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Abstract

Negative distance kernels K(x, y) := −∥x − y∥ were used in the definition of
maximum mean discrepancies (MMDs) in statistics and lead to favorable numer-
ical results in various applications. In particular, so-called slicing techniques for
handling high-dimensional kernel summations profit from the simple parameter-
free structure of the distance kernel. However, due to its non-smoothness in x = y,
most of the classical theoretical results, e.g. on Wasserstein gradient flows of the
corresponding MMD functional do not longer hold true. In this paper, we pro-
pose a new kernel which keeps the favorable properties of the negative distance
kernel as being conditionally positive definite of order one with a nearly linear in-
crease towards infinity and a simple slicing structure, but is Lipschitz differentiable
now. Our construction is based on a simple 1D smoothing procedure of the abso-
lute value function followed by a Riemann-Liouville fractional integral transform.
Numerical results demonstrate that the new kernel performs similarly well as the
negative distance kernel in gradient descent methods, but now with theoretical
guarantees.
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1 Introduction

Symmetric, positive definite functions have been playing a role in kernel-based learning
for a long time [14, 52]. While mostly Gaussian kernels are used, recently, also the con-
ditionally positive definite negative distance kernel K(x, y) := −∥x − y∥ has attained
interest, e.g. in statistics [50], image dithering/halftoning [16, 21, 33], sampling [39] and
generative modeling [25, 30]. Indeed, more general Riesz kernels K(x, y) := −∥x − y∥s,
s ∈ [0, 2), were examined in optimization equilibrium problems, see, e.g. [12, 24, 18].
Let us also mention that gradient flows with respect to the Coulomb kernel K(x, y) :=
∥x − y∥2−d were quite recently examined in [7], see also [9], and K(x, y) := ∥x − y∥−1

was applied in image halftoning in [48]. For interesting translation invariance proper-
ties of MMDs and connections with Wasserstein distances, we refer to [37].

Depending on the kernel, the maximum mean discrepancy (MMD) between two
measures can be defined as the sum of an interaction energy and potential energy. Fix-
ing one of the measures, in generative learning called target measure, Wasserstein gra-
dient flows of the corresponding functional on the Wasserstein-2 space starting in a
simple (latent) measure can be applied to sample from that target distribution. While
such gradient flows together with numerical forward and backward schemes for their
computation are well understood for Lipschitz differentiable kernels, see, e.g. [2, 3],
the convergence behavior of forward steepest descent [27] and Euler backward (JKO)
schemes [31] are not clear for the negative distance kernel due to its nondifferentiabil-
ity in x = y. One exception is the one-dimensional case, where the MMD functional
becomes, in contrast to higher dimensions, (geodesically) λ-convex, see [15] and the
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references therein.
Gradient flows of the MMD functional or just the interaction energy with the nega-

tive distance kernel or Riesz kernels show a mathematically richer structure than those
for smooth kernels and were the object of numerous examinations, see e.g. [8, 10, 11]. In
particular, singular measures can become absolutely continuous along the flow curve
and conversely [4, 27], so that these flows are no longer just particle flows when starting
in an empirical measure. Finally, let us mention flows in the MMD dissipation geome-
try [58] which differ from the setting considered in this paper.

If applied in a straightforward way, MMD flows suffer from high computational
costs in large scale computations, since each gradient step requires the computation
of kernel sums (or their derivatives) with a large number of summands. For positive
definite kernels, a remedy is to apply random Fourier feature techniques [45] based
on Bochner’s theorem. Unfortunately, the negative distance kernel does not fit into
the setting of Bochner’s theorem, but here efficient so-called slicing techniques, which
project the high-dimensional problem in a bunch of one-dimensional ones, can be used
[26, 28]. For an interesting quite general fast summation approach using deep learning,
we refer to [29].

In this paper, we construct a smoothed negative distance kernel such that its MMD
functional fulfills the classical assumptions on its Wasserstein gradient flow and en-
sures in particular that empirical measures evolve as particle flows with proofed con-
vergence of Euler forward and backward schemes. On the other hand, these kernels are
still conditionally positive definite of order one and behave in applications similarly as
the negative distance kernel, but now with theoretical convergence guarantees.

Our paper is organized as follows: in Section 2, we provide some notation and re-
call several results on (generalized) Fourier transforms. For readers not familiar with
the topic, more material on Fourier transforms of tempered distributions including en-
lightening examples are added in Appendix A. The next three sections contain the steps
for defining our smoothed distance kernels: Section 3 starts with appropriate smooth-
ings of the absolute value function in R1. Although not directly relevant for our con-
struction, a relation to the often applied Huber function is addressed in Appendix B.
Then, Section 4 establishes smoothed Euclidean norm functions in Rd, d ≥ 2 based
on Riemann-Liouville integral transforms, which finally lead to our smoothed kernels
in Section 5. Using these kernels, we define reproducing kernel Hilbert spaces and
MMDs based on kernel mean embeddings in Section 6. Wasserstein gradient flows of
our MMDs are considered in Section 7. We add considerations on the geodesic convex-
ity of the MMDs in Appendix D. Finally, we demonstrate the very good performance
of Wasserstein gradient flows of the MMD with our new kernel by numerical examples
in Section 8.

All proofs, which are not indicated to be taken directly from the literature, are given
in Appendix C.
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2 Preliminaries

Let Cb(R
d) denote the space of continuous bounded functions f : Rd → C with norm

∥ f ∥∞ := sup
x∈Rd

| f (x)|,

C0(Rd) the subspace of functions f : Rd → C vanishing as ∥x∥ → ∞, Cc(Rd) the sub-
space of continuous functions with compact support, Cn(Rd), n ∈ N the space of n-
times continuously differentiable functions and Cn

c (R
d) the space of n-times continu-

ously differentiable functions with compact support. For 1 ≤ p ≤ ∞, let Lp(Rd) be the
Banach space of all (equivalence class of) measurable functions f : Rd → C with finite
norm ∥ f ∥Lp and Lp

loc(R
d) the corresponding locally integrable functions.

Further, we denote by S(Rd) the space of complex-valued Schwartz functions. The
Fourier transform F : S(Rd) → S(Rd) is the bijective mapping defined by

φ̂(ω) = F [φ](ω) :=
∫

Rd
e−2πi⟨x,ω⟩φ(x)dx, ω ∈ Rd. (1)

The Fourier transform can be extended as a mapping F : L1(Rd) → C0(Rd). The convo-
lution function f ∗ g of two functions f , g on Rd is defined, if it exists, by

( f ∗ g)(x) :=
∫

y∈Rd
f (x − y)g(y) dy =

∫
y∈Rd

f (y)g(x − y) dy, x ∈ Rd.

In particular, if f , g ∈ L1(Rd), then f ∗ g is defined almost everywhere and it holds the
Fourier convolution theorem

F [ f ∗ g] = f̂ ĝ.

For r ∈ N0, we define the space

Sr(R
d) := {φ ∈ S(Rd) : φ(x) ∈ O(∥x∥r) as ∥x∥ → 0}.

A measurable function f̂ ∈ L2
loc(R

d \ {0}) is called generalized Fourier transform of a
slowly increasing function f ∈ C(Rd), if there exists an integer r ∈ N0 such that∫

Rd
f (x)φ̂(x)dx =

∫
Rd

f̂ (ω)φ(ω)dω for all φ ∈ S2r(R
d), (2)

see [57, Def. 8.9]. If f fulfills (2) for some r ∈ N0, then it fulfills this relation also for
all integers larger than r. In particular, if f ∈ S(Rd), then (2) holds for all r ≥ 0.
The smallest r ∈ N0 such that (2) is fulfilled is called order of the generalized Fourier
transform. We have that f̂ is uniquely determined. The generalized Fourier transform
differs from the Fourier transform of so-called tempered distributions, in particular
of continuous, slowly increasing functions, but coincides with it if restricted to test
functions in S2r(Rd). This is briefly explained in Appendix A.

In this paper, we are mainly concerned with powers of the Euclidean norm.
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Theorem 2.1 ([57, Thm. 8.16]). The function f (x) := ∥x∥β, x ∈ Rd, with β > 0, β ̸∈ 2N

has the generalized Fourier transform

f̂ (ω) =
Γ( d+β

2 )

πβ+ d
2 Γ(− β

2 )
∥ω∥−β−d, ω ∈ Rd

of order r = ⌈ β
2 ⌉. In particular, we have for abs(x) = |x|, x ∈ R, that

âbs(ω) = − 1
2π2ω2 , ω ∈ R. (3)

For the generalized Fourier transform, we have the following convolution property.

Proposition 2.2. Let f ∈ C(Rd) be a slowly increasing function with generalized Fourier
transform f̂ of order r and u ∈ Cc(Rd). Then the convolution f ∗ u ∈ C(Rd) is slowly
increasing and has a generalized Fourier transform of order r which fulfills F [ f ∗ u] = f̂ û.

Further, the notation of conditionally positive definiteness will be central in our
paper. A continuous, even function f : Rd → C is conditionally positive definite of order
r ∈ N0, if for all N ∈ N, all x1, . . . , xN ∈ Rd, and all a ∈ CN \ {0} satisfying

N

∑
j=1

aj p(xj) = 0

for all d-dimensional polynomials p of degree ≤ r − 1, we have

N

∑
j,k=1

aj āk f (xj − xk) ≥ 0,

see [36, 54]. We denote the space of conditionally positive definite functions of order r
by CPr(Rd). In particular, −∥ · ∥β ∈ CP1(R

d), β ∈ (0, 2). If r = 0, we just speak about
positive definite functions.

Bochner’s theorem characterizes positive definite functions as Fourier transform of
positive measures, see Theorem A.3 in Appendix A. There are different ways to modify
Bochner’s theorem for conditionally positive definite functions. We will use the follow-
ing one [57, Thm. 8.12].

Theorem 2.3 (Bochner’s Theorem for Generalized Fourier Transform). Let f : Rd → C

be continuous, slowly increasing, and possess a generalized Fourier transform f̂ of order r,
which is continuous on Rd \ {0}. Then f is conditionally positive definite of order r if and only
if f̂ is nonnegative.
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3 Smoothed Absolute Value Function

In this section, we propose to embellish abs(x) = |x| by convolving it with functions
from the set

U n(R) :=
{

u ∈ Cn
c (R) : u, û ≥ 0, u even,

∫
R

u dx = 1
}

, n ∈ N0. (4)

These functions have the following nice properties.

Proposition 3.1. Let u ∈ U n(R) and uε(x) := 1
ε u
( x

ε

)
for ε > 0. Then f := abs ∗u fulfills:

i) f > 0 and f is even,

ii) f (x) = abs(x) for |x| ≥ diam(supp(u))/2,

iii) f ′′ = 2u so that f is convex and f ∈ Cn+2(R),

iv) − f is conditionally positive definite of order r = 1, but not positive definite,

v) (abs ∗uε)(x) = ε f
( x

ε

)
, (abs ∗uε)′(x) = f ′

( x
ε

)
, (abs ∗uε)′′(x) = 2

ε u
( x

ε

)
,

vi) abs ∗uε → abs uniformly as ε → 0.

The most important functions u ∈ U n(R) in our numerical part will be centered
cardinal B-splines. The centered cardinal B-spline of order m ∈ N is recursively defined
by

M1 := 1[− 1
2 , 1

2 ]
, Mm := M1 ∗ Mm−1, m = 2, 3, . . .

B-splines have many useful properties, see [35, 49].

Proposition 3.2. For the centered cardinal B-splines with m ∈ N, the following holds true:

i) Mm ≥ 0 and
∫

R
Mm(x) dx = 1,

ii) supp Mm =
[
−m

2 , m
2

]
and Mm is even,

iii) Mm ∈ Cm−2(R), m ≥ 2,

iv) M̂m(ω) = sincm(ω), where sinc(ω) := sin(πω)
πω . This is a nonnegative function exactly

for even m ∈ N.

v) For m ≥ 2, we have

Mm(x) =
1

(m − 1)!

m

∑
k=0

(−1)k
(

m
k

)(
x − k +

m
2

)m−1

+
, (5)

where x+ := max(x, 0), and

Mm(0) =
2
π

∫ ∞

0

(
sin(x)

x

)m

dx =
m

2m−1

⌊m
2 ⌋

∑
k=0

(−1)k(m − 2k)m−1

m! (m − k)!

=

√
6

πm

(
1 +O(m−1)

)
.
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vi) Clearly, it holds M2m ∈ U 2m−2(R) for all m ∈ N.

The convolution of abs with the centered cardinal B-splines is given in the following
proposition.

Corollary 3.3. For f := abs ∗Mm, it holds

f (x) =
2

(m + 1)!

m

∑
k=0

(−1)k
(

m
k

)(
x − k +

m
2

)m+1

+
− x.

Here are two examples.

Example 3.4. From

M2 =

{
1 − |x|, |x| ≤ 1,
0, otherwise, M4 =

1
6


3|x|3 − 6x2 + 4, |x| ≤ 1,
(2 − |x|)3, 1 < |x| ≤ 2,
0, otherwise,

we get

(abs ∗M2)(x) =

{
1
3 (−|x|3 + 3|x|2 + 1), |x| ≤ 1,
|x|, otherwise,

(6)

and

(abs ∗M4) (x) =


1

20 |x|5 −
1
6 x4 + 2

3 x2 + 7
15 , 0 ≤ |x| < 1,

1
60 (2 − |x|)5 + |x|, 1 ≤ |x| < 2,

|x|, otherwise.

For a plot of abs ∗M2 with its first and second order derivatives see Figure 1.

Asking for smoothed absolute value functions, the Huber function may first come
into one’s mind. Unfortunately, by the following corollary, the negative Huber function
is not conditionally positive definite.

Corollary 3.5. The Huber function

f (x) :=
{ 1

2 x2, |x| ≤ λ,
λ(|x| − λ

2 ), otherwise,

can be rewritten as f = λ (abs ∗M1,2λ)− λ2

2 and has the generalized Fourier transform

f̂ (ω) = − λ

2π2ω2 sinc(2λω),

which takes positive and negative values, so that − f is not conditionally positive definite.

The proof follows from formula (30) in Appendix B. The Huber function is the so-
called Moreau envelope of the absolute value function. Moreau envelopes play an im-
portant role in convex analysis. Appendix B contains more results on the relation of
abs ∗Mm to Moreau envelopes, which are interesting on their own.
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4 Smoothed Euclidean Norm

Our aim is to approximate the Euclidean norm on Rd by a function which on the one
hand keeps its desirable properties, in particular radial symmetry, simple computation
and conditional positive definiteness of order 1, and on the other hand gives rise to
Lipschitz differentiable kernels in the next section. First ideas could be the following
two:

- Convolve the Euclidean norm in Rd with some smooth filter. Unfortunately, this
is numerically expensive in high dimensions.

- Use f (∥ · ∥) with f = abs ∗u and u ∈ U n(R). Unfortunately, this function is in
general not conditionally positive definite, as the following lemma shows.

Lemma 4.1. For f = abs ∗M2, it holds that − f (∥ · ∥) ̸∈ CPr(Rd) for any d ≥ 2 and r ∈ N.

Since the above approaches do not provide the desired functions, we propose to use
the Riemann-Liouville fractional integral transform, which we consider next.

4.1 Riemann-Liouville Fractional Integral and Slicing in Rd

For d ∈ N, d ≥ 2, the Riemann-Liouville fractional integral Id : L∞
loc(R) → Cn(R), n :=

⌊ (d−2)
2 ⌋ is defined by

F(s) = Id[ f ](s) := cd

∫ 1

0
f (ts)(1 − t2)

d−3
2 dt for all s ∈ R, (7)

where cd := 2wd−2
wd−1

and wd−1 := 2π
d
2

Γ( d
2 )

denotes the surface area of the sphere Sd−1. For

d = 2, the term (1 − t)
d−3

2 is not bounded, but integrabable, so that we require f to be
locally bounded in order for (7) to exist. For d ≥ 3, the term (1 − t2)

d−3
2 is bounded and

we can define Id on L1
loc(R).

Our approach is motivated by the slicing techniques for fast kernel summation in
[26, 28]. In particular, the Riemann-Liouville fractional integral has the following use-
ful property, which relates a high-dimensional radial function to a function on one-
dimensional projections of its inputs, see [46].

Theorem 4.2. Let d ∈ N, d ≥ 2 and f ∈ L∞
loc(R) be even. Then the even function F : R → R

defined by the Riemann-Liouville fractional integral (7) fulfills the projection/slicing condition

F(∥x∥) = 1
ωd−1

∫
Sd−1

f (⟨ξ, x⟩)dx = Eξ∼U
Sd−1 [ f (⟨x, ξ⟩)] , (8)

where USd−1 denotes the uniform distribution on the sphere. Further, if f is positive definite,
then F(∥ · ∥) is also positive definite for all d ≥ 2. Conversely, if F(∥ · ∥) is positive definite for
some d ≥ 2, then there exists an even positive definite function f on R such that (7) is fulfilled.
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The slicing formula (8) is a special case of the adjoint Radon transform, see [46]. The
following two propositions extend the last property of Theorem 4.2 to conditionally
positive functions.

Proposition 4.3. Let d ∈ N, d ≥ 2 and f ∈ L∞
loc(R) be even. Further, let f ∈ CPr(R) for

r ∈ N0 and F = Id[ f ]. Then F(∥ · ∥) ∈ CPr(Rd).

Proposition 4.4. Let d ≥ 3 and let the ⌊ d
2⌋-th derivative of F ∈ C⌊ d

2 ⌋([0, ∞)) be slowly
increasing. Moreover, assume that F(∥ · ∥) ∈ CPr(Rd) has a generalized Fourier transform
ρ(∥ · ∥) ∈ C(Rd \ {0}). Then the function f ∈ CPr(R) with generalized Fourier transform

f̂ ∈ C(R \ {0}), f̂ (ω) =
wd−1

2
ρ(ω)|ω|d−1,

fulfills (7).

4.2 Riemann-Liouville Fractional Integral of Smoothed Absolute Value

Next, we are interested in the Riemann-Liouville fractional integral of the smoothed
absolute value function f := abs ∗u, u ∈ U n(R). First of all, the absolute value function
is an eigenfunction of Id, see, e.g. [28].

Lemma 4.5. The functions absβ, β > −1 are eigenfunctions of Id with eigenvalues Γ( d
2 )Γ(

β+1
2 )

√
πΓ( d+β

2 )
.

The Riemann-Liouville fractional integral of abs ∗u has the following properties.

Proposition 4.6. Let n, d ∈ N with d ≥ 2 and u ∈ U n(R). Then the function F :=
Id[abs ∗u] is even, convex, positive and (n + 2)-times continuously differentiable. Further,
it satisfies for s → ∞ the relation

F(s) = Cd |s|+O
(

1
s

)
, Cd :=

Γ( d
2 )√

πΓ( d+1
2 )

.

In particular, F − Cd abs ∈ C0(R) ∩ L2(R) and F′ ∈ Cb(R) with F′(0) = 0.
The function Fε := Id[abs ∗uε] converges in L2(R) and also pointwise to F as ε → 0.

For the special case of B-splines u := Mm, we have the following result.

Proposition 4.7. For m ∈ N with m ≥ 2, let f := abs ∗ Mm. Then we have for d ≥ 2

Id[ f ](s) = cd

m

∑
k=0

(−1)k
(

m
k

) m+1

∑
n=0

(m
2 − 2)m+1−n

n!(m + 1 − n)!
snqd(n, k − m

2 ; s)− πcd+1

2
s, s > 0,

where

qd(n, a; s) :=


Γ( d−1

2 )Γ( n+1
2 )

Γ( d+n
2 )

, a ≤ 0,
Γ( d−1

2 )Γ( n+1
2 )

Γ( d+n
2 )

− Ba2/s2( n+1
2 , d−1

2 ), 0 < a < s,

0, a ≥ s

with the incomplete Beta function Bx(a, b) :=
∫ x

0 ta−1(1 − t)b−1 dt for a, b > −1 and x ∈
[0, 1].
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In particular, we obtain for u = M2 and u = M4 the following functions F.

Example 4.8. For d = 3, it holds

I3[abs ∗M2](s) =
1

12

{
−|s|3 + 4s2 + 4, |s| ≤ 1,
6|s|+ 1

|s| , otherwise,

and

I3[abs ∗M4](s) =
1

360


3|s|5 − 12s4 + 80s2 + 168, |s| ≤ 1,
−|s|5 + 12s4 − 60|s|3 + 160s2 − 60|s|+ 192 − 4

|s| , 1 ≤ |x| ≤ 2,

180|s|+ 60
|s| , otherwise.

For an illustration of the first function, see Figure 1. We have I3[abs ∗M2] ∈ C3(R) and
I3[abs ∗M4] ∈ C5(R).

−3 −2 −1 1 2 3

2

x

Figure 1: Smoothed absolute value f = abs ∗M2 (solid, blue) with its first (solid, green)
and second (solid, orange) derivatives, and F = 2I3[ f ] (dashed blue) with its first
(dashed, green) and second (dashed, orange) derivatives.

Based on the previous results, we propose to approximate the negative Euclidean
norm on Rd by

Φ = F(∥ · ∥) := Id[ f ](∥ · ∥), f := − abs ∗u, u ∈ U n(R), n ∈ N0. (9)

Summarizing Propositions 3.1 and 4.3, this function has the following properties.

Theorem 4.9. The function Φ in (9) has the following properties:

i) Φ is conditionally positive definite of order one on Rd.

ii) Φ(x) < 0 for all x ∈ Rd.

iii) Φ(x) = −Cd ∥x∥+ φ(∥x∥) with φ ∈ C0(R) and φ(s) ∈ O( 1
s ) as s → ∞.
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iv) Φ is n + 2 times continuously differentiable.

v) ∇Φ is Lipschitz-L continuous with L := 2
√

d∥u∥∞

vi) Φ is concave and (−L)-convex, i.e., for all λ ∈ [0, 1] and all x, y ∈ Rd, we have

Φ(λx + (1 − λ)y) ≤ λΦ(x) + (1 − λ)Φ(y) + L
2 λ(1 − λ)∥x − y∥2.

5 Smoothed Distance Kernels

In this section, we show how the above functions Φ induce characteristic kernels with
nice Lipschitz properties. These kernels can be used to define MMDs between measures
and the MMDs can then serve as functionals for Wasserstein gradient flows.

We call a symmetric function K : Rd × Rd → R a kernel. A kernel is positive definite,
if for all N ∈ N, all x1, . . . , xN ∈ Rd, and all a ∈ CN it holds

N

∑
j,k=1

ajakK(xj, xk) ≥ 0.

Unfortunately, the kernel K(x, y) := F(∥x − y∥) with F in (9) is not positive definite,
since F(∥ · ∥) is only conditionally positive definite of order r = 1. However, we have
the following proposition, see [57, Thm 10.18]. Here Πr−1(R

d) denotes the linear space
of d-variate polynomials of degree ≤ r − 1 which has dimension N := (d+r−1

r−1 ).

Proposition 5.1. Let Φ : Rd → R be a conditionally positive definite function of order r ∈ N.
Let Ξ := {ξk : k = 1, . . . , N} be a set of points such that p(ξk) = 0 for all k = 1, . . . , N and
any p ∈ Πr−1(R

d) implies that p is the the zero polynomial. Denote by pj, j = 1, . . . , N the
set of Lagrangian basis polynomials with respect to Ξ, i.e., pj(ξk) = δj,k. Then

K(x, y) := Φ(x − y)−
N

∑
j=1

pj(x)Φ(ξ j − y)−
N

∑
k=1

pk(y)Φ(x − ξ j)

+
N

∑
j,k=1

pj(x)pk(y)Φ(ξ j − ξk)

(10)

is a positive definite kernel. In particular, we have in case r = 1 that

Φ(x − y)− Φ(x)− Φ(y) + Φ(0)

is positive definite, where we can skip the constant third term if Φ(0) ≤ 0.

For our kernel from the function in (9), we obtain directly by Theorem 4.9 v) and
Proposition 5.1 the following corollary.

11



Corollary 5.2. Let F(∥ · ∥) be defined by (9). Then

K : Rd × Rd → R, K(x, y) := F(∥x − y∥)− F(∥x∥)− F(∥y∥) (11)

is a positive definite kernel and

K(x, x) = F(0)− 2F(∥x∥) ∈ O(∥x∥). (12)

Moreover, K is continuously differentiable with Lipschitz continuous gradient, i.e.,

∥∇K(x, x′)−∇K(y, y′)∥ ≤ L(∥x − y∥+ ∥x′ − y′∥) for all x, x′, y, y′ ∈ Rd. (13)

6 Maximum Mean Discrepancy with respect to K

A Hilbert space H of real-valued functions on Rd is called a reproducing kernel Hilbert
space (RKHS), if the point evaluations h 7→ h(x), h ∈ H, are continuous for all x ∈
Rd. There exist various textbooks on RKHS from different points of view, see, e.g.,
[14, 51, 52]. By [52, Thm. 4.20], every RKHS admits a unique positive definite kernel
K : Rd × Rd → R, which is determined by the reproducing property

h(x) = ⟨h, K(x, ·)⟩H for all h ∈ H. (14)

In particular, we have K(x, ·) ∈ H for all x ∈ Rd and

|h(x)| ≤ ∥h∥H∥K(x, ·)∥H = ∥h∥H
√

K(x, x). (15)

Conversely, for any positive definite kernel K : Rd × Rd → R, there exists a unique
RKHS with reproducing kernel K, denoted by HK [52, Thm. 4.21].

RKHSs are closely related to measure spaces. Let M(Rd) denote the space of fi-
nite, real-valued Radon measures and P(Rd) the space of probability measures on Rd.
Further, let

Mα(R
d) :=

{
µ ∈ M(Rd) :

∫
Rd

∥x∥α dµ(x) < ∞
}

, 0 < α < ∞

and similarly

Pα(R
d) :=

{
µ ∈ P(Rd) :

∫
Rd

∥x∥α dµ(x) < ∞
}

, 0 < α < ∞.

Let K(x, x) ∈ O(∥x∥α). For example, we have by (12) for our kernel in (11) that
α = 1. Then, it can be seen by (15) that HK ⊂ L1(µ) for all µ ∈ Mα/2(R

d) and the
so-called kernel mean embedding (KME) m : Mα/2(R

d) → HK, µ 7→ mµ given by

⟨h, mµ⟩HK =
∫

Rd
h dµ for all h ∈ HK (16)

12



is well-defined, meaning that for every µ ∈ Mα/2(R
d) there exists a unique mµ ∈ HK

such that (16) is fulfilled [52, Lemma 4.24]. In particular, we have by (14) that

mµ(x) =
∫

Rd
K(x, y)dµ(y). (17)

The KME is not surjective [53]. For a positive definite kernel K with K(x, x) ∈ O(∥x∥α),
the maximum mean discrepancy (MMD) DK : Mα/2(R

d) × Mα/2(R
d) → R≥0 is by (15)

well-defined by

D2
K(µ, ν) :=

∫
Rd×Rd

K(x, y)d(µ(x)− ν(x))d(µ(y)− ν(y)) (18)

=
∫

Rd×Rd
K(x, y)dµ(x)dµ(y)− 2

∫
Rd×Rd

K(x, y)dµ(x)dν(y)

+
∫

Rd×Rd
K(x, y)dν(x)dν(y)

= ∥mµ − mν∥2
HK

,

see [6, 23], where the last equality follows directly from the KME (17). If the KME is
injective, then K is called a characteristic kernel. In this case, the MMD DK is a distance
on Mα/2(R

d). Kernels induced by Gaussians are typical characteristic kernels. By the
following proposition, also our kernel (11) is characteristic, so that DK is a distance on
M1/2(R

d).

Proposition 6.1. Let K be defined by (11). Then the kernel mean embedding m : M1/2(R
d) →

HK in (16) is injective, i.e. K is a characteristic kernel. More precisely, for all µ ∈ M1/2(R
d),

it holds

∥mµ∥2
HK

=
1

wd−1π2

∫
Rd

|µ(Rd)− µ̂(s)|2 û(∥s∥)
∥s∥d+1 ds − F(0) µ(Rd)2,

where µ̂ denotes the Fourier transform of µ, see (28).

Fortunately, by the following theorem, when dealing with MMDs it is not necessary
to work with the clumsy kernels (10), but instead we can directly use the conditionally
positive definite kernels. Note that the MMD with respect to the negative distance
kernel is also known as energy distances in statistics [55].

Theorem 6.2. Let Φ ∈ CPr(Rd) with r ∈ N fulfill Φ ∈ O(∥ · ∥α), and let K̃(x, y) :=
Φ(x− y). Define the associate positive definite kernel K by (10). Then DK̃ in (18) is well-defined
for µ, ν ∈ Mα(Rd) and DK for µ, ν ∈ Mβ(R

d), where β := max{r − 1, (r − 1 + α)/2}. If
µ, ν ∈ Mα(Rd) ∩Mβ(R

d) have the same first r − 1 moments, i.e.∫
Rd

p(x)dµ(x) =
∫

Rd
p(x)dν(x) for all p ∈ Πr−1(R

d),

then
DK̃(µ, ν) = DK(µ, ν).
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For our function Φ(x) := F(∥x∥) with F in (9), we know already that DK is well-
defined for measures in M1/2(R

d) which is in agreement with the proposition. How-
ever, by the proposition, DK̃ is only well-defined for measures in M1(R

d). If in addition∫
R

dµ =
∫

R
dν, then their distances DK and DK̃ are the same. In particular, both dis-

tances are well-defined and coincide for measures in P1(R
d) ⊃ P2(Rd).

By the following remark, there is a relation between the degree of conditional posi-
tive definiteness and the growth of a function Φ towards infinity.

Remark 6.3. By [34, Cor 2.3], we have

Φ ∈ CPr(R
d) =⇒ Φ ∈ O(∥ · ∥2r),

which implies that α ≤ 2r in the assumption of Theorem 6.2. In general, this bound cannot be
improved, since (−1)r∥ · ∥2r−ε ∈ CPr(Rd) for any r ∈ N and ε ∈ [0, 2) by [57, Cor 8.18] and
[54, Lem 3.3]. However, for our function Φ(x) := F(∥x∥) with F in (9), the above result says
that Φ ∈ O(∥ · ∥2), but we know already that Φ ∈ O(∥ · ∥).

Finally, smoothness properties of the kernel transfer to the corresponding RKHS.

Proposition 6.4. For d ≥ 3 and n ≥ 0, let u ∈ U n(Rd). Let the kernel K be given by (11).
Then every h ∈ HK is

⌊ n+2
2

⌋
-times continuously differentiable. If n ≥ 2 is even, then the

gradient ∇h is
√

2d∥u′′∥∞∥h∥HK Lipschitz continuous.

7 Wasserstein Gradient Flows of MMDs

The behavior of Wasserstein gradient flows of MMDs depends on the kernel in their
definition. While there exist many results for smooth kernels like the Gaussian, see,
e.g., [3], gradient flows of MMDs with Riesz kernels and in particular with the neg-
ative distance kernel have completely different properties, see, e.g., [27]. In contrast
to smooth kernels, empirical measures do in general not remain empirical ones along
the flow. Even if a steepest descent scheme, resp. the implicit Euler scheme exists, a
convergence theory is still missing in dimensions larger than one.

Let us briefly recall basic facts on Wasserstein gradient flows, see [2, 47] and show
that our new kernels fulfill all assumptions which are required to ensure the existence
of its MMD gradient flow and the convergence of a forward and backward schemes.

For µ, ν ∈ P2(Rd), we denote by

Π(µ, ν) := {π ∈ P2(R
d × Rd) : (P1)#π = µ, (P2)#π = ν}

the set of couplings with marginals µ and ν, and by (Pi)#µ := µ ◦ P−1
i ∈ P2(Rd) the

pushforward of µ with respect to the projection Pi(x1, x2) := xi, i = 1, 2. Together with
the Wasserstein distance

W2(µ, ν)2 := min
π∈Π(µ,ν)

∫
Rd×Rd

∥x − y∥2
2 dπ(x, y), µ, ν ∈ P2(R

d), (19)
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the set P2(Rd) becomes a complete metric space. The set of optimal couplings in (19)
is denoted by Πopt(µ, ν). A curve γ : I → P2(Rd) on an interval I = [a, b], a < b is
called absolutely continuous, if there exists a Borel velocity field v : I × Rd → Rd with
∥vt∥L2(Rd;γt) ∈ L1(I) such that the continuity equation

∂tγt +∇x · (vtγt) = 0

is fulfilled on I × Rd in a weak sense, i.e., for all φ ∈ C∞
c
(
(a, b)× Rd) it holds∫ ∞

0

∫
Rd

∂t φ(t, x) + ⟨∇x φ(t, x), vt(x)⟩dγt(x)dt = 0.

There are many velocity fields corresponding to the same absolutely continuous curve,
but only one with minimal ∥vt∥L2(Rd;γt) for a.e. t ∈ I. For a lower semi-continuous
function G : P2(Rd) → R, the reduced Fréchet subdifferential ∂G consists of all v ∈
L2(Rd, µ; Rd) such that for all η ∈ P2(Rd),

G(η)− G(µ) ≥ inf
π∈Πopt(µ,ν)

∫
Rd×Rd

⟨v(x), y − x⟩dπ(x, y) + o(W2(µ, ν)).

If the minimal velocity field in the continuity equation is determined by

vt ∈ −∂G(γt), for a.e. t > 0, (20)

then γt is called Wasserstein gradient flow of G.
Let K : Rd × Rd → R be a characteristic kernel such that its MMD is well-defined

for measures in P2(Rd). Examples are Gaussian kernels, the negative distance kernel,
as well as our smoothed negative distance kernels in (11). For a fixed target measure
ν ∈ P2(Rd), we consider gradient flows of the squared MMD functional

G : P2(R
d) → [0, ∞), G(µ) := 1

2D
2
K(µ, ν). (21)

If K is continuously differentiable, the velocity field in (20) becomes

vt = −∇x
δG
δγt

= −∇x

∫
Rd

K(·, y) (dγt(y)− dν(y)) (22)

= −
∫

Rd
∇xK(·, y) (dγt(y)− dν(y)) ,

see, e.g., [47]. Here, δG
δγ denotes the functional derivative defined, if it exists, by the

function with d
dϵ G(γ + ϵ(η − γ))

∣∣
ϵ=0 =

∫
δG
δγ (γ)(dη − dγ) for any η ∈ P2(Rd). Note

that vt = −∇xmγt−ν for a positive definite kernel. For the negative distance kernel,
we can compute δG

δγt
as above, but the gradient ∇x does not exist in x = y, i.e., (22)

is not well-defined, which causes the different behavior of those flows. The following
result guarantees the existence of Wasserstein gradient flows of MMDs with sufficiently
smooth kernels and its approximation by a Euler forward scheme.
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Proposition 7.1. [3, Prop 1&3] Let K ∈ C1(Rd × Rd) be a positive definite, characteristic
kernel that has a Lipschitz-continuous gradient in the sense of (13). Then, for any ν, µ ∈
P2(Rd), there exists a unique Wasserstein gradient flow γ : [0, ∞) → P2(Rd) of the MMD
functional (21) starting in γ(0) = µ. For a step size τ > 0, we define the Euler forward iteration
by

γ(k+1) := (I − τv(k))#γ(k) (23)

where v(k) is related to γ(k), k ∈ N0 by (22). The approximated interpolation path

γτ
t := (I − (t − kτ)v(k))#γ(k), t ∈ [kτ, (k + 1)τ),

satisfies W2(γτ
t , γt) ≤ τ CT for all t ∈ [0, T], where the constant CT depends only on T > 0.

By Proposition 6.1 and Corollary 5.2, we obtain the following for our smoothed
norm kernel.

Corollary 7.2. The kernel K(x, y) = F(∥x − y∥)− F(∥x∥)− F(∥y∥) with F from (9) fulfills
the conditions of Proposition 7.1. There exists a Wasserstein gradient flow of the corresponding
MMD functional (21) and it can be approximated by the Euler forward scheme (23). It holds

vt = −
∫

Rd
∇xK(·, y)d(γt − ν)(y) = −

∫
Rd

∇xF(∥x − y∥)d(γt − ν)(y),

so that K can be replaced by K̃(x, y) = F(∥x − y∥) without changing the flow results.

Remark 7.3. Let d′ ≥ d and F = Id′ [ f ] for f ∈ CPr(R). By Proposition 4.3, we have
F(∥ · ∥) ∈ CPr(Rd′) and, hence, also F(∥ · ∥) ∈ CPr(Rd). Therefore, we can also use F =
Id′ [ f ] to smooth the negative distance kernel in Corollary 7.2.

There is a more general theory on Wasserstein gradient flows of λ-convex function-
als, λ ∈ R, along generalized geodesics, see [2, Thm. 11.2.1]. In Appendix D, we show
that the functional G in (21) with our smoothed negative distance kernel fulfills this
λ-convexity with λ < 0 and establish an analogue to Corollary 7.2 for the Euler back-
ward scheme. In particular, note that it is only ensured for λ > 0 that the gradient flow
converges to the (global) minimizer of G as t → ∞. Example D.5 in Appendix D shows
that convergence to the global minimizer ν in (21) is in general not ensured, and the
iteration may become stuck in another extreme point.

Finally, let us mention that our new kernel can also be used in the definition of
other functionals G, e.g., MMD-regularized f -divergences, where so far only bounded
positive definite, characteristic kernels were applied.

Remark 7.4 (MMD-regularized f -Divergence). In [41], inspired by [20], Wasserstein gra-
dient flows of MMD-regularized f -divergences were considered. Unfortunately, the approach
requires differentiability of the kernel and therefore does not work for negative distance kernels.
In contrast, using Proposition 6.4, it can be shown that our new smoothed distance kernel fits
into the setting of the above papers.
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8 Numerical Results

In this section, we consider empirical probability measures

µ :=
1
N

N

∑
n=1

δxn , ν :=
1
M

M

∑
m=1

δym , xn, ym ∈ Rd,

where δx is the Dirac measure at x ∈ Rd. The MMD (18) between these measures is

D2
K(µ, ν) =

1
N2

N

∑
n,n′=1

K(xn, xn′)− 2
MN

N,M

∑
n,m=1

K(xn, ym) +
1

M2

M

∑
m,m′=1

K(ym, ym′).

We compare the gradient flows of G = 1
2D2

K(·, ν) for K(x, y) = F(∥x − y∥) with the

a) Gaussian F(s) := exp(−s2

2σ2 ) for σ > 0,

b) SND: smoothed negative distance

F := −I3[abs ∗uε] with uε(x) := 1
ε M2(

x
ε ), (24)

c) ND: negative distance F := − 1
2 abs.

Remark 7.3 entitles us to use I3 instead of I2 in the definition of SND.
The Wasserstein gradient flow of the MMD with a kernel fulfilling the assumptions

of Proposition 7.1 keeps the empirical measure structure and moves just the positions
of the Dirac measures. This holds true for the Gaussian and for our SND kernel. For
the ND kernel, we have to replace G(µ) by +∞ if µ is not an empirical measure, see,
e.g. [30]. The forwards Euler scheme (23) for smooth kernels reads as

x(k+1)
i = x(k)i − τ

( 1
2N

N

∑
n=1

(x(k)i − x(k)n )
F′(∥x(k)i − x(k)n ∥)
∥x(k)i − x(k)n ∥

− 1
M

M

∑
m=1

(x(k)i − ym)
F′(∥x(k)i − ym∥)
∥x(k)i − ym∥

)
.

(25)

For the Gaussian as well as for the SND kernel, we have F′(0) = 0 and by L’Hôpital’s
rule

F′′(0) = lim
s→0

F′(s)
s

is well-defined. For the ND kernel, the summands in (25) have just the form x
∥x∥ with

x ∈ {x(k)i − x(k)n , x(k)i − ym : i, n = 1, . . . , N; m = 1, . . . , M} if x ̸= 0, and we set x
∥x∥ := 0

for x = 0.
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Figure 2: Target measures ν (blue) and initialization γ(0) (orange).

Fast Summation by Slicing. The computation of (25) includes the summation of ker-
nel values of the form sm = ∑N

n=1 wnF′(∥xn − ym∥) with some weights wn ∈ C. If
F = Id[ f ], then we have by (8) that F′(x) = Eξ∼U

Sd−1 [ξ f ′(⟨x, ξ⟩)]. Now the summation
can be approximated by slicing [26, 28, 30] via

sm = Eξ∼U
Sd−1

[ N

∑
n=1

wnξ f ′(⟨xn − ym, ξ⟩)
]
≈ 1

P

P

∑
p=1

ξp

N

∑
n=1

wn f ′(⟨xn − ym, ξp⟩), (26)

where (ξp)P
p=1 ∈ (Sd−1)P are equidistributed quadrature nodes on Sd−1. This is a col-

lection of P one-dimensional kernel sums, which can be computed efficiently, e.g. via
fast Fourier summation [43] or, if F is the ND kernel just by sorting [26].

8.1 Three-Rings Target

The three-rings target ν in Figure 2a from [20, Fig. 1] consists of three circles in R2 with
radius 1 and midpoints (−2.5, 0), (0, 0) and (2.5, 0) discretized with M = 3 · 40 = 120
points. The initialization γ(0) is a highly localized Gaussian with standard deviation
10−4, see Figure 2a.

We computed the iteration (23) with step size τ = 0.01 in double precision and
display the flow after k ∈ {1 000, 5 000, 10 000, 50 000} iterations or equivalently after
time t = τk. Figure 3a shows the flows for the Gaussian kernel with standard deviation
σ ∈ {0.06, 0.3, 1}. Here, the quality of the result heavily depends on the choice of σ.
If σ is too small, the points cover only two circles; if too large, the points do not lie on
the circles. The sweet spot is around σ = 0.3, but even then some particles get stuck far
from the target. Figure 3b shows the flows for the SND kernel (24) for ε ∈ {1, 0.1, 0.01}.
Here, it is preferable to choose a small ε, then all three circles are recovered well. Figure
3c depicts the results with the ND kernel. The flows in Figure 3c and Figure 3b for
ε = 0.01 are almost identical.

In Figure 4, we plot the Wasserstein error W2(γτ
t , ν) between the three-rings target

measure ν and the discretized Wasserstein gradient flow γτ
t at time t computed with

PythonOT [17]. The first plot in Figure 4 corresponds to the flow γτ
t shown in Figures

3a, 3b, and 3c. The remaining plots in Figure 4 depict the same experiment with differ-
ent step sizes τ and machine precision, where we always used the same random seed.
Regardless of precision, step size, or bandwidth σ, the Gauss kernel stagnates away
from the target measure ν.
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Figure 3: MMD flow (25) with step size τ = 0.01. For the Gaussian kernel, the result
depends heavily on the choice of the parameter σ. For our SND kernel with small ε, the
performance is as good as for the ND kernel, which is better than for the Gaussians.
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For the behavior of the ND and SND kernel close to the target we first consider the
following proposition, whose proof is given in Appendix D.

Proposition 8.1. Let F ∈ C1((0, ∞)). For the target measure ν = δy and the initial measure
γ(0) = δx(0) with y, x(0) ∈ Rd, the sequence x(k) from (25) simplifies to

x(k+1) = x(k) + τ(x(k) − y)
F′(∥x(k) − y∥)
∥x(k) − y∥

, (27)

and we have the following:

i) If F = − 1
2 abs with step size τ > 0 and 0 < ∥y − x(0)∥ < τ

2 , then x(k) = x(0) for even
k and x(k) = x(1) for odd k. In particular, (x(k))k does not converge to y.

ii) If F = −Id[abs ∗u] with u ∈ U 0(R), then for sufficiently small τ and ∥x(0) − y∥ < τ,
the sequence (x(k))k converges exponentially to y.

Proposition 8.1 is for a single Dirac flow, but gives an intuition when x(k)i ≈ yi. In
(25), the repulsion term of xi and xj approximately cancels with the attraction term of xi
and yj, leaving only the attraction of xi and yi as in (27). For the ND kernel, Proposition
8.1 i) indicates that µτ

t oscillates around the target for any τ > 0 without convergence.
In contrast, Proposition 8.1 ii) states that for the SND kernel, W2(µτ

t , ν) decays exponen-
tially if τ is sufficiently small. Numerically, Figure 4 confirms this behavior. In single
precision, ND and SND with ε = 0.01 plateau at ≈ 10−3. With double precision, ND os-
cillates at the same error, while SND drops to ≈ 10−7. Thus, SND matches ND globally
but exhibits better local convergence for fixed τ > 0 due to its smoothness.

An additional numerical example with two concentric circles is given in Appendix E.

8.2 Bananas Target

The Bananas target ν in Figure 2b is inspired by the talk from Aude Genevay1 and its
implementation by Viktor Stein2. The target consists of two banana shaped clusters in
R2, where each banana consists of 100 points, so M = 200.

We compute the flows with step size τ = 0.02 in double precision for the Gauss
kernel with σ ∈ {0.06, 0.3, 1}, the SND kernel with ε ∈ {0.1, 0.01, 0.001}, and the ND
kernel, see Figure 5. For small σ = 0.06 the Gauss kernel struggles to reach the bananas.
When σ = 0.3, the right banana is reached, but some particles blow up and leave the
frame. For σ = 1, the flows reaches the bananas, but collapses in the modes and do not
recover the structure of the target. In contrast, the SND flow always manages to reach
both bananas without blowing up, while a smaller ε again gives more desirable results.
The respective Wasserstein errors in Figure 6 show a similar behavior as for the rings.

1MIFODS Workshop on Learning with Complex Structure 2020, see https://youtu.be/TFdIJib_zEA.
2https://github.com/ViktorAJStein/Regularized f Divergence Particle Flows.
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Figure 4: W2 error between three-rings target ν and flow γτ
t after k with time t = τk. We

compare single precision (first row) and double precision (second row) for step sizes
τ = 0.1 (left) and τ = 0.01 (right). In single precision, SND with ε = 0.01 and ND have
the smallest error which gets stuck in ≈ 10−3. In double precision, SND with ε = 0.01
even outperforms ND. For some explanation, see Proposition 8.1.
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Figure 5: MMD flow (25) with step size τ = 0.02. For the Gaussian kernel, the result
depends heavily on the choice of the parameter σ. For our SND kernel with small ε, the
performance is as good as for the ND kernel, which is better than for the Gaussians.
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Figure 6: W2 error between bananas target ν and flow γτ
k after k iterations with time

t = τk. Computation with double precision with step size τ = 0.02 shows a similar
behavior as in Figure 4.

8.3 MNIST Dataset

We consider as target the MNIST dataset, where each 28 × 28 image is considered a
point y ∈ Rd with d = 784 = 282. We use N = M = 100 images as flow and target.
The initialization x(0)n , n = 1, . . . , N, are iid samples from a uniform distribution on
[0, 1]d. We compute the MMD flows (25) with 215 = 32768 iterations for the SND kernel
F = −C784I784[abs ∗M2,ε] with ε ∈ {0.001, 0.01, 0.1} and the ND kernel F = − abs. The
step size is τ = 1 and the computations are preformed in single precision. We use
slicing summation (26) with P = 785 directions ξp that are the vertices of the centrally
symmetric simplex, to which we apply a random rotation in each iteration step, cf. [28].
The slicing summation requires only the sliced kernel abs ∗M2,ε given in (6), but not the
representation of F, which becomes quite clumsy in general, see Proposition 4.7.

The resulting images are shown in Figure 7, where we see the MMDs for the SND
with small ε and the Riesz kernel work comparably well and converge to the target
measure ν. For larger smoothing parameter ε, the flow needs more iterations to con-
verge.

The distance to the target measure in the Wasserstein and MMD metrics is shown
in Figure 8. Here we use the sliced approximation of the MMD. Note that the MMD,
which is the objective we minimize, still depends on the kernel K. We see a similar
behavior as for the previous low-dimensional examples with the error plateauing at
some level, which becomes better for smaller ε even slightly beating the ND kernel.

9 Conclusions

We introduced a smoothed negative distance kernel as an alternative to the negative
distance kernel in MMDs. The novel kernel retains desired numerical properties of the
negative distance kernel, but comes with well-defined gradient expressions and theo-
retical convergence guarantees of the corresponding gradient flow schemes. Therefore
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(a) ND (b) SND (ε = 0.01). (c) SND (ε = 0.1).

Figure 7: MMD flow for MNIST target with different kernels. Each row shows the first
10 images xn ∈ R28×28, the ℓ-th row corresponds to the iteration k = 23+ℓ, ℓ = 1, . . . , 12.
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Figure 8: MMD flow for MNIST target. Left: Wasserstein distance W2(γ(k), ν). Right:
MMD distance 1

2D2
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(k), ν) for the respective kernels K.

our novel kernel appears to be well suited for various applications.
Concerning our future work, it may be interesting to examine if our kernel can be

also used in Stein variational gradient descent [32, 42], where negative distance kernels
do neither theoretically nor practically work.
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Basel, second edition, 2008.

24



[3] M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradi-
ent flow. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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[4] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local
minimizers of the interaction energy. Archive for Rational Mechanics and Analysis,
209:1055–1088, 2013.

[5] H. H. Bauschke and P. L. Combettes. Correction to: Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer International Publishing, Cham, 2017.

[6] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J.
Smola. Integrating structured biological data by kernel maximum mean discrep-
ancy. Bioinformatics, 22(14):e49–e57, 07 2006.

[7] S. Boufadène and F.-X. Vialard. On the global convergence of Wasserstein gradient
flow of the Coulomb discrepancy. HAL preprint hal-04282762, 2023.

[8] J. Carrillo, M. Delgadino, and A. Mellet. Regularity of local minimizers of the
interaction energy via obstacle problems. Communications on Mathematical Physics,
343(3):747–781, 2016.

[9] J. Carrillo, M. Di Francesco, A. Esposito, S. Fagioli, and M. Schmidtchen. Mea-
sure solutions to a system of continuity equations driven by newtonian nonlocal
interactions. Discrete and Continuous Dynamical Systems, 40(2):1191–1231, 2020.

[10] J. Carrillo and Y. Huang. Explicit equilibrium solutions for the aggregation equa-
tion with power-law potentials. Kinetic and Related Models, 10(1):171–192, 2017.

[11] J. Carrillo and R. Shu. From radial symmetry to fractal behavior of aggregation
equilibria for repulsive-attractive potentials. Calculus of Variations and Partial Dif-
ferential Equations, 62(1), 2023.

[12] D. Chafai, E. B. Saff, and R. S. Womersley. On the solution of a Riesz equilibrium
problem and integral identities for special functions. Journal of Mathematical Anal-
ysis and Applications, 515:126367, 2022.

[13] G. Criscuolo. A new algorithm for Cauchy principal value and Hadamard finite-
part integrals. Journal of Computational and Applied Mathematics, 78:255–275, 1997.

[14] F. Cucker and D. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cam-
bridge University Press, 2007.

[15] R. Duong, V. Stein, R. Beinert, J. Hertrich, and G. Steidl. Wasserstein gradient
flows of MMD functionals with distance kernel and Cauchy problems on quantile
functions, 2024.

25
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A Fourier Transform of Tempered Distributions

Let S ′(Rd) denote the space of tempered distributions, i.e., of linear functionals T on
S(Rd) fulfilling

φk −→S φ =⇒ lim
k→∞

⟨T, φk⟩ = ⟨T, φ⟩,

where −→
S

denotes the convergence with respect to

∥φ∥m := max
|β|≤m

∥(1 + ∥x∥2)
m Dβ φ(x)∥C0(Rd) for all m ∈ N0.

In particular, S ′(Rd) contains all slowly increasing functions f , i.e. the functions ful-
filling | f (x)| ≤ C(1 + ∥x∥N) for some N ∈ N0 and all functions in Lp(Rd), p ∈ [1, ∞).
As usual, for distributions of function type, the distribution Tf is identified with the
function itself and the dual pairing becomes

⟨Tf , φ⟩ =
∫

Rd
f φ dx for all φ ∈ S(Rd).

The Fourier transform F : S ′(Rd) → S ′(Rd), T 7→ T̂ is defined by

⟨T, φ̂⟩ = ⟨T̂, φ⟩ for all φ ∈ S(Rd).

In particular, we have for f ∈ L1(Rd) in the above sense that T̂f = T f̂ with f̂ given by
(1).

Example A.1 (Distributional versus Generalized Fourier transform of polynomials). Let
p : R → R, p(x) := ∑r−1

k=0 pkxk. Then∫
Rd

p(x)φ̂(x)dx = 0 for all φ ∈ Sr,

so the Generalized Fourier transform of p of order r is the zero function, see [57, Prop. 8.10]. In
contrast, the distributional Fourier transform of p is given by

p̂ =
r−1

∑
k=0

(
i

2π

)k

pkδ(k).

If we test only against functions in Sr both approaches coincide.

Example A.2 (Distributional Fourier transform of abs). Since abs is slowly increasing, it is
a tempered distribution. Its distributional Fourier transform can be written as the distributional
derivative of the Cauchy principal value,

âbs =
1

2π2

(
pv
(

1
·

))′
,
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where 〈
pv
(

1
·

)
, φ

〉
:= lim

ε↘0

∫
|x|>ε

φ(x)
x

dx =
∫

R

φ(x)− φ(0)
x

dx, φ ∈ S(R),

see [43, Sect 4.3], [19]. This can also be represented as the so-called Hadamard finite part
H
(

−1
2π2(·)2

)
, see [13], given by

〈
âbs, φ

〉
=

〈
H
(

−1
2π2(·)2

)
, φ

〉
:= −

∫
R

φ(ω)− φ(0)− φ′(0)ω
2π2ω2 dω.

If we test only against functions from φ ∈ S2(R), we have φ(0) = φ′(0) = 0, so that this
coincides with the generalized Fourier transform (3). □

Another special case of tempered distributions are finite Borel measures M(Rd),
see [43, Sect. 4.4]. More precisely, since S(Rd) is a dense subspace of

(
C0(Rd), ∥ · ∥∞

)
,

we know by the Riesz representation theorem that µ ∈ M(Rd) can be identified with a
tempered distribution Tµ : S(Rd) → C which acts on any φ ∈ S(Rd) by

⟨Tµ, φ⟩ :=
∫

Rd
φ dµ.

The Fourier transform on M(Rd) is defined by F : M(Rd) → Cb(R
d) with

Fµ(ω) = µ̂(ω) :=
∫

Rd
e−2πiω· dµ, ω ∈ Rd, (28)

and we have T̂µ = Tµ̂. For positive measures µ ∈ M(Rd), i.e. µ(B) ≥ 0 for all Borel sets
B ⊆ Rd, we obtain a one-to-one mapping to positive definite functions by Bochner’s
theorem.

Theorem A.3 (Bochner). Any positive definite function f : Rd → C is the Fourier transform
of a positive measure and conversely. If in addition f (0) = 1, then it is the Fourier transform
of a probability measure.

B Relation with Moreau Envelopes

For a proper, convex, lower semi-continuous function g : Rd → R and λ > 0, the
proximal function prox : Rd → Rd is defined by

proxλg(x) = arg min
y∈Rd

{
1
2
∥x − y∥2 + λg(y)

}
and its Moreau envelope by

Hλg(x) = min
y∈Rd

{
1
2
∥x − y∥2 + λg(y)

}
.
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The Moreau envelope is differentiable and

∇Hλg(x) = x − proxλg(x),

so that

proxλg(x) = x −∇Hλg(x) = ∇
(

1
2
∥x∥2 − Hλg(x)

)
︸ ︷︷ ︸

ψ(x)

. (29)

Conversely, we have the following result of Moreau [38, Cor 10c].

Proposition B.1. A function G : Rd → Rd is the proximal function of a proper, convex, lower
semi-continuous function if and only if i) there exists a convex differentiable function ψ such
that G = ∇ψ, and ii) G is nonexpansive, i.e., ∥G(x)− G(y)∥ ≤ ∥x − y∥ for all x, y ∈ Rd.

In particular, we obtain for g = abs that

proxλ abs(x) =


x − λ x > λ,
0 x ∈ [−λ, λ],
x + λ x < −λ,

and the Moreau envelope

Hλ abs(x) =
{ 1

2 x2 |x| ≤ λ

λ(|x| − λ
2 ) otherwise

is known as the Huber function.
On the other hand, we have

(abs ∗M1)(x) =

{
x2 + 1

4 |x| ≤ 1
2 ,

|x| |x| > 1
2 ,

so that by Proposition 3.1, for ε = 2λ,

(abs ∗M1,2λ)(x) =
1
λ

Hλ abs(x) +
λ

2
=

{
x2

2λ + λ
2 |x| ≤ λ,

|x| |x| > λ.

Thus, by (3) and Propositions 2.2 and 3.2, the Generalized Fourier transform of the
Huber function is given by

Ĥλ abs(ω) = − λ

2π2ω2 sinc(2λω). (30)

Since this function has positive and negative values, we conclude by Proposition 2.3
that the negative Huber function is not conditionally positive definite of any order.
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Let us see if abs ∗M1,ε is the Moreau envelope of some function. Regarding (29), we
consider

ψ(x) :=
1
2

x2 − (abs ∗M1,2λ)(x) =

{
1
2

(
1 − 1

λ

)
x2 − λ

2 |x| ≤ λ,
x2

2 − |x| |x| > λ,

which is convex for λ ≥ 1 and has a nonexpansive derivative

ψ′(x) = x − (abs ∗M1,ε)
′(x) =


(
1 − 1

λ

)
x |x| ≤ λ,

x − 1 x > λ,
x + 1 x < −λ.

Thus, by Moreau’s Proposition B.1, we see that abs ∗M1,2λ is a Moreau envelope if and
only if ε = 2λ ≥ 2. More general, we have the following proposition

Proposition B.2. For m ∈ N, the function abs ∗Mm,ε is the Moreau envelope of a proper,
convex, lower semi-continuous function if and only if ε ≥ 2Mm(0).

Proof. By the above considerations, the assertion is true for m = 1. By Proposition 3.1,
the function

ψ(x) :=
1
2

x2 − (abs ∗Mm,ε)(x)

fulfills

ψ′′(x) = 1 − 2
ε

Mm

( x
ε

)
≥ 1 − 2

ε
Mm(0) ≥ 0

if and only if ε ≥ 2Mm(0), and exactly in this case ψ is convex. Further, because ψ′′ ≤ 1,
we see that ψ′

is nonexpansive and by Moreau’s Proposition B.1, the function abs ∗Mm,ε is a Moreau
envelope.

C Proofs

Proofs from Section 2

Proof of Proposition 2.2. Since f ∈ C(Rd) is slowly increasing and u ∈ Cc(Rd), we con-
clude by straightforward computations that f ∗ u is continuous and slowly increasing,
too. Therefore, ⟨ f ∗ u, φ̂⟩ exists for all φ ∈ S(Rd). Using Fubini’s theorem, we obtain

⟨ f ∗ u, φ̂⟩ =
∫

Rd
( f ∗ u)(x)φ̂(x)dx =

∫
Rd

∫
Rd

u(y) f (x − y)dyφ̂(x)dx

=
∫

Rd
u(y)

∫
Rd

f (x − y)φ̂(x)dx dy.

By the translation-modulation theorem, we know that

φ̂(x) = F [e−2πi⟨·,y⟩φ](x − y),
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so that

⟨ f ∗ u, φ̂⟩ =
∫

Rd
u(y)

∫
Rd

f (x − y)F [e−2πi⟨·,y⟩φ](x − y)dx dy

=
∫

Rd
u(y)

∫
Rd

f (x)F [e−2πi⟨·,y⟩φ](x)dx dy.

Since f has a generalized Fourier transform f̂ of order r, this implies for φ ∈ S2r(Rd)
that

⟨ f ∗ u, φ̂⟩ =
∫

Rd
f̂ (x)φ(x)

∫
Rd

u(y)e−2πi⟨x,y⟩ dy dx

=
∫

Rd
f̂ (x)φ(x)û(x)dx.

Hence, f ∗ u has a generalized Fourier transform of order r, namely f̂ û.

Proofs from Section 3

Proof of Proposition 3.1. i) follows directly by definition of f and since u is even.
To show ii), let x > R := diam(supp u)/2. The case x < −R follows similarly. Then

we obtain

(abs ∗u)(x) =
R∫

−R

u(y)(x − y)dy = x
R∫

−R

u(y)dy −
R∫

−R

y u(y)dy = x · 1 − 0 = x.

In iii), we only have to show that f ′′ = 2u. Then the smoothness of f follows by
u ∈ Cn(R). Using Lebesgue’s dominated convergence theorem, we conclude

d
dx

(abs ∗u)(x) = lim
h→0

R∫
−R

|x + h − y| − |x − y|
h

u(y)︸ ︷︷ ︸
|gx,h|≤u

dy =

R∫
−R

sgn(x − y)u(y)dy

= (sgn ∗u)(x),

where

sgn(x) :=
{

1 x ≥ 0,
−1 x < 0.

The right derivative of sgn is given by

lim
h↘0

sgn(x + h)− sgn(x)
h

= lim
h↘0

2
h
1[−h,0)(x).

Therefore, we have by continuity of u that

lim
h↘0

(sgn ∗u)(x + h)− (sgn ∗u)(x)
h

= lim
h↘0

∫
R

2
h
1[−h,0)(y)u(x − y)dy

= 2 lim
h↘0

1
h

∫ 0

−h
u(x − y)dy = 2u(x).
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We obtain the same result for the left derivative. Since f ′′ = 2u ≥ 0, the function f is
convex.

For iv), we have by Lemma 2.2 and (3) that

− f̂ = F [− abs ∗u] = (−âbs) û ≥ 0.

Therefore − f is conditionally positive definite of order r = 1 by Theorem 2.3.
Assertion v) follows by straightforward computation.
Finally, we show vi). Note that we cannot apply the usual convergence theorems

for approximate identities in vi), because abs /∈ C0(R).
Let supp u ⊆ [−R, R] for some R > 0. Then, we have by v) and ii) that

(abs ∗uε)(x) = |x| for |x| ≥ εR.

For |x| ≤ εR, we conclude using
∫

R
uε(y)dy = 1 that

∣∣|x| − (abs ∗uε)(x)
∣∣ = ∣∣∣∣∫

R
|x|uε(x − y)dy −

∫
R
|y|uε(x − y)dy

∣∣∣∣
≤
∫

R
|x − y|uε(x − y)dy =

∫ εR

−εR
|y| uε(y)dy

≤ εR
∫ εR

−εR
uε(y)dy = εR,

which shows the uniform convergence.

Proof of Corollary 3.3. By (5) and since f ′′ = 2Mm, we obtain

f (x) =
2

(m + 1)!

m

∑
k=0

(−1)k
(

m
k

)(
x − k +

m
2

)m+1

+
+ ax + b

with some a, b ∈ R. Further, for x ≤ −m
2 , we conclude by f (x) = −x that

f (x) = ax + b = −x,

so that a = −1 and b = 0.

Proofs from Section 4

Proof of Lemma 4.1. The function f := abs ∗M2 has the generalized Fourier transform

of order 1 given by f̂ (r) = − sinc2(r)
2π2r2 . We define

g(r) := − 1
2π

1
r

d
dr

f̂ (r).

For integrable functions it was proven in [22, Thm. 1.1] that g(∥ · ∥) is the 3-dimensional
Fourier transform of f (∥ · ∥). However, since f is not integrable, we use the generalized
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Fourier transform to argue that F3[ f (∥ · ∥)] = g(∥ · ∥): for an even test function ψ ∈
S2(R), we apply [22, Thm. 1.1] to obtain

F3[ψ(∥ · ∥)](∥x∥) = − 1
2π

1
∥x∥ ψ̂′(∥x∥),

and with the surface area ω2 = 4π, integration by parts gives∫
R3

g(∥x∥)ψ(∥x∥)dx = ω2

∫ ∞

0
g(r)ψ(r)r2 dr = −

∫ ∞

0
2 f̂ ′(r)ψ(r)r dr

= −
[
2 f̂ (r)ψ(r)r

]∞

0
+
∫ ∞

0
2 f̂ (r)

d
dr

(ψ(r)r)dr.

Since ψ ∈ S2(R), the first summand [2 f̂ (r)ψ(r)r]∞0 vanishes. The derivative of the odd
function ψ(r)r is even and still in S2(R). Thus, we get by (2) that∫

R3
g(∥x∥)ψ(∥x∥)dx =

∫
R

f̂ (r)
d
dr

(ψ(r)r)dr = −
∫

R
f (r)r

d
dr

ψ̂(r)dr

= 4π
∫ ∞

0
f (r)

−1
2πr

d
dr

ψ̂(r)r2 dr =
∫

R3
f (∥x∥)F3[ψ(∥ · ∥)](∥x∥)dx,

i.e. F3[ f (∥ · ∥)] = g(∥ · ∥). Next we show that for all test functions φ ∈ S2(R3) it holds∫
R3

g(∥x∥)φ(x)dx =
∫

R3
f (∥x∥)φ̂(x)dx.

For an arbitrary φ ∈ S(Rd), define the radial test function

Rad φ(x) :=
1

ωd−1

∫
Sd−1

φ(∥x∥ξ)dξ.

In [46, Thm. 4.2 i)] it was shown, that Rad is a continuous projection of S(Rd) to the
space of radial Schwartz functions Srad(R

d). By the uniqueness of rotational invariant
measures on the sphere, see [44, (2.3)], we have

Rad φ(x) =
∫

SO(d)
f (Rx)dUSO(d)(R),

where USO(d) is the uniform measure on the set SO(d) of d × d rotation matrices. Since
the Fourier transform commutes with rotations, we have Rad[F φ] = F [Rad φ] for all
φ ∈ S(Rd), so the operators F and Rad commute. It is easy to see that for φ ∈ S2(R3),
we also have Rad φ ∈ S2(R3). The action of the test functions φ and Rad φ on g(∥ · ∥)
is the same, because g(∥ · ∥) is radial. Hence we have for all φ ∈ S2(R3) that∫

R3
g(∥x∥)φ(x)dx = ⟨g(∥ · ∥), φ⟩ = ⟨g(∥ · ∥), Rad φ⟩ = ⟨ f (∥ · ∥),F [Rad φ]⟩

= ⟨ f (∥ · ∥), Rad φ̂]⟩ = ⟨ f (∥ · ∥), φ̂⟩ =
∫

R3
f (∥x∥)φ̂(x)dx.
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Consequently, f (∥ · ∥) has the generalized Fourier transform g(∥ · ∥) of order 1. Theo-
rem 2.3 shows that − f (∥ · ∥) /∈ CP1(R

3), because g changes its sign. Since g(∥ · ∥) is the
generalized Fourier transform of f (∥ · ∥) for all r ≥ 1, we see that − f (∥ · ∥) /∈ CPr(R3)
for all r ≥ 1. Since − f (∥ · ∥) /∈ CP1(R

3), we have by [57, Prop. 8.2] that − f (∥ · ∥) /∈
CPr(Rd) for all r ≥ 0 and all d ≥ 3. □

Proof of Proposition 4.3. Assume that f ∈ CPr(R), then f (x) ∈ O(|x|2r), by [34,
Cor 2.3]. The function F is well-defined, because f is continuous and is slowly increas-
ing. Let x1, . . . , xN ∈ Rd and a1, . . . , an ∈ R such that

N

∑
j=1

ajP(xj) = 0 (31)

for all polynomials P on Rd of degree < r. In particular, any polynomial p(t) =

∑r−1
k=0 cktk on R determines for an arbitrary fixed ξ ∈ Sd−1, a polynomial on Rd of degree

< r by

Pξ(x) := p(⟨ξ, x⟩) =
r−1

∑
k=0

ck⟨ξ, x⟩k =
r−1

∑
k=0

ck

(
d

∑
l=1

ξlxl

)k

.

By (31), we have
N

∑
j=1

ajPξ(xj) =
N

∑
j=1

aj p(⟨ξ, xj⟩) = 0.

Since f is conditionally positive definite of order r, we know that

0 ≤
N

∑
j,k=1

ajak f (|⟨ξ, xj⟩ − ⟨ξ, xk⟩|),

so that by Theorem 4.2 also

0 ≤ 1
wd−1

∫
Sd−1

N

∑
j,k=1

ajak f (|⟨ξ, xj − xk⟩|)dξ dξ =
N

∑
j,k=1

ajakF(∥xj − xk∥).

Hence F(∥ · ∥) is conditionally positive definite of order r.

Proof of Proposition 4.4. In [46, Eq. (6) & (7)], two operators were introduced: the
rotation operator Rd acts on a function F : [0, ∞) → R as RdF(x) := F(∥x∥), and the
spherical averaging operator Ad assigns to a function Φ : Rd → R integrable on the
spheres t Sd−1 for all t > 0 the function

AdΦ(t) :=
1

ωd−1

∫
Sd−1

Φ(tξ)dξ.

For d = 1, the spherical averaging operator reduces to A1Φ(t) = 1
2 (Φ(t) + Φ(−t)).

Moving to distributions, the operator R⋆
d acts on a tempered distribution T as

⟨R⋆
dT, ψ⟩ = ⟨T, (Rd ◦ A1)ψ⟩ for all ψ ∈ S(R).
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Since F(∥ · ∥) is continuous and slowly increasing, it can be identified with a tempered
distribution. Let Fd denote the Fourier transform of tempered distributions. Since F is
⌊ d

2⌋-times continuously differentiable, we have by [46, Cor. 4.9] that

f := (F1 ◦ R⋆
d ◦ F−1

d )[RdF]

is a distribution arising from a continuous, even function which satisfies Id[ f ] = F.
Let ψ ∈ S2r(R) be an even. Then (Rd ◦A1)ψ = ψ(∥ · ∥) is a radial Schwartz function

in S2r(Rd). Since RdF has a Generalized Fourier transform ρ(∥ · ∥) of order r, we obtain∫
R

f (r)ψ̂(r)dr = ⟨ f , ψ̂⟩ = ⟨ f̂ , ψ⟩ = ⟨(R⋆
d ◦ F−1

d )[RdF], ψ⟩ = ⟨RdF, (F−1
d ◦ Rd ◦ A1)ψ⟩

=
∫

Rd
F(∥x∥)Fd[ψ(∥ · ∥)](x)dx =

∫
Rd

ρ(∥x∥)ψ(∥x∥)dx

=
wd−1

2

∫
R

ρ(ω)|ω|d−1ψ(ω)dω.

In particular, f has the generalized Fourier transform wd−1
2 ρ(ω)|ω|d−1 ∈ C(R \ {0}) of

order r, which is nonnegative, so that f is conditionally positive definite of order r. □

Proof of Proposition 4.6. For d ≥ 2, the term (1 − t2)
d−3

2 , t ∈ [0, 1] is integrable. Since
f = abs ∗uε ∈ Cn(R) ⊆ L∞

loc(R), n ∈ N0, the function F = Id[ f ] is well-defined. By
Proposition 3.1, we know that f is nonnegative and even. Hence, also F is nonnegative
and even. By Leibniz’s integral rule and since f ∈ Cn+1(R), we obtain for k = 1, . . . , n+
2 that

dk

dsk F(s) =
dk

dsk cd

∫ 1

0
f (ts)(1 − t2)

d−3
2 dt = cd

∫ 1

0

dk

dsk f (ts)(1 − t2)
d−3

2 dt

= cd

∫ 1

0
tk f (k)(ts)(1 − t2)

d−3
2 dt,

so that F ∈ Cn+2(R). Since f is at least twice differentiable and f (t) = abs(t) for |t|
large enough, it follows, that ∥ f ′∥∞ < ∞. For the first derivative of F we get

|F′(s)| =
∣∣∣∣cd

∫ 1

0
t f ′(ts)(1 − t2)

d−3
2 dt

∣∣∣∣ ≤ cd∥(1 − t2)
d−3

2 ∥L1(0,1)∥ f ′∥∞ < ∞.

The convexity of F follows directly from the convexity of f .
Let supp(u) ⊆ [−R, R] for some R > 0. Then we have by Proposition 3.1 for s ≥ R

that f (s) = s. Further, by Lemma 4.5, it holds Id[abs] = Cd abs. Hence, we obtain for
s > R that

|F(s)− Cd abs(s)| =
∣∣∣∣cd

∫ 1

0
( f (st)− abs(st))(1 − t2)

d−3
2 dt

∣∣∣∣
≤ cd

∫ R
s

0
| f (st)− st|(1 − t2)

d−3
2 dt

=
cd

s

∫ R

0
| f (t)− t|

(
1 − t2

s2

) d−3
2

dt ∈ O
(

1
s

)
.
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In particular, it holds h := F − Cd abs ∈ C0(R) ∩ L2(R).
Finally, we obtain by Proposition 3.1 that

Fε(s) = cd

∫ 1

0
(abs ∗uε)(ts)(1 − t2)

d−3
2 dt

= cdε
∫ 1

0
f
(

st
ε

)
(1 − t2)

d−3
2 dt = εF

( s
ε

)
.

and further

∥Fε − Cd abs ∥2
L2(R) ≤

∫
R
|Fε(s)− Cd abs(s)|2 ds = ε2

∫
R

∣∣∣F ( s
ε

)
− Cd abs

( s
ε

) ∣∣∣2 ds

= ε2
∫

R
|h
( s

ε

)
|2 ds = ε3∥h∥2

L2(R).

This gives us the order of convergence in L2(R). The pointwise convergence of Fε

directly follows from (7). □

Proof of Proposition 4.7. By Corollary 3.3, we have

f (x) =
2

(m + 1)!

m

∑
k=0

(−1)k
(

m
k

)(
x − k +

m
2

)m+1

+
− x, x ∈ R.

Defining for m ∈ N and a ∈ R the function

bm,a(x) = (x − a)m
+,

we have

f (x) =
2

(m + 1)!

m

∑
k=0

(−1)k
(

m
k

)
bm+1,k−m

2
(x)− x.

If a ≤ 0, we have bm,a(x) = (x − a)m for x ≥ 0. Then

Id[bm,k](s) = cd

∫ 1

0
fm,a(st)(1 − t2)

d−3
2 dt = cd

∫ 1

0
(st − a)m(1 − t2)

d−3
2 dt

= cd

m

∑
n=0

(
m
n

)
sn(−a)m−n

∫ 1

0
tn(1 − t2)

d−3
2 dt

=
cd

2

m

∑
n=0

(
m
n

)
sn(−a)m−n

∫ 1

0
t

n−1
2 (1 − t)

d−3
2 dt.

Since the Beta function satisfies B(a, b) =
∫ 1

0 ta−1(1 − t)b−1 = Γ(a)Γ(b)
Γ(a+b) , see [1], we obtain

Id[bm,k](s) =
cd

2

m

∑
n=0

(
m
n

)
sn(−a)m−n Γ( d−1

2 )Γ( n+1
2 )

Γ( d+n
2 )

.

38



If a > 0 and s ≤ a, we have Id[ fm,a](s) = 0. Otherwise, i.e. for 0 < a < s, we have

Id[bm,a](s) = cd

∫ 1

a/s
(st − a)m(1 − t2)

d−3
2 dt

=
cd

2

m

∑
n=0

(
m
n

)
sn(−a)m−n

∫ 1

a2/s2
t

n−1
2 (1 − t)

d−3
2 dt

=
cd

2

m

∑
n=0

(
m
n

)
sn(−a)m−n

(
B( n+1

2 , d−1
2 )− Ba2/s2( n+1

2 , d−1
2 )
)

.

The claim follows by collecting the terms and Lemma 4.5. □

Proof of Theorem 4.9.

i) Since f ∈ CP1(R) by Proposition 3.1, we obtain by Proposition 4.3 that Φ ∈
CP1(R

d).
ii) By (8) we know that

Φ(x) = F(∥x∥) = 1
ωd−1

∫
Sd−1

f (⟨x, ξ⟩)dξ for all x ∈ Rd.

Hence we get Φ(0) = F(0) = f (0) = −(abs ∗M2)(0) < 0.
iii) By Proposition 4.6 we directly conclude iii).
iv) Since f is n + 2 times continuously differentiable by Proposition 3.1 iii), we obtain

for any multi-index α ∈ Nd with |α| ≤ n + 2 that

∂αΦ(x) =
1

ωd−1

∫
Sd−1

ξα f |α|(⟨x, ξ⟩)dξ for all x ∈ Rd.

v) Since f ′′ = 2u is bounded, the first derivative f ′ is 2∥u∥∞-Lipschitz continuous.
Hence, for x, y ∈ Rd, we can estimate by (iv))

|∂iΦ(x)− ∂iΦ(y)| ≤ 1
ωd−1

∫
Sd−1

|ξi|
∣∣ f ′(⟨x, ξ⟩)− f ′(⟨y, ξ⟩)

∣∣dξ

≤ 1
ωd−1

∫
Sd−1

2∥u∥∞∥x − y∥dξ = 2∥u∥∞∥x − y∥,

so that we obtain

∥∇Φ(x)−∇Φ(y)∥2 =
d

∑
i=1

|∂iΦ(x)− ∂Φ(y)|2 ≤ d(2∥u∥∞∥x − y∥)2.

vi) Since ∇Φ is L-Lipschitz continuous with L =
√

d2∥u∥∞, we know, by [40, Thm.
2.1.5] that Φ is −L-convex. Furthermore, Φ is concave because, for t ∈ [0, 1] and
x, y ∈ Rd, it holds by the concavity of f from Proposition 3.1 iii) that

Φ((1 − t)x + ty) ≥ 1
ωd−1

∫
Sd−1

(1 − t) f (⟨x, ξ⟩) + t f (⟨y, ξ⟩)dξ

= (1 − t)Φ(x) + tΦ(y).
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Proofs of Section 6

Proof of Proposition 6.1. Recall that f = − abs ∗u is even and F = Id[ f ] satisfies (8).
Let µ ∈ M1/2(R

d), then the following integral exists

∥µ∥2
HK

=
∫

Rd

∫
Rd

K(x, y)dµ(x)dµ(y)

=
∫

Rd

∫
Rd

(F(∥x − y∥)− F(∥x∥)− F(∥y∥)) dµ(x)dµ(y)

=
∫

Rd

∫
Rd

1
ωd−1

∫
Sd−1

f (⟨x − y, ξ⟩)− f (⟨x, ξ⟩)− f (⟨−y, ξ⟩) + f (0)dξ dµ(x)dµ(y)

− F(0)|µ(Rd)|2.

Denote by Ty the translation operator Ty[g](y) = g(x − y), by My the modulation oper-
ator My[g](x) = e−2πi⟨x,y⟩g(x) and by gm(x) =

√
m/πe−mx2

the Gaussian approximate
identity as in [57, Thm. 5.20]. Since f is continuous and slowly increasing, [57, Thm. 5.20
(4)] yields

f (⟨x − y, ξ⟩)− f (⟨x, ξ⟩)− f (⟨−y, ξ⟩) + f (0) = lim
m→∞

⟨(id−T⟨ξ,x⟩)[(id−T⟨ξ,−y⟩)[gm]], f ⟩.

Let φm := (id−M−⟨ξ,x⟩)[(id−M−⟨ξ,−y⟩)[ĝm]] ∈ S2(R1). The function f has the gener-
alized Fourier transform

f̂ (r) =
û(r)

2π2r2

of order 1 by Lemma 2.2 and (3). As gm is even, we have ˆ̂gm = gm and for all m ∈ N we
can write

⟨(id−T⟨ξ,x⟩)[(id−T⟨ξ,−y⟩)[gm]], f ⟩ = ⟨φ̂m, f ⟩ = ⟨φm, f̂ ⟩

=
∫

R
(1 − e2πi⟨ξ,x⟩r)(1 − e−2πi⟨ξ,y⟩r)ĝm(r) f̂ (r)dr.

Since u is continuous with compact support, its Fourier transform is bounded. The
term r 7→ (1 − e2πi⟨ξ,x⟩r)(1 − e−2πi⟨ξ,y⟩r) is bounded and has a zero of order 2 at zero, so
that

f̂ (r)(1 − e2πi⟨ξ,x⟩r)(1 − e−2πi⟨ξ,y⟩r) =
û(r)

2π2r2 (1 − e2πi⟨ξ,x⟩r)(1 − e−2πi⟨ξ,y⟩r)

is integrable. Moreover, we have

|ĝm(r)| = e−
π2r2

m ≤ 1 for all r ∈ R and m ∈ N.

Since ĝm converges pointwise to the constant 1, Lebesgue’s convergence theorem yields

f (⟨x − y, ξ⟩)− f (⟨x, ξ⟩)− f (⟨−y, ξ⟩) + f (0) =
∫

R
(1 − e2πi⟨ξ,x⟩r)(1 − e−2πi⟨ξ,y⟩r) f̂ (r)dr.
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Further, we obtain using Fubini’s theorem

ωd−1(∥µ∥2
HK

+ F(0)µ(Rd)2)

=
∫

Sd−1

∫
R

∫
Rd
(1 − e2πi⟨rξ,x⟩)dµ(x)

∫
Rd
(1 − e−2πi⟨rξ,y⟩)dµ(y) f̂ (r)dr dξ

=
∫

Sd−1

∫
R
|µ(Rd)− µ̂(rξ)|2 f̂ (r)dr dξ

= 2
∫

Sd−1

∫ ∞

0
|µ(Rd)− µ̂(rξ)|2 f̂ (∥rξ∥)

∥rξ∥d−1 rd−1 dr dξ

= 2
∫

Rd
|µ(Rd)− µ̂(x)|2 f̂ (∥x∥)

∥x∥d−1 dx.

Inserting f̂ , we can write

∥µ∥2
HK

=
1

π2ωd−1

∫
Rd

|µ̂(0)− µ̂(x)|2 û(∥x∥)
∥x∥d+1 dx − F(0)µ̂(0)2. (32)

Now assume that µ ∈ M1/2(R
d) with ∥µ∥HK = 0. Because F(0) < 0 by Theorem 4.9

and û ≥ 0 by (4), both summands in (32) are nonnegative and therefore must vanish.
The second term yields that µ(Rd) = µ̂ = 0. Since supp û(∥ · ∥)∥ · ∥−(d+1) = Rd, cf.
[43, Lem 2.39], it follows that µ̂ is constant with µ̂ ≡ µ̂(0) = 0. This implies µ = 0
as the Fourier transform F : M(Rd) → Cb(R

d) is injective. Consequently, the KME is
injective, which means that K is characteristic.

Proof of Theorem 6.2. Since Φ(x) ∈ O(∥x∥α), we can estimate |Φ(x)| ≤ C(1 + ∥x∥α)
for all x ∈ Rd. For α ≥ 1 we have by convexity of ∥ · ∥α that

∥x + y∥α ≤ 2α−1(∥x∥α + ∥y∥α).

For α ∈ (0, 1), we define the function f : [0, ∞) → R by f (x) := xα, which is concave
and monotone increasing. Then we obtain for x, y ≥ 0 with x + y > 0 that

f (x) ≥ y
x + y

f (0) +
x

x + y
f (x + y),

f (y) ≥ x
x + y

f (0) +
y

x + y
f (x + y).

Adding both equation yields

f (x) + f (y) ≥ f (x + y).

Since f is monotone increasing, we obtain by the triangle inequality

∥x + y∥α ≤ (∥x∥+ ∥y∥)α ≤ ∥x∥α + ∥y∥α.

Summarizing, we have for α ≥ 0 that

∥x + y∥α ≤ 2α(∥x∥α + ∥y∥α).

41



Therefore, we can guarantee the existence of the integral∫
Rd

∫
Rd

|Φ(x − y)|dσ(x)dσ(y) ≤
∫

Rd

∫
Rd

C(1 + 2α(∥x∥α + ∥y∥α))dσ(x)dσ(y)

≤ Cσ(Rd)

(
σ(Rd) + 2α+1

∫
Rd

∥x∥α dσ(x)
)
< ∞.

Hence, the discrepancy dK̃(µ, ν) is well-defined for µ, ν ∈ Mα(Rd).
By (10), we see that K(x, x) ∈ O(∥x∥2β), β := max{r − 1, (α + r − 1)/2} such that

dK is by (15) well-defined for measures in Mβ.
Now assume additionally that the first r − 1 moments of µ and ν coincide. This

implies that for all pj ∈ Πr−1(R
d) that∫
Rd

pj(x)d(µ − ν)(x) = 0.

Then we obtain

dK(µ, ν)2 = dK̃(µ, ν)2 −
N

∑
j=1

∫
Rd

pj(x)d(µ − ν)(x)
∫

Rd
Φ(ξ j − y)d(µ − ν)(y)

−
N

∑
k=1

∫
Rd

pk(y)d(µ − ν)(y)
∫

Rd
Φ(x − ξk)d(µ − ν)(x)

+
N

∑
k,j=1

Φ(ξ j − ξk)
∫

Rd
pj(x)d(µ − ν)(x)

∫
Rd

pk(y)d(µ − ν)(y)

= dK̃(µ, ν)2.

Proof of Proposition 6.4. 1. First, we show that K is
⌊ n+2

2

⌋
times continuously differ-

entiable. Let α ∈ Nd
0 with |α| ≤

⌊ n+2
2

⌋
. The case |α| = 0 is clear. For |α| ≥ 1, we

obtain

∂α
x∂α

yK(x, y) = ∂α
x∂α

y F(∥x − y∥) = ∂α
x∂α

y
1

ωd−1

∫
Sd−1

f (⟨ξ, x − y⟩)dξ

=
(−1)|α|

ωd−1

∫
Sd−1

ξ2α f 2|α|(⟨ξ, x − y⟩)dξ. (33)

By [52, Cor. 4.36], this implies that every h ∈ HK is at least
⌊ n+2

2

⌋
-times continuously

differentiable.
2. For the second part, assume that n ≥ 2. By [52, Lem 4.34] and (33), we obtain

⟨∂xi K(x, ·), ∂xi K(y, ·)⟩HK = ∂xi ∂yi K(x, y) =
−1

ωd−1

∫
Sd−1

ξ2
i f ′′(⟨ξ, x − y⟩)dξ.
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By Proposition 3.1, the function f is even and f ′′′ = 2u′. Hence u′ is odd and ∥u′′∥∞-
Lipschitz continuous and f ′′′(0) = 2u′(0) = 0. Thus, we obtain for s > 0 that

| f ′′(s)− f ′′(0)| ≤
∫ s

0
| f ′′′(t)|dt =

∫ s

0
| f ′′′(t)− f ′′′(0)|dt ≤

∫ s

0
2∥u′′∥∞t dt = ∥u′′∥∞s2.

Hence we can estimate

∥∂xi K(x, ·)− ∂xi K(y, ·)∥2
HK

= ∥∂xi K(x, ·)∥2
HK

+ ∥∂iK(y, ·)∥2
HK

− 2⟨∂xi K(x, ·), ∂xi K(y, ·)⟩HK

= − 2
ωd−1

∫
Sd−1

ξ2
i
(

f ′′(0)− f ′′(⟨ξ, x − y⟩)
)

dξ

≤ 2∥u′′∥∞

ωd−1

∫
Sd−1

|⟨ξ, x − y⟩|2 dξ

≤ 2∥u′′∥∞∥x − y∥2.

Therefore, ∂xi K(x, ·) is Lipschitz continuous with constant L :=
√

2∥u′′∥∞. Finally, we
see again by (the proof of) [52, Cor. 4.36], for any h ∈ HK, that

|∂xi h(x)− ∂xi h(y)| = |⟨h, ∂xi K(x, ·)⟩HK − ⟨h, ∂xi K(y, ·)⟩HK |
= |⟨h, ∂xi K(x, ·)− ∂xi K(y, ·)⟩HK |
≤ ∥h∥HK L∥x − y∥,

which gives the assertion by

∥∇h(x)−∇h(y)∥ ≤
√

dL∥h∥HK∥x − y∥.

D Geodesic λ-Convexity of MMD Functional with Smoothed
Distance Kernel

A generalized geodesic is an interpolating curve γt : [0, 1] → P2(Rd) that connects two
measures µ2 and µ3 ∈ P2(Rd) via a three-plan µ. More specifically, for a base µ1 ∈
P(Rd), this three-plan µ ∈ P2(Rd × Rd × Rd) has marginals πi

#µ = µi, i = 1, 2, 3
and must be optimal in the sense that π1,i

# µ ∈ Πopt(µ1, µi) for i = 1, 2. A generalized
geodesic γt joining µ2 with µ3 via µ1 is defined as γt := ((1 − t)π2 + tπ3)#µ. For any
choice of µ1, µ2, µ3 ∈ P2(Rd), we can always find optimal plans µ1,i ∈ Πopt(µ1, µi) for
i = 1, 2, and by the Gluing Lemma [56] there exists a three plan µ ∈ P2(Rd × Rd × Rd)

with marginals πi
#µ = µi, i = 1, 2, 3 and π1,i

# µ ∈ Πopt(µ1, µi) for i = 1, 2. This means
that there always exists at least one generalized geodesic joining µ2 with µ3 via µ1.
However, this generalized geodesic is not necessarily unique.

Given λ ∈ R, a function G : P2(Rd) → [0, ∞] is λ-convex along generalized geodesics, if
for any choice µ1, µ2, µ3 ∈ dom(G) there always exists a generalized geodesic γt joining
µ2 with µ3 via µ1, such that

G(γt) ≤ (1 − t)G(µ2) + tG(µ3)− λ

2
t(1 − t)

∫
Rd×Rd×Rd

∥x2 − x3∥2 dµ(x1, x2, x3).
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For a more detailed description we refer to [2, Section 9.2].
In [2] sufficient conditions for the λ-convexity of the following two typical energy

functionals were given. The potential energy V : Rd → R is defined by

V(µ) :=
∫

Rd
V(x)dµ(x).

Lemma D.1. Let V be lower semi-continuous and have quadratic grow, i.e.

V(x) ≥ −A − B∥x∥2 for all x ∈ Rd

with A, B ∈ R. If V is λ-convex, then V is λ-convex along generalized geodesics.

For K : Rd × Rd → R, the interaction energy is given by

K(µ) :=
∫

Rd×Rd
K(x, y)dµ(x)dµ(y).

Since the interaction energy can be seen as a potential energy on the product space,
Proposition D.1 also applies to the interaction energy.

Lemma D.2. Let K be lower semi-continuous and have quadratic grow, i.e.

K(x, y) ≥ −A − B(∥x∥2 + ∥y∥2) for all x, y ∈ Rd

with A, B ∈ R. If K is λ-convex, then K is λ-convex along generalized geodesics.

Let F be defined as in (9) and K(x, y) = F(∥x − y∥). Then, the MMD functional G
from (21) can be rewritten as

G(µ) =
1
2
K(µ) + V(µ) + 1

2
cν, V(x) := −

∫
Rd

F(∥x − y∥)dν(y)) (34)

where cν ≥ 0 is a constant. Both V and K suffice the conditions in Lemmas D.1 and D.2.

Proposition D.3. Let F be defined as in (9) and V and K in (34), then V and K are lower
semi-continuous and have quadratic grow. Moreover, V is convex and K is λ-convex with
λ = −4

√
d∥u∥∞. In summary, the MMD functional G from (34) is lower semi-continuous

and λ-convex with λ above.

Proof. By Theorem 4.9 , we can write F(s) = −Cd|s| + φ(s) with φ ∈ C0(R). For the
lower semi-continuity of V, we have

|V(x1)− V(x2)| ≤
∫

Rd
|F(∥x1 − y∥)− F(∥x2 − y∥)|dν(y)

=
∫

Rd
|Cd∥x1 − y∥+ φ(∥x1 − y∥)− Cd∥x2 − y∥ − φ(∥x2 − y∥)|dν(y)

≤
∫

Rd
Cd|∥x1 − y∥ − ∥x2 − y∥|+ |φ(∥x1 − y∥)− φ(∥x2 − y∥)|dν(y)

≤ Cd∥x1 − x2∥+
∫

Rd
∥φ(∥x1 − y∥)− φ(∥x2 − y∥)|dν(y).
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Since φ ∈ C0(R), it follows by Lebesgue’s dominated convergence theorem that V is
continuous. Moreover, choosing A, B = 0, we see that V has quadratic grow. By Theo-
rem 4.9 iii), the function −F(∥x∥) is convex. For x1, x2 ∈ Rd and t ∈ [0, 1], it holds

V((1 − t)x1 + tx2) =
∫

Rd
−F(∥(1 − t)(x1 − y) + t(x2 − y)∥)dν(y)

≤
∫

Rd
−(1 − t)F(∥x1 − y∥)− tF(∥x2 − y)∥)dν(y)

= (1 − t)V(x1) + tV(x2).

Hence V is convex, too.
For the interaction energy, it is clear that K is continuous, because F is continuous,

and we can choose A = ∥φ∥∞ + 2Cd and B = Cd to obtain

F(∥x − y∥) = −Cd∥x − y∥+ φ(∥x − y∥) ≥ −∥φ∥∞ − Cd(∥x∥+ ∥y∥)
≥ −∥φ∥∞ − Cd(1 + ∥x∥2 + 1 + ∥y∥2) ≥ −A − B(∥x∥2 + ∥y∥2).

By Corollary 4.9 v), we get that K is λ-convex with λ = −4
√

d∥u∥∞.

By [2, 11.2.1b], a lower bounded λ-convex functional is always coercive, so that [2,
Thm.11.2.1] can be formulated as follows:

Theorem D.4. Let G : P2(Rd) → [0, ∞] be proper lower semi-continuous and λ convex.
Then, for γ(0) ∈ dom(G), there is a unique Wasserstein gradient flow γt starting in γ(0).
Moreover, the piecewise constant curve γτ

t := γ(k), t ∈ ((k − 1)τ, kτ] given by the implicit
Euler scheme (JKO scheme)

γ(k+1) ∈ arg min
γ∈P2(Rd)

1
2τ

W2
2 (γ

(k), γ) + ϕ(γ),

converges locally uniformly to γt. In particular, this holds true for our MMD functional with
smooed kernel G in (34).

It was shown in [27, Prop. 9] that for certain functionals, e.g. G in (34), the so-called
Wasserstein steepest descent flows (explicit scheme) and the Wasserstein gradient flows
(implicit scheme) coincide.

Since the MMD functional with our SND kernel (same for the Gaussian kernel) is
only λ-convex with λ < 0 it is not ensured that its Wasserstein gradient flow, resp. its
approximation by an Euler forward scheme converges towards the target ν. Here is an
example.

Example D.5. In general, it is not clear whether the gradient flow γt the MMD functional
with smooth kernels converges towards the target measure ν as t → ∞. To this end, consider
the symmetric setup with the target and initial measures

ν := 1
2 (δy1 + δy2), y1 = e1, y2 = −e1,

µ := 1
2 (δx1 + δx2), x1 = 1√

3
e2, x2 = − 1√

3
e2.
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Then, with F̃(s) := F′(s)
s , the velocity field becomes for i = 1, 2

vt(xi) =
1
2 (xi − xj)F̃(∥xi − xj∥)− 1

2

(
(xi − y1)F̃(∥xi − y1∥) + (xi − y2)F̃(∥xi − y2∥)

)
= 1√

3
e2F̃( 2√

3
)− 1

2

(
2√
3
e2 − e1 + e1

)
F̃( 2√

3
) = 0,

so that we get stuck in γt = µ for all t ≥ 0. In general, ensuring convergence towards the
target is challenging due to local extrema. However, in the numerical experiments, we observed
that for both ND and SND, the flows typically performed well in approximating the target.

Proof of Proposition 8.1. The simplification of the iterations to

x(k+1) = x(k) + τ
x(k) − y

∥x(k) − y∥
F′(∥x(k) − y∥) (35)

= y + (x(k) − y)

(
1 + τ

F′(∥x(k) − y∥)
∥x(k) − y∥

)

is straightforward.
i) For F = − 1

2 abs, we have F′(s) = − 1
2 for s > 0. Then we obtain by (35) and since

∥x(0) − y∥ < τ
2 that

∥y − x(1)∥ =
τ

2
− ∥x(0) − y∥ <

τ

2
.

The second step, x(2) jumps exactly back to x(0) because

x(2) = y + (x(1) − y)
(

1 − τ

2∥x(1) − y∥

)
= y + (x(0) − y)

(
1 − τ

2∥x0 − y∥

)(
1 − τ

2∥x(1) − y∥

)
= y + (x(0) − y)

(2∥x(0) − y∥ − τ)(−2∥x(0) − y∥)
2∥x(0) − y∥(τ − 2∥x(0) − y∥)

= x(0).

Consequently, (x(k))k oscillates between x(0) and x(1).
ii) Generally, for λ-convex functionals with λ > 0, Baillon-Haddad’s theorem [5,

Cor. 18.17] ensures convergence of (27) for τ < λ−1. For completeness, we provide a
simpler proof for our setting. Let F = Id[−|u|], with u ∈ U 0(R). We know that F is
convex and twice differentiable. In particular, we have for F̃(s) := F′(s)

s that F̃(0) =
F′′(0) < 0. Since F̃ ∈ C(R) by Proposition 4.6, we can find δ > 0 such that F(x) <
1
2 F′′(0) for |x| < δ. If we assume that ∥x(k) − y∥ < τ and τ < min{δ, ∥F̃′∥−1

∞ }, we
obtain

∥x(k+1) − y∥ = ∥x(k) − y∥
(

1 + τF̃(∥x(k) − y∥)
)

.
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Figure 9: Wasserstein 2 error between Annulus target ν and flow γτ
n after n iterations.

Horizontal axis in time t = τn with Gaussian (blue), SND (green) and ND (orange).
Both computed with double precision with step size τ = 0.003.

We always have

1 + τF̃(∥x(k) − y∥) > 1 − τ∥F̃∥∞ > 0.

Since ∥x(k) − y∥ < δ, we know that F(∥x(k) − y∥) < 1
2 F′′(0) < 0, which implies

1 + τF̃(∥x(k) − y∥) < 1 + τ
2 F′′(0) < 1.

This yields ∥x(k+1) − y∥ < ∥x(k) − y∥ < δ, and thus, by induction,

∥x(k+1) − y∥ ≤ ∥x(0) − y∥(1 + τ
2 F′′(0))k.

Therefore, we have exponential convergence when τ and ∥x(k) − y∥ are sufficiently
small. □

E Numerical Example: Annulus Target

The Annulus target consists of two concentric circles with radius 1 and 0.3. Each is
discretized with 50 points, so that ν consists of M = 100 points. Here we use a step size
of τ = 0.003 and double precision. The MMD flows are depicted in Figure 10 and the
respective errors in Figure 9.
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Figure 10: MMD flow (25) with step size τ = 0.02.
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