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Abstract. The Funk-Radon transform assigns to a function defined on
the unit sphere its integrals along all great circles of the sphere. In this
paper, we consider a frame decomposition of the Funk-Radon transform,
which is a flexible alternative to the singular value decomposition. In
particular, we construct a novel frame decomposition based on trigono-
metric polynomials and show its application for the inversion of the Funk-
Radon transform. Our theoretical findings are verified by numerical ex-
periments, which also incorporate a regularization scheme.
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1 Introduction

The Funk-Radon transform assigns to a function f : S2 → C defined on the two-
dimensional unit sphere S2 := {ξ ∈ R3 : ∥ξ∥ = 1} its integrals along all great
circles of the sphere, i.e.,

Rf(ξ) :=
1

2π

∫
ξ⊤η=0

f(η) dη , ∀ ξ ∈ S2 , (1)

where dη denotes the arclength on the great circle perpendicular to ξ. Tracing
back to works of Funk [17] and Minkowski [36] in the early twentieth century, it
is also known as Funk transform, Minkowski-Funk transform or spherical Radon
transform. It has found applications in diffusion MRI [43,49], radar imaging [52],
Compton camera imaging [48], photoacoustic tomography [24], and geometric
tomography [18, Chap. 4]. Besides analytic inversion formulas, e.g., [4,17,21,28],
the numerical reconstruction of functions given its Funk-Radon transform can
be done using mollifier methods [34,44], the eigenvalue decomposition [23], or
discretization on the cubed sphere [5]. Generalizations have been developed for
various non-central sections of the sphere [2,39,45,46] or for derivatives [28,42].
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In this paper, we are interested in frame decompositions (FDs) of the Funk-
Radon transform. Originally developed in the framework of wavelet-vaguelette
decompositions [1,10,11,14,15,31,33] and then extended to biorthogonal curvelet
and shearlet decompositions [6,8], FDs are generalizations of the singular value
decomposition (SVD) [12,16,25,26,27,50]. In particular, they allow SVD-like de-
compositions of bounded linear operators also in those cases when the SVD itself
is either unknown, its computation is infeasible, or its structure is unfavourable.
More precisely, given a bounded linear operator A : X → Y between real or
complex Hilbert spaces X and Y , an FD of A is a decomposition of the form

Ax =

∞∑
k=1

σk ⟨x, ek ⟩X f̃k , ∀x ∈ X . (2)

Here, the sets {ek}k∈N and {fk}k∈N form frames over X and Y , respectively, and
{f̃k}k∈N denotes the dual frame of the frame {fk}k∈N; see Section 2 below. The
main requirement on ek and fk is that they satisfy the quasi-singular relation

σk ek = A∗fk , ∀ k ∈ N , (3)

where σk denotes the complex conjugate of the coefficient σk ∈ C and A∗ the
adjoint of A. Using the FD (2) it is possible to compute (approximate) solutions
of the linear equation Ax = y, and to develop filter-based regularization schemes
as for the SVD [12,26,27]. However, the question remains whether frames sat-
isfying (3) can be found. While this is possible by geometric considerations for
some examples [11,14,15,25], an explicit construction “recipe” exists in case that
A satisfies the stability condition

c1 ∥x∥X ≤ ∥Ax∥Z ≤ c2 ∥x∥X , ∀x ∈ X , (4)

for some constants c1, c2 > 0 and a Hilbert space Z ⊆ Y . In this case, one can
start with an arbitrary frame {fk}k∈N over Y with the additional property

a1 ∥y∥2Z ≤
∞∑
k=1

α2
k |⟨ y, fk ⟩Y |

2 ≤ a2 ∥y∥2Z , ∀ y ∈ Y , (5)

for coefficients 0 ̸= αk ∈ R and some constants a1, a2 > 0. Then, one defines

ek := αkA
∗fk ,

which results in a frame {ek}k∈N over X which satisfies (3) with σk = 1/αk [26].
In case that Z and Y are Sobolev spaces, frames {fk}k∈N satisfying (5) can often
be found (e.g., orthonormal wavelets [9]), which has resulted in FDs of the classic
Radon transform [26,27]. On the other hand, while the Funk-Radon transform
satisfies a stability property of the form (4), see Theorem 2 below, frames which
satisfy (5) are more difficult to find. The standard candidate would be spherical
harmonics, which, however, already are the eigenfunctions of the Funk-Radon
transform, and thus offer no further insight.
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Hence, in this paper we consider a different approach for constructing FDs,
which was originally outlined in [26]. This approach is still based on the stability
property (4), but instead of (5) it only requires that

∥y∥Y ≤ ∥y∥Z , ∀ y ∈ Z , (6)

that Z ⊆ Y is a dense subspace of Y , and that the frame functions fk are
elements of Z, i.e., ∥fk∥Z < ∞. In this case, one can build an alternative FD
of A similar to (2), which can then be used to compute the (unique) solution of
the linear operator equation Ax = y for any y in the range R(A) of A, and to
develop stable reconstruction approaches in case of noisy data yδ.

The aim of this paper is to show that the above approach is applicable to the
Funk-Radon transform. In particular, we construct an FD using trigonometric
functions, which have the advantage of their fast computation outperforming
spherical harmonics, cf. [35,53]. For this, we first review some background on
frames and FDs in Section 2. Then, in Section 3 we show that all required
properties are satisfied for the Funk-Radon transform with a suitable choice
of the functions fk. Furthermore, we provide explicit expressions for the frame
functions ek, leading to an FD and a corresponding reconstruction formula.
Finally, in Section 4 we consider the efficient implementation of our derived FD
and evaluate its reconstruction quality on a number of numerical examples.

2 Background on Frames and Frame Decompositions

In this section, we review some background on frames and FDs, collected from
the seminal works [7,9] and the recent article [26], respectively.

Definition 1. A sequence {ek}k∈N in a Hilbert space X is called a frame over
X, if and only if there exist frame bounds 0 < B1, B2 ∈ R such that there holds

B1 ∥x∥2X ≤
∞∑
k=1

|⟨x, ek ⟩X |2 ≤ B2 ∥x∥2X , ∀x ∈ X . (7)

For a given frame {ek}k∈N, one can consider the frame (analysis) operator F
and its adjoint (synthesis) operator F ∗, which are given by

F : X → ℓ2(N) , x 7→ (⟨x, ek ⟩X)
k∈N ,

F ∗ : ℓ2(N) → X , (ak)k∈N 7→
∞∑
k=1

akek .

Due to (7) there holds
√
B1 ≤ ∥F∥ = ∥F ∗∥ ≤

√
B2. Furthermore, one can define

Sx := F ∗Fx =

∞∑
k=1

⟨x, ek ⟩X ek , and ẽk := S−1ek .
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Since S is continuously invertible with B1I ≤ S ≤ B2I, the functions ẽk are well-
defined, and the set {ẽk}k∈N forms a frame over X with frame bounds B−1

2 , B−1
1

called the dual frame of {ek}k∈N. Furthermore, it can be shown that

x =

∞∑
k=1

⟨x, ẽk ⟩X ek =

∞∑
k=1

⟨x, ek ⟩X ẽk , ∀x ∈ X .

In general, this decomposition is not unique, which is a key difference between
frames and bases, but it can be understood as the “most economical” one [9].

Next, we consider FDs. For this, we use the following

Assumption 1. The operator A : X → Y between the Hilbert spaces X,Y is
bounded, linear, and satisfies condition (4) for some constants c1, c2 > 0, where
the Hilbert space Z ⊆ Y is a dense subspace of Y satisfying (6). Furthermore, the
set {fk}k∈N forms a frame over Y with frame bounds C1, C2 > 0, and {f̃k}k∈N
denotes the dual frame of {fk}k∈N. Moreover, the functions fk are elements of
Z, i.e., ∥fk∥Z < ∞, and E : Z → Y , z 7→ z, denotes the embedding operator.

Now, the key idea for constructing an FD of A is the suitable choice of a
frame {ek}k∈N over X based on the frame {fk}k∈N, as outlined in

Proposition 1 ([26, Lem. 4.5]). Let A : X → Y and let Assumption 1 hold.
Then the set {ek}k∈N, where the functions ek are defined as

ek := A∗Lfk , where L := (EE∗)−1/2 , (8)

form a frame over X with frame bounds B1 = c21 C1 and B2 = c22 C2, where C1

and C2 are the frame bounds of {fk}k∈N, and c1 and c2 are as in Assumption 1.

The choice (8) for the functions ek leads us to the following

Proposition 2 ([26, Lem. 4.6]). Let A : X → Y , let Assumption 1 hold, and
let the functions ek be defined as in (8). Then for all x ∈ X there holds

LAx =

∞∑
k=1

⟨x, ek ⟩X f̃k , and Ax = L−1

( ∞∑
k=1

⟨x, ek ⟩X f̃k

)
, (9)

where the second equality uses the fact that L−1 = (EE∗)1/2 is continuous.

Next, we consider the solution of the linear operator equation Ax = y using
the FD of A from above. Summarizing results from Lemma 4.7, Theorem 4.8,
and Remark 4.2 in [26], which are essentially consequences of (9), we obtain

Theorem 1. Let A : X → Y be a bounded linear operator, let Assumption 1
hold, and let the functions ek be defined as in (8). Then for any y ∈ R(A) ⊆ Z,

A‡y :=

∞∑
k=1

⟨Ly, fk ⟩Y ẽk ,

is the well-defined, unique solution of Ax = y, and
∥∥A‡y

∥∥
X

≤
√
C2/B1 ∥Ly∥Y .
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3 Frame Decompositions of the Funk-Radon Transform

The eigenvalue decomposition of the Funk-Radon transform (1), which is also
an FD, is due to [36]. Denoting by Pℓ the ℓ-th Legendre polynomial, we have

RY m
ℓ = Pℓ(0)Y

m
ℓ =

{
(−1)ℓ/2(ℓ−1)!!

ℓ!! Y m
ℓ , ℓ even ,

0 , ℓ odd ,
(10)

where the eigenfunctions are the spherical harmonics Y m
ℓ [37] of degree ℓ ∈ N0

and order m = −ℓ, . . . , ℓ, which form an orthonormal basis of L2(S2). From its
definition in (1), we see that Rf is even for any f : S2 → C, i.e., Rf(ξ) = Rf(−ξ)
for all ξ ∈ S2. Conversely, Rf vanishes for odd functions f(ξ) = −f(−ξ), so we
can expect to recover only even functions f from their Funk-Radon transform.

The spherical Sobolev space Hs(S2), s ∈ R, can be defined as the completion
of C∞(S2) with respect to the norm [3]

∥f∥Hs(S2) :=

∞∑
ℓ=0

ℓ∑
m=−ℓ

(ℓ+ 1
2 )

2s|⟨f, Y m
ℓ ⟩L2(S2)|2 , (11)

where ⟨f, g⟩L2(S2) :=
∫
S2 f(ξ)g(ξ) dξ, and we denote by Hs

even(S2) its restriction
to even functions, which is the span of spherical harmonics Y m

ℓ with even degree
ℓ ∈ 2N0. The Sobolev spaces are nested, i.e., Hs(S2) ⊊ Hr(S2) whenever s > r,
and we have H0(S2) = L2(S2).

Theorem 2. Let s ≥ 0. The Funk-Radon transform R defined in (1) extends to
a continuous and bijective operator from X = Hs

even(S2) to Z = H
s+1/2
even (S2) that

satisfies (4) with the bounds c1 =
√
1/2 and c2 =

√
2/π. Furthermore, it also

extends to a continuous and self-adjoint operator from Hs
even(S2) to Hs

even(S2).

Proof. The bijectivity of R : X → Y is due to [47, § 4]. From Theorem 3.13 in
[40], we know that c1 and c2 in (4) are characterized by

c1
(
ℓ+ 1

2

)− 1
2 ≤ (ℓ− 1)!!

ℓ!!
= |Pℓ(0)| ≤ c2

(
ℓ+ 1

2

)− 1
2 , ∀ ℓ ∈ 2N0 . (12)

Analogously to the proof of Lemma 3.2 in [22], we can see that the sequence
2N0 ∋ ℓ 7→ (ℓ+1/2)1/2 (ℓ−1)!!/ℓ!! is increasing and converges to 2/π for ℓ → ∞.
Therefore, it is bounded from below by its value 1/2 for ℓ = 0 and from above
by its limit 2/π. Furthermore, R : X → X is self-adjoint since its eigenvalues
Pℓ(0), cf. (10), are real. ⊓⊔

In the following, we describe a trigonometric basis on the sphere that allows
us to obtain a novel FD of the Funk-Radon transform R. We start with the
spherical coordinate transform

ϕ(λ, θ) := (cosλ sin θ, sinλ sin θ, cos θ) , ∀λ ∈ [0, 2π) , θ ∈ [0, π] , (13)
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which is one-to-one except for θ ∈ {0, π} corresponding to the north and south
pole. We assume λ to be 2π-periodic, and define the trigonometric basis functions

bn,k : S2 → C , bn,k(ϕ(λ, θ)) :=
einλ sin(kθ)

π
√
sin θ

, ∀n ∈ Z , k ∈ N , (14)

which are well-defined and continuous on S2 since bn,k vanishes for θ → 0 and
θ → π. Trigonometric bases on S2 bear the advantage of their simple and fast
computation [53], and form the foundation of the double Fourier sphere method
[35,51]. Note that our functions (14) slightly differ from the ones in [35] as we
take sin(kθ) in order to avoid singularities at the poles.

Lemma 1. The sequence {bn,k}n∈Z,k∈N forms an orthonormal basis of L2(S2).

Proof. Let n, n′ ∈ Z and k, k′ ∈ N. Since the integral on S2 in spherical coordi-
nates (13) reads as sin(θ) dθ dλ, we have

⟨bn,k, bn′,k′⟩L2(S2) =
1

π2

∫ π

0

∫ 2π

0

ei(n−n′)λ sin(kθ) sin(k′θ) dλ dθ = δn,n′δk,k′ ,

which shows the orthonormality. The completeness follows from the completeness
of {ein·}n∈Z in L2([0, 2π]) and of {sin(k·)}k∈N in L2([0, π]). ⊓⊔

For ξ = ϕ(λ, θ) ∈ S2, its antipodal point is −ξ = ϕ(π + λ, π − θ). Hence, we
obtain the symmetry relation bn,k(−ξ) = (−1)n+k+1bn,k(ξ) , which implies that
the sequence {bn,k}n∈Z,k∈N,n+k odd is an orthonormal basis of L2

even(S2).

Lemma 2. The basis functions bn,k, n ∈ Z, k ∈ N with n+k odd are well-defined
elements of H1

even(S2). In particular, we also have bn,k ∈ H
1/2
even(S2).

Proof. By [41, § 5.2], the H1(S2) Sobolev norm of f ∈ C1(S2) can be written as

∥f∥2H1(S2) =

3∑
i=1

∥[∇S2f ]i∥2L2(S2) +
1
4 ∥f∥

2
L2(S2) , (15)

where [∇S2f ]i denotes the i-th coordinate of the surface gradient given in spher-
ical coordinates by

∇S2f(ϕ(λ, θ)) = ϕ(λ, π
2 + θ) ∂θf(ϕ(λ, θ)) + ϕ(π2 + λ, π

2 )
1

sin θ ∂λf(ϕ(λ, θ)) .

Let n ∈ Z and k ∈ N. For f = bn,k, we have

∂θbn,k(ϕ(λ, θ)) =
einλ

π

(
k cos(kθ)√

sin θ
− cos(θ) sin(kθ)

2 sin3/2 θ

)
and

∂λbn,k(ϕ(λ, θ)) = in
einλ

π

sin(kθ)√
sin θ

.
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Employing the facts that sine and cosine functions, in particular the components
of ϕ, are bounded by one and that |a+ b|2 ≤ 2(|a|2+ |b|2) for a, b ∈ R, we obtain

|[∇S2bn,k(ϕ(λ, θ))]i|2 ≤ 2

∣∣∣∣k cos(kθ)π
√
sin θ

− cos(θ) sin(kθ)

2π sin3/2 θ

∣∣∣∣2 + 2
n2 sin2(kθ)

π2 sin3 θ

≤ 4k2

π2 sin θ
+

sin2(kθ)

π2 sin3 θ
+

2n2 sin2(kθ)

π2 sin3 θ
.

Hence, we have

∥[∇S2bn,k]i∥2L2(S2) =

∫ π

0

∫ 2π

0

|[∇S2bn,k]i|2 sin(θ) dλ dθ

≤
∫ π

0

∫ 2π

0

(
4k2

π2
+ (1 + 2n2)

sin2(kθ)

π2 sin2 θ

)
dλ dθ

= 8k2 + (1 + 2n2)2k ,

where the last equality follows from the the integration formula [38, Ex. 1.15] of
the (k − 1)th Fejér kernel. Finally, we conclude from (15) and Lemma 1 that

∥bn,k∥2H1(S2) =

3∑
i=1

∥[∇S2bn,k]i∥2L2(S2) +
1
4 ∥bn,k∥

2
L2(S2) ≤ 6k(4k + 1 + 2n2) + 1

4

is finite. The claim follows as H1(S2) is continuously embedded in H1/2(S2). ⊓⊔

Theorem 3. Let E : H
1/2
even(S2) → L2

even(S2) denote the embedding operator, and
set L := (EE∗)−1/2. Then

en,k := RLbn,k , (n, k) ∈ J := {(n, k) ∈ Z× N : n+ k odd} ,

is a frame in L2
even(S2), and for any g ∈ H

1/2
even(S2), the unique solution f ∈

L2
even(S2) of the inversion problem of the Funk-Radon transform Rf = g satisfies

f = R‡g :=
∑

(n,k)∈J

⟨Lg, bn,k⟩L2(S2)ẽn,k , (16)

where ẽn,k is the dual frame of en,k. It holds that
∥∥R‡g

∥∥
L2(S2) ≤ 2 ∥Lg∥L2(S2) .

Proof. From Theorem 2, Lemmas 1 and 2, we see that Assumption 1 is satisfied
with X = Y = L2

even(S2) and Z = H
1/2
even(S2). The claim follows by Theorem 1.

⊓⊔

Remark 1. The definition (11) of the Sobolev spaces yields that

E∗f = EE∗f =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(ℓ+ 1
2 )

−1⟨f, Y m
ℓ ⟩L2(S2) Y

m
ℓ , ∀f ∈ L2(S2) .
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Hence, the self-adjoint operator L from Theorem 3 is a multiplication operator
with respect to the spherical harmonics, and we have for all g ∈ H1/2(S2) that

Lg = (EE∗)−1/2g =

∞∑
ℓ=0

ℓ∑
m=−ℓ

(ℓ+ 1
2 )

1/2⟨g, Y m
ℓ ⟩L2(S2) Y

m
ℓ . (17)

Denoting by ∆S2 the Laplace-Beltrami operator on S2, we obtain by its eigen-
value decomposition [3, p. 121] that Lg = (−∆S2 + 1/4)1/4g for g ∈ H1/2(S2).
Furthermore, combining (10) and (17), it follows that

RLg =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Pℓ(0) (ℓ+
1
2 )

1/2⟨g, Y m
ℓ ⟩L2(S2) Y

m
ℓ , (18)

and since |Pℓ(0)| decays as (ℓ+ 1
2 )

−1/2 by (12), we obtain RLg ∈ H1/2(S2).

4 Numerical Results

Next, we discuss the use of regularization for our FD of the Funk-Radon trans-
form, outline the main steps of its implementation, and present numerical results.
First, note that noisy data gδ := Rf + δ does not necessarily belong to the space
H1/2(S2), and thus R‡gδ is not well-defined. This necessitates regularization, for
which we consider stable approximations of R‡gδ defined by

fδ
α := R‡Uαg

δ , and LUαg
δ :=

∞∑
ℓ=0

ℓ∑
m=−ℓ

σℓhα(σ
2
ℓ )⟨gδ, Y m

ℓ ⟩L2(S2) Y
m
ℓ ,

where σℓ := (ℓ + 1
2 )

−1/2 and R‡ is given in (16). This amounts to a filtering
of the coefficients σk of L via a suitable filter function hα approximating s 7→
1/s as in the SVD case [13]. In our numerical experiments, we investigate the
positive influence of the Tikhonov filter functions hα(s) = 1/(α + s) on the
reconstruction quality. Note that the choice hα(s) = 1/

√
s implies Uα = L−1,

which by Remark 1 basically amounts to a smoothing operator; cf., e.g., [30].

Fig. 1: Ingredients of the FD: bnk (left), enk (middle), ẽnk (right) for n = k = 8.

For discretization of the problem, we approximate functions on the sphere
with a Chebyshev-type quadrature, i.e., quadrature points such that all weights
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are equal; see [20]. In our computations, we use quadrature points (spherical de-
sign) being exact up to degree 200 taken from [19]. All computations involving
spherical harmonics are done using the NFSFT (Non-equispaced fast spherical
Fourier transform) software [29,32]. Note that the dual frame functions of an FD
can be pre-computed and stored, such that the computational effort of comput-
ing R‡g according to (16) for any new measurement g amounts to one application
of the operator L (or LUα in the noisy case), computation of the inner products
⟨Lg, bn,k⟩L2

even(S2) and a summation over these. As starting point for the computa-
tion, we only use a finite set of frame functions {bn,k : (n, k) ∈ J, |n| ≤ N, k ≤ N}
for some N ∈ N. The frame functions en,k = RLbn,k are evaluated at the quadra-
ture nodes via the spherical harmonic decomposition (18) up to degree ℓ ≤ 100.
The dual frame functions f̃n,k are computed using the matrix representation
of the linear operator S with respect to the basis bn,k, see also [27, Chap. 5].
Note that the inversion of this matrix may itself be an ill-conditioned problem
requiring regularization. Examples of the involved frame functions are depicted
in Figure 1. All computations are performed using Matlab R2022b.

(a) The test function f (b) R‡ g for N = 25 (c) |f −R‡ g| for N = 25

(d) Data g = Rf (e) R‡ g for N = 40 (f) |f −R‡ g| for N = 40

Fig. 2: Reconstruction evaluation for the Chebyshev-type quadrature for different
numbers of dual-frame functions used with exact data.

The test function used in our numerical experiments is a linear combination
of radially symmetric, quadratic splines, whose Funk-Radon transform is com-
puted explicitly [23, Lem. 4.1], to prevent inverse crimes. Our quality measure
is the relative reconstruction error, i.e., ∥f −R‡g∥L2(S2)/∥f∥L2(S2). In Figure 2,
we see that increasing the number of used frames highly improves reconstruc-
tion quality, reducing the relative reconstruction error from 0.023 for N = 25 to
0.006 for N = 40. For noisy data shown in Figure 3, the regularization param-
eter α is chosen such that the relative reconstruction error is minimized. In the
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(a) The test function f (b) R‡Uα gδ for N = 25,
α = 0.064

(c) |f −R‡Uα gδ| for
N = 25

(d) Noisy data
gδ = Rf + δ

(e) R‡Uα gδ for N = 40,
α = 0.14

(f) |f −R‡Uα gδ| for
N = 40

Fig. 3: Reconstruction evaluation for the Chebyshev-type quadrature for different
numbers of dual-frame functions used with Gaussian noise δ, noise level 20%.

case of N = 25 and noise level 20%, the error for the non-regularized solution
(i.e., α = 0) is 0.269, while the error for the regularized solution with parameter
α = 0.076 reduces to 0.222. However, we see that the increment of the number
of frame functions actually results in a loss of reconstruction quality to an error
value of 0.332 (optimally regularized). This can be explained by the regulariza-
tion effect of the truncation itself: more frame functions result in a less stable
reconstruction, but yield a higher accuracy in case of exact data. Note that all
specific error values in the noisy case are insignificantly varying for the specific
realization of the randomly generated Gaussian noise δ.

5 Conclusion

In this paper, we derived a novel frame decomposition of the Funk-Radon trans-
form utilizing trigonometric basis functions bn,k on the unit sphere and suitable
embedding operators in Sobolev spaces. This decomposition does not involve
the spherical harmonics and leads to an explicit inversion formula for the Funk-
Radon transform. In our numerical examples, we obtained promising reconstruc-
tion results even in the case of very large noise by including regularization. While
the regularization itself currently uses a spherical harmonics expansion of the
operator L, in our future work we aim to apply other forms of regularization
avoiding the computationally expensive spherical harmonics entirely.
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