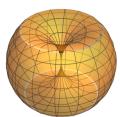
$$\left|\det \nabla T(k_1,k_2,t)\right| = \frac{k_0}{\kappa} \left| \left((1-\cos\alpha)(a_3 \mathbf{a}' \cdot \mathbf{h} - \mathbf{a}'_3 \mathbf{a} \cdot \mathbf{h}) - a_3 \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin\alpha \right) - \alpha' (a_1k_2 - a_2k_1) + (\mathbf{a} \cdot \mathbf{h})(a_1a_2' - a_2a_1') \sin\alpha \right|.$$

Previously known only for constant axis **a**

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Page 10

. . . .



[Devaney 1982]

Approach 1: Filtered Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\rm bp}(\boldsymbol{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}f(\boldsymbol{y}) \, \mathrm{e}^{\mathrm{i}\boldsymbol{y}\cdot\boldsymbol{x}} \, \mathrm{d}\boldsymbol{y}.$$

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{bp}(\boldsymbol{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \boldsymbol{h}(k_1, k_2)) e^{iR_t \boldsymbol{h}(k_1, k_2) \cdot \boldsymbol{x}} \frac{|\det \nabla T(k_1, k_2, t)|}{\operatorname{Card} T^{-1}(T(k_1, k_2, t))} d(k_1, k_2) dt,$$

where
$$T(k_1, k_2, t) := R_t \mathbf{h}(k_1, k_2)$$
 and
 $|\det \nabla T(k_1, k_2, t)| = \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha)(\mathbf{a}_3 \, \mathbf{a}' \cdot \mathbf{h} - \mathbf{a}'_3 \, \mathbf{a} \cdot \mathbf{h}) - \mathbf{a}_3 \, \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin \alpha \right) - \alpha' (\mathbf{a}_1 \mathbf{k}_2 - \mathbf{a}_2 \mathbf{k}_1) + (\mathbf{a} \cdot \mathbf{h})(\mathbf{a}_1 \mathbf{a}'_2 - \mathbf{a}_2 \mathbf{a}'_1) \sin \alpha \right|.$

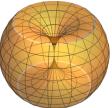
Previously known only for constant axis a

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Page 10

Theorem

0



Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{f} \in \mathbb{R}^{k^3}}{\operatorname{arg\,min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{f}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{NDFT}(f)$ in $O(N^3 \log N)$ steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization

• Regularized inverse

$$\underset{t \in \mathbb{R}^{K^3}}{\operatorname{arg\,min}} \qquad \chi_{\mathbb{R}^{K^3}_{\geq 0}}(f) + \tfrac{1}{2} \| \mathbf{F}_{\mathsf{NDFT}}(f) - \boldsymbol{g} \|_2^2 + \lambda \mathsf{TV}(f),$$

- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{f} \in \mathbb{R}^{K^3}}{\operatorname{arg\,min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{f}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{\text{NDFT}}(f)$ in $\mathcal{O}(N^3 \log N)$ steps

[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

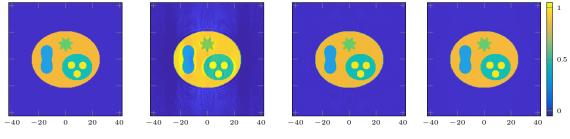
Approach 3: TV (Total Variation) Regularization

• Regularized inverse

$$\underset{\textbf{\textit{f}} \in \mathbb{R}^{K^3}}{\arg\min} \qquad \chi_{\mathbb{R}^{K^3}_{\geq 0}}(\textbf{\textit{f}}) + \tfrac{1}{2} \|\textbf{\textit{F}}_{\text{NDFT}}(\textbf{\textit{f}}) - \textbf{\textit{g}}\|_2^2 + \lambda \mathsf{TV}(\textbf{\textit{f}}),$$

- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Reconstruction: Moving Axis



Ground truth f(240 × 240 × 240 grid)

Backpropagation PSNR 24.17, SSIM 0.171 CG Reconstruction PSNR 35.84, SSIM 0.962

PD with TV ($\lambda = 0.02$) PSNR 40.95, SSIM 0.972

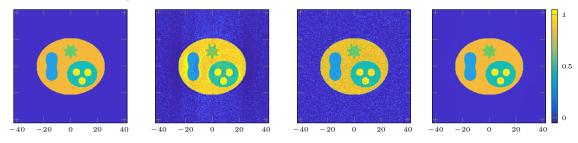
R Beinert, M Quellmalz.

Total Variation-Based Reconstruction and Phase Retrieval for Diffraction Tomography with an Arbitrarily Moving Object.

Arxiv preprint 2210.03495

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Reconstruction: Moving Axis and 5 % Gaussian Noise



Ground truth f

Backpropagation PSNR 21.19, SSIM 0.075 CG Reconstruction PSNR 24.10, SSIM 0.193 PD with TV ($\lambda = 0.05$) PSNR 38.01, SSIM 0.772

Outline

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Formal Uniqueness Result

Theorem

[Kurlberg Zickert 2021]

Let

- the matrix of second-order moments of *f* have distinct, real eigenvalues,
- certain third-order moments do not vanish,
- the translation **d**_t be restricted to a known plane,
- the rotations R_t cover SO(3).

Then f is uniquely determined given the diffraction images u_t for all (unknown) motions.

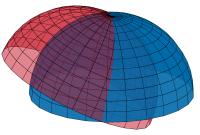
We find an algorithm to recover the rotations and translations

Detection of the Rotation

Goal: Estimate the rotation R_t from the transformed measurements $\nu_t(\mathbf{k}) = |\mathcal{F}f(R_t \mathbf{h}(\mathbf{k}))|^2$

Common circle approach:

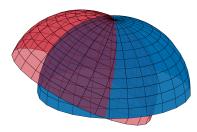
- For each t we have the Fourier data $\mathcal{F}f$ on one semisphere
- Two semispheres intersect in a circle (arc), where $\mathcal{F} f$ must agree
- Find the common circle of two semispheres



P Elbau, M Quellmalz, O Scherzer, G Steidl. Motion detection in diffraction tomography with common circle methods. *Math Comp.* (in press) doi:10.1090/mcom/3869

Dual Common Circles

- *f* real-valued (no absorption)
- Additional symmetry $\mathcal{F}f(\mathbf{y}) = \overline{\mathcal{F}f(-\mathbf{y})}$
- Additional pair of "dual" common circles



For $\varphi \in [0,2\pi), \, \theta \in [0,\pi],$ we can parameterize the common circles in the 2D data by

$$\begin{split} \boldsymbol{\gamma}^{\varphi,\theta}(\beta) &\coloneqq \quad \frac{k_0}{2}\sin(\theta)(\cos(\beta)-1)\begin{pmatrix}\cos(\varphi)\\\sin(\varphi)\end{pmatrix} + k_0\cos(\frac{\theta}{2})\sin(\beta)\begin{pmatrix}-\sin(\varphi)\\\cos(\varphi)\end{pmatrix}, \quad \beta \in \mathbb{R},\\ \check{\boldsymbol{\gamma}}^{\varphi,\theta}(\beta) &\coloneqq -\frac{k_0}{2}\sin(\theta)(\cos(\beta)-1)\begin{pmatrix}\cos(\varphi)\\\sin(\varphi)\end{pmatrix} - k_0\sin(\frac{\theta}{2})\sin(\beta)\begin{pmatrix}-\sin(\varphi)\\\cos(\varphi)\end{pmatrix}, \quad \beta \in \mathbb{R}. \end{split}$$

Theorem (unique reconstruction)

Let $s, t \in [0, T]$. Assume that there exist unique angles $\varphi, \psi \in \mathbb{R}/(2\pi\mathbb{Z})$ and $\theta \in [0, \pi]$ such that

$$\begin{split} \nu_{s}(\boldsymbol{\gamma}^{\varphi,\theta}(\beta)) &= \nu_{t}(\boldsymbol{\gamma}^{\pi-\psi,\theta}(-\beta)) \quad \forall \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \text{and} \\ \nu_{s}(\check{\boldsymbol{\gamma}}^{\varphi,\theta}(\beta)) &= \nu_{t}(\check{\boldsymbol{\gamma}}^{\pi-\psi,\theta}(\beta)) \quad \forall \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]. \end{split}$$

Then the relative rotation $R_s^{\top} R_t$ is uniquely determined by the Euler angles

$$\mathbf{R}_{\mathbf{s}}^{\top}\mathbf{R}_{t} = \mathbf{Q}^{(3)}(\varphi) \, \mathbf{Q}^{(2)}(\theta) \, \mathbf{Q}^{(3)}(\psi),$$

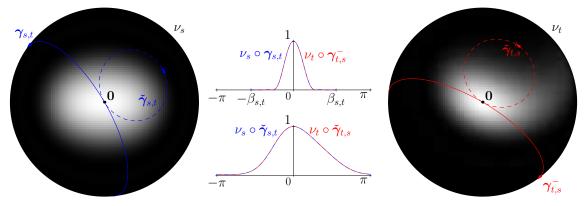
where ${\it Q}^{(i)}(lpha)$ denotes the rotation around the *i*-th coordinate with angle lpha.

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Page 17

[Q. Elbau Scherzer Steidl 2023]

Visualization of the Common Arcs



Here
$$\gamma_{s,t} \coloneqq \gamma^{\varphi,\theta}$$
 and $\gamma_{t,s} \coloneqq \gamma^{\pi-\psi,\theta}$ for $\mathsf{R}_s^\top \mathsf{R}_t = \mathsf{Q}^{(3)}(\varphi) \, \mathsf{Q}^{(2)}(\theta) \, \mathsf{Q}^{(3)}(\psi)$

Theorem

Let the rotation $R \in C^1([0, T] \to SO(3))$ and $t \in (0, T)$. We define the associated **angular velocity** as the vector $\boldsymbol{\omega}_t \in \mathbb{R}^3$ satisfying

$$R_t^{\top} R_t' \, \boldsymbol{y} = \boldsymbol{\omega}_t \times \boldsymbol{y}, \qquad \boldsymbol{y} \in \mathbb{R}^3,$$

and write it in cylindrical coordinates

$$\boldsymbol{\omega}_t = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ \zeta \end{pmatrix}.$$

Then

$$- \partial_t \nu_t(r\varphi) = \left(\left(\sqrt{k_0^2 - r^2} - k_0 \right) \rho + r\zeta \right) \left\langle \nabla \nu_t(r\varphi), \begin{pmatrix} -\sin\varphi \\ \cos\varphi \end{pmatrix} \right\rangle \qquad \forall r \in (-k_0, k_0).$$

Motion Detection in Diffraction Tomography | Michael Quellmalz | 28 September 2023

Page 19

Infinitesimal Common Circles Method

Technische Universität Berlin

[Q. Elbau Scherzer Steidl 2023]

Reconstructing the Translation

Recall: Data
$$\mu_t(k_1,k_2) = \mathcal{F}f(R_t \boldsymbol{h}(k_1,k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \boldsymbol{d}_t, \boldsymbol{h}(k_1,k_2)
angle}$$

Theorem

[Q. Elbau Scherzer Steidl 2023]

Let $s, t \in [0, T]$ be such that $R_s e^3 \neq \pm R_t e^3$ and let $f \ge 0$ with $f \not\equiv 0$.

If $\boldsymbol{d}_0 = \boldsymbol{0}$, then \boldsymbol{d}_t can be uniquely reconstructed from the two equations:

$$e^{i\langle R_t \boldsymbol{d}_t - R_s \boldsymbol{d}_s, R_s \boldsymbol{h}(\boldsymbol{\gamma}_{s,t}(\beta)) \rangle} = \frac{\mu_s(\boldsymbol{\gamma}_{s,t}(\beta))}{\mu_t(\boldsymbol{\gamma}_{t,s}(-\beta))}, \qquad \beta \in [-\pi, \pi], \ \mu_s(\boldsymbol{\gamma}_{s,t}(\beta)) \neq 0$$

and

$$e^{i\left\langle R_{t}\boldsymbol{d}_{t}-R_{s}\boldsymbol{d}_{s},R_{s}\boldsymbol{h}(\check{\boldsymbol{\gamma}}_{s,t}(\beta))\right\rangle} = \frac{\mu_{s}(\check{\boldsymbol{\gamma}}_{s,t}(\beta))}{\overline{\mu_{t}(\check{\boldsymbol{\gamma}}_{t,s}(\beta))}}, \qquad \beta \in [-\pi,\pi], \ \mu_{s}(\check{\boldsymbol{\gamma}}_{s,t}(\beta)) \neq 0$$

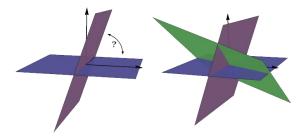
Similar reconstruction result for $R_s e^3 = \pm R_t e^3$

Comparision with CT

Method of common lines in Cryo-EM

[Crowther DeRosier Klug 70] [van Heel 87] [Goncharov 88] [Wang Singer Zen 13]

- Based on different model (ray transform)
- Requires 3 common planes (instead of 2 semi-spheres)
- Ambiguities (mirroring, translation along imaging direction)

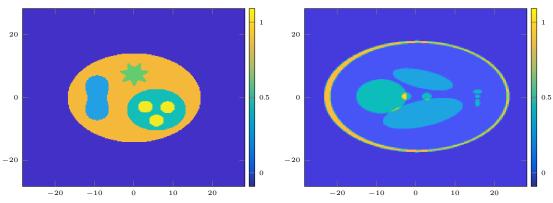


Images by [Schmutz 17]

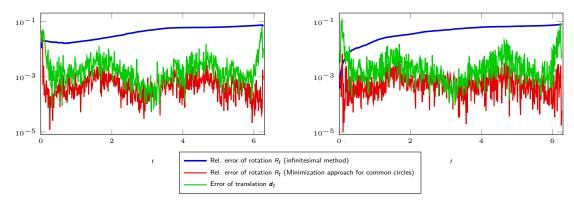
Shepp-Logan phantom

Numerical Simulation: Test Functions (3D)

Cell phantom

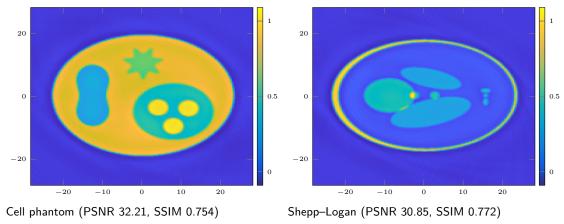


Numerical Simulation: Results

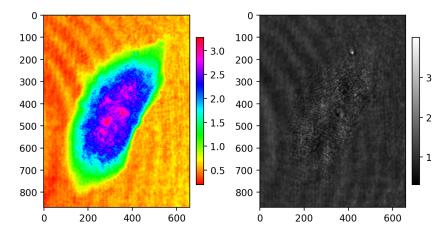


The rotation is around the moving axis $(\sqrt{1-a^2}\cos(b\sin(t/2)), \sqrt{1-a^2}\sin(b\sin(t/2)), a) \in \mathbb{S}^2$ for a = 0.28 and b = 0.5. The translation is $d_t = 2(\sin t, \sin t, \sin t)$. Left: cell phantom. Right: Shepp-Logan phantom.

Reconstructed Scattering Potential f



Next Step: Real-World Data



Images courtesy of Franziska Strasser and Monika Ritsch-Marta (Medical University of Innsbruck)

Conclusions

- Fourier diffraction theorem on $L^{\rho}(\mathcal{B}_{r_{s}})$, p > 1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Conclusions

- Fourier diffraction theorem on $L^{\rho}(\mathcal{B}_{r_{s}})$, p > 1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!