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Computations in high-dimensional spaces can often be realized only ap-
proximately, using a certain number of projections onto lower dimensional
subspaces or sampling from distributions. In this paper, we are interested in
pairs of real-valued functions (F, f) on [0,∞) that are related by the projec-
tion/slicing formula F (∥x∥) = Eξ

[
f
(
|⟨x, ξ⟩|

)]
for x ∈ Rd, where the expec-

tation value is taken over uniformly distributed direction in Rd. While it is
known that F can be obtained from f by an Abel-like integral formula, we
construct conversely f from given F using their Fourier transforms. First, we
consider the relation between F and f for radial functions F (∥ · ∥) that are
Fourier transforms of L1 functions. Besides d- and one-dimensional Fourier
transforms, it relies on a rotation operator, an averaging operator and a multi-
plication operator to manage the walk from d to one dimension in the Fourier
space. Then, we generalize the results to tempered distributions, where we
are mainly interested in radial regular tempered distributions. Based on
Bochner’s theorem, this includes positive definite functions F (∥ · ∥).

1. Introduction

Radial functions play an important role in approximation theory [7, 50], kernel density
estimation [30, 37], support vector machines [44, 45], kernelized principal component
analysis [42, 43], simulation of optical scattering [12, 24], distance computations between
probability measures [18, 47] as well as dithering [9, 15] in image processing, to mention
only a few. Recently, they have found applications in machine learning in connection with
Stein variational gradient descent flows [28] and Wasserstein gradient flows [1, 13, 19].
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A central issue in the above applications is the fast evaluation of radial functions, more
precisely, the computation of “convolutions at nonequispaced knots”

N∑
i=1

αiF (∥xi − xj∥), j = 1, . . . , N (1)

for large N ∈ N, where xi ∈ Rd and αj ∈ C. Throughout this paper, let ∥ · ∥ be the
Euclidean norm on Rd, where the dimension becomes clear from the context. Certain
methods for high-dimensional data xi ∈ Rd, d ≫ 1, were proposed in the literature. A
popular one, called random Fourier features [36], was analyzed, e.g., in [20, 46] and found
recent applications for ANOVA approximation [33] and domain decomposition [27]. It
relies on the linearity of the expectation value and Bochner’s theorem, showing that a
positive definite, radial function F ◦ ∥ · ∥ on Rd is the Fourier transform of a positive
measure µ, i.e., after proper scaling,

F (∥x∥) = Ev∼µ

[
e−2πi⟨x,v⟩

]
. (2)

Another technique, known as slicing [21], resembles the Radon transform and is well-
known in the context of optimal transport [5, 6, 35]. It is based on the existence of a
one-dimensional function f such that the slicing (projection) formula

F (∥ · ∥) = Eξ∼USd−1
[f (|⟨x, ξ⟩|)] , (3)

holds true, where the expectation value is taken over the uniform distribution USd−1 on
the unit sphere Sd−1 ⊂ Rd. In other words, a radial function F ◦ ∥ · ∥ fulfilling (3) can
be evaluated at x ∈ Rd by projecting it onto lines of different directions ξ through the
origin, see Fig. 1, followed by evaluating a one-dimensional function f at the projected
points ⟨x, ξ⟩. For certain functions f , one-dimensional summations of the form (1) can
be done in a very fast way, e.g., via sorting or fast Fourier transforms at nonequispaced
knots [21, 26, 32], as done in various applications [3, 8, 22, 23].

The relation between F and its sliced version f in (3) is given by the Abel-type integral

F (s) = cd

∫ 1

0
f(ts)(1− t2)

d−3
2 dt (4)

with some constant cd. Note that in [21], functions F having a power series were con-
sidered to determine their slicing functions f . In contrast to random Fourier features,
slicing is not restricted to positive definite functions F ◦∥ · ∥, and indeed it works also for
other functions, which are of interest in applications, like Riesz kernels ∥ · ∥r, r ∈ (0, 2)
or thin plate splines ∥ · ∥2log ∥ · ∥. However, we see from its integral representation (4)
that F : [0,∞) → R must have some smoothness properties. Indeed, (4) is closely re-
lated to Riemann–Liouville fractional integrals, and the injectivity of the transform (4) if
f ∈ L1(R) as well as the inverse transform, which determines f from F , can be deduced
via fractional derivatives, see Appendix D. However, the resulting integrals are often hard
to evaluate, and we will follow another approach.
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Figure 1: Projection of points x1, . . . , x5 ∈ R2 onto the line in direction ξ.

In this paper, we are interested in the relation between F and f from a Fourier analytic
point of view. More precisely, we show how f can be obtained from a radial function
F ◦ ∥ · ∥ that is the Fourier transform of a radial L1 function. Then we will see that this
is a special case of a recovery formula for radial regular tempered distributions. Since
measures can be considered as tempered distributions, the later one also includes positive
definite functions appearing in Bochner’s relation (2). Radial tempered distributions
were already considered in the literature, e.g., in [11, 17]. However, to the best of our
knowledge, our rigorous proofs of certain properties needed for our approach are novel.
The dimension reduction from a multivariate, radial function F ◦ ∥ · ∥ to a univariate
one f ◦ | · | in the Fourier space can be easily realized by applying a multiplication
operator arising from a variable transform, and is actually what we call ”dimension walk”,
a notation borrowed from Wendland [50, Chap. 9.2]. We are completely aware that also
projections onto larger than one-dimensional subspaces may be of interest, but are out
of the scope of this paper.

Outline of the paper: in Section 2 we introduce our two main players, namely the rotation
operator and its inverse, the averaging operator. Then we recall the relation between
the slicing formula (3) and the Abel-like integral (4). The ”dimension walk” is realized
by a multiplication operator. Moreover, we determine the smoothness of functions F
determined by the Abel-like integral. Then, in Section 3, we show as a starting point,
how the function f in (4) can be computed from a radial function F ◦ ∥ · ∥ that is the
Fourier transform of a radial L1 function. As a by-product of the smoothness result for
the Abel-like integral, we will see that the Fourier transform of a radial function in Rd is
⌊d−2/2⌋ times continuously differentiable, a result that should be known in the literature,
although we did not find a direct reference. In Section 4, we first recall the definition
of radial Schwartz functions and prove that the averaging and rotation operator are
continuous operators on these spaces. This allows to generalize the reconstruction to
radial regular tempered distributions. Clearly, this is more general than the approach in
the previous section and we provide in particular two examples. Since measures can be
treated as special tempered distributions, we obtain a result for positive definite radial

3



functions F ◦∥ · ∥ based on Bochner’s theorem. Auxiliary technical results are postponed
to the appendix.

2. Rotating, Averaging and Slicing

We denote by C(Rd) the space of complex-valued continuous functions, by Cb(Rd) the
Banach space of bounded continuous functions, and by C0(Rd) the Banach space of
continuous functions vanishing for ∥x∥ → ∞ with the norm

∥Φ∥∞ := sup
x∈Rd

|Φ(x)|.

Let C∞(Rd) be the space of infinitely differentiable functions. Further, let Lp
loc(R

d),
p ∈ [1,∞), denote the space of locally p-integrable functions and L∞

loc(Rd) the space of
locally bounded functions.

We are interested in radial functions Φ: Rd → R, which are characterized by the property
that for all x ∈ Rd,

Φ(x) = Φ(Qx) for all Q ∈ O(d),

where O(d) denotes the set of orthogonal d × d matrices. We need two operators. The
rotation operator Rd associates to F : [0,∞) → R the radial function RdF : Rd → R
given by

RdF := F ◦ ∥ · ∥. (5)

Since every function F : [0,∞) → R can be identified with its even continuation F : R →
R, we define Rd alternatively for all even functions on R. Every radial function is of the
form (5). The spherical averaging operator Ad assigns to a function Φ: Rd → R, which
is integrable on every sphere rSd−1, r > 0, the function AdΦ: R → R defined by

AdΦ(r) :=
1

ωd−1

∫
Sd−1

Φ(r ξ) dξ = Eξ∼USd−1
[Φ(r ξ)] for all r ∈ R. (6)

Note that as soon as Φ is continuous on Rd \ {0} or Φ is a radial, the function AdΦ is
well-defined. By definition AdΦ is an even function, i.e., AdΦ(r) = AdΦ(−r), r ∈ R and
we have for d = 1 that

A1Φ(r) =
1
2 (Φ(r) + Φ(−r)) for all r ∈ R.

Moreover, we obtain by definition that

Ad(Φ ◦Q) = AdΦ for all Q ∈ O(d).

The operator Ad is the inverse of Rd, meaning that for every even function F : R → R
and r ⩾ 0 it holds

(Ad ◦ Rd)F (r) = Eξ∼USd−1
[F (∥rξ∥)] = F (|r|) = F (r), (7)
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and conversely for every radial function Φ: Rd → R and x ∈ Rd we have

(Rd ◦ Ad)Φ(x) = (AdΦ)(∥x∥) = Eξ∼USd−1
[Φ(∥x∥ξ)] = Φ(x). (8)

The following theorem considers special radial functions of the form (3).

Theorem 2.1. Let d ∈ N, d ≥ 3 and let f ∈ L1
loc([0,∞)). Then the function F : [0,∞) →

R fulfilling the slicing relation

RdF = Eξ∼USd−1
[f (|⟨·, ξ⟩|)] (9)

is determined by the Abel-type integral

F (s) = cd

∫ 1

0
f(ts)(1− t2)

d−3
2 dt = cd

1

s

∫ s

0
f(t)

(
1− t2

s2

) d−3
2

dt, (10)

where cd :=
2ωd−2

ωd−1
and ωd−1 denotes the surface measure of Sd−1.

The theorem was proved in a more general form for projections on subspaces in [38,
Lem. 2.1] and for the above special case of a projection onto a line also in [21]. For
convenience, we add the short proof in Appendix A.

The following theorem, whose proof is given in Appendix B, clarifies smoothness prop-
erties of the function F in the Abel-like integral.

Theorem 2.2. For d ∈ N with d ≥ 3, let f ∈ L1
loc([0,∞)) for odd d and f ∈ Lp

loc([0,∞))
with p > 2 for even d. Then the function F defined by (10) is ⌊(d−2)/2⌋-times continuously
differentiable on (0,∞). Moreover, if d is odd, then the ⌊(d−2)/2⌋-th derivative of F is
absolutely continuous.

In the rest of this paper, we are interested in characterizing f from given F , i.e., the
inversion of the Abel-like integral transform (10), where we want to use the Fourier
analytic tools.

3. Slicing of L1 Functions

We start with functions F that are Fourier transforms of absolutely integrable functions.
Let Lp(Rd), p ∈ [1,∞), be the Banach space of p-integrable functions. The Fourier
transform Fd : L

1(Rd) → C0(Rd) is an injective, linear operator defined for Φ ∈ L1(Rd)
by

Φ̂ = Fd[Φ] :=

∫
Rd

e−2πi⟨x,·⟩Φ(x) dx. (11)
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If Φ̂ ∈ L1(Rd), then the inverse Fourier transform reads as

Φ = F−1
d [Φ̂] :=

∫
Rd

e2πi⟨·,v⟩Φ̂(v) dv.

On even functions, and in particular radial functions, the Fourier transform coincides
with its inverse. Moreover, the Fourier transform of a real-valued, radial function is real-
valued again, and we have Φ̂ ◦Q = Φ̂ ◦Q for all Q ∈ O(d). For ρ : R → R, we define the
multiplication operator by

Mdρ(r) := ρ(|r|)|r|d−1 for all r ∈ R.

By definition, Mdρ is an even function. We obtain the following inversion result.

Proposition 3.1. Let d ≥ 3. Assume that F : [0,∞) → R fulfills RdF = Fd[Rdρ] for
some function ρ : [0,∞) → R with Rdρ ∈ L1(Rd). Then the function f : [0,∞) → R
given by the corresponding even function

f =
ωd−1

2 (F1 ◦Md)[ρ] ∈ C0(R), (12)

fulfills (9), where ρ is also considered evenly extended here. If in addition RdF ∈ L1(Rd),
then

f =
ωd−1

2 (F1 ◦Md ◦ Ad ◦ F−1
d ◦ Rd)[F ]. (13)

Proof. Using that v = ∥v∥ξ, where ξ ∈ Sd−1, we obtain by assumption

RdF (x) =

∫
Rd

e−2πi⟨x,v⟩ ρ(∥v∥) dv

=

∫
Sd−1

∫ ∞

0
e−2πi⟨x,ξ⟩r ρ(r)rd−1 dr dξ

=
1

2

∫
Sd−1

∫
R
e−2πi⟨x,ξ⟩rρ(r)|r|d−1 dr dξ

=
1

2

∫
Sd−1

F1[Mdρ](|⟨x, ξ⟩|) dξ

= Eξ∼USd−1

[ωd−1

2 (F1 ◦Md)[ρ](|⟨x, ξ⟩|)
]
.

On the other hand, we have by Theorem 2.1 that f with (10) fulfills

RdF (x) = Eξ∼USd−1
[f (|⟨x, ξ⟩|)] .

This implies that f =
ωd−1

2 (F1 ◦Md)[ρ] fulfills (9). Since Rdρ ∈ L1(Rd), we know that
Mdρ ∈ L1(R) and hence its Fourier transform is continuous, so that f ∈ C0(R) is even.

If in addition RdF ∈ L1(Rd), then Rdρ = F−1
d [RdF ] and by (7) further ρ = (Ad ◦F−1

d ◦
Rd)F . Plugging this into (12), we obtain the second assertion.
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Let us note that another characterization of Fourier transforms of radial L1 functions is
given by the following remark, see, e.g. [16].

Remark 3.2. The Fourier transform of a radial function Rdρ ∈ L1(Rd), d ≥ 2 is also a
radial function and can be written as

Fd

[
Rdρ

]
(x) = ∥x∥1−d/2

∫ ∞

0
ρ(r)r

d/2Jd/2−1(2πr∥x∥) dr,

where Jd/2−1 denotes the Bessel function of first kind of order d/2 − 1.

Combining Theorem 2.2 and Proposition 3.1 gives the following corollary.

Corollary 3.3. The Fourier transform of any radial function from L1(Rd) is ⌊(d−2)/2⌋
times continuously differentiable on Rd \ {0}.

Proof. Let Φ = Rdρ ∈ L1(Rd) for some ρ : [0,∞) → R. Then the Fourier transform
Fd[Φ] exists and is radial. Therefore, a function F : [0,∞) → R exists with RdF =
Fd[Rdρ] = Fd[Φ]. By Proposition 3.1, it follows that f and F satisfy (10) as well as
f ∈ C(R). By Theorem 2.2 the function F is ⌊(d−2)/2⌋ times continuously differentiable
on (0,∞). The smoothness of the Euclidean norm on Rd \ {0} yields the assertion.

The “dimension walk” between Fourier transforms of radial functions in different dimen-
sions was discussed, e.g. in [11, 17]. Various examples of sliced transform pairs (F, f)
were given in [21, 38]. Here are two interesting ones.

Example 3.4. i) If F (x) = exp
(
− x2

2

)
is a Gaussian, then ρ(x) = (2π)d/2 exp(−2π2x2)

in Theorem 3.1 is a Gaussian as well and we obtain f = F1[Mdρ] = F1[ρ(| · |)| · |d−1] on
R or conversely F1f = F−1

1 f = Mdρ. The function f is the confluent hypergeometric
distribution function, i.e.,

F (x) = exp

(
− x2

2

)
⇐⇒ f(x) = 1F1

(
d

2
,
1

2
,−x

2

2

)
.

The graphs of these functions are depicted for dimension d = 10 in Fig. 2. The func-
tion RdF is positive definite in every dimension d ∈ N, and the function f is positive
definite in one dimension by Bochner’s theorem 4.10. However, f shows oscillations,
which increase with the dimension. Its Fourier transform F1f has only two modes, which
get separated more far from each other with an increasing dimension, but keep their
shapes.

ii) For Riesz kernels, both F and f have the same structure, more precisely, for r > −1,
we have

F (x) = xr ⇐⇒ f(x) =

√
πΓ(d+r

2 )

Γ(d2) Γ(
r+1
2 )

xr. (14)
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Figure 2: Abel-type transform of the confluent hypergeometric distribution f results in
the Gaussian F (d = 10).

4. Slicing of Tempered Distributions

In this section, we extend our considerations to radial tempered distributions, where
we partially build up on results in [17]. This allows to show a generalization of Theo-
rem 3.1.

4.1. Radial Schwartz Functions

For a smooth function φ ∈ C∞(Rd) and an integer m ∈ N, define

∥φ∥m := max
β∈Nd,|β|⩽m

∥(1 + ∥ · ∥)mDβφ∥∞. (15)

The space of Schwartz functions S(Rd) consists of all smooth functions φ ∈ C∞(Rd) such
that ∥φ∥m <∞ for all m ∈ N. A sequence φn ∈ S(Rd) converges to φ ∈ S(Rd) if

lim
n→∞

∥φn − φ∥m = 0 for all m ∈ N.

The Fourier transform (11) is a linear, bijective and continuous map from S(Rd) to S(Rd).
A Schwartz function φ ∈ S(Rd) is called radial if φ = φ ◦Q for all Q ∈ O(d). The space
of radial Schwartz functions is denoted by

Srad(Rd) := {φ ∈ S(Rd) : φ ◦Q = φ for all Q ∈ O(d)}.

In particular, for d = 1, we obtain the even Schwartz functions Srad(R).

The following theorem shows that the rotation and the averaging operator are well-
defined on radial Schwartz functions. We will use ψ to denote one-dimensional Schwartz
functions and φ to address d-dimensional Schwartz functions.

Theorem 4.1. i) The rotation operator Rd : Srad(R) → Srad(Rd) given by (5) is linear
and continuous. In particular, there exist constants bm > 0 such that ∥Rdψ∥m ⩽
bm∥ψ∥4m for all ψ ∈ Srad(R) and all m ∈ N.

8



ii) The averaging operator Ad : S(Rd) → Srad(R) given by (6) is well-defined and con-
tinuous with ∥Adφ∥m ⩽ dm∥φ∥m for all φ ∈ S(Rd) and all m ∈ N.

A rough sketch of the proof can be found in [17]. We give a rigorous proof in Appendix C.
The following corollary is a direct consequence of the above theorem and the relations
(7) and (8). It shows that Ad restricted to Srad(Rd) is bijective.

Corollary 4.2. i) The concatenated operator Rd ◦Ad : S(Rd) → Srad(Rd) is a contin-
uous projection onto Srad(Rd), i.e., it is surjective and (Rd ◦ Ad)

2 = Rd ◦ Ad.

ii) The operator Ad : Srad(Rd) → Srad(R) is a homeomorphism, i.e., it is bijective and
continuous with continuous inverse,

Ad ◦ Rd = IdSrad(R) and Rd ◦ Ad = IdSrad(Rd).

4.2. Radial Tempered Distributions

The space of tempered distributions S ′(Rd) consists of all continuous linear functionals
on S(Rd). A sequence Tk ∈ S ′(Rd) converges to T ∈ S ′(Rd) if limk→∞⟨Tk, φ⟩ = ⟨T, φ⟩
for all φ ∈ S(Rd). The Fourier transform Fd : S ′(Rd) → S ′(Rd) is the linear, continuous
operator defined for a tempered distribution T ∈ S ′(Rd) by

⟨FdT, φ⟩ := ⟨T,Fdφ⟩ for all φ ∈ S(Rd).

A distribution T ∈ S ′(Rd) is called radial if

⟨T, φ ◦Q⟩ = ⟨T, φ⟩ for all Q ∈ O(d), φ ∈ S(Rd).

The space of all radial tempered distributions is denoted by

S ′
rad(Rd) := {T ∈ S ′(Rd) : ⟨T, φ ◦Q⟩ = ⟨T, φ⟩ for all Q ∈ O(d) and all φ ∈ S(Rd)}.

Since we obtain for T ∈ S ′(Rd) and every φ ∈ S(Rd) that

⟨FdT, φ ◦Q⟩ = ⟨T,Fd(φ ◦Q)⟩ = ⟨T, (Fdφ) ◦Q⟩ = ⟨T,Fdφ⟩ = ⟨FdT, φ⟩,

we conclude that the Fourier transform of a radial tempered distribution is again radial.

The proof of the following lemma can be found in [17, Prop. 3.2]. Based on Corol-
lary 4.2 i), the operator Rd ◦ Ad maps S(Rd) onto Srad(Rd), so that the lemma finally
states that radial distributions can be determined by testing just with radial Schwartz
functions.

Lemma 4.3. For T ∈ S ′
rad(Rd) and every φ ∈ S(Rd), it holds ⟨T, (Rd ◦Ad)φ⟩ = ⟨T, φ⟩.

In particular, a radial distribution is uniquely determined by its application to radial
Schwartz functions.
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Next, we define the operator R⋆
d : S ′(Rd) → S ′

rad(R) by

⟨R⋆
dT, ψ⟩ := ⟨T, (Rd ◦ A1)ψ⟩ for all ψ ∈ S(R).

Indeed, R⋆
dT ∈ S ′

rad(R) for every T ∈ S ′(Rd), since we have for every ψ ∈ S(R) that

⟨R⋆
dT, ψ(−·)⟩ = ⟨T,Rd (A1ψ(−·))⟩ = ⟨T,Rd (A1ψ)⟩ = ⟨R⋆

dT, ψ⟩.

Further, we introduce the operator A∗
d : S ′(R) → S ′

rad(Rd) by

⟨A∗
dτ, φ⟩ := ⟨τ,Adφ⟩ for all φ ∈ S(Rd),

Clearly, A∗
dτ ∈ S ′

rad(Rd) for every τ ∈ S ′(R), since we get for every Q ∈ O(d) and every
φ ∈ S(Rd) that

⟨A∗
dτ, φ ◦Q⟩ = ⟨τ,Ad(φ ◦Q)⟩ = ⟨τ,Adφ⟩ = ⟨A∗

dτ, φ⟩.

Note that A∗
d is the adjoint operator of Ad : S(Rd) → Srad(R), while R⋆

d is the radial
extension of the adjoint of Rd : Srad(R) → Srad(Rd) to S(R). In the following, we will
use τ to denote one-dimensional distributions and T for d-dimensional distributions.
The next proposition shows that R⋆

d and A∗
d become bijective when restricted to radial

distributions.

Lemma 4.4. The restrictions R⋆
d : S ′

rad(Rd) → S ′
rad(R) and A∗

d : S ′
rad(R) → S ′

rad(Rd) are
bijective and inverse to each other, i.e.,

R⋆
d ◦ A∗

d = IdS′
rad(Rd) and A∗

d ◦ R⋆
d = IdS′

rad(R).

Proof. Let T ∈ S ′
rad(Rd). For all φ ∈ S(Rd), we see that Adφ is even and obtain by

Lemma 4.3 that

⟨(A∗
d ◦ R⋆

d)T, φ⟩ = ⟨T, (Rd ◦ A1 ◦ Ad)φ⟩ = ⟨T, (Rd ◦ Ad)φ⟩ = ⟨T, φ⟩.

Let τ ∈ S ′
rad(R). Then, it follows for all ψ ∈ S(R) by Corollary 4.2 ii) that

⟨(R⋆
d ◦ A∗

d)τ, ψ⟩ = ⟨τ, (Ad ◦ Rd ◦ A1)ψ⟩ = ⟨τ, (Ad ◦ Rd) (A1ψ)⟩ = ⟨τ, ψ⟩.

4.3. Slicing of Radial Regular Tempered Distributions

In the following, we are mainly interested in tempered distributions of function type,
where we skip the word ”tempered” in the following. A distribution T ∈ S ′(Rd) is called
regular if it is generated by a function T ∈ L1

loc(Rd) via

⟨T, φ⟩ :=
∫
Rd

T (x)φ(x) dx for all φ ∈ S(Rd).
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Regular distributions were characterized in [48]. Clearly, radial regular distributions
arise from radial functions. A function T ∈ L1

loc(Rd) is slowly increasing if there exist
c, k,R > 1 such that

|T (x)| ≤ c∥x∥k for all ∥x∥ > R, (16)

see, e.g., [50]. The notion of slow increase is sometimes defined slightly different in the
literature, requiring (16) to hold on Rd. Every slowly increasing function generates a
regular distribution, but the converse does not hold true. We are interested in even
functions F such that RdF is a regular distribution on Rd. Note that this is a weaker
assumption than saying that F itself is an even regular distribution on R. Then, we can
associate to F a distribution

f := (F1 ◦ R⋆
d ◦ F−1

d )[RdF ] = (F1 ◦ R⋆
d ◦ F−1

d ◦ Rd)F. (17)

Note that F−1
d [RdF ] is in general not a function again. However, by the following

proposition, we will see that (17) coincides with (13) if this is the case.

Proposition 4.5. i) Let T ∈ S ′
rad(Rd) be a radial regular tempered distribution. Then

⟨R⋆
dT, ψ⟩ =

ωd−1

2 ⟨(Md ◦ Ad)T, ψ⟩ for all ψ ∈ S(R).

ii) For a function F : [0,∞) → R, let RdF as well as F−1
d [RdF ] be regular distribu-

tions. Then f in (17) has the form

f =
ωd−1

2 (F1 ◦Md ◦ Ad ◦ F−1
d ◦ Rd)F.

Note that the factor ωd−1/2 is hidden in R⋆
d.

Proof. i) Firstly, if T is a radial regular distribution, then the same holds true for (Md ◦
Ad)T . We set ρ := AdT which is by definition an even function. Since T is radial, we
have by (8) that T = Rdρ. Further, since R⋆

dT as well as Mdρ is even, it suffices by
Lemma 4.3 to reduce ourselves to ψ ∈ Srad(R). Then A1ψ = ψ and we obtain

⟨R⋆
dT, ψ⟩ = ⟨T, (Rd ◦ A1)ψ⟩ =

∫
Rd

ρ(∥x∥)ψ(∥x∥) dx = ωd−1

∫ ∞

0
ρ(r)rd−1ψ(r) dr

=
ωd−1

2

∫
R
ρ(r)|r|d−1ψ(r) dr =

ωd−1

2

∫
R
Mdρ(r)ψ(r) dr

=
ωd−1

2
⟨Mdρ, ψ⟩ =

ωd−1

2
⟨(Md ◦ Ad)T, ψ⟩.

ii) This part follows directly from (17) and part i) applied to T = F−1
d [RdF ].

11



Under the assumptions of Proposition 3.1, we can apply part ii) of Proposition (4.5),
therefore we can consider (17) as a generalization of (13) to regular distributions. The
following theorem establishes conditions such that the pairs of functions (F, f) fulfill the
slicing property (9). Indeed, it includes functions F for which the Fourier transform
of RdF is not regular, as the already mentioned function F (x) = xr, r > −1, from
Example 3.4 or positive definite functions RdF having just a positive measure as Fourier
transform. To prove the theorem, we need the following lemma, which can be shown
following the lines of [50, Thm. 5.20].

Lemma 4.6. Let Φ ∈ L1
loc(Rd) be slowly increasing. If Φ is continuous in z ∈ Rd, then

Φ(z) = lim
m→∞

⟨Φ, φd,m,z⟩, (18)

where φd,m,z(x) := (m/π)d/2e−m∥x−z∥2.

Theorem 4.7. Let F : [0,∞) → R such that both RdF and

f := (F1 ◦ R⋆
d ◦ F−1

d )[RdF ]

are regular, slowly increasing functions. If f ∈ C(R) and F is continuous in ∥z∥, then

F (∥z∥) = Eξ∼USd−1
f(|⟨z, ξ⟩|). (19)

Proof. For m ∈ N, we use the above Schwartz function φd,m,z, which has the Fourier
transform φ̂d,m,z(v) = e−2πi⟨z,v⟩e−π2∥v∥2/m. Since RdF is continuous in ∥z∥ and slowly
increasing, we obtain by Lemma 4.6 that

F (∥z∥) = lim
m→∞

⟨RdF,φd,m,z⟩ = lim
m→∞

⟨(F−1
d [RdF ], φ̂d,m,z⟩.

By Lemma 4.4, we realize that

(A∗
d ◦F−1

1 )f = (A∗
d ◦F−1

1 ◦ (F1 ◦R⋆
d ◦F−1

d )[RdF ] = (A∗
d ◦R⋆

d) ◦F−1
d [RdF ] = F−1

d [RdF ],

so that

F (∥z∥) = lim
m→∞

⟨(A∗
d ◦ F−1

1 )f, φ̂d,m,z⟩ = lim
m→∞

Eξ∼USd−1

[
⟨f,F−1

1 [(φ̂d,m,z)ξ]⟩
]
,

where for any ξ ∈ Sd−1 and r ∈ R,

(φ̂d,m,z)ξ(r) := φ̂d,m,z(rξ) = e−2πi⟨rξ,z⟩ e−π2|r|2/m = φ̂1,m,⟨ξ,z⟩(r).

It follows that
F (∥z∥) = lim

m→∞

[
Eξ∼USd−1

⟨f, φ1,m,⟨z,ξ⟩⟩
]
. (20)

Since f is continuous slowly increasing and even, we obtain again by (18) that

lim
m→∞

⟨f, φ1,m,⟨z,ξ⟩⟩ = f(⟨z, ξ⟩) = f(|⟨z, ξ⟩|)

12



It remains to show that we can interchange the limit and integration in (20). Since f
is slowly increasing, there exist k ∈ N, c > 0 and R > 0 such that |f(r)| ⩽ c|r|k for all
r ⩾ R. We choose R large enough so that r ⩽ 2r2 − k for all r ⩾ R and |f(r)| ⩽ c|r|k
for all r ⩾ R− ∥z∥.
For any r, s ∈ R, the convexity of | · |k implies that

|r + s|k = |12(2r) +
1
2(2s)|

k ⩽ 1
2 |2r|

k + 1
2 |2s|

k = 2k−1(|r|k + |s|k). (21)

Setting φd,m := φd,m,0, we split up the integral

|⟨f, φ1,m,s⟩| = |⟨f(·+ s), φ1,m⟩| ⩽
∫
R
|f(r + s)φ1,m(r)| dr

=

∫
|r|⩽R

|f(r + s)|φ1,m(r) dr +

∫
|r|>R

|f(r + s)|φ1,m(r) dr.

Using that φ1,m is positive and its integral is one, we estimate the first part∫
|r|⩽R

|f(r + s)|φ1,m(r) dr ⩽ max
|r|⩽R

|f(r + s)|
∫
|r|⩽R

φ1,m(r) dr ⩽ max
|r|⩽R

|f(r + s)|.

For the second part, we have by (21) for all |s| ⩽ ∥z∥ that∫
|r|>R

|f(r + s)|φ1,m(r) dr ⩽ c2k−1

∫
|r|>R

(|r|k + |s|k)φ1,m(r) dr

⩽ c2k−1

(
|s|k + 2

∫ ∞

R
rkφ1,m(r) dr

)
⩽ c2k−1

(
|s|k + 2(m/π)1/2

∫ ∞

R
(2mrk+1 − krk−1)e−mr2 dr

)
= c2k−1

(
|s|k + 2(m/π)1/2

[
−rke−mr2

]∞
R

)
= c2k−1

(
|s|k + 2Rk(m/π)1/2e−mR2

)
.

Due to the growth of the exponential, we can find m0 such that 2Rk(m/π)1/2e−mR2
⩽ 1

for all m ⩾ m0. Now let s = ⟨z, ξ⟩. Then we have |s| ⩽ ∥z∥ and for m ⩾ m0 it follows

|⟨f, φ1,m,s⟩| ⩽ max
|r|⩽R

|f(r + s)|+ c2k−1|s|m + 2Rkφ1,m(R)

⩽ max
|t|⩽R+∥z∥

|f(t)|+ c2k−1(∥z∥m + 1).

This bound is independent of ξ and m, therefore we can apply Lebesgue’s dominated
convergence theorem to (20) and finally obtain (19).

The conditions in Theorem 4.7 on RdF are fulfilled if F is continuous on (0,∞), slowly
increasing, and F (r)rd−1 is bounded for r ↘ 0.

The following two examples show applications of Theorem 4.7.

13



Example 4.8. For the Riesz kernel F (x) = |x| from Example 3.4, the Fourier transform
of RdF does not exist in the classical sense, but as a tempered distribution. We utilize
φd,m := φd,m,0 from Lemma 4.6. Set f := (F1 ◦ R⋆

d ◦ F−1
d )[RdF ], see (17). Let ψ ∈

Srad(R). Since Rdψ̂ − ψ̂(0)φ̂d,m ∈ S(Rd) as well as all its first order derivatives vanish
at 0, Wendland [50, Thm. 8.16] yields

⟨f, ψ⟩ = ⟨F−1
d [RdF ],Rdψ̂⟩ = ⟨F−1

d [RdF ],Rdψ̂ − ψ̂(0)φ̂d,m⟩+ ψ̂(0)⟨F−1
d [RdF ], φ̂d,m⟩

=
−2

πωd

∫
Rd

ψ̂(∥x∥)− ψ̂(0)φ̂d,m(x)

∥x∥d+1
dx+ ψ̂(0)

∫
Rd

∥x∥φd,m(x) dx. (22)

The limit for m→ ∞ of the last term vanishes when we apply Lemma 4.6 to RdF = ∥ · ∥
and z = 0, i.e.,

lim
m→∞

∫
Rd

∥x∥φd,m(x) dx = 0.

Since φ̂d,m(x) = e−π2∥x∥2/m = φ̂1,m(∥x∥), we obtain for the first term∫
Rd

Rdψ̂(x)− ψ̂(0)φ̂d,m(x)

∥x∥d+1
dx =

∫
Rd

ψ̂(∥x∥)− ψ̂(0)φ̂1,m(∥x∥)
∥x∥d+1

dx

= ωd−1

∫ ∞

0

ψ̂(r)− ψ̂(0)φ̂1,m(r)

rd+1
rd−1 dr =

ωd−1

2

∫
R

ψ̂(r)− ψ̂(0)φ̂1,m(r)

r2
dr.

Then we have

⟨f, ψ⟩ = −ωd−1

πωd
lim

m→∞

∫
R

ψ̂(r)− ψ̂(0)φ̂1,m(r)

r2
dr.

Employing (22) backwards for dimension 1, we finally obtain

⟨f, ψ⟩ = ωd−1ω1

2ωd
⟨F1R⋆

1F−1
1 [R1F ], ψ⟩ =

πωd−1

ωd

∫
R
|x|ψ(x) dx.

Therefore, we have f(x) = πωd−1

ωd
|x| for x ∈ R, which gives an alternative proof of (14).

Both f and F are slowly increasing and continuous functions, so the assumptions of
Theorem 4.7 are satisfied.

Example 4.9. We consider the fundamental solution, also known as Green’s function,
of the Helmholtz operator, namely for some k0 > 0

F (r) =
i

4

(
k0
2πr

) d−2
2

H
(1)
d−2
2

(k0r), for all r ≥ 0,

where H(1)
a is the Hankel function of the first kind and order a. We have

⟨Fd[RdF ], φ⟩ = lim
ε↘0

∫
Rd

φ(x)

4π2∥x∥2 − k20 − iε
dx,

14



see [25]. The significance of this example is that the forward simulation of a scattering
problem can be done via the convolution with RdF , cf. [12]. By [25], RdF is indeed a
regular tempered distribution on Rd. However, the asymptotic form |Ha(r)| ∼

√
2/(πr)

for r → ∞, see [29, 10.2.5], shows that RdF /∈ L1(Rd), so we are not in the setting of
Theorem 3.1. Let ψ ∈ Srad(R). We obtain with transformation to polar coordinates that

〈
R⋆

dF−1
d [RdF ], ψ

〉
= ⟨Fd[RdF ],Rdψ⟩ = lim

ε↘0

∫
Rd

ψ(∥x∥)
4π2∥x∥2 − k20 − iε

dx

=
ωd−1

2
lim
ε↘0

∫
R

ψ(r)|r|d−1

4π2r2 − k20 − iε
dr.

By Theorem 4.7, we have

⟨f, ψ⟩ =
〈
F1R⋆

dF−1
d [RdF ], ψ

〉
=
〈
R⋆

dF−1
d AdPd[F ],F1[ψ]

〉
=
ωd−1

2
lim
ε↘0

∫
R

∫
R

|r|d−1

4π2r2 − k20 − iε
ψ(s)e−2πirs dsdr

= ωd−1 lim
ε↘0

∫ ∞

0

∫
R

rd−1

4π2r2 − k20 − iε
ψ(s) cos(2πrs) ds dr.

In particular, for d = 2 we have

⟨f, ψ⟩ = 2π lim
ε↘0

∫ ∞

0

∫
R

r

4π2r2 − k20 − iε
ψ(s) cos(2πrs) ds dr.

Noting that
r

4π2r2 − k20 − iε
=

−r
k20 + iε

1F0

(
1;−;− 4π2

k20+iε
r2
)
,

where F is the hypergeometric function, we have by [10, 8.19(19)] that

⟨f, ψ⟩ = 1

4
√
π
lim
ε↘0

∫ ∞

0
ψ(s)G2,1

1,3

(
−1

4(k
2
0 + iε)s2

∣∣∣∣ 0
0, 0, 12

)
ds,

where G denotes the Meijer-G function defined by

Gm,n
p,q

(
z

∣∣∣∣a1, . . . , apb1, . . . , bq

)
:=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
zs ds,

where L is a certain loop in the complex plane,

see [14, Sect. 9.3]. Aside from its poles, the G function has a jump discontinuity along
the positive real axis due to taking the main branch of zs. We obtain

⟨f, ψ⟩ = 1

4
√
π
lim
ε↘0

∫ ∞

0
ψ(s)G2,1

1,3

(
1
4(−k

2
0 + iε)s2

∣∣∣∣ 0
0, 0, 12

)
ds,
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and the integrand depends continuously on ε ≥ 0. Assuming the limit and the integral
can be interchanged, we obtain

f(s) =
1

4
√
π
G2,1

1,3

(
−1

4k
2
0s

2

∣∣∣∣ 0
0, 0, 12

)
.

Conversely, we can verify that f indeed fulfills (10) using from [34] the integral formula
2.24.2 and the relation 8.4.23.1, in particular for s > 0,

F (s) =
2

π

∫ 1

0
f(ts)(1− t2)

d−3
2 dt

=
1

4π3/2

∫ 1

0
G2,1

1,3

(
−1

4k
2
0us

2

∣∣∣∣ 00, 0, 12
)
(1− u)−

1
2u−

1
2 du

=
1

4π
G2,2

2,4

(
−1

4k
2
0s

2

∣∣∣∣ 1
2 , 0
0, 0, 12 , 0

)
=

1

4π
G2,0

0,2

(
−1

4k
2
0s

2

∣∣∣∣ −0, 0
)

=
1

2π
K0(ik0s) =

i

4
H

(1)
0 (k0s),

where K0 is the modified Bessel function of the second kind and the relation of the G
functions with different orders follows directly from its definition.

4.4. Slicing of positive definite functions

By M(Rd), we denote the set of finite Borel measures on Rd and by M+(Rd) the subset
of positive measures. The space M(Rd) with the total variation norm ∥ ·∥TV is a Banach
space. Actually, it can be seen as a subspace of S ′(Rd) in the following sense, see, e.g.
[31, Sect. 4.4]: by Riesz’ representation theorem, it can be identified with the dual space
C′
0(Rd) ∼= M(Rd) via the isometric isomorphism µ 7→ Tµ given by

⟨Tµ, φ⟩ :=
∫
Rd

φdµ for all φ ∈ C0(Rd).

Since S(Rd) is a dense subspace of (C0(Rd), ∥ · ∥∞), every µ ∈ M(Rd) can be actually
identified with a linear functional Tµ on the Schwartz space, which is also continuous
with respect to the convergence in S(Rd) by

|⟨Tµ, φ⟩| ≤ ∥µ∥TV∥φ∥∞ = ∥µ∥TV∥φ∥0 for all φ ∈ S(Rd)

with ∥·∥0 from (15). Thus, Tµ ∈ S ′(Rd), i.e., every measure from M(Rd) corresponds to a
tempered distribution, but not conversely. The Fourier transform Fd : M(Rd) → Cb(Rd)
of measures is an injective, linear transform defined by

Fd[µ] :=

∫
Rd

e−2πi⟨·,v⟩ dµ(v). (23)
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Note that Fd[µ] is also known as the characteristic function of µ. If µ is absolutely
continuous with respect to the Lebesgue measure with density Φ ∈ L1(Rd), then (23)
becomes (11). If Tµ is the tempered distribution associated to the measure µ, then it
holds for all φ ∈ S(Rd) that

⟨FdTµ, φ⟩ = ⟨Tµ,Fdφ⟩ =
∫
Rd

Fdφdµ =

∫
Rd

∫
Rd

φ(x)e−2πi⟨x,v⟩ dx dµ(v)

=

∫
Rd

φFd[µ] dx = ⟨TFd[µ], φ⟩,

so that FdTµ = TFd[µ].

If we want to sample from a measure, we are only interested in positive, bounded mea-
sures, therefore we consider probability measures. The Fourier transform of positive
measures is related with so-called positive definite functions. A continuous (not neces-
sary radial) function Φ: Rd → C is called positive definite if for all N ∈ N, all pairwise
distinct xj ∈ Rd, and all αj ∈ C, j = 1, . . . , N , it holds

N∑
j=1

N∑
k=1

αjαkΦ(xj − xk) ≥ 0.

Positive definite functions are bounded, more precisely ∥Φ∥∞ = Φ(0). Functions F such
that the radial functions RdF are positive definite in every dimension d ∈ N were char-
acterized by Schoenberg via completely monotone functions [41]. A well-known example
of such a function is the Gaussian function. Bochner’s theorem [4] relates the Fourier
transform of positive measures with positive definite functions.

Theorem 4.10 (Bochner). Any positive definite function Φ: Rd → R is the Fourier
transform of a positive measure and conversely. If Φ(0) = 1, then it is the Fourier trans-
form of a probability measure, i.e., there exists µ ∈ M+(Rd) such that Φ = Ev∼µ

[
e−2πi⟨·,v⟩].

Using the above relations of measures and tempered distributions, we obtain the follow-
ing one-to-one correspondence between positive definite radial functions and their sliced
versions.

Corollary 4.11. Let F : [0,∞) → R such that RdF is positive definite. Then f =
F1R⋆

dF
−1
d [RdF ] is positive definite on R, fulfills the slicing formula (3), and is ⌊d−2

2 ⌋
times continuously differentiable on (0,∞). Conversely, for every even, positive definite
function f on R, the radial function RdF given by (3) is positive definite on Rd.

Proof. Bochner’s Theorem 4.10 implies that F−1
d [RdF ] ∈ M+(Rd). Since a measure

µ ∈ M(Rd) is positive if and only if ⟨µ, φ⟩ ≥ 0 for every non-negative function φ ∈ S(Rd),
see [31, Sect. 4.4], also R⋆

dF
−1
d [RdF ] is a positive measure and again by Bochner’s theorem

f is a positive definite function on R. The slicing identity follows from Theorem 4.7
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by identifying measures with distributions, since both RdF and f are continuous and
bounded and are therefore slowly increasing. By Theorem 2.2 the function F is ⌊d−2

2 ⌋
times continuously differentiable on (0,∞).

The converse follows analogously.

For odd dimension d, [49, Thm. 7] shows that any radial positive definite function F is ⌊d2⌋
times differentiable if RdF ∈ L1(Rd). In comparison, Corollary 4.11 gives one derivative
less, but only requires RdF being positive definite without further assumptions on F .
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A. Proof of Theorem 2.1

Let x ∈ Rd with ∥x∥ = r. Denote by Ux an orthogonal matrix such that Uxx = ∥x∥e1,
where e1 is the first unit vector. Then, it holds

⟨x, ξ⟩ = ⟨rUT
x e1, ξ⟩ = r⟨UT

x e1, ξ⟩ = r⟨e1, Uxξ⟩

and consequently

Eξ∼USd−1
[f(|⟨x, ξ⟩|)] = Eξ∼USd−1

[f(r|⟨e1, Uxξ⟩|)]
= Eξ∼USd−1

[f(r|⟨e1, ξ⟩|)] = Eξ∼USd−1
[f(r|ξ1|)].

We write ξ = ξ1e1 +
√
1− ξ21(0, ξ2:d) with ξ1 ∈ [−1, 1] and ξ2:d := (ξ2, ..., ξd) ∈ Sd−2.

Applying [2, (1.16)], which holds for d ≥ 3, we obtain

Eξ∼USd−1
[f(|⟨x, ξ⟩|)] = 1

ωd−1

∫
Sd−1

f(r|ξ1|) dSd−1(ξ)

=
1

ωd−1

∫ 1

−1

∫
Sd−2

f(r|ξ1|) dSd−2(ξ2:d)(1− ξ21)
d−3
2 dξ1

=
ωd−2

ωd−1

∫ 1

−1
f(r|t|)(1− t2)

d−3
2 dt = cd

∫ 1

0
f(rt)(1− t2)

d−3
2 dt. □

B. Proof of Theorem 2.2

To prove Theorem 2.2 we need some technical lemmas.

Lemma B.1. For all 0 < h < s and 0 < t < s− h, it holds

1

h

((
1− t2

s2

) 1
2 −

(
1− t2

(s− h)2

) 1
2

)
<

1

s− t

(
1− t2

s2

) 1
2
.

Proof. Since h < s and s > 0, we have −3s+ h = −2s− (s− h) < 0 and therefore

t < s− h =
s− h

2s− h
(2s− h) =

2s2 − 3sh+ h2

2s− h
<

2s2

2s− h
.

We can multiply the inequality with t(2s− h) and obtain

0 < 2s2t− t2(2s− h) = t
(
(s− h)2 + s2

)
+ th(2s− h)− t2(2s− h)

< t
(
(s− h)2 + s2

)
+ (s− h)s(2s− h)− t2(2s− h).
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Multiplying the inequality with h > 0, a straightforward calculation yields

0 < ht
(
(s− h)2 + s2

)
+ (s− h)s(2s− h)h− h(2s− h)t2

= (s− h+ t)(s− t)s2 − (s− h− t)(s+ t)(s− h)2.

Further, since s− t, s2, and (s− h)2 are positive, we obtain

0 <
(s− h) + t)

(s− h)2
− ((s− h)− t)

s− t

s+ t

s2

=
1

s− h− t

((s− h+ t)(s− h− t)

(s− h)2
− (s− h− t)2

(s− t)2
(s2 − t2)

s2

)
=

1

s− h− t

((
1− t2

(s− h)2

)
−
(
1− h

s− t

)2(
1− t2

s2

))
.

Multiplying with s− h− t > 0, reordering and taking the square root yields(
1− h

s− t

)(
1− t2

s2

) 1
2
<
(
1− t2

(s− h)2

) 1
2
.

Finally, we rearrange the equation and divide by h > 0 to get the assertion

1

h

((
1− t2

s2

) 1
2 −

(
1− t2

(s− h)2

) 1
2

)
<

1

s− t

(
1− t2

s2

) 1
2
.

Lemma B.2. Let f ∈ L1
loc([0,∞)) if ν ⩾ 1 and f ∈ Lp

loc([0,∞)) with p > 2 if ν = 1/2.
For s > 0, we define

Iνf(s) :=

∫ s

0
f(t)

(
1− t2

s2

)ν
dt, (24)

then it holds that
d

ds
Iνf(s) =

2ν

s3
Iν−1g(s), g(t) := f(t)t2.

Proof. We show that

lim
h→0

Iνf(s+ h)− Iνf(s)

h
=

2ν

s3
Iν−1g(s).

1. First, we consider h > 0, i.e., the right-sided limit

lim
h↘0

Iνf(s+ h)− Iνf(s)

h
= lim

h↘0

1

h

∫ s+h

s
f(t)

(
1− t2

(s+ h)2

)ν
dt (25)

+ lim
h↘0

∫ s

0
f(t)

1

h

((
1− t2

(s+ h)2

)ν
−
(
1− t2

s2

)ν)
dt.

We show that the first summand is zero, while the second one equals 2νs−3Iν−1g(s).
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1.1. Concerning the first limit, we have for h > 0 and s < t < s+ h that∣∣∣∣1− t2

(s+ h)2

∣∣∣∣ ⩽ 1− s2

(s+ h)2
= h

2s+ h

(s+ h)2
,

and further by the monotony of the power function, for 0 < h < 1, that∣∣∣∣1h
∫ s+h

s
f(t)

(
1− t2

(s+h)2

)ν
dt

∣∣∣∣ ⩽ 1

h

∫ s+h

s
|f(t)|

(
h

2s+ h

(s+ h)2

)ν

dt

⩽

(
2s+ 1

s2

)ν

hν−1

∫ s+h

s
|f(t)| dt.

If ν ⩾ 1 and f ∈ L1
loc([0,∞)), then ν − 1 ⩾ 0 and we can estimate(

2s+ 1

s2

)ν

hν−1

∫ s+h

s
|f(t)|dt ⩽

(
2s+ 1

s2

)ν ∫ s+h

s
|f(t)|dt h↘0−−−→ 0.

If ν = 1/2, we assumed that f ∈ Lp
loc([0,∞)) with p > 2 and thus f ∈ L2

loc([0,∞)) ⊂
Lp
loc([0,∞)). Then we get by Hölder’s inequality with(

2s+ 1

s2

)ν

hν−1

∫ s+h

s
|f(t)|dt ⩽

(
2s+ 1

s2

) 1
2

h−
1
2

(∫ s+h

s
|f(t)|2 dt

) 1
2
(∫ s+h

s
dt

) 1
2

=

(
2s+ 1

s2

) 1
2
(∫ s+h

s
|f(t)|2 dt

) 1
2

h↘0−−−→ 0.

1.2. Concerning the second limit in (25), we use that

d

ds

(
1− t2

s2

)ν
=

2t2ν

s3

(
1− t2

s2

)ν−1
.

If ν ⩾ 1 and f ∈ L1
loc([0,∞)), then the mean value theorem implies

h−1
∣∣∣(1− t2

(s+h)2

)ν
−
(
1− t2

s2

)ν∣∣∣ ⩽ sup
ξ∈(0,h)

∣∣∣∣2t2ν(1− t2

(s+ ξ)2

)ν−1 1

(s+ ξ)3

∣∣∣∣
⩽ sup

ξ∈(0,h)
2t2ν

(
1 +

t2

(s+ ξ)2

)ν−1 1

(s+ ξ)3
⩽ 2t2ν

(
1 +

s2

s2

)ν−1 1

s3
= ν2ν

t2

s3
⩽ ν2νs−1.

Hence t 7→ f(t)ν2νs−1 is an h independent integrable majorant and Lebesgue’s domi-
nated convergence theorem gives

lim
h↘0

∫ s

0
f(t)

1

h

((
1− t2

(s+h)2

)ν
−
(
1− t2

s2

)ν)
dt =

2ν

s3

∫ s

0
f(t)t2

(
1− t2

s2

)ν−1
dt. (26)

If ν = 1/2 and f ∈ Lp
loc([0,∞)) with p > 2, then

1

h

∣∣∣∣(1− t2

(s+h)2

) 1
2 −

(
1− t2

s2

) 1
2

∣∣∣∣ ⩽ sup
ξ∈(0,h)

∣∣∣∣ t2

(s+ ξ)3

(
1− t2

(s+ ξ)2

)− 1
2

∣∣∣∣ ⩽
t2

s3

(
1− t2

s2

)− 1
2
.
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Denote by q = (1 − p−1)−1 the Hölder conjugate to p. Since p > 2 it holds q < 2 and
also (

1− t2

s2

)− 1
2
q
=

(
s+ t

s2

)− q
2

(s− t)−
q
2 .

For t ∈ (0, s), both t2s−3 and ((s+ t)s−2)−q/2 are bounded, and (s− t)−q/2 is integrable
on [0, s]. Therefore, t 7→ t2s−3((s + t)s−2)−q/2(s − t)−q/2f(t) is an integrable majorant.
Hence, Lebesgue’s dominated convergence theorem yields (26).

2. Next, we deal with the left-sided limit

lim
h↗0

Iνf(s+ h)− Iνf(s)

h
= lim

h↘0

Iνf(s)− Iνf(s− h)

h

= lim
h↘0

∫ s

0

f(t)

h

((
1− t2

s2

)ν
−
(
1− t2

(s−h)2

)ν
1[0,s−h](t)

)
dt.

Define the functions mh,m : (0, s) → R by

mh(t) :=
1

h

((
1− t2

s2

)ν
−
(
1− t2

(s−h)2

)ν
1[0,s−h](t)

)
and m(t) :=

d

ds

(
1− t2

s2

)ν

.

Note that for every t ∈ (0, s) we have limh→0mh(t) = m(t).

2.1. Let 0 < t < s − h. We choose 0 < h < s/2. If ν ⩾ 1 and f ∈ L1
loc([0,∞)), then the

mean value theorem implies

|mh(t)| =
1

h

∣∣∣(1− t2

(s−h)2

)ν
−
(
1− t2

s2

)ν∣∣∣ ⩽ sup
ξ∈(0,h)

∣∣∣∣2ν(1− t2

(s− ξ)2

)ν−1 t2

(s− ξ)3

∣∣∣∣
⩽ sup

ξ∈(0,h)
2ν
(
1 +

t2

(s− ξ)2

)ν−1 t2

(s− s/2)3
⩽ 2ν

(
1 +

s2

(s− s/2)2

)ν−1 t2

(s/2)3

⩽ 16ν
t2

s3
5ν−1 ⩽ 16 · 5ν−1νs−1,

which is bounded independently of t and s. Hence, Lebesgue’s dominated convergence
theorem implies

lim
h↗0

Iν(f)(s+ h)− Iν(s)

h
=

2ν

s3

∫ s

0
f(t)t2

(
1− t2

s2

)ν−1
dt.

For ν = 1/2 and f ∈ Lp
loc([0,∞)) with p > 2 and Hölder conjugate q < 2 to p, we apply

Lemma B.1 to obtain

|mh(t)| ⩽ w(t) :=
1

s− t

(
1− t2

s2

) 1
2
=

1

s

(s+ t

s− t

) 1
2
, (27)

which is q integrable. The claim follows again by using the Hölder inequality and the
dominated convergence. 2.2. Let s − h ⩽ t < s and 0 < h < s. For ν ⩾ 1, we see that
mh is integrable. For ν = 1/2, we have s− t ⩽ h and consequently

|mh(t)| =
1

h

(
1− t2

s2

) 1
2
⩽

1

s− t

(
1− t2

s2

) 1
2
= w(t),
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see (27). Finally, we use Lebesgue’s dominated convergence theorem again.

Proof of Theorem 2.2. Since s 7→ s−1 is smooth on (0,∞), the differentiability of F
in (10) depends only on the integral I(d−3)/2f defined in (24). By Lemma B.2, we have
for f ∈ L1

loc([0,∞)) if d ≥ 5 as well as for f ∈ Lp
loc([0,∞)) with p > 2 if ν = 1/2 and

gk(t) := f(t)t2k that
d

ds
Iνf(s) =

2ν

s3
Iν−1g1(s). (28)

Set ν := (d−3)/2. We show that for each n = 0, . . . , ⌊ν⌋, there exist smooth functions
r0, . . . , rn on (0,∞) such that

dn

dsn
F (s) =

dn

dsn

(cd
s
Iν(s)

)
=

n∑
k=0

rk(s)Iν−kgk(s).

For n = 0, we obtain that r0 = cd/s. Assume the assertion holds for n < ⌊ν⌋. For
k = 0, . . . , n, we have gk ∈ Lp

loc([0,∞)) with p > 2 if ν = 1/2 and p = 1 if ν ⩾ 1. Also
ν − k ⩾ ⌊ν⌋ − n ⩾ 1, so that (28) yields

dn+1

dsn+1
F (s) =

n∑
k=0

(
r′k(s)Iν−kgk(s) + rk(s)

2ν

s3
Iν−k−1gk+1(s)

)

=

n+1∑
k=0

(
r′k(s) + rk−1(s)

2ν

s3

)
Iν−kgk(s), r′n+1 = r−1 := 0. (29)

Hence F is ⌊ν⌋ times differentiable. Moreover, the parameter integrals Ik, k = 0, . . . , ⌊ν⌋
are absolutely continuous, which follows from Lemma B.2 for k ≥ 1 and from the defini-
tion of I0. Hence, also the ⌊ν⌋-th derivative of F is absolutely continuous.

If d is odd, it holds ⌊ν⌋ = ⌊(d−2)/2⌋ and we are done. If d is even, then ⌊ν⌋ = (d−4)/2 and
ν − ⌊ν⌋ = 1/2. For f ∈ Lp

loc([0,∞)) and p > 2, we obtain by (29) and Lemma B.2 that
the ⌊ν⌋ + 1 th derivative of F also exits and is absolutely continuous. This finishes the
proof. □

C. Proof of Theorem 4.1

To prove the theorem, we need several auxiliary lemmata.

Lemma C.1. For ψ ∈ S(R) with ψ(0) = 0, the function

V [ψ](x) :=

{
ψ(x)/x if x ̸= 0,

ψ′(0) if x = 0.
(30)
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is in S(R) and the respective map V : {ψ ∈ S(R) | ψ(0) = 0} → S(R) is continuous with
∥V [ψ]∥n ⩽ an∥ψ∥n+1, where

an := max
m=0,...,n

{
max

{
m∑
l=0

2n

m− l + 1

(
m

l

)
,

m∑
l=0

m!

l!

}}
⩾ 1.

Proof. Since ψ(0) = 0, we see that V [ψ] is continuous. We note that if a function
ϕ ∈ C(R) is differentiable on R\{0} and limx→0 ϕ

′(x) exists, then it is differentiable in 0.
Part 1: We show by induction that for m ⩾ 1 the m-th derivative of V [ψ] is continuous
and can be represented as

dm

dxm
V [ψ](x) = x−m−1

m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!
for all x ∈ R \ {0}. (31)

For m = 1 we have for x ̸= 0

d

dx
V [ψ](x) =

d

dx

ψ(x)

x
=
ψ′(x)x− ψ(x)

x2
= x−m−1

1∑
l=0

ψ(l)(x)xl(−1)l+1 1!

l!
.

By L’Hospital it holds

lim
x→0

d

dx
V [ψ](x) = lim

x→0

ψ′(x)x− ψ(x)

x2
= lim

x→0

ψ′′(x)x

2x
=
ψ(2)(0)

2
.

Since V [ψ] is continuous on R and limx→0 V [ψ]′(x) is finite, we have V [ψ]′(0) = ψ(2)(0)/2.
In particular, the derivative is continuous.

Now assume, that (31) holds for all derivatives less or equal m and all derivatives less or
equal m are continuous. We can compute the derivative

dm+1

dxm+1
V [ψ](x) =

d

dx

(
x−m−1

m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!

)

= x−m−1 d

dx

(
m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!

)
− (m+ 1)x−m−2

m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!
.

With the calculation

d

dx

m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!

=

m∑
l=0

ψ(l+1)(x)xl(−1)l+mm!

l!
+

m∑
l=1

ψ(l)(x)xl−1(−1)l+m m!

(l − 1)!

=

m∑
l=0

ψ(l+1)(x)xl(−1)l+mm!

l!
+

m−1∑
l=0

ψ(l+1)(x)xl(−1)l+1+mm!

l!

= ψ(m+1)(x)xm(−1)2m
m!

m!
= ψ(m+1)(x)xm, (32)
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we obtain that

dm+1

dxm+1
V [ψ](x) = x−m−1 ψ(m+1)(x)xm − x−m−2

m∑
l=0

ψ(l)(x)xl(−1)l+m (m+ 1)!

l!

= x−m−2
m+1∑
l=0

ψ(l)(x)xl(−1)l+(m+1) (m+ 1)!

l!
,

which shows (31). Since ψ is a Schwartz function, it is clear that dm+1

dxm+1V [ψ](x) is
continuous on R \ {0}. Now we use again L’Hospital and (32) to obtain

lim
x→0

dm+1

dxm+1
V [ψ](x) = lim

x→0

∑m+1
l=0 ψ(l)(x)xl(−1)l+(m+1) (m+1)!

l!

xm+2

= lim
x→0

d
dx

∑m+1
l=0 ψ(l)(x)xl(−1)l+(m+1) (m+1)!

l!
d
dxx

(m+1)+1
= lim

x→0

ψ(m+2)(x)xm+1

(m+ 1)xm+1
=
ψ(m+2)(0)

m+ 1
.

This yields that V [ψ] ∈ Cm+1(R) and this induction is finished. Part 2: Next we show
that V [ψ] is a Schwartz function and that V is continuous. Let x ∈ R and m ∈ N be
fixed. We use the Taylor expansion with the Lagrange reminder,

ψ(l)(x) =
m∑
k=l

ψ(k)(0)

(k − l)!
xk−l +

ψ(m+1)(ξl(x))

(m− l + 1)!
xm−l+1 for some |ξl(x)| < |x|.

With the representation (31), we see that

xm+1 dm

dxm
V [ψ](x) =

m∑
l=0

ψ(l)(x)xl(−1)l+mm!

l!

= xm+1
m∑
l=0

ψ(m+1)(ξl(x))

(m− l + 1)!
(−1)l+mm!

l!
+

m∑
l=0

m∑
k=l

ψ(k)(0)

(k − l)!
xk(−1)l+mm!

l!

= xm+1
m∑
l=0

ψ(m+1)(ξl(x))

m− l + 1
(−1)l+m

(
m

l

)
+

m∑
k=0

xkψ(k)(0)

k∑
l=0

(−1)l+m

(k − l)!

m!

l!
.

If k ⩾ 1, we have by the binomial theorem

k∑
l=0

(−1)l+m

(k − l)!

m!

l!
= (−1)m

m!

k!

k∑
l=0

(−1)l
(
k

l

)
= 0.

Since ψ(0) = 0, only the first sum remains and we have

dm

dxm
V [ψ](x) =

m∑
l=0

ψ(m+1)(ξl(x))
(−1)l+m

m− l + 1

(
m

l

)
with |ξl(x)| ⩽ |x|. (33)
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Fixing some natural number m ⩽ n, we have for x ∈ [−1, 1] \ {0} using (33), that∣∣∣∣(1 + |x|)n dm

dxm
V [ψ](x)

∣∣∣∣ =
∣∣∣∣∣(1 + |x|)n

m∑
l=0

ψ(m+1)(ξl(x))
(−1)l+m

m− l + 1

(
m

l

)∣∣∣∣∣
⩽ (1 + |x|)n sup

y∈[−1,1]
ψ(m+1)(y)

m∑
l=0

1

m− l + 1

(
m

l

)

⩽ 2n∥ψ∥n+1

m∑
l=0

1

m− l + 1

(
m

l

)
⩽ an.

On the other hand, if |x| > 1, we have by (31)∣∣∣∣(1 + |x|)n dm

dxm
V [ψ](x)

∣∣∣∣ ⩽ (1 + |x|)n
m∑
l=0

∣∣∣ψ(l)(x)
∣∣∣ m!

l!
⩽ an∥ψ∥n+1.

Since V [ψ] is smooth all its derives are continuous, we have

∥V [ψ]∥n = sup
m=0,...,n

sup
x∈R\{0}

∣∣∣∣(1 + |x|)n dm

dxm
V [ψ](x)

∣∣∣∣ ⩽ an∥ψ∥n+1 <∞.

Thus V [ψ] is a Schwartz function and the operator V is continuous.

Lemma C.2. The operator

W : Srad(R) → Srad(R), W := V ◦ d
dx , (34)

or more precisely W [ψ](x) = V [ψ′](x) = ψ′(x)/x if x ̸= 0 and W [ψ](0) = ψ′′(0) is linear
and continuous with ∥W [ψ]∥m ⩽ am∥ψ∥m+2 for all m ∈ N and all ψ ∈ Srad(R).

Proof. If ψ ∈ Srad(R), then ψ is even and ψ′ is odd. Therefore, ψ′(0) = 0 and V [ψ′] is
well-defined by Lemma C.1. The function W [ψ](x) = ψ′(x)/x is again even, so that W
is well-defined and we can estimate the m norm of W [ψ] by Lemma C.1 as

∥W [ψ]∥m = ∥V (ψ′)∥m ⩽ am∥ψ′∥m+1 ⩽ am∥ψ∥m+2.

Proof of Theorem 4.1 i). The directional derivative of ψ ∈ Srad(R) in direction
ξ ∈ Sd−1 is

∂ξ(ψ ◦ ∥ · ∥2)(0) = lim
t→0

ψ(∥tξ∥)− ψ(∥0∥)
t

= lim
t→0

ψ(|t|)− ψ(0)

t
= ψ′(0) = 0,

and, for x ̸= 0, by the chain rule,

∂ξ(ψ ◦ ∥ · ∥2)(x) = ψ′(∥x∥)
〈

x

∥x∥
, ξ

〉
.
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Recalling the definition of V in (30), we have the representation

∂ξ(ψ ◦ ∥ · ∥2)(x) = ⟨x, ξ⟩V [ψ](∥x∥) for all x ∈ Rd. (35)

In the following, we show inductively that for α ∈ Nd there are polynomials pα,1, . . . , pα,|α|
of degree ⩽ k such that for every even, smooth function ψ : R → R it holds

Dα(ψ ◦ ∥ · ∥2)(x) =
|α|∑
k=1

pα,k(x) ·W k[ψ](∥x∥) for all x ∈ Rd, (36)

where W k =W ◦W ◦ . . . ◦W exactly k times, see (34). For |α| = 1, we write α = el and
choose pα,1(x) = xl. By (35), it holds for all x ∈ Rd that

Dα(ψ ◦ ∥ · ∥2)(x) = xk
ψ′(∥x∥)
∥x∥

= pα,1(x)W [ψ](∥x∥).

Now assume (36) holds for |α| < n and choose β ∈ Nd with |β| = n. Find some nonzero
entry l of β and define α := β− el. Since |α| < n, we can apply the induction hypothesis
and obtain with Lemma C.2

Dβ(ψ ◦ ∥ · ∥2)(x) = ∂el(D
α(ψ ◦ ∥ · ∥2))(x) = ∂el

|α|∑
k=1

pα,k(x)W
k[ψ](∥x∥)

=

|α|∑
k=1

(
∂elpα,k(x)W

k[ψ](∥x∥) + pα,k(x)xl
W k[ψ]′(∥x∥)

∥x∥

)

=

|α|∑
k=1

∂elpα,k(x)W
k[ψ](∥x∥) +

|α|+1∑
k=2

pα,k−1(x)xlW
k[ψ](∥x∥)

=

|β|∑
k=1

pβ,k(x)W
k[ψ](∥x∥),

where we set pβ,1(x) := ∂elpα,1(x), pβ,|β|(x) := pα,|α|(x)xl, and pβ,k(x) := ∂elpα,k(x) +
pα,k−1(x)xl for k = 2, . . . , |β| − 1. This shows (36).

Let n ∈ N. Since deg pα,k ⩽ k for all α ∈ Nd we can find cn > 0 such that

|pα,k(x)| ⩽ cn(1 + ∥x∥)n for all |α| ⩽ n, k = 1, . . . , |α|.
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For any x ∈ Rd, we have by the continuity of W in Corollary C.2∥∥ψ ◦ ∥ · ∥2
∥∥
n
= sup

|α|⩽n
∥(1 + ∥ · ∥)nDα(ψ ◦ ∥ · ∥2)∥∞

⩽ sup
|α|⩽n

∥∥∥∥∥∥(1 + ∥ · ∥)n
|α|∑
k=1

pα,k(x)W
k[ψ] ◦ ∥ · ∥

∥∥∥∥∥∥
∞

⩽ cn sup
m=0,...,n

m∑
k=1

∥∥∥(1 + | · |)2nW k[ψ]
∥∥∥
∞

⩽ cn

n∑
k=1

∥W k[ψ]∥2n ⩽ cn

n∑
k=1

k∏
j=1

aj∥ψ∥2n+2k ⩽ ncn

n∏
j=1

aj∥ψ∥4n.

Setting bn := ncn
∏n

j=1 aj finishes the proof. □

Lemma C.3. Let φ ∈ S(Rd) be a Schwartz function and Q ∈ O(d), then φ ◦Q ∈ S(Rd)
and ∥φ ◦Q∥m ⩽ dm∥φ∥m for all m ∈ N.

Proof. For k ∈ [d] and z ∈ Rd, the chain rule implies

|∂ek(φ ◦Q)(z)| = |⟨D(φ ◦Q)(z), ek⟩| = |⟨∇φ(Q(z)) ·Q, ek⟩| = |⟨(∇φ ◦Q)(z), Qk⟩|

⩽
d∑

j=1

|∂ejφ(Qz)| · |Qk,j | ⩽
d∑

j=1

|∂ejφ(Qz)| ⩽ d · max
j=1,...,d

|∂ejφ(Qz)|.

For β ∈ Nd we obtain inductively

|Dβ(φ ◦Q)(z)| ⩽ d|β| max
|β′|=|β|

|Dβ′
φ(Qz)|.

Finally, we have for m ∈ N that

∥φ ◦Q∥m = max
|β|⩽m

sup
x∈Rd

|(1 + ∥c∥)mDβ[φ ◦Q](x)|

⩽ max
|β|⩽m

d|β| sup
x∈Rd

∥(1 + ∥x∥)m(Dβφ)(Qx)| = dm∥φ∥m.

Therefore φ ◦Q ∈ S(Rd).

Lemma C.4. Let φ ∈ S(Rd) and ξ ∈ Sd−1. Then

φξ : R → R, r 7→ φ(rξ)

is a one-dimensional Schwartz function and ∥φξ∥m ⩽ dm∥φ∥m for all m ∈ N0.
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Proof. First, let ξ = e1 and n ∈ N0. we see that φe1 is smooth with

Dnφe1(r) =
(

d
dr

)n
φ(re1) = Dβφ(re1),

where β = ne1 ∈ Nd
0. Therefore, we obtain for m ∈ N0 that

∥φe1∥m = sup
x1∈R

∣∣∣(1 + |x1|)mDβφ(x1e1)
∣∣∣ ⩽ sup

x∈Rd

∣∣∣(1 + ∥x∥)mDβφ(x)
∣∣∣ ⩽ ∥φ∥m.

For arbitrary ξ ∈ Sd−1, we take some Q ∈ O(d) such that Qe1 = ξ, then φξ = (φ ◦Q)e1 .
By Lemma C.3, we obtain φξ ∈ S(R) and

∥φξ∥m = ∥(φ ◦Q)e1∥m ⩽ ∥φ ◦Q∥m ⩽ dm∥φ∥m.

Proof of Theorem 4.1 ii). Since Sd−1 is compact and φ is continuous, Adφ(r) is
well-defined. For distinct r, s ∈ R, we can find t ∈ R between r and s by the mean value
theorem, such that ∣∣∣∣φξ(r)− φξ(s)

r − s

∣∣∣∣ = |φ′
ξ(t)| ⩽ ∥φξ∥1 ⩽ d∥φ∥1.

Therefore we get by Lebesgue’s dominated convergence theorem that

d

dr
Adφ(r) = lim

s→r

1

ωd−1

∫
Sd−1

φξ(s)− φξ(r)

r − s
dξ =

1

ωd−1

∫
Sd−1

lim
s→r

φξ(s)− φξ(r)

r − s
dξ

=
1

ωd−1

∫
Sd−1

φ′
ξ(r) dξ.

Inductively, we obtain with Lemma C.4 for any r ∈ R and n ⩽ m, that∣∣∣(1 + |r|)mAdφ
(n)(r)

∣∣∣ ⩽ (1 + |r|)m

ωd−1

∫
Sd−1

∣∣∣φ(n)
ξ (r)

∣∣∣ dξ
⩽

1

ωd−1

∫
Sd−1

∥φξ∥m dξ ⩽ dm∥φ∥m.

Clearly Adφ is an even function and therefore in Srad(Rd). □

D. Riemann-Liouville Fractional Integrals and Derivatives

In this section, we briefly describe the relation between Abel-type integrals (4) and
Riemann-Liouville fractional integrals together with their inversion formula via fractional
derivatives. For more information, we refer e.g. to [39, 40].

Let α > 0. Then, for f ∈ L1(0,∞), the Riemann–Liouville fractional integral is given
by

(Iα+f)(s) :=
1

Γ(α)

∫ s

0
f(t) (s− t)α−1 dt, for all s ∈ (0,∞),
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and the fractional derivative by

(Dα
+f)(s) :=

1

Γ(n− α)

( d

ds

)n ∫ s

0
f(t) (s− t)n−α−1 dt,

where n = ⌊α⌋+1, see [40, Thm. 2.4]. For f ∈ L1(0, b) and F ∈ Iα+(L
1(0,∞)), it holds

Dα
+I

α
+f = f and Iα+D

α
+F = F.

In order to invert the transform (10) by these formulas, we set α := (d−1)/2, where d ≥ 2.
Reparameterizing F and using the substitution t→

√
t, we obtain

1

cd
F (

√
s) = s−

d−2
2

∫ √
s

0
f(t) (s− t2)

d−3
2 dt

=
1

2
s−

d−2
2

∫ s

0

f(
√
t)√
t

(s− t)
d−3
2 dt

=
1

2
s−

d−2
2 Γ

(d− 1

2

)(
I

d−1
2

+

f(
√
·)√
·

)
(s),

and consequently
f(
√
s)√
s

=
2

cdΓ(
d−1
2 )

(
D

d−1
2

+ F (
√
·) ·

d−2
2

)
(s).

Under the assumption f ∈ L1(R), which is equivalent to f(
√
·)√
· ∈ L1(R), the transfor-

mation f 7→ F is injective and this gives with ν := 0 if d is odd and ν := 1
2 if d is

even,

f(
√
s) =

2
√
s

cdΓ(
d−1
2 )

(
D

d−1
2

+ F (
√
·) ·

d−2
2

)
(s)

=
2s

cdΓ(
d−1
2 ) Γ(⌊d+1

2 ⌋ − d−1
2 )

( d

ds

)⌊ d+1
2

⌋
∫ s

0
F (

√
t) t

d−2
2 (s− t)−ν dt

=
4
√
s

cdΓ(
d−1
2 ) Γ(⌊d+1

2 ⌋ − d−1
2 )

( d

ds

)⌊ d+1
2

⌋
∫ √

s

0
F (t) td−1 (s− t2)−ν dt,

so that

f(s) =
4s

cdΓ(
d−1
2 ) Γ(1− ν)

( d

d(s2)

)⌊ d+1
2

⌋
∫ s

0
F (t) td−1 (s2 − t2)−ν dt.
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