

Fourier Reconstruction in Diffraction Tomography

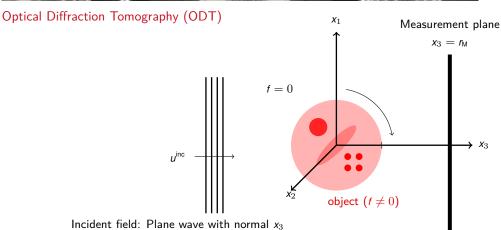
Michael Quellmalz | TU Berlin | ICCHA Conference, IngloIstadt, 15 September 2022 joint work with Robert Beinert, Peter Elbau, Florian Faucher, Clemens Kirisits, Monika Ritsch-Marte, Otmar Scherzer, Eric Setterqvist, Gabriele Steidl

Content

Introduction

2 Reconstruction of the object

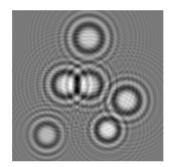
3 Reconstructing the motion



C Kirisits, M Quellmalz, M Ritsch-Marte, O Scherzer, E Setterqvist, G Steidl. Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations. *Inverse Problems* 37, 2021.

Optical Diffraction

Optical diffraction occurs when the wavelength of the imaging beam is large \approx the size of the object (μm scale)



Simulation of the scattered field from spherical particles (size \approx wavelength)

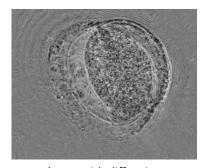


Image with diffraction © Medizinische Universität Innsbruck

Model of Optical Diffraction Tomography (for one illumination)

- We have: field $u^{\text{tot}}(x_1, x_2, r_{\text{M}})$ at measurement plane $x_3 = r_{\text{M}}$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{x}) + k_0^2\right) u^{\text{tot}}(\mathbf{x}) = 0$$

Born approximation

Assuming $|u^{\text{sca}}| \ll |u^{\text{inc}}|$, we obtain

$$-\left(\Delta + k_0^2\right) u^{\text{sca}}(\mathbf{x}) = f(\mathbf{x}) u^{\text{inc}}(\mathbf{x})$$

Model of Optical Diffraction Tomography (for one illumination)

- We have: field $u^{\text{tot}}(x_1, x_2, r_{\text{M}})$ at measurement plane $x_3 = r_{\text{M}}$
- We want: scattering potential $f(\mathbf{x})$ with supp $f \subset \mathcal{B}_{f_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{inc}(\mathbf{x}) = e^{ik_0x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{x}) + k_0^2\right) u^{\text{tot}}(\mathbf{x}) = 0$$

Born approximation

Assuming $|u^{\text{sca}}| \ll |u^{\text{inc}}|$, we obtain

$$-\left(\Delta + k_0^2\right) u^{\text{sca}}(\mathbf{x}) = f(\mathbf{x}) u^{\text{inc}}(\mathbf{x})$$

Model of Optical Diffraction Tomography (for one illumination)

- We have: field $u^{\text{tot}}(x_1, x_2, r_{\text{M}})$ at measurement plane $x_3 = r_{\text{M}}$
- We want: scattering potential $f(\mathbf{x})$ with $\operatorname{supp} f \subset \mathcal{B}_{r_M} \subset \mathbb{R}^3$
- Object illuminated by plane wave $u^{\text{inc}}(\mathbf{x}) = e^{ik_0x_3}$
- Total field $u^{\text{tot}}(\mathbf{x}) = u^{\text{sca}}(\mathbf{x}) + u^{\text{inc}}(\mathbf{x})$ solves the wave equation

$$-\left(\Delta + f(\mathbf{x}) + k_0^2\right) u^{\text{tot}}(\mathbf{x}) = 0$$

Born approximation

Assuming $|u^{\rm sca}| \ll |u^{\rm inc}|$, we obtain

$$-\left(\Delta + k_0^2\right) u^{\text{sca}}(\boldsymbol{x}) = f(\boldsymbol{x}) u^{\text{inc}}(\boldsymbol{x})$$

Fourier diffraction theorem [Kirisits Q. Ritsch-Marte Scherzer Setterqvist Steidl 2021]

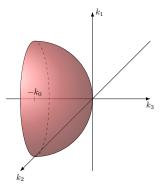
Let the previous assumptions hold, $f \in L^p(\mathbb{R}^3)$, p > 1, and u^{sca} satisfy the Sommerfeld radiation condition (u is an outgoing wave) and.

Then

$$\sqrt{\frac{2}{\pi}}\kappa \mathrm{i}\mathrm{e}^{-\mathrm{i}\kappa\eta_{\mathrm{M}}}\mathcal{F}_{1,2}\underbrace{\upsilon^{\mathrm{sca}}(k_{1},k_{2},\mathit{r}_{\mathrm{M}})}_{\text{measurements}} = \mathcal{F}\mathit{f}(\quad \mathit{h}(k_{1},k_{2})), \quad (k_{1},k_{2}) \in \mathbb{R}^{2},$$

where
$$\mathbf{\textit{h}}(\textit{k}_1,\textit{k}_2) \coloneqq \begin{pmatrix} \textit{k}_1 \\ \textit{k}_2 \\ \kappa - \textit{k}_0 \end{pmatrix}$$
 and $\kappa := \sqrt{\textit{k}_0^2 - \textit{k}_1^2 - \textit{k}_2^2}$.

based on [Wolf 1969] [Natterer Wuebbeling 2001] [Kak Slaney 2001]



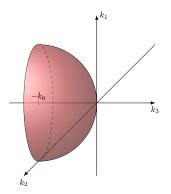
Semisphere h(k) of available data in Fourier space

Comparison with Computerized Tomography

Optical diffraction tomography (ODT)

diffraction of imaging beam

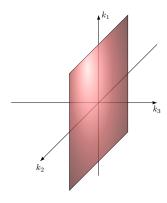
Data: Fourier transform on semispheres containing ${\bf 0}$



Computerized tomography (CT)

light travels on lines

Data: Fourier transform on planes containing ${\bf 0}$



Rigid motion of the object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\mathbf{d}_t \in \mathbb{R}^3$ (with $\mathbf{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_t(k_1,k_2) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i}\mathrm{e}^{-\mathrm{i}\kappa r_\mathrm{M}} \mathcal{F}_{1,2} \underbrace{u^\mathrm{sca}(k_1,k_2,r_\mathrm{M})}_{\text{measurements}} = \mathcal{F} f(\mathbf{R}_t \mathbf{h}(k_1,k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_t,\mathbf{h}(k_1,k_2)\rangle}, \quad \|(k_1,k_2)\| < k_0,$$

depends only on the measurements.

- **1** Reconstruct the rotation using $\nu_t(k_1, k_2) \coloneqq |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2))|^2$.
- Reconstruct the translation d
- Reconstruct t

Rigid motion of the object

- Scattering potential of the moved object: $f(R_t(\mathbf{x} \mathbf{d}_t))$
- Rotation $R_t \in SO(3)$ (with $R_0 := id$)
- Translation $\mathbf{d}_t \in \mathbb{R}^3$ (with $\mathbf{d}_0 \coloneqq \mathbf{0}$)

Fourier diffraction theorem (with motion)

The quantity

$$\mu_t(k_1,k_2) \coloneqq \sqrt{\frac{2}{\pi}} \kappa \mathrm{i}\mathrm{e}^{-\mathrm{i}\kappa r_\mathrm{M}} \mathcal{F}_{1,2} \underbrace{u^\mathrm{sca}(k_1,k_2,r_\mathrm{M})}_{\text{measurements}} = \mathcal{F} f(\mathbf{R}_t \mathbf{h}(k_1,k_2)) \, \mathrm{e}^{-\mathrm{i}\langle \mathbf{d}_t,\mathbf{h}(k_1,k_2)\rangle}, \quad \|(k_1,k_2)\| < k_0,$$

depends only on the measurements.

- **1** Reconstruct the rotation using $\nu_t(k_1, k_2) := |\mu_t(k_1, k_2)|^2 = |\mathcal{F}f(\mathbf{R}_t \mathbf{h}(k_1, k_2))|^2$.
- \mathbf{Q} Reconstruct the translation \mathbf{d}_t
- Reconstruct f

Content

1 Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Discretization

- Object $f(\mathbf{x}_k)$ with $\mathbf{x}_k = \mathbf{k} \frac{2L_s}{\kappa}$, $\mathbf{k} \in \mathcal{I}_K^3 := \{-K/2, ..., K/2 1\}^3$
- Measurements $u_{t_m}^{\mathrm{tot}}(\pmb{y_n}, r_{\mathrm{M}})$ with $\pmb{y_n} = \pmb{n} \frac{2L_{\mathrm{M}}}{N}$, $\pmb{n} \in \mathcal{I}_N^2$
- discrete Fourier transform (DFT)

$$\left[\mathbf{\textit{F}}_{\text{DFT}} \ \textit{\textit{u}}_{\textit{t}_{\textit{m}}}^{\text{sca}} \right]_{\ell} \coloneqq \sum_{\textit{\textit{n}} \in \mathcal{I}_{\textit{N}}^{2}} \textit{\textit{u}}_{\textit{t}_{\textit{m}}}^{\text{sca}}(\textit{\textit{y}}_{\textit{\textit{n}}},\textit{\textit{r}}_{\textit{M}}) \, \mathrm{e}^{-2\pi \mathrm{i} \textit{\textit{n}} \cdot \ell/N}, \qquad \ell \in \mathcal{I}_{\textit{N}}^{2},$$

• Non-uniform discrete Fourier transform (NDFT)

$$[\textbf{\textit{F}}_{\mathsf{NDFT}}\textbf{\textit{f}}]_{\textit{m},\boldsymbol{\ell}} \coloneqq \sum_{\textbf{\textit{k}} \in \mathcal{I}_{K}^{\mathcal{S}}} \textit{\textit{f}}_{\textbf{\textit{k}}} \, \mathrm{e}^{-\mathrm{i}\textbf{\textit{x}}_{\textbf{\textit{k}}} \cdot \left(\textit{\textit{R}}_{\textit{l}_{\textit{m}}}\textbf{\textit{h}}(\textbf{\textit{y}}_{\boldsymbol{\ell}})\right)}, \qquad \textit{\textit{m}} \in \mathcal{J}_{\textit{\textit{M}}}, \,\, \boldsymbol{\ell} \in \mathcal{I}_{\textit{\textit{N}}}^{2}$$

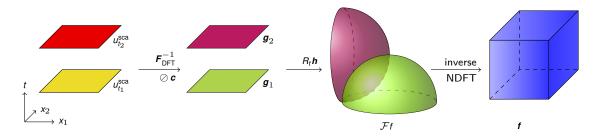
Discretized forward operator

Reconstruction of f

Inverse

$$extbf{\textit{f}} pprox extbf{\textit{F}}_{ extsf{NDFT}} ig((extbf{\textit{F}}_{ extsf{DFT}} extbf{\textit{u}}^{ extsf{tot}} - extbf{e}^{ extsf{i} k_0 extbf{\textit{r}}_{ extsf{M}}} ig) \oslash extbf{\textit{c}})$$

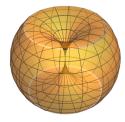
Crucial part: inversion of NDFT $\boldsymbol{F}_{\text{NDFT}}^{-1}$



Approach 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\mathrm{bp}}({\pmb x}) := (2\pi)^{-rac{3}{2}} \int_{\mathcal{Y}} \mathcal{F} {\it f}({\pmb y}) \, \mathrm{e}^{\mathrm{i} {\pmb y} \cdot {\pmb x}} \, \mathrm{d} {\pmb y}.$$



Theoren

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis $\pmb{a}(t)$ with angle lpha(t) in $\pmb{C}^1[0,T]$. Then

$$f_{\text{bp}}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_{0}^{T} \int_{\mathcal{B}_{k_0}} \mathcal{F}f(R_t \mathbf{h}(k_1, k_2)) \, \mathrm{e}^{\mathrm{i} R_t \mathbf{h}(k_1, k_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(k_1, k_2, t)|}{\mathrm{Card} \, \mathcal{T}^{-1}(\mathcal{T}(k_1, k_2, t))} \, \mathrm{d}(k_1, k_2) \, \mathrm{d}t,$$

where $T(k_1, k_2, t) := R_t h(k_1, k_2)$ and

$$\left|\det \nabla T(\mathbf{k}_1,\mathbf{k}_2,t)\right| = \frac{\mathbf{k}_0}{\kappa} \left| \left((1-\cos\alpha)(\mathbf{a}_3\,\mathbf{a}'\cdot\mathbf{h} - \mathbf{a}_3'\,\mathbf{a}\cdot\mathbf{h}) - \mathbf{a}_3\,\mathbf{a}\cdot(\mathbf{a}'\times\mathbf{h})\sin\alpha \right) - \alpha'\left(\mathbf{a}_1\mathbf{k}_2 - \mathbf{a}_2\mathbf{k}_1\right) + (\mathbf{a}\cdot\mathbf{h})(\mathbf{a}_1\mathbf{a}_2' - \mathbf{a}_2\mathbf{a}_1')\sin\alpha \right|$$

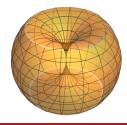
Previously known only for constant axis a

[Devaney 1982]

Approach 1: Backpropagation

Idea: Compute inverse Fourier transform of $\mathcal{F}f$ restricted to the set of available data \mathcal{Y} :

$$f_{\mathrm{bp}}({\pmb x}) := (2\pi)^{-rac{3}{2}} \int_{\mathcal{Y}} \mathcal{F} {\it f}({\pmb y}) \, \mathrm{e}^{\mathrm{i} {\pmb y} \cdot {\pmb x}} \, \mathrm{d} {\pmb y}.$$



Theorem

[Kirisits, Q, Ritsch-Marte, Scherzer, Setterqvist, Steidl 2021]

Consider the rotation R_t round axis a(t) with angle $\alpha(t)$ in $C^1[0,T]$. Then

$$f_{\text{bp}}(\mathbf{x}) = (2\pi)^{-\frac{3}{2}} \int_{0}^{\tau} \int_{\mathcal{B}_{k_0}} \mathcal{F}f(\mathbf{R}_t \mathbf{h}(\mathbf{k}_1, \mathbf{k}_2)) \, e^{\mathrm{i}\,\mathbf{R}_t \mathbf{h}(\mathbf{k}_1, \mathbf{k}_2) \cdot \mathbf{x}} \, \frac{|\det \nabla \mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, t)|}{\mathrm{Card}\,\mathcal{T}^{-1}(\mathcal{T}(\mathbf{k}_1, \mathbf{k}_2, t))} \, \mathrm{d}(\mathbf{k}_1, \mathbf{k}_2) \, \mathrm{d}t,$$

where $T(k_1, k_2, t) := R_t h(k_1, k_2)$ and

$$\left|\det\nabla T(\mathbf{k}_1,\mathbf{k}_2,t)\right| = \frac{\mathbf{k}_0}{\kappa} \left| \left((1-\cos\alpha)(\mathbf{a}_3\,\mathbf{a}'\cdot\mathbf{h} - \mathbf{a}_3'\mathbf{a}\cdot\mathbf{h}) - \mathbf{a}_3\,\mathbf{a}\cdot(\mathbf{a}'\times\mathbf{h})\sin\alpha \right) - \alpha'\left(\mathbf{a}_1\mathbf{k}_2 - \mathbf{a}_2\mathbf{k}_1\right) + (\mathbf{a}\cdot\mathbf{h})(\mathbf{a}_1\mathbf{a}_2' - \mathbf{a}_2\mathbf{a}_1')\sin\alpha \right|.$$

Previously known only for constant axis a

[Devaney 1982]

Approach 2: Conjugate Gradient (CG) Method

• Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{t} \in \mathbb{R}^{K^3}}{\operatorname{arg \, min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{t}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{\text{NDFT}}(f)$ in $\mathcal{O}\left(N^3 \log N\right)$ steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

Approach 3: TV (Total Variation) Regularization

Regularized inverse

$$\underset{f \in \mathbb{R}^{K^3}}{\arg\min} \qquad \chi_{\mathbb{R}^{K^3}_{\geq 0}}(f) + \frac{1}{2} \| \mathbf{\textit{F}}_{\mathsf{NDFT}}(f) - \boldsymbol{\textit{g}} \|_2^2 + \lambda \mathsf{TV}(f),$$

- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Approach 2: Conjugate Gradient (CG) Method

Conjugate Gradients (CG) on the normal equations

$$\underset{\boldsymbol{t} \in \mathbb{R}^{K^3}}{\operatorname{arg\,min}} \quad \|\boldsymbol{F}_{\mathsf{NDFT}}(\boldsymbol{t}) - \boldsymbol{g}\|_2^2$$

• NFFT (Non-uniform fast Fourier transform) for computing $F_{NDFT}(f)$ in $\mathcal{O}(N^3 \log N)$ steps [Dutt Rokhlin 93], [Beylkin 95], [Potts Steidl Tasche 01], [Potts Kunis Keiner 04+]

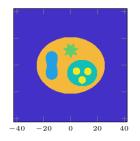
Approach 3: TV (Total Variation) Regularization

Regularized inverse

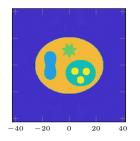
$$\underset{\pmb{f} \in \mathbb{R}^{K^3}}{\arg\min} \qquad \chi_{\mathbb{R}^{K^3}}(\pmb{f}) + \tfrac{1}{2} \| \pmb{F}_{\mathsf{NDFT}}(\pmb{f}) - \pmb{g} \|_2^2 + \lambda \mathsf{TV}(\pmb{f}),$$

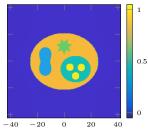
- Primal-dual (PD) iteration [Chambolle & Pock 2010]
- Adaptive selection of step sizes [Yokota & Hontani 2017]

Reconstruction: Moving Axis



-40 -20 0 20 40





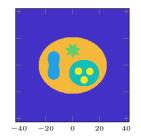
Ground truth f

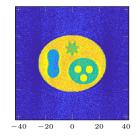
Backpropagation PSNR 24.17, SSIM 0.171

CG Reconstruction PSNR 35.84, SSIM 0.962

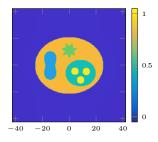
PD with TV ($\lambda = 0.02$) PSNR 40.95, SSIM 0.972

Reconstruction: Moving Axis & 5 % Gaussian Noise









Ground truth f

Backpropagation PSNR 21.19, SSIM 0.075

CG Reconstruction PSNR 24.10, SSIM 0.193

PD with TV ($\lambda = 0.05$) PSNR 38.01, SSIM 0.772

Content

Introduction

2 Reconstruction of the object

3 Reconstructing the motion

Formal Uniqueness Result

Theorem [Kurlberg Zickert 2021]

Let

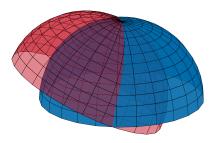
- the first order moments of f have distinct, real eigenvalues,
- the translation d_t be restricted to a known plane
- the rotations R_t cover SO(3).

Then f is uniquely determined given the diffraction images u_t for all (unknown) motions.

Detection of the rotation

Goal: Estimate the rotation R_t from the transformed measurements $\nu_t(\mathbf{k}) = |\mathcal{F}f(R_t\mathbf{h}(\mathbf{k}))|^2$ Common circle approach:

- For each t we have the Fourier data $\mathcal{F} t$ on one semisphere
- Two semispheres intersect in a circle (arc), where $\mathcal{F}f$ must agree
- Find the common circle of two semispheres



Common circles

Theorem [Q. Elbau Scherzer Steidl 2022]

Let $t, s \in [0, T]$ such that there uniquely exist two curves

$$\gamma_{s,t}(\beta) = \frac{k_0}{2} \sin \theta \left(\cos \beta - 1\right) \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} + k_0 \cos \frac{\theta}{2} \sin \beta \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$\gamma_{t,s}(\beta) = \frac{k_0}{2} \sin \theta \left(\cos \beta - 1\right) \begin{pmatrix} -\cos \psi \\ \sin \psi \end{pmatrix} + k_0 \cos \frac{\theta}{2} \sin \beta \begin{pmatrix} -\sin \varphi \\ -\cos \varphi \end{pmatrix}$$

with some parameters $\varphi, \psi \in \mathbb{R}/(2\pi\mathbb{Z})$, $\theta \in [0,\pi]$ such that

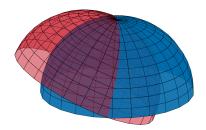
$$\nu_s \circ \gamma_{s,t}(\beta) = \nu_t \circ \gamma_{t,s}(-\beta), \qquad |\beta| < \pi.$$

Then the rotation $R_s^{\top} R_t$ has the Euler angles φ, θ, ψ .

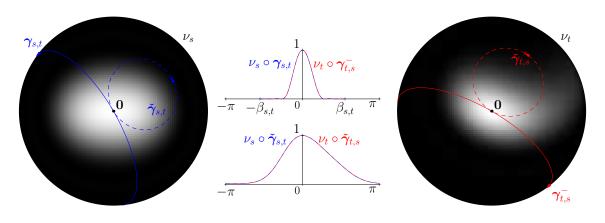
Dual common circles

- f real-valued (no absorption)
- Additional symmetry $\mathcal{F}f(\mathbf{y}) = \overline{\mathcal{F}f(-\mathbf{y})}$
- Additional pair of dual common circles

$$\check{\gamma}_{s,t}(\beta) = -\frac{k_0}{2} \sin\theta \left(\cos\beta - 1\right) \begin{pmatrix} \cos\varphi \\ \sin\varphi \end{pmatrix} + k_0 \sin\frac{\theta}{2} \sin\beta \begin{pmatrix} -\sin\varphi \\ \cos\varphi \end{pmatrix}
 \check{\gamma}_{t,s}(\beta) = -\frac{k_0}{2} \sin\theta \left(\cos\beta - 1\right) \begin{pmatrix} -\cos\psi \\ \sin\psi \end{pmatrix} + k_0 \sin\frac{\theta}{2} \sin\beta \begin{pmatrix} -\sin\varphi \\ -\cos\varphi \end{pmatrix}$$



Visualization of the Arcs



Infinitesimal common circles method

Theorem [Q. Elbau Scherzer Steidl 2022]

Let the rotation $R \in C^1([0,T] \to SO(3))$ and $t \in (0,T)$.

We define the associated **angular velocity** as the vector $oldsymbol{\omega}_t \in \mathbb{R}^3$ satisfying

$$R_t^{\top} R_t' \ \mathbf{y} = \boldsymbol{\omega}_t \times \mathbf{y}, \qquad \mathbf{y} \in \mathbb{R}^3.$$

and write it in cylinder coordinates

$$oldsymbol{\omega}_t = egin{pmatrix}
ho_t oldsymbol{arphi}_t \\ \zeta_t \end{pmatrix}, \qquad oldsymbol{arphi}_t = egin{pmatrix} \cos arphi_t \\ \sin arphi_t \end{pmatrix} \in \mathbb{S}^1,$$

Then, for all $r \in (-k_0, k_0)$, it holds that

$$- \partial_t \nu_t(r\varphi_t) = \left(\rho(t) \left(\sqrt{k_0^2 - r^2} - k_0\right) + r\zeta_t\right) \left\langle \nabla \nu_t(r\varphi_t), \begin{pmatrix} -\sin \varphi_t \\ \cos \varphi_t \end{pmatrix} \right\rangle.$$

Reconstructing the Translation

Reminder: Data $\mu_t(k_1, k_2) :== \mathcal{F} f(R_t \mathbf{h}(k_1, k_2)) e^{-i\langle \mathbf{d}_t, \mathbf{h}(k_1, k_2) \rangle}$

Theorem

[Q. Elbau Scherzer Steidl 2022]

Let $s, t \in [0, T]$ be such that $R_s e^3 \neq \pm R_t e^3$ and let $t \geq 0$ with $t \not\equiv 0$.

If $\mathbf{d}_0 = \mathbf{0}$, then \mathbf{d}_t can be uniquely reconstructed from the two equations:

$$\mathrm{e}^{\mathrm{i} \langle \mathit{R}_t \mathit{d}_t - \mathit{R}_s \mathit{d}_s, \sigma_{s,t}(\beta) \rangle} = \frac{\mu_s(\gamma_{s,t}(\beta))}{\mu_t(\gamma_{t,s}(-\beta))}, \qquad \beta \in [-\pi, \pi], \; \mu_s(\gamma_{s,t}(\beta)) \neq 0,$$

and

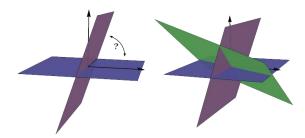
$$e^{i\langle R_t \boldsymbol{d}_t - R_s \boldsymbol{d}_s, \check{\boldsymbol{\sigma}}_{s,t}(\beta) \rangle} = \frac{\mu_s(\check{\boldsymbol{\gamma}}_{s,t}(\beta))}{\mu_t(\check{\boldsymbol{\gamma}}_{t,s}(\beta))}, \qquad \beta \in [-\pi, \pi], \ \mu_s(\check{\boldsymbol{\gamma}}_{s,t}(\beta)) \neq 0.$$

Similar reconstruction result for $R_s e^3 = \pm R_t e^3$

Comparision with CT

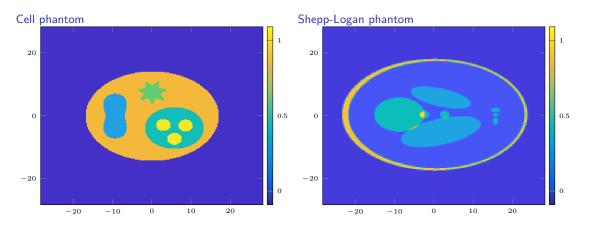
Method of common lines in Cryo-EM [Crowther DeRosier Klug 70] [Van Heel 87] [Goncharov 88] [Wang Singer Zen 13]

- Based on different model (ray transform)
- Requires 3 common planes (instead of 2 semi-spheres)
- Ambiguities (mirroring, translation along imaging direction)

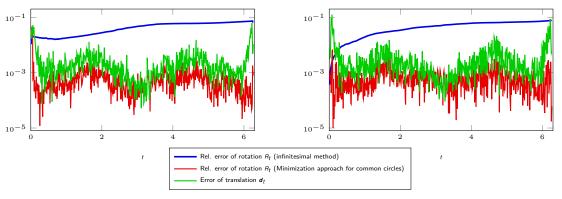


Images by [Schmutz 17]

Numerical tests: Test functions (3D)

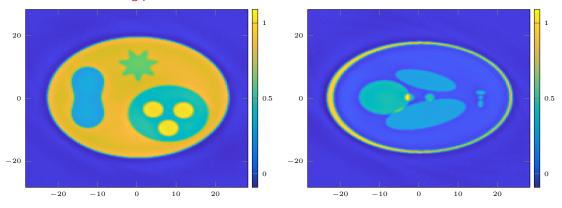


Numerical tests: Results



The rotation is around the moving axis $(\sqrt{1-a^2}\cos(b\sin(t/2)),\sqrt{1-a^2}\sin(b\sin(t/2)),a)\in\mathbb{S}^2$ for a=0.28 and b=0.5. The translation is $\mathbf{d}_t=2(\sin t,\sin t,\sin t)$. Left: cell phantom. Right: Shepp-Logan phantom.

Reconstructed scattering potential f



Cell phantom (PSNR 32.21, SSIM 0.754)

Shepp-Logan (PSNR 30.85, SSIM 0.772)

Conclusions

- Fourier diffraction theorem on $L^p(\mathcal{B}_{r_s})$, p>1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!

Conclusions

- Fourier diffraction theorem on $L^p(\mathcal{B}_{r_s})$, p>1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention

Conclusions

- Fourier diffraction theorem on $L^{p}(\mathcal{B}_{r_{s}})$, p>1
- Backpropagation formula for arbitrary rotations
- Compared image reconstruction methods
 - Backpropagation is faster
 - Conjugate Gradients and Primal-Dual show better results
- Detection of rotation is usually possible
- Detection of translation is possible

Future research

- Application to real-world data
- Combining motion detection with phase retrieval

Thank you for your attention!