

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object

Michael Quellmalz | TU Berlin | IPMS Conference, Malta, 23 May 2022 joint work with Robert Beinert, Florian Faucher, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele Steidl

Optical Diffraction Tomography (ODT) x_1 Measurement plane $x_3 = r_M$ f = 0 X_3 u^{inc} object ($t \neq 0$) Incident field: Plane wave with normal x_3

C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl. Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations. *Inverse Problems* 37, 2021.

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Optical Diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large \approx the size of the object (μm scale)

Simulation of the scattered field from spherical particles (size \approx wavelength)

Image with diffraction © Medizinische Universität Innsbruck

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\textbf{x}) = e^{ik_0x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta + f(\boldsymbol{x}) + k_0^2\right) u^{\text{tot}}(\boldsymbol{x}) = 0$$

Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\mathrm{sca}}(\mathbf{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\mathrm{inc}}(\mathbf{x})}_{=0}=f(\mathbf{x})\left(u^{\mathrm{sca}}(\mathbf{x})+u^{\mathrm{inc}}(\mathbf{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\textbf{x}) = e^{ik_0x_3}$
- Total field $u^{\text{tot}}(\textbf{\textit{x}}) = u^{\text{sca}}(\textbf{\textit{x}}) + u^{\text{inc}}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\boldsymbol{\Delta}+\mathbf{f}(\mathbf{x})+\mathbf{k}_{0}^{2}\right)\mathbf{u}^{\mathrm{tot}}(\mathbf{x})=0$$

Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\text{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\text{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\text{sca}}(\boldsymbol{x})+u^{\text{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0 x_3}$
- Total field $u^{\rm tot}(\textbf{\textit{x}}) = u^{\rm sca}(\textbf{\textit{x}}) + u^{\rm inc}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\boldsymbol{\Delta}+\mathbf{f}(\mathbf{x})+\mathbf{k}_{0}^{2}\right)\mathbf{u}^{\mathrm{tot}}(\mathbf{x})=0$$

- Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\text{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\text{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\text{sca}}(\boldsymbol{x})+u^{\text{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

- We have: field $u^{tot}(x_1, x_2, r_M)$ at measurement plane $x_3 = r_M$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\textbf{x}) = e^{ik_0x_3}$
- Total field $u^{\rm tot}(\textbf{\textit{x}}) = u^{\rm sca}(\textbf{\textit{x}}) + u^{\rm inc}(\textbf{\textit{x}})$ solves the wave equation

$$-\left(\Delta + f(\boldsymbol{x}) + k_0^2\right) u^{\text{tot}}(\boldsymbol{x}) = 0$$

- Rearranging yields

$$-\left(\Delta+k_0^2\right)u^{\text{sca}}(\boldsymbol{x})-\underbrace{\left(\Delta+k_0^2\right)u^{\text{inc}}(\boldsymbol{x})}_{=0}=f(\boldsymbol{x})\left(u^{\text{sca}}(\boldsymbol{x})+u^{\text{inc}}(\boldsymbol{x})\right)$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta+k_0^2\right)u^{\rm sca}(\boldsymbol{x})=f(\boldsymbol{x})u^{\rm inc}(\boldsymbol{x})$$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Fourier diffraction theorem [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

- 1. scattering potential $f \in L^p$, p > 1, where $\operatorname{supp}(f) \subset \mathcal{B}_{r_M}$, $0 < r_M$,
- 2. incident field is plane wave $u^{\text{inc}}(\mathbf{x}) = e^{ik_0 x_3}$,
- 3. Born approximation is valid and u^{sca} satisfies the Sommerfeld condition $(u^{sca} \text{ is an outgoing wave})$,
- 4. scattered field u^{sca} measured at the plane $x_3 = r_{\rm M}$.

Then

$$\sqrt{\frac{2}{\pi}}\kappa i e^{-i\kappa n_{M}} \mathcal{F}_{1,2} \underbrace{u^{\text{sca}}(k_{1},k_{2},r_{M})}_{\text{measurements}} = \mathcal{F}f(-h(k_{1},k_{2})), \quad (k_{1},k_{2}) \in \mathbb{R}^{2},$$

where
$$h(k_1, k_2) \coloneqq \begin{pmatrix} k_1 \\ k_2 \\ \kappa - k_0 \end{pmatrix}$$
 and $\kappa := \sqrt{k_0^2 - k_1^2 - k_2^2}$.

Semisphere h(k) of available data in Fourier space

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Fourier diffraction theorem (with rotation)

- 1. scattering potential $f \in L^p$, p > 1, where $\operatorname{supp}(f) \subset \mathcal{B}_{r_M}$, $0 < r_M$,
- 2. incident field is plane wave $u^{\text{inc}}(\mathbf{x}) = e^{ik_0 x_3}$,
- 3. Born approximation is valid and u^{sca} satisfies the Sommerfeld condition $(u^{sca} \text{ is an outgoing wave})$,
- 4. scattered field u^{sca} measured at the plane $x_3 = r_{\rm M}$.

Then

$$\sqrt{\frac{2}{\pi}}\kappa i e^{-i\kappa n_{M}} \mathcal{F}_{1,2} \underbrace{u^{\text{sca}}(k_{1},k_{2},r_{M})}_{\text{measurements}} = \mathcal{F}f(\mathbf{R}_{t}\mathbf{h}(k_{1},k_{2})), \quad (k_{1},k_{2}) \in \mathbb{R}^{2},$$

where
$$\boldsymbol{h}(k_1,k_2)\coloneqq egin{pmatrix} k_1\ k_2\ \kappa-k_0 \end{pmatrix}$$
 and $\kappa:=\sqrt{k_0^2-k_1^2-k_2^2}.$

Set of available Fourier space data for full rotation

Rotation $R_t \in SO(3)$ at time $t \in [0, T]$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Comparison with Computerized Tomography

Optical diffraction tomography (ODT)

diffraction of imaging beam Data: Fourier transform on semispheres containing ${\bf 0}$

Computerized tomography (CT)

light travels on lines Data: Fourier transform on planes containing ${\bf 0}$

Discretization

- Uniform sampling of $f(\mathbf{x}_{\mathbf{k}} = \mathbf{k} \frac{2L_s}{\kappa})$, $\mathbf{k} \in \mathcal{I}^3_{\kappa} \coloneqq \{-\kappa/2, \dots, \kappa/2 1\}^3$
- Uniform sampling of measurements $u_{t_m}^{\text{tot}}(\boldsymbol{y}_n, \boldsymbol{r}_M)$, $\boldsymbol{y}_n = n \frac{2L_M}{N}$, m = 1, ..., M, $n \in \mathcal{I}_N^2$
- discrete Fourier transform (DFT)

$$\left[\mathbf{F}_{\mathsf{DFT}} \, u_{t_m}^{\mathsf{sca}} \right]_{\boldsymbol{\ell}} \coloneqq \sum_{\mathbf{n} \in \mathcal{I}_N^2} u_{t_m}^{\mathsf{sca}}(\mathbf{y}_{\mathbf{n}}, \mathbf{r}_{\mathsf{M}}) \, \mathrm{e}^{-2\pi \mathrm{i} \mathbf{n} \cdot \boldsymbol{\ell} / N}, \qquad \boldsymbol{\ell} \in \mathcal{I}_N^2,$$

- Non-uniform discrete Fourier transform (NDFT)

$$[\mathbf{F}_{\mathsf{NDFT}}\mathbf{f}]_{m,\ell} \coloneqq \sum_{\mathbf{k}\in\mathcal{I}_{K}^{3}} f_{\mathbf{k}} \, \mathrm{e}^{-\mathrm{i}\mathbf{x}_{\mathbf{k}}\cdot\left(R_{l_{m}}\mathbf{h}(\mathbf{y}_{\ell})\right)}, \qquad m\in\mathcal{J}_{M}, \ \ell\in\mathcal{I}_{N}^{2}$$

Discretized forward operator

$$oldsymbol{D}^{ ext{tot}}oldsymbol{f} \coloneqq oldsymbol{F}_{ ext{DFT}}^{-1}(oldsymbol{c}\odotoldsymbol{F}_{ ext{NDFT}}oldsymbol{f}) + extbf{e}^{ ext{i} k_0 n_{ ext{M}}}, \qquad oldsymbol{f} \in \mathbb{R}^{K^d},$$

where $\boldsymbol{c} = \left[\frac{i}{\kappa(\boldsymbol{y}_{\ell})} e^{i \kappa(\boldsymbol{y}_{\ell}) \eta_{M}} \left(\frac{N}{L_{M}}\right)^{d-1} \left(\frac{L_{s}}{K}\right)^{d}\right]_{\ell \in \mathcal{I}_{M}^{2}}$

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Reconstruction

Input: Scattered wave
$$\mathbf{v}_{m,n}^{\text{sca}} \coloneqq u_{lm}^{\text{tot}}(\mathbf{n} \frac{2L_M}{N}, \mathbf{r}_M) - e^{i\mathbf{k}_0 \cdot \mathbf{M}}, m \in \mathcal{J}_M, \mathbf{n} \in \mathcal{I}_N^{d-1}$$

for $m = 1, ..., M$
 $\tilde{\mathbf{g}}_m \coloneqq \mathbf{F}_{\text{DFT}} \mathbf{v}_m^{\text{sca}}$
 $\mathbf{g}_m \coloneqq \tilde{\mathbf{g}}_m \oslash \mathbf{c}$, where \oslash is the Hadamard (entrywise) division
Solve $\mathbf{F}_{\text{NDFT}} \mathbf{f} = \mathbf{g}$ for \mathbf{f} (inverse NDFT)
Output: Scattering potential $\mathbf{f} \approx [f(\mathbf{x}_k)]_{k \in I_n^d}$.

1

Approach 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$\mathbf{f}_{\mathrm{bp}}(\mathbf{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F}\mathbf{f}(\mathbf{y}) \, \mathrm{e}^{\mathrm{i}\mathbf{y}\cdot\mathbf{x}} \, \mathrm{d}\mathbf{y}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{\rm bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_l \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i} \, R_l \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \frac{|\det \nabla \mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{t})|}{\operatorname{Card} \mathcal{T}^{-1}(\mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{t}))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}\mathbf{t},$$

where

$$|\det \nabla T(k_1, k_2, t)| = \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha) (a_3 \, \mathbf{a}' \cdot \mathbf{h} - a_3' \mathbf{a} \cdot \mathbf{h}) - a_3 \, \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin \alpha \right) - \alpha' (a_1 k_2 - a_2 k_1) + (\mathbf{a} \cdot \mathbf{h}) (a_1 a_2' - a_2 a_1') \sin \alpha \right|,$$

and $T(k_1, k_2, t) := R_t \mathbf{h}(k_1, k_2).$

It is complicated to determine the Crofton symbol $\operatorname{Card}(\mathcal{T}^{-1}(\mathbf{y}))$ algebraically (except for a constant \mathbf{a}).

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Approach 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$\mathbf{f}_{\mathrm{bp}}(\mathbf{x}) := (2\pi)^{-\frac{3}{2}} \int_{\mathcal{Y}} \mathcal{F} \mathbf{f}(\mathbf{y}) \, \mathrm{e}^{\mathrm{i} \mathbf{y} \cdot \mathbf{x}} \, \mathrm{d} \mathbf{y}.$$

Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0, T]$. Then

$$f_{\rm bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i} \, R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla T(k_1, k_2, t)|}{\operatorname{Card} T^{-1}(T(k_1, k_2, t))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t,$$

where

$$\begin{aligned} \left| \det \nabla T(k_1, k_2, t) \right| &= \frac{k_0}{\kappa} \left| \left((1 - \cos \alpha) (a_3 \, \mathbf{a}' \cdot \mathbf{h} - a_3' \mathbf{a} \cdot \mathbf{h}) - a_3 \, \mathbf{a} \cdot (\mathbf{a}' \times \mathbf{h}) \sin \alpha \right) - \alpha' \, (a_1 k_2 - a_2 k_1) + (\mathbf{a} \cdot \mathbf{h}) (a_1 a_2' - a_2 a_1') \sin \alpha \right|, \\ \text{and } T(k_1, k_2, t) &:= R_t \mathbf{h}(\mathbf{k}_1, k_2). \end{aligned}$$

It is complicated to determine the Crofton symbol $Card(\mathcal{T}^{-1}(\mathbf{y}))$ algebraically (except for a constant **a**).

Example: Rotation Around the First Axis

Backpropagation formula $f_{bp}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_0^T \int_{\mathcal{B}_{k_0}} \mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2)) \, \mathbf{e}^{\mathrm{i} \, \mathbf{R}_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{k_0 \, |\mathbf{k}_2|}{2\kappa} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t$

Set ${\mathcal Y}$ of available data in Fourier space

Approach 2: Conjugate Gradient (CG) Method

- Inverse of the NDFT
- Find

$$\underset{\textbf{\textit{f}} \in \mathbb{R}^{K^d}}{\operatorname{arg\,min}} \quad \|\textbf{\textit{F}}_{\mathsf{NDFT}}\textbf{\textit{f}} - \textbf{\textit{g}}\|_{2,\textbf{w}}^2 = \sum_{\textbf{\textit{x}}} (\textbf{\textit{F}}_{\mathsf{NDFT}}\textbf{\textit{f}}(\textbf{\textit{x}}) - g(\textbf{\textit{x}}))^2 w(\textbf{\textit{x}})$$

- Use Conjugate Gradients (CG) on the normal equations

Approach 3: TV (Total Variation) Regularization

- Regularized inverse of the NDFT
- Find

$$\underset{\textbf{\textit{f}} \in \mathbb{R}^{K^d}}{\arg\min} \qquad \chi_{\mathbb{R}^{K^d}_{\geq 0}}(\textbf{\textit{f}}) + \tfrac{1}{2} \|\textbf{\textit{F}}_{\text{NDFT}}(\textbf{\textit{f}}) - \textbf{\textit{g}}\|_{2,\textbf{w}}^2 + \lambda \mathsf{TV}(\textbf{\textit{f}}),$$

with total variation

$$\mathsf{TV}(f) := \sum_{k \in \mathcal{I}_{K}^{3}} \| \operatorname{grad} f(\boldsymbol{x}_{k}) \|_{2}$$

- Use primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Test Setup

- Normalized wavelength $1 \Rightarrow \mathbf{k}_0 = 2\pi$
- Test function f given analytically
- Simulate data via convolution with the Green function (also based on Born approximation) to avoid the "inverse crime"
- "missing cones" around the axis of rotation
- NFFT (Non-uniform fast Fourier transform) for computing *F*_{NDFT}*f* in *O*(*N*³ log *N*) steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Simulated data: Fourier transform $|\mathcal{F}f|$ at 496944 nodes (constant rotation axis)

Test data

Ground truth f ($240 \times 240 \times 240$ grid) Slice at $x_3 = 0.35$

Exact data $|u_t^{\rm tot}(\cdot,{\bf r}_{\rm M})|$ 240×240 grid and 240 rotations

Data with 5 % Gaussian noise

Ground truth f

CG Reconstruction

79 sec

PSNR 33.36, SSIM 0.955

Backpropagation PSNR 29.07, SSIM 0.614 4 sec

CG and TV denoise ($\lambda = 0.02$) PSNR 33.82, SSIM 0.988 31 sec Backprop. and TVdenoise ($\lambda{=}0.02$) PSNR 32.79, SSIM 0.987 37 sec

PD with TV ($\lambda = 0.02$) PSNR 34.36, SSIM 0.957 21 min

PD with TV ($\lambda = 0.02$) PSNR 33.58, SSIM 0.736

Backpropagation PSNR 24.53, SSIM 0.178

-20

40

20

0

-20

-40

-40

0 6

0

20

CG Reconstruction PSNR 26.74, SSIM 0.309

Ground truth f

CG and TV denoise ($\lambda = 0.02$) PSNR 33.53, SSIM 0.965

Noisy data

Ground truth f

Backpropagation PSNR 24.17, SSIM 0.171

CG and TVdenoise ($\lambda = 0.02$) PSNR 36.88, SSIM 0.995

PD with TV ($\lambda = 0.02$)

Backpropagation and TVdenoise ($\lambda = 0.02$) PSNR 29.17, SSIM 0.783

PSNR 40.95, SSIM 0.972

Moving rotation axis

Phase Retrieval

- In practice, one can often measure only the intensity

$$\left|u_t^{\text{tot}}(\mathbf{y}, \mathbf{r}_{\mathsf{M}})\right| = \left|u_t^{\text{sca}}(\mathbf{y}, \mathbf{r}_{\mathsf{M}}) + e^{ik_0\mathbf{r}_{\mathsf{M}}}\right|, \qquad \mathbf{y} \in \mathbb{R}^2, t \in [0, T]$$

- Existing phase retrieval methods in diffraction tomography
 - require more measurements [Gbur & Wolf 2002] [Wedberg & Stamnes 1995]
 - use far zone approximations [Cheng & Han 2001] [Gureyev & Davis 2004]
 - Consider phase retrieval separate from reconstruction [Maleki & Devaney 1993]
 - Use techniques of ptychography [Horstmeyer Chung Ou Zheng & Yang 2016]
- We require additional information:
 - $f \ge 0$
 - *f* has bounded support
 - total variation of f

R Beinert, M Quellmalz.

Total Variation-Based Phase Retrieval for Diffraction Tomography.

ArXiv preprint 2201.11579, 2022.

All-at-Once Approach for Phase Retrieval

Forward operator $\boldsymbol{D}f(t, \boldsymbol{y}) = u_t^{\text{tot}}(\boldsymbol{y}, r_{\text{M}})$

Hybrid input-output (HIO) algorithm

Input: Data
$$d = |D(f)| = |u^{tot}|$$
, parameter $\beta \in [0, 1]$, support radius $r_s > 0$.
Initialize $g^{(0)} := d$
for $j = 0, 1, 2, ...$
 $f^{(j)} := D^{-1}g^{(j)}$
 $\tilde{t}_{k}^{(j)} := \begin{cases} \max\{f^{(j)}(\mathbf{x}_{k}), 0\}, & \|\mathbf{x}_{k}\|_{2} \le r_{s} \\ 0, & \|\mathbf{x}_{k}\|_{2} > r_{s} \end{cases}$
 $f^{(j+1/2)}(\mathbf{x}_{k}) := \begin{cases} f^{(j)}(\mathbf{x}_{k}), & \text{if } f^{(j)}(\mathbf{x}_{k}) = \tilde{t}^{(j)}(\mathbf{x}_{k}) \\ f^{(j-1/2)}(\mathbf{x}_{k}) - \beta(f^{(j)}(\mathbf{x}_{k}) - \tilde{t}^{(j)}(\mathbf{x}_{k})), & \text{otherwise} \end{cases}$
 $g^{(j+1/2)} := Df^{(j+1/2)}$
 $g^{(j+1)} := d \operatorname{sgn}(g^{(j+1/2)})$
Output: Approximate scattering potential $f^{(j)}$.

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

[Fienup 1982]

Numerical Phase Retrieval (Exact Data)

(a) HIO/CG reconstruction $J_{\rm IO}=10,\,J_{\rm CG}=5$ PSNR 29.52, SSIM 0.713 5 min

(b) HIO/CG and TV denoise $\lambda=0.02, \, J_{\rm TV}=20$ PSNR 29.88, SSIM 0.713 31 sec $\begin{array}{c} 40\\ 20\\ 0\\ -20\\ -40\\ -40\\ -40\\ -40\\ -20\\ 0\\ 20\\ 0\\ 20\\ 40 \end{array}$

(c) HIO/PD with TV $\lambda{=}0.01, J_{\rm IO}{=}200, J_{\rm PD}{=}5$ PSNR 34.92, SSIM 0.994 3h 48 min

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Numerical Phase Retrieval (5% Gaussian noise)

(b) HIO/CG and TV denoise $\lambda = 0.05$, $J_{\rm PD} = 20$ PSNR 27.16, SSIM 0.623 (c) HIO/PD with TV λ =0.05, J_{IO}=200, J_{PD}=5 PSNR 34.10, SSIM 0.993

0

0.5

40

20

40

20

0

-20

-40

-40 - 20

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022

Computational complexity

- Outer loop with HIO and inner loop with primal-dual (PD)
- Improvements:
- Restart primal-dual with the parameters dual variable from the previous outer step
- Use faster HIO/CG to obtain a starting solution for primal-dual
- Use fast FFT and NFFT algorithms
- Employ weights from the backpropagation to the minimization problem

Code available on https://github.com/michaelquellmalz/FourierODT

Validity of the Born approximation

- Compare Born approximation with solution of the wave equation by Full Waveform Inversion (FWI)
- Quality of Born approximation depends on object's contrast and size (in relation to k_0) [Slaney Kak Larsen 84]
- Rytov approximation is computed similarly to Born
- Numerical simulations in 2D, all using the same data

F Faucher, C Kirisits, M Quellmalz, O Scherzer, E Setterqvist. Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inversion. Accepted for Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. ArXiv preprint 2110.07921, 2022.

Reconstructions for low/high contrast functions

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!

Conclusion

- Fourier diffraction theorem on $\textit{L}^{\textit{p}}(\mathcal{B}_{\textit{r}_{S}}), \textit{p} > 1$
- Backpropagation formula for arbitrary rotations
- Compared reconstruction method
 - Backpropagation is faster
 - Inverse NFFT is always applicable and shows slightly better results
- Phase retrieval works well with all-at-once HIO and TV regularization

Future research

- Detection of rotation from data
- Application to real-world data

Thank you for your attention!