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Optical Diffraction Tomography (ODT)
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Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations.
Inverse Problems 37, 2021.
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Optical Diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large
≈ the size of the object (µm scale)

Simulation of the scattered field from
spherical particles (size ≈ wavelength)

Image with diffraction
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Model of Optical Diffraction Tomography (for one illumination)

– We have: field utot(x1, x2, rM) at measurement plane x3 = rM

– We want: scattering potential f(x) with supp f ⊂ BrM ⊂ R3

– Object illuminated by plane wave u inc(x) = eik0x3

– Total field utot(x) = usca(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0

– Rearranging yields

− (∆ + k2
0 ) usca(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

usca(x) + u inc(x)
)

Born approximation

Assuming |usca| ≪
∣∣u inc

∣∣, we obtain

−
(
∆ + k2

0
)

usca(x) = f(x)u inc(x)

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 4



Model of Optical Diffraction Tomography (for one illumination)

– We have: field utot(x1, x2, rM) at measurement plane x3 = rM

– We want: scattering potential f(x) with supp f ⊂ BrM ⊂ R3

– Object illuminated by plane wave u inc(x) = eik0x3

– Total field utot(x) = usca(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0

– Rearranging yields

− (∆ + k2
0 ) usca(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

usca(x) + u inc(x)
)

Born approximation

Assuming |usca| ≪
∣∣u inc

∣∣, we obtain

−
(
∆ + k2

0
)

usca(x) = f(x)u inc(x)

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 4



Model of Optical Diffraction Tomography (for one illumination)

– We have: field utot(x1, x2, rM) at measurement plane x3 = rM

– We want: scattering potential f(x) with supp f ⊂ BrM ⊂ R3

– Object illuminated by plane wave u inc(x) = eik0x3

– Total field utot(x) = usca(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0

– Rearranging yields

− (∆ + k2
0 ) usca(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

usca(x) + u inc(x)
)

Born approximation

Assuming |usca| ≪
∣∣u inc

∣∣, we obtain

−
(
∆ + k2

0
)

usca(x) = f(x)u inc(x)

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 4



Model of Optical Diffraction Tomography (for one illumination)

– We have: field utot(x1, x2, rM) at measurement plane x3 = rM

– We want: scattering potential f(x) with supp f ⊂ BrM ⊂ R3

– Object illuminated by plane wave u inc(x) = eik0x3

– Total field utot(x) = usca(x) + u inc(x) solves the wave equation

−
(
∆ + f(x) + k2

0
)

utot(x) = 0

– Rearranging yields

− (∆ + k2
0 ) usca(x) − (∆ + k2

0 ) u inc(x)︸ ︷︷ ︸
=0

= f(x)
(

usca(x) + u inc(x)
)

Born approximation

Assuming |usca| ≪
∣∣u inc

∣∣, we obtain

−
(
∆ + k2

0
)

usca(x) = f(x)u inc(x)

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 4



Fourier diffraction theorem [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

1. scattering potential f ∈ Lp, p > 1, where supp(f) ⊂ BrM , 0 < rM,
2. incident field is plane wave u inc(x) = eik0x3 ,
3. Born approximation is valid and usca satisfies the Sommerfeld condition

(usca is an outgoing wave),
4. scattered field usca measured at the plane x3 = rM.

Then √
2
π

κie−iκrM F1,2 usca(k1, k2, rM)︸ ︷︷ ︸
measurements

= F f(

Rt

h(k1, k2)), (k1, k2) ∈ R2,

where h(k1, k2) :=

 k1

k2

κ − k0

 and κ :=
√

k2
0 − k2

1 − k2
2 .

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]

k1

k2

k3

−k0

Semisphere h(k) of available
data in Fourier space
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Fourier diffraction theorem (with rotation)
1. scattering potential f ∈ Lp, p > 1, where supp(f) ⊂ BrM , 0 < rM,
2. incident field is plane wave u inc(x) = eik0x3 ,
3. Born approximation is valid and usca satisfies the Sommerfeld condition

(usca is an outgoing wave),
4. scattered field usca measured at the plane x3 = rM.

Then √
2
π

κie−iκrM F1,2 usca(k1, k2, rM)︸ ︷︷ ︸
measurements

= F f(Rt h(k1, k2)), (k1, k2) ∈ R2,

where h(k1, k2) :=

 k1

k2

κ − k0

 and κ :=
√

k2
0 − k2

1 − k2
2 .

Rotation Rt ∈ SO(3) at time t ∈ [0, T ]

Set of available Fourier space
data for full rotation
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Comparison with Computerized Tomography
Optical diffraction tomography (ODT) Computerized tomography (CT)
diffraction of imaging beam light travels on lines
Data: Fourier transform on semispheres containing 0 Data: Fourier transform on planes containing 0

k1

k2

k3

−k0

k1

k2

k3
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Discretization

– Uniform sampling of f(xk = k 2Ls
K ), k ∈ I3

K := {−K/2, ... , K/2 − 1}3

– Uniform sampling of measurements utot
tm (yn, rM), yn = n 2LM

N , m = 1, ... , M, n ∈ I2
N

– discrete Fourier transform (DFT)

[F DFT usca
tm ]

ℓ
:=

∑
n∈I2

N

usca
tm (yn, rM) e−2πin·ℓ/N , ℓ ∈ I2

N ,

– Non-uniform discrete Fourier transform (NDFT)

[F NDFTf ]m,ℓ :=
∑
k∈I3

K

fk e−ixk ·(Rtm h(yℓ)), m ∈ JM , ℓ ∈ I2
N

Discretized forward operator

Dtotf := F −1
DFT(c ⊙ F NDFTf) + eik0rM , f ∈ RK d

,

where c =
[

i
κ(yℓ) ei κ(yℓ) rM

(
N
LM

)d−1 (
Ls
K

)d
]

ℓ∈I2
N
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Reconstruction
Input: Scattered wave v sca

m,n := utot
tm

(
n 2LM

N , rM

)
− eik0rM , m ∈ JM , n ∈ Id−1

N .
for m = 1, ... , M

g̃m := F DFTv sca
m

gm := g̃m ⊘ c, where ⊘ is the Hadamard (entrywise) division
Solve F NDFTf = g for f (inverse NDFT)
Output: Scattering potential f ≈ [f(xk )]k∈IdK

.

x1

t

x2

usca
t1

usca
t2

F−1
DFT

⊘ c g1

g2

Rt h

F f

inverse
NDFT

f
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Approach 1: Backpropagation

Idea: Compute inverse Fourier transform of F f restricted to the set of available data Y:

fbp(x) := (2π)− 3
2

∫
Y

F f(y) eiy·x dy .

Theorem [Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation Rt round axis a(t) with angle α(t) in C1[0, T ]. Then

fbp(x) = (2π)− 3
2

∫ T

0

∫
Bk0

F f(Rt h(k1, k2)) ei Rt h(k1 ,k2)·x |det ∇T(k1, k2, t)|
Card T −1(T(k1, k2, t)) d(k1, k2) dt ,

where

|det ∇T(k1, k2, t)| = k0

κ

∣∣((1 − cos α)(a3 a′ · h − a′
3a · h) − a3 a · (a′ × h) sin α

)
− α′ (a1k2 − a2k1) + (a · h)(a1a′

2 − a2a′
1) sin α

∣∣ ,

and T(k1, k2, t) := Rt h(k1, k2).

It is complicated to determine the Crofton symbol Card(T −1(y)) algebraically (except for a constant a).
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Example: Rotation Around the First Axis [Devaney 1982]

Backpropagation formula fbp(x) = (2π)− 3
2

∫ T

0

∫
Bk0

F f(Rt h(k1, k2)) ei Rt h(k1 ,k2)·x k0 |k2|
2κ

d(k1, k2) dt

k1

√
2k0

k0

2k0

Set Y of available data in Fourier space
Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 10



Approach 2: Conjugate Gradient (CG) Method

– Inverse of the NDFT

– Find
arg min

f∈RK d
∥F NDFTf − g∥2

2,w =
∑

x

(F NDFTf(x) − g(x))2 w(x)

– Use Conjugate Gradients (CG) on the normal equations
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Approach 3: TV (Total Variation) Regularization

– Regularized inverse of the NDFT

– Find
arg min

f∈RK d
χRK d

≥0
(f) + 1

2 ∥F NDFT(f) − g∥2
2,w + λTV(f),

with total variation
TV(f) :=

∑
k∈I3

K

∥ grad f(xk )∥2

– Use primal-dual (PD) iteration [Chambolle & Pock 2010]
– Adaptive selection of step sizes [Yokota & Hontani 2017]
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Test Setup

– Normalized wavelength 1 ⇒ k0 = 2π

– Test function f given analytically

– Simulate data via convolution with the Green
function (also based on Born approximation) to
avoid the “inverse crime”

– “missing cones” around the axis of rotation

– NFFT (Non-uniform fast Fourier transform) for
computing F NDFTf in O

(
N3 log N

)
steps

[Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01],
[Potts Kunis Keiner 04+] Simulated data: Fourier transform |F f | at 496944

nodes (constant rotation axis)
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Test data
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Ground truth f

(240 × 240 × 240 grid)
Slice at x3 = 0.35
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3

Exact data |utot
t (·, rM)|

240 × 240 grid and 240 rotations

−40 −20 0 20 40
−40

−20

0

20

40

1

2

3

Data with 5 % Gaussian noise
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Backpropagation
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4 sec
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Moving rotation axis



Phase Retrieval

– In practice, one can often measure only the intensity∣∣utot
t (y , rM)

∣∣ =
∣∣usca

t (y , rM) + eik0rM
∣∣ , y ∈ R2, t ∈ [0, T ]

– Existing phase retrieval methods in diffraction tomographyr require more measurements [Gbur & Wolf 2002] [Wedberg & Stamnes 1995]r use far zone approximations [Cheng & Han 2001] [Gureyev & Davis 2004]r Consider phase retrieval separate from reconstruction [Maleki & Devaney 1993]r Use techniques of ptychography [Horstmeyer Chung Ou Zheng & Yang 2016]

– We require additional information:r f ≥ 0r f has bounded supportr total variation of f

R Beinert, M Quellmalz.
Total Variation-Based Phase Retrieval for Diffraction Tomography.
ArXiv preprint 2201.11579, 2022.
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All-at-Once Approach for Phase Retrieval

Forward operator Df(t , y) = utot
t (y , rM)

Hybrid input-output (HIO) algorithm [Fienup 1982]

Input: Data d = |D(f)| = |utot|, parameter β ∈ [0, 1], support radius rs > 0.
Initialize g(0) := d
for j = 0, 1, 2, ...

f (j) := D−1g(j)

f̃ (j)
k :=

{
max{f (j)(xk ), 0}, ∥xk ∥2 ≤ rs

0, ∥xk ∥2 > rs

f (j+1/2)(xk ) :=

{
f (j)(xk ), if f (j)(xk ) = f̃ (j)(xk )
f (j−1/2)(xk ) − β(f (j)(xk ) − f̃ (j)(xk )), otherwise

g(j+1/2) := Df (j+1/2)

g(j+1) := d sgn(g(j+1/2))
Output: Approximate scattering potential f (j).
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Numerical Phase Retrieval (Exact Data)
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(a) HIO/CG reconstruction
JIO = 10, JCG = 5
PSNR 29.52, SSIM 0.713
5 min
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(b) HIO/CG and TVdenoise
λ = 0.02, JTV = 20
PSNR 29.88, SSIM 0.713
31 sec
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(c) HIO/PD with TV
λ=0.01, JIO=200, JPD=5
PSNR 34.92, SSIM 0.994
3 h 48 min

Fourier Reconstruction in Diffraction Tomography of an Irregularly Moving Object | Michael Quellmalz | 23 May 2022
Page 20



Numerical Phase Retrieval (5 % Gaussian noise)
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(a) HIO/CG reconstruction
JIO = 10, JCG = 5
PSNR 24.71, SSIM 0.589
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(b) HIO/CG and TVdenoise
λ = 0.05, JPD = 20
PSNR 27.16, SSIM 0.623
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(c) HIO/PD with TV
λ=0.05, JIO=200, JPD=5
PSNR 34.10, SSIM 0.993
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Computational complexity

– Outer loop with HIO and inner loop with primal-dual (PD)

– Improvements:
– Restart primal-dual with the parameters dual variable from the previous outer step
– Use faster HIO/CG to obtain a starting solution for primal-dual
– Use fast FFT and NFFT algorithms
– Employ weights from the backpropagation to the minimization problem

Code available on https://github.com/michaelquellmalz/FourierODT
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Validity of the Born approximation

– Compare Born approximation with solution of the wave equation by Full Waveform Inversion (FWI)

– Quality of Born approximation depends on object’s contrast and size (in relation to k0) [Slaney Kak Larsen 84]

– Rytov approximation is computed similarly to Born

– Numerical simulations in 2D, all using the same data

F Faucher, C Kirisits, M Quellmalz, O Scherzer, E Setterqvist.
Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inversion.
Accepted for Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. ArXiv
preprint 2110.07921, 2022.
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Conclusion

– Fourier diffraction theorem on Lp(Brs ), p > 1
– Backpropagation formula for arbitrary rotations
– Compared reconstruction methodr Backpropagation is fasterr Inverse NFFT is always applicable and shows slightly better results
– Phase retrieval works well with all-at-once HIO and TV regularization

Future research
– Detection of rotation from data
– Application to real-world data

Thank you for your attention!
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