

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object

Michael Quellmalz | TU Berlin | SIAM Imaging Science, 21 March 2022 joint work with Robert Beinert, Florian Faucher, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele Steidl

Optical Diffraction Tomography (ODT) x_1 Measurement plane $x_3 = r_M$ f = 0rs X_3 u^{inc} $f \neq 0$ X_2 Incident field: Plane wave with normal x_3

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl. Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations. *Inverse Problems* 37, 2021.

Optical Diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large \approx the size of the object (μm scale)

Simulation of the scattered field from spherical particles (size \approx wavelength)

Image with diffraction © Medizinische Universität Innsbruck

- We have field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_s} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\mathbf{r}) = u^{\text{sca}}(\mathbf{r}) + u^{\text{inc}}(\mathbf{r})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{r}) + k_0^2\right) u^{\text{tot}}(\mathbf{r}) = 0$$

Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(r)-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(r)}_{=0}=f(r)\left(u^{\mathrm{sca}}(r)+u^{\mathrm{inc}}(r)\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\mathbf{r})=f(\mathbf{r})u^{\rm inc}(\mathbf{r})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

- We have field $u^{\text{tot}}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_s} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{r}}) = u^{\text{sca}}(\textbf{\textit{r}}) + u^{\text{inc}}(\textbf{\textit{r}})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{r}) + k_0^2\right) u^{\text{tot}}(\mathbf{r}) = 0$$

Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{r})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{r})}_{=0}=f(\mathbf{r})\left(u^{\mathrm{sca}}(\mathbf{r})+u^{\mathrm{inc}}(\mathbf{r})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\mathbf{r})=f(\mathbf{r})u^{\rm inc}(\mathbf{r})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

- We have field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_s} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{r}}) = u^{\text{sca}}(\textbf{\textit{r}}) + u^{\text{inc}}(\textbf{\textit{r}})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{r}) + k_0^2\right) u^{\text{tot}}(\mathbf{r}) = 0$$

- Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{r})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{r})}_{=0}=f(\mathbf{r})\left(u^{\mathrm{sca}}(\mathbf{r})+u^{\mathrm{inc}}(\mathbf{r})\right)$$

Born approximation

Assuming
$$|u^{\rm sca}| \ll |u^{\rm inc}|$$
, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\mathbf{r})=f(\mathbf{r})u^{\rm inc}(\mathbf{r})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

- We have field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_s} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{r}}) = u^{\text{sca}}(\textbf{\textit{r}}) + u^{\text{inc}}(\textbf{\textit{r}})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{r}) + k_0^2\right) u^{\text{tot}}(\mathbf{r}) = 0$$

- Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{r})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{r})}_{=0}=f(\mathbf{r})\left(u^{\mathrm{sca}}(\mathbf{r})+u^{\mathrm{inc}}(\mathbf{r})\right)$$

Born approximation

Assuming $|u^{
m sca}| \ll |u^{
m inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{r})=f(\boldsymbol{r})u^{\rm inc}(\boldsymbol{r})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Fourier diffraction theorem [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

- 1. scattering potential $f \in L^p$, p > 1, where $\operatorname{supp}(f) \subset \mathcal{B}_{r_s}$, $0 < r_s < r_M$,
- 2. incident field is a plane wave $u^{inc}(\mathbf{x}) = e^{ik_0x_3}$,
- Born approximation is valid and u^{sca} satisfies the Sommerfeld condition 3. $(u^{\text{sca}} \text{ is an outgoing wave}),$
- 4. scattered field u^{sca} is measured at the plane $r_3 = r_M$.

Then

$$\sqrt{\frac{2}{\pi}} \kappa i e^{-i\kappa M} \mathcal{F}_{1,2} \underbrace{u^{\text{sca}}(k_1, k_2, r_M)}_{\text{measurements}} = \mathcal{F}f(-\mathbf{h}(k_1, k_2)), \quad (k_1, k_2) \in \mathbb{R}^2$$

where
$$h(k_1, k_2) := \begin{pmatrix} k_1 \\ k_2 \\ \kappa - k_0 \end{pmatrix}$$
 and $\kappa := \sqrt{k_0^2 - k_1^2 - k_2^2}$.

Semisphere $h(\mathbf{k})$ of available data in Fourier space

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Fourier diffraction theorem (with rotation)

- 1. scattering potential $f \in L^{p}$, p > 1, where $\operatorname{supp}(f) \subset \mathcal{B}_{r_{s}}$, $0 < r_{s} < r_{M}$,
- 2. incident field is a plane wave $u^{\text{inc}}(\mathbf{x}) = e^{ik_0 x_3}$,
- 3. Born approximation is valid and u^{sca} satisfies the Sommerfeld condition (u^{sca} is an outgoing wave),
- 4. scattered field u^{sca} is measured at the plane $r_3 = r_{\text{M}}$.

Then

$$\sqrt{\frac{2}{\pi}} \kappa i e^{-i\kappa r_{M}} \mathcal{F}_{1,2} \underbrace{u^{\text{sca}}(k_{1}, k_{2}, r_{M})}_{\text{measurements}} = \mathcal{F}f(\mathbf{R}_{t}\mathbf{h}(k_{1}, k_{2})), \quad (k_{1}, k_{2}) \in \mathbb{R}^{2},$$

where
$$\boldsymbol{h}(k_1, k_2) \coloneqq \begin{pmatrix} k_1 \\ k_2 \\ \kappa - k_0 \end{pmatrix}$$
 and $\kappa := \sqrt{k_0^2 - k_1^2 - k_2^2}$.

Set of available Fourier space data for full rotation

Rotation $R_t \in SO(3)$ at time $t \in [0, T]$

Comparison with Computerized Tomography

Optical diffraction tomography (ODT)

diffraction of imaging beam Data: Fourier transform on semispheres containing ${\bf 0}$

Computerized tomography (CT)

light travels on lines Data: Fourier transform on planes containing ${\bf 0}$

Discretization

- Uniform sampling of $f(\mathbf{x}_{\mathbf{k}} = \mathbf{k} \frac{2L_s}{\kappa})$, $\mathbf{k} \in \mathcal{I}^3_{\kappa} \coloneqq \{-\kappa/2, \dots, \kappa/2 1\}^3$
- Uniform sampling of measurements $u_{t_m}^{\text{tot}}(\boldsymbol{y}_n, \boldsymbol{r}_M)$, $\boldsymbol{y}_n = n \frac{2L_M}{N}$, m = 1, ..., M, $n \in \mathcal{I}_N^2$
- discrete Fourier transform (DFT)

$$\left[\boldsymbol{F}_{\mathsf{DFT}} \, \boldsymbol{u}_{t_m}^{\mathsf{sca}}\right]_{\boldsymbol{\ell}} \coloneqq \sum_{\boldsymbol{n} \in \mathcal{I}_N^2} \boldsymbol{u}_{t_m}^{\mathsf{sca}}(\boldsymbol{y}_{\boldsymbol{n}}, \boldsymbol{r}_{\mathsf{M}}) \, \mathbf{e}^{-2\pi \mathrm{i} \boldsymbol{n} \cdot \boldsymbol{\ell} / N}, \qquad \boldsymbol{\ell} \in \mathcal{I}_N^2,$$

- Non-uniform discrete Fourier transform (NDFT)

$$[\mathbf{F}_{\mathsf{NDFT}}\mathbf{f}]_{m,\ell} \coloneqq \sum_{\mathbf{k}\in\mathcal{I}_{K}^{3}} f_{\mathbf{k}} \, \mathrm{e}^{-\mathrm{i}\mathbf{x}_{\mathbf{k}}\cdot\left(R_{l_{m}}\mathbf{h}(\mathbf{y}_{\ell})\right)}, \qquad m\in\mathcal{J}_{M}, \ \ell\in\mathcal{I}_{N}^{2}$$

Discretized forward operator

$$oldsymbol{D}^{ ext{tot}}oldsymbol{f} \coloneqq oldsymbol{F}_{ ext{DFT}}^{-1}(oldsymbol{c}\odotoldsymbol{F}_{ ext{NDFT}}oldsymbol{f}) + extbf{e}^{ ext{i} k_0 n_{ ext{M}}}, \qquad oldsymbol{f} \in \mathbb{R}^{K^d},$$

where $\boldsymbol{c} = \left[\frac{i}{\kappa(\boldsymbol{y}_{\ell})} e^{i \kappa(\boldsymbol{y}_{\ell}) \eta_{M}} \left(\frac{N}{L_{M}}\right)^{d-1} \left(\frac{L_{s}}{K}\right)^{d}\right]_{\ell \in \mathcal{I}_{M}^{2}}$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Reconstruction algorithm

Input: Scattered wave
$$\mathbf{v}_{m,n}^{\text{sca}} := u_{tm}^{\text{tot}} \left(n^{2L_M}_N, r_M \right) - e^{ik_0 r_M}, \ m \in \mathcal{J}_M, \ n \in \mathcal{I}_N^{d-1}$$

for $m = 1, ..., M$
 $\tilde{\mathbf{g}}_m := \mathbf{F}_{\text{DFT}} \mathbf{v}_m^{\text{sca}}$
 $\mathbf{g}_m := \tilde{\mathbf{g}}_m \oslash \mathbf{c}$, where \oslash is the Hadamard (entrywise) division
Compute the inverse NDFT by solving $\mathbf{F}_{\text{NDFT}} \mathbf{f} = \mathbf{g}$ for \mathbf{f}
Output: Scattering potential $\mathbf{f} \approx [f(\mathbf{x}_k)]_{k \in I_m^d}$.

Method 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$\mathbf{f}_{\mathrm{bp}}(\mathbf{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}\mathbf{f}(\mathbf{k}) \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \mathrm{d}\mathbf{k}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis $n \in C^1([0, T], \mathbb{S}^2)$ with angle $\alpha \in C^1[0, T]$. Then

$$f_{\mathsf{bp}}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i}R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(k_1, k_2, t)|}{\operatorname{Card} \mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t,$$

where

$$\det \nabla T(k_1, k_2, t) = \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha) \left(n_3 \, \mathbf{n}' \cdot \mathbf{h} - n_3' \, \mathbf{n} \cdot \mathbf{h} \right) - n_3 \, \mathbf{n} \cdot \left(\mathbf{n}' \times \mathbf{h} \right) \sin \alpha \right) - \alpha' \left(n_1 k_2 - n_2 k_1 \right) + \left(\mathbf{n} \cdot \mathbf{h} \right) \left(n_1 n_2' - n_2 n_1' \right) \sin \alpha \right|,$$

and $T(k_1, k_2, t) \coloneqq R_t \boldsymbol{h}(k_1, k_2).$

It is complicated to determine the Crofton symbol $\operatorname{Card}(\mathcal{T}^{-1}(\mathbf{y}))$ algebraically (except for a constant \mathbf{n}).

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Method 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\rm bp}(\boldsymbol{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}f(\boldsymbol{k}) \, \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{x}} \, \mathrm{d}\boldsymbol{k}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis $\mathbf{n} \in C^1([0, T], \mathbb{S}^2)$ with angle $\alpha \in C^1[0, T]$. Then

$$f_{\mathsf{bp}}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i}R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(k_1, k_2, t)|}{\operatorname{Card} \mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} \, \mathsf{d}(k_1, k_2) \, \mathsf{d}t,$$

where

$$\det \nabla T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{t}) = \frac{\mathbf{k}_0}{\kappa} \left| \left((1 - \cos \alpha) \left(n_3 \, \mathbf{n}' \cdot \mathbf{h} - n_3' \, \mathbf{n} \cdot \mathbf{h} \right) - n_3 \, \mathbf{n} \cdot \left(\mathbf{n}' \times \mathbf{h} \right) \sin \alpha \right) - \alpha' \, (n_1 k_2 - n_2 k_1) + (\mathbf{n} \cdot \mathbf{h}) \left(n_1 n_2' - n_2 n_1' \right) \sin \alpha \right|,$$

and $T(k_1, k_2, t) \coloneqq R_t \boldsymbol{h}(k_1, k_2).$

It is complicated to determine the Crofton symbol $Card(\mathcal{T}^{-1}(\mathbf{y}))$ algebraically (except for a constant \mathbf{n}).

Example: Rotation Around the First Axis

Backpropagation formula
$$f_{bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) e^{R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \frac{k_0 |k_2|}{2\kappa} d(k_1, k_2) dt$$

[Kak, Slaney 2001] [Müller, Schürmann, Guck 2016]

Approach 2: Conjugate Gradient (CG) Method

- Inversion of the NDFT
- Find a solution $\mathbf{\textit{f}} \in \mathbb{R}^{\kappa^3}$ of

$$\min_{\boldsymbol{f} \in \mathbb{R}^{K^d}} \qquad \|\boldsymbol{F}_{\mathsf{NDFT}}\boldsymbol{f} - \boldsymbol{g}\|_{2,\boldsymbol{w}}^2 = \sum_{\boldsymbol{x}} (\boldsymbol{F}_{\mathsf{NDFT}}\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{g}(\boldsymbol{x}))^2 w(\boldsymbol{x})$$

- Use Conjugate gradients on the normal equations

Approach 3: TV (Total Variation) Regularization

- Inversion of the NDFT
- Find a solution $\mathbf{\textit{f}} \in \mathbb{R}^{\kappa^3}$ of

$$\underset{\textbf{\textit{f}} \in \mathbb{R}^{K^d}}{\text{minimize}} \qquad \chi_{\mathbb{R}^{K^d}}(\textbf{\textit{f}}) + \tfrac{1}{2} \|\textbf{\textit{F}}_{\text{NDFT}}(\textbf{\textit{f}}) - \textbf{\textit{g}}\|_{2,\textbf{w}}^2 + \lambda \mathsf{TV}(\textbf{\textit{f}}),$$

with the total variation

$$\mathsf{TV}(\mathbf{f}) \coloneqq \sum_{\mathbf{k} \in \mathcal{I}_{\mathcal{K}}^{3}} \| \operatorname{grad} \mathbf{f}(\mathbf{x}_{\mathbf{k}}) \|_{2}$$

- Solve with primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Test Setup

- Normalized wavelength $\lambda = 1 \Rightarrow k_0 = \frac{2\pi}{\lambda} = 2\pi$
- Test function f given analytically
- Generate simulated data via direct convolution with the Green function (also based on Born approximation) to avoid the "inverse crime"
- "missing cones" around the axis of rotation
- NFFT (Non-uniform fast Fourier transform): for computing *F*_{NDFT}f in *O*(*N*³ log *N*) steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Simulated data: Fourier transform $|\mathcal{F}f|$ at 496944 nodes (constant rotation axis)

Test data

Ground truth f ($240 \times 240 \times 240$ grid) Slice at $x_3 = 0.35$

Exact data $|u_t^{\rm tot}(\cdot, {\rm r_M})|$ (240 × 240 grid and 240 rotations

Data with $5\,\%$ Gaussian noise

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

(a) Ground truth f

(d) CG Reconstruction PSNR 33.36, SSIM 0.955 79 sec -20-40-40 -20 0 20(b) Backpropagation

40

20

0

(b) Backpropagation PSNR 29.07, SSIM 0.614 4 sec

1

0.5

0

40

(e) CG and TV denoise ($\lambda=0.02$) PSNR 33.82, SSIM 0.988 31 sec

(c) Backprop. and TV denoise ($\lambda=0.02$) PSNR 32.79, SSIM 0.987 37 sec

(f) PD with TV ($\lambda = 0.02$) PSNR 34.36, SSIM 0.957 21 min

-200

0

-40

40

0

-40

-200

0.5

0.5

0

40

(c) Backpropagation and TVdenoise $(\lambda = 0.05)$ PSNR 32.51, SSIM 0.968

(f) PD with TV ($\lambda = 0.02$) PSNR 33.58, SSIM 0.736

Figure: Slice of 3D reconstruction with 5 % Gaussian noise (grid $240 \times 240 \times 240$)

00

20

6

20

40

Figure: Slice of 3D reconstruction from exact data with moving rotation axis (grid $240 \times 240 \times 240$)

Phase Retrieval

Berlin [Beinert & Q. 2022]

Technisc Universit

- In practice, one can often measure only the intensity

$$\left|u_t^{\text{tot}}(\boldsymbol{y}, r_{\text{M}})\right| = \left|u_t^{\text{sca}}(\boldsymbol{y}, r_{\text{M}}) + e^{ik_0 r_{\text{M}}}\right|, \qquad \boldsymbol{y} \in \mathbb{R}^2, t \in [0, T]$$

- Existing phase retrieval methods in diffraction tomography
 - require more measurements [Gbur & Wolf 2002] [Wedberg & Stamnes 1995]
 - use far zone approximations [Cheng & Han 2001] [Gureyev & Davis 2004]
 - Consider phase retrieval separate from reconstruction [Maleki & Devaney 1993]
 - Use techniques of ptychography [Horstmeyer Chung Ou Zheng & Yang 2016]
- We require additional information:
 - $f \ge 0$
 - *f* has bounded support
 - total variation of f

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

All-at-Once Approach for Phase Retrieval

Forward operator $\boldsymbol{D}f(t, \boldsymbol{y}) = u_t^{\text{tot}}(\boldsymbol{y}, r_{\text{M}})$

Hybrid input-output (HIO) algorithm

Input: Data
$$d = |D(f)| = |u^{\text{bot}}|$$
, parameter $\beta \in [0, 1]$, support radius $r_{\text{s}} > 0$.
Initialize $g^{(0)} := d$
for $j = 0, 1, 2, ...$
 $f^{(j)} := D^{-1}g^{(j)}$
 $\tilde{t}^{(j)}_{k} := \begin{cases} \max\{f^{(j)}(\mathbf{x}_{k}), 0\}, & \|\mathbf{x}_{k}\|_{2} \le r_{\text{s}}, \\ 0, & \|\mathbf{x}_{k}\|_{2} > r_{\text{s}}, \end{cases}$
 $f^{(j+1/2)}(\mathbf{x}_{k}) := \begin{cases} f^{(j)}(\mathbf{x}_{k}), & \text{if } f^{(j)}(\mathbf{x}_{k}) = \tilde{t}^{(j)}(\mathbf{x}_{k}) \\ f^{(j-1/2)}(\mathbf{x}_{k}) - \beta(f^{(j)}(\mathbf{x}_{k}) - \tilde{t}^{(j)}(\mathbf{x}_{k})), & \text{otherwise}, \end{cases}$
 $g^{(j+1/2)} := Df^{(j+1/2)}$
 $g^{(j+1)} := d \operatorname{sgn}(g^{(j+1/2)})$
Output: Approximate scattering potential $f^{(j)}$.

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

[Fienup 1982]

Numerical Phase Retrieval (Exact Data)

(a) HIO/CG reconstruction $J_{\rm IO}=10,\,J_{\rm CG}=5$ PSNR 29.52, SSIM 0.713 5 min

(b) HIO/CG and TV denoise $\lambda=0.02, \, J_{\rm TV}=20$ PSNR 29.88, SSIM 0.713 31 sec (c) HIO/PD with TV $\lambda{=}0.01, J_{\rm IO}{=}200, J_{\rm PD}{=}5$ PSNR 34.92, SSIM 0.994 3 h 48 min

0

20 40

0.5

40

20

0

-20

-40

-40 - 20

Figure: Slice of 3D HIO phase retrieval

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Figure: Slice of 3D HIO phase retrieval with 5% Gaussian noise

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 21 March 2022

Computational complexity

- Outer loop with HIO and inner loop with primal-dual (PD)
- Both algorithms often show slow convergence
- Improvements:
- Restart the primal dual with the parameters dual variable from the previous outer step
- Use faster HIO/CG to obtain a starting solution for primal-dual
- Use fast FFT and NFFT algorithms for the Fourier step
- Employ the weights from the backpropagation to the minimization problem

Code available on Github: https://github.com/michaelquellmalz/FourierODT

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!