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Optical Diffraction Tomography (ODT)

f = 0

object (f ̸= 0)

x3

x1

x2

Measurement plane
x3 = rM

Incident field: Plane wave with normal x3

u inc

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl.
Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations.
Inverse Problems 37, 2021.
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Optical Diffraction

Optical diffraction occurs when the wavelength of the incident wave is large
≈ the size of the object (µm scale)

Simulation of the scattered field from
spherical particles (size ≈ wavelength)

Image with diffraction
© Medizinische Universität Innsbruck
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Model of Optical Diffraction Tomography (for one direction)

• We have: field utot(x1, x2, rM) at measurement plane x3 = rM

• We want: scattering potential f(x) with supp f ⊂ BrM ⊂ R3

• Object illuminated by plane wave u inc(x) = eik0x3

• Total field utot(x) = usca(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0
• Rearranging yields

− (∆ + k2
0 ) usca(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

usca(x) + u inc(x)
)

Born approximation

Assuming |usca| ≪ |u inc|, we obtain

−
(
∆ + k2

0
)

usca(x) = f(x)u inc(x)
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Fourier diffraction theorem
Let the previous assumptions hold, f ∈ Lp(R3), p > 1, and usca satisfy the
Sommerfeld radiation condition (u is an outgoing wave).

Let the object rotate according to Rt ∈ SO(3) at time t ∈ [0, T ].

Then √
2
π
κie−iκrM F1,2 usca(k1, k2, rM)︸ ︷︷ ︸

measurements

= F f(h(k1, k2)), (k1, k2) ∈ R2,

where h(k1, k2) :=

 k1

k2

κ− k0

 and κ :=
√

k2
0 − k2

1 − k2
2 .

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]
this Lp version from [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

k1

k2

k3

−k0

Semisphere h(k) of available
data in Fourier space
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Comparison with Computerized Tomography
Optical diffraction tomography (ODT) Computerized tomography (CT)
diffraction of imaging wave light travels along straight lines
Data: Fourier transform on semispheres containing 0 Data: Fourier transform on planes containing 0

k1

k2

k3

−k0

k1

k2

k3
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Rigid Motion of the Object

• Scattering potential of the moved object: f(Rt(x − d t))
• Rotation Rt ∈ SO(3) (with R0 := id)
• Translation d t ∈ R3 (with d0 := 0)

Fourier diffraction theorem (with motion)

The quantity

µt(k1, k2) :=
√

2
π
κie−iκrM F1,2 usca(k1, k2, rM)︸ ︷︷ ︸

measurements

= F f(Rt h(k1, k2)) e−i⟨d t ,h(k1 ,k2)⟩, ∥(k1, k2)∥ < k0,

depends only on the measurements.

1 Reconstruct the rotation using νt(k1, k2) := |µt(k1, k2)|2 = |F f(Rt h(k1, k2))|2 .

2 Reconstruct the translation d t

3 Reconstruct f
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Discretization
• Object f(xk ) with xk = k 2Ls

K , k ∈ I3
K := {−K/2, ... , K/2 − 1}3

• Measurements utot
tm (yn, rM) with yn = n 2LM

N , n ∈ I2
N

• discrete Fourier transform (DFT)

[F DFT usca
tm ]

ℓ
:=

∑
n∈I2

N

usca
tm (yn, rM) e−2πin·ℓ/N , ℓ ∈ I2

N ,

• Non-uniform discrete Fourier transform (NDFT)

[F NDFTf ]m,ℓ :=
∑
k∈I3

K

fk e−ixk ·(Rtm h(yℓ)), m ∈ JM , ℓ ∈ I2
N

Discretized forward operator

Dtotf := F −1
DFT(c ⊙ F NDFTf) + eik0rM , f ∈ RK d

,

where c =
[

i
κ(yℓ) eiκ(yℓ) rM

(
N
LM

)d−1 (
Ls
K

)d
]

ℓ∈I2
N
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Reconstruction of f

Inverse
f ≈ F −1

NDFT

(
(F DFTutot − eik0rM

)
⊘ c)

Crucial part: inversion of NDFT F −1
NDFT

x1

t

x2

usca
t1

usca
t2

F DFT

⊘ c g1

g2

Rt h

F f

inverse
NDFT

f
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Approach 1: Filtered Backpropagation

Idea: Compute inverse Fourier transform of F f restricted to the set of available
data Y:

fbp(x) := (2π)− 3
2

∫
Y

F f(y) eiy·x dy .

Theorem [Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation Rt round axis a(t) with angle α(t) in C1[0, T ]. Then

fbp(x) = (2π)− 3
2

∫ T

0

∫
Bk0

F f(Rt h(k1, k2)) ei Rt h(k1 ,k2)·x |det ∇T(k1, k2, t)|
Card T −1(T(k1, k2, t)) d(k1, k2) dt ,

where T(k1, k2, t) := Rt h(k1, k2) and

|det ∇T(k1, k2, t)| = k0

κ

∣∣((1 − cosα)(a3 a′ · h − a′
3a · h) − a3 a · (a′ × h) sinα

)
− α′ (a1k2 − a2k1) + (a · h)(a1a′

2 − a2a′
1) sinα

∣∣ .

Previously known only for constant axis a [Devaney 1982]
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Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

arg min
f∈RK3

∥F NDFT(f) − g∥2
2

• NFFT (Non-uniform fast Fourier transform) for computing F NDFT(f) in O
(

N3 log N
)

steps
[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization
• Regularized inverse

arg min
f∈RK3

χRK3
≥0

(f) + 1
2 ∥F NDFT(f) − g∥2

2 + λTV(f),

• Primal-dual (PD) iteration [Chambolle & Pock 2010]
• Adaptive selection of step sizes [Yokota & Hontani 2017]
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Reconstruction: Moving Axis

−40 −20 0 20 40

Ground truth f
(240 × 240 × 240 grid)

−40 −20 0 20 40

Backpropagation
PSNR 24.17, SSIM 0.171

−40 −20 0 20 40

CG Reconstruction
PSNR 35.84, SSIM 0.962

−40 −20 0 20 40

0

0.5

1

PD with TV (λ = 0.02)
PSNR 40.95, SSIM 0.972

R Beinert, M Quellmalz.
Total Variation-Based Reconstruction and Phase Retrieval for Diffraction Tomography with an Arbitrarily Moving
Object.
Arxiv preprint 2210.03495
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Reconstruction: Moving Axis and 5 % Gaussian Noise

−40 −20 0 20 40

Ground truth f

−40 −20 0 20 40

Backpropagation
PSNR 21.19, SSIM 0.075

−40 −20 0 20 40

CG Reconstruction
PSNR 24.10, SSIM 0.193

−40 −20 0 20 40

0

0.5

1

PD with TV (λ = 0.05)
PSNR 38.01, SSIM 0.772
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Formal Uniqueness Result

Theorem [Kurlberg Zickert 2021]

Let
• the matrix of second-order moments of f have distinct, real eigenvalues,
• certain third-order moments do not vanish,
• the translation d t be restricted to a known plane,
• the rotations Rt cover SO(3).

Then f is uniquely determined given the diffraction images ut for all (unknown) motions.

We find an algorithm to recover the rotations and translations
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Detection of the Rotation
Goal: Estimate the rotation Rt from the transformed measurements νt(k) = |F f(Rt h(k))|2

Common circle approach:
• For each t we have the Fourier data F f on one semisphere
• Two semispheres intersect in a circle (arc), where F f must agree
• Find the common circle of two semispheres

P Elbau, M Quellmalz, O Scherzer, G Steidl.
Motion detection in diffraction tomography with common circle methods.
Math Comp. (in press) doi:10.1090/mcom/3869
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Dual Common Circles

• f real-valued (no absorption)
• Additional symmetry F f(y) = F f(−y)
• Additional pair of “dual” common circles
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For φ ∈ [0, 2π), θ ∈ [0,π], we can parameterize the common circles in the 2D data by

γφ,θ(β) := k0

2 sin(θ)(cos(β) − 1)
(

cos(φ)
sin(φ)

)
+ k0 cos( θ2 ) sin(β)

(
− sin(φ)
cos(φ)

)
, β ∈ R,

γ̌φ,θ(β) := − k0

2 sin(θ)(cos(β) − 1)
(

cos(φ)
sin(φ)

)
− k0 sin( θ2 ) sin(β)

(
− sin(φ)
cos(φ)

)
, β ∈ R.

Theorem (unique reconstruction) [Q. Elbau Scherzer Steidl 2023]

Let s, t ∈ [0, T ]. Assume that there exist unique angles φ,ψ ∈ R/(2πZ) and θ ∈ [0,π] such that

νs(γφ,θ(β)) = νt(γπ−ψ,θ(−β)) ∀β ∈ [−π
2 , π2 ] and

νs(γ̌φ,θ(β)) = νt(γ̌π−ψ,θ(β)) ∀β ∈ [−π
2 , π2 ].

Then the relative rotation R⊤
s Rt is uniquely determined by the Euler angles

R⊤
s Rt = Q(3)(φ) Q(2)(θ) Q(3)(ψ),

where Q(i)(α) denotes the rotation around the i-th coordinate with angle α.
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Visualization of the Common Arcs

γs,t

γ̌s,t
0

νs

γ−
t,s

γ̌t,s

0

νt

0

1

−π π−βs,t βs,t

νs ◦ γs,t νt ◦ γ−
t,s

0

1

−π π

νs ◦ γ̌s,t νt ◦ γ̌t,s

Here γs,t := γφ,θ and γ t ,s := γπ−ψ,θ for R⊤
s Rt = Q(3)(φ) Q(2)(θ) Q(3)(ψ)
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Infinitesimal Common Circles Method

Theorem [Q. Elbau Scherzer Steidl 2023]

Let the rotation R ∈ C1([0, T ] → SO(3)) and t ∈ (0, T).
We define the associated angular velocity as the vector ωt ∈ R3 satisfying

R⊤
t R′

t y = ωt × y , y ∈ R3,

and write it in cylindrical coordinates

ωt =

ρ cosφ
ρ sinφ
ζ

 .

Then
− ∂tνt(rφ) =

((√
k2

0 − r2 − k0

)
ρ+ rζ

) 〈
∇νt(rφ),

(
− sinφ
cosφ

)〉
∀r ∈ (−k0, k0).
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Reconstructing the Translation

Recall: Data µt(k1, k2) = F f(Rt h(k1, k2)) e−i⟨d t ,h(k1 ,k2)⟩

Theorem [Q. Elbau Scherzer Steidl 2023]

Let s, t ∈ [0, T ] be such that Rse3 ̸= ±Rt e3 and let f ≥ 0 with f ̸≡ 0.
If d0 = 0, then d t can be uniquely reconstructed from the two equations:

ei⟨Rt d t −Rsds ,Rsh(γs,t (β))⟩ =
µs(γs,t(β))
µt(γ t ,s(−β)) , β ∈ [−π,π], µs(γs,t(β)) ̸= 0,

and
ei⟨Rt d t −Rsds ,Rsh(γ̌s,t (β))⟩ =

µs(γ̌s,t(β))
µt(γ̌ t ,s(β))

, β ∈ [−π,π], µs(γ̌s,t(β)) ̸= 0.

Similar reconstruction result for Rse3 = ±Rt e3
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Comparision with CT

Method of common lines in Cryo-EM [Crowther DeRosier Klug 70] [van Heel 87] [Goncharov 88] [Wang Singer Zen 13]

• Based on different model (ray transform)
• Requires 3 common planes (instead of 2 semi-spheres)
• Ambiguities (mirroring, translation along imaging direction)

Images by [Schmutz 17]
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Numerical Simulation: Test Functions (3D)

Cell phantom

−20 −10 0 10 20

−20

0
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0.5

1

Shepp-Logan phantom
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Numerical Simulation: Results

0 2 4 6
10−5

10−3

10−1

t Rel. error of rotation Rt (infinitesimal method)
Rel. error of rotation Rt (Minimization approach for common circles)
Error of translation d t

0 2 4 6
10−5

10−3

10−1

t

The rotation is around the moving axis (
√

1 − a2 cos(b sin(t/2)),
√

1 − a2 sin(b sin(t/2)), a) ∈ S2 for a = 0.28
and b = 0.5. The translation is d t = 2(sin t , sin t , sin t).
Left: cell phantom. Right: Shepp–Logan phantom.
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Reconstructed Scattering Potential f
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Cell phantom (PSNR 32.21, SSIM 0.754)
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Shepp–Logan (PSNR 30.85, SSIM 0.772)
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Thank you for your attention!
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