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Abstract

Sliced optimal transport, which is basically a Radon transform followed by one-
dimensional optimal transport, became popular in various applications due to its ef-
ficient computation. In this paper, we deal with sliced optimal transport on the sphere
Sd−1 and on the rotation group SO(3). We propose a parallel slicing procedure of
the sphere which requires again only optimal transforms on the line. We analyze the
properties of the corresponding parallelly sliced optimal transport, which provides in
particular a rotationally invariant metric on the spherical probability measures. For
SO(3), we introduce a new two-dimensional Radon transform and develop its singular
value decomposition. Based on this, we propose a sliced optimal transport on SO(3).

As Wasserstein distances were extensively used in barycenter computations, we de-
rive algorithms to compute the barycenters with respect to our new sliced Wasserstein
distances and provide synthetic numerical examples on the 2-sphere that demonstrate
their behavior both the free and fixed support setting of discrete spherical measures. In
terms of computational speed, they outperform the existing methods for semicircular
slicing as well as the regularized Wasserstein barycenters.

1. Introduction

Optimal transport (OT) deals with the problem of finding the most efficient way to transport
probability measures. The Wasserstein distance is a metric on the space of probability
measures and has received much attention [52, 64, 71], e.g., for neural gradient flows [4, 24,
32, 42] in machine learning. Since OT on multi-dimensional domains is hard to compute,
there exist different modifications that allow an efficient computation, such as the entropic
regularization that yields the Sinkhorn algorithm [7, 20, 39, 52]. Sliced OT on Euclidean
spaces utilizes the Radon transform to reduce the problem to the real line [15, 50, 59, 64],
where OT possesses an analytic solution that can be computed efficiently. The notion of
sliced OT can be generalized to other Radon-like transforms [40].

In this paper, we are interested in sliced OT on special manifolds. A slicing approach on
Riemannian manifolds based on eigenfunctions of the Laplacian was proposed in [63]. OT
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on the sphere has been intensely studied, e.g., the computation of Wasserstein barycenters
[66, 67], the regularity of optimal maps [45], isometric rigidity of Wasserstein spaces [27] a
connection with a Monge–Ampère type equation [30,47,74], or a variational framework [19].
Sliced OT was generalized to spheres in two different ways: Bonet et al. [14] introduced a
slicing along semicircles to reduce the OT problem to one-dimensional circle, see Figure 1
right. This requires only OT computations on circles which was examined in [22]. The
respective sliced Wasserstein distance is a metric in the space of probability measures on
the 2-sphere [55]. Note that Radon transforms on such semicircles have been considered
before in [28, 35], providing an extension of the Funk–Radon transform [26, 31, 36, 46, 57].
A second approach [55] of sliced spherical Wasserstein distances is based on the vertical
slice transform [37, 61, 75]. This yields a family of measures on the unit interval instead
of the circle and is therefore faster to compute than the first approach. However, this
vertical slicing approach provides only a metric for even measures on the 2-sphere, i.e. the
same values are taken on the upper and lower hemisphere. This is a serious restriction for
practical applications.

In this paper, we generalize the vertically sliced OT from even measures to arbitrary
probability measures by constructing a so-called parallelly sliced OT, see Figure 1 for an
illustration. We provide a method for spheres Sd−1 in general dimensions d. The key
advantages are that the respective sliced Wasserstein distance is a rotationally invariant
metric on the spherical probability measures, and that it is faster to compute than the
semicircular sliced Wasserstein distance since we project on intervals instead of circles. Our
numerical tests indicate a speedup between 40 and 100 times. In Theorem 3.7, we prove
estimates between the spherical Wasserstein distance and its parallelly sliced version.

Figure 1: Parallel slices (left): each red circle is projected to a single point on the blue line
segment. Semicircular slices (right): each red semicircle is projected to one point
on the blue circle.

Furthermore, we consider OT in the group SO(3) of three-dimensional rotation matrices,
which has applications in synchronization [11]. A Radon transform along one-dimensional
geodesics of SO(3) was proposed in [34, 69], but, for the purpose of OT, we require slicing
along two-dimensional submanifolds of SO(3). Therefore, we develop a new two-dimensional
Radon transform on SO(3), including its singular value decomposition and adjoint operator.
This paves the way to prove that the corresponding sliced Wasserstein distance fulfills the
metric properties on the set of probability measures on SO(3).

Barycenter computations with respect to Wasserstein distances and their sliced variants
are of increasing interest [15, 52, 59]. Therefore, we deal with barycenters with respect to
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our new sliced Wasserstein distances and describe their computation both in the free and
fixed support discrete setting, as well as so-called Radon Wasserstein barycenter. As proof
of the concept, we give numerical examples of barycenter computations on the 2-sphere. We
compare our approach with the semicircular slicing [13] as well as the entropy-regularized
Wasserstein barycenter computed with PythonOT [25].

Outline of the paper. We provide the basic preliminaries on OT and the manifolds Sd−1

and SO(3) in Section 2. The parallel slice transform for functions and measures, and the
corresponding parallelly sliced Wasserstein p-distances are introduced in Section 3. In Sec-
tion 4, we generate sliced Wasserstein distances on SO(3) based on our new two-dimensional
Radon transform on SO(3). Barycenter computations are examined in two different ways,
namely sliced Wasserstein barycenters and Radon Wasserstein barycenters in Section 5. In
the former case, we deal both with free and fixed discretization. In Section 6, we demon-
strate by synthetic numerical examples the performance of our barycenter algorithms on the
2-sphere. In particular, we compare our parallel slicing approach with the slicing method
of Bonet et al. [14]. Here some theoretically expected phenomena are illustrated. Finally,
conclusions are drawn in Section 7. The appendix contains technical proofs.

2. Preliminaries

In this section, we provide the notation and necessary preliminaries on OT, in particular on
the interval, and harmonic analysis on the unit sphere on Rd.

2.1. Measures and OT

Let X be a compact Riemannian manifold with metric d : X × X → R, and let B(X) be
the Borel σ-algebra induced by d. We denote by M(X) the Banach space of signed, finite
measures, and by P(X) the subset of probability measures on X. The pre-dual space ofM(X)
is the space of continuous functions C(X). Let Y be another compact manifold and T : X→ Y
be measurable. For µ ∈M(X), we define the push-forward measure T#µ := µ◦T−1 ∈M(Y).

The p-Wasserstein distance, p ∈ [1,∞), of µ, ν ∈ P(X) is given by

Wp
p(µ, ν) := min

π∈Π(µ,ν)

∫
X2

dp(x, y) dπ(x, y), (1)

with Π(µ, ν) := {π ∈ M(X × X) : π(B × X) = µ(B), π(X × B) = ν(B) for all B ∈ B(X)}.
It defines a metric on P(X). The metric space Pp(X) := (P(X),Wp) is called p-Wasserstein
space and, in case p = 2, just Wasserstein space. The p-Wasserstein distance is a special
case of the more general optimal transport (OT) problem, where dp(x, y) can be replaced
by a more general cost function c(x, y). For λ ∈ ∆M := {λ ∈ [0, 1]M |

∑M
i=1 λi = 1}, the

Wasserstein barycenter of µi ∈ P2(X), i ∈ JMK := {1, . . . ,M}, is the minimizer

BaryWX (µi, λi)
M
i=1 := argmin

ν∈P(X)

M∑
i=1

λi W
2
2(ν, µi), (2)

see [3]. The Wasserstein barycenter of absolutely continuous measures is unique [38].
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OT on the Interval If X is the unit interval I := [−1, 1] with the distance d(x, y) = |x− y|,
the OT between two probability measures µ, ν ∈ P(I) can be computed easily [52,64,71] using
the cumulative distribution function Fµ(x) := µ([−1, x]), x ∈ I, which is non-decreasing and
right continuous. Its pseudoinverse, the quantile function F−1

µ (r) := min{x ∈ I | Fµ(x) ≥ r},
r ∈ [0, 1], is non-decreasing and left continuous. The p-Wasserstein distance (1) between
µ, ν ∈ Pp(I) now equals Wp(µ, ν) = ∥F−1

µ − F−1
ν ∥Lp([0,1]). If µ ∈ Pac(I), where Pac(I)

denotes the probability measures that are absolutely continuous with respect to the Lebesgue
measure, then the OT plan π in (1) is uniquely given by

π = (Id, Tµ,ν)#µ with Tµ,ν(x) := F−1
ν (Fµ(x)), x ∈ I.

Based on the OT map Tµ,ν , the Wasserstein space Pp(I) can be isometrically embedded
into Lpω(I) with ω ∈ Pac(I) [8,41,51], where Lpω(I) consists of all p-integrable functions with
respect to ω. For a reference measure ω ∈ Pac(I), the cumulative distribution transform
(CDT) is defined by CDTω : Pp(I)→ Lpω(I) with

CDTω[µ](x) := (Tω,µ − Id)(x) =
(
F−1
µ ◦ Fω

)
(x)− x, x ∈ I. (3)

The CDT is in fact a mapping from Pp(I) into the tangent space of Pp(I) at ω, see [5, § 8.5].
Due to the relation to the OT map, the CDT can be inverted by µ = CDT−1

ω [h] := (h+Id)#ω
for h = CDTω[µ]. If µ, ω ∈ Pac(I) possess positive density functions fµ and fω, then, by the
transformation formula for push-forward measures, fµ can be recovered by

fµ(x) =
(
g−1
)′
(x) fω(g

−1(x)) with g(x) = CDTω[µ](x) + x, x ∈ I. (4)

For µi ∈ P(I) and an arbitrary reference ω ∈ Pac(I), the Wasserstein barycenter (2) has the
form [41]

BaryI(µi, λi)
M
i=1 = CDT−1

ω

(
M∑
i=1

λiCDTω[µi]

)
. (5)

Sliced OT Given another compact space D with a probability measure uD and a slicing
operator Sψ : X→ R for all ψ ∈ D, we define the sliced p-Wasserstein distance

SWp
p(µ, ν) :=

∫
D
Wp

p((Sψ)#µ, (Sψ)#ν) duD(ψ). (6)

Sliced Wassserstein distances on the Euclidean space X = Rd with the slicing operator
SRd

ψ := ⟨ψ, ·⟩ for ψ ∈ D = Sd−1 are well known [15,59,64]. Sliced OT is closely related with
the Radon transform

Rψ : P(Rd)→ P(R), µ 7→ (SRd

ψ )#µ.

The Radon transform is often defined for functions on Rd via an integral, see [49].

2.2. Sphere

Let d ∈ N with d ≥ 3. We define the (d− 1)-dimensional unit sphere in Rd by

Sd−1 := {x ∈ Rd | ∥x∥ = 1},
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and denote the canonical unit vectors by ej ∈ Rd for j ∈ JdK := {1, . . . , d}. The geodesic
distance on the sphere Sd−1 reads as

d(ξ,η) := arccos(⟨ξ,η⟩), ∀ξ,η ∈ Sd−1, (7)

and we denote the volume of Sd−1 by∣∣∣Sd−1
∣∣∣ := ∫

Sd−1

dσSd−1 =
2πd/2

Γ(d/2)
, (8)

where σSd−1 is the surface measure on Sd−1. Normalizing σSd−1 yields the uniform measure
uSd−1 := |Sd−1|−1 σSd−1 . We can write any vector ξ ∈ Sd−1 as

ξ =

(√
1− t2 η
t

)
for η ∈ Sd−2, t ∈ I, (9)

then the surface measure on the sphere Sd−1 decomposes as [6, (1.16)]

dσSd−1(ξ) = dσSd−2(η) (1− t2)
d−3
2 dt. (10)

For S2, we denote the bijective spherical coordinate transform by

Φ: [0, 2π)× (0, π) ∪ {0} × {0, π} → S2, (φ, θ) 7→ (cosφ sin θ, sinφ sin θ, cos θ)⊤. (11)

Spherical harmonics Let n ∈ N0. We denote by Yn,d the space of all polynomials f : Rd →
C which are harmonic, i.e., the Laplacian ∆f vanishes everywhere, and homogeneous of
degree n, i.e., f(αx) = αnf(x) for all α ∈ R and x ∈ Rd, restricted to the sphere Sd−1.
Setting

Nn,d := dim(Yn,d) =
(2n+ d− 2) (n+ d− 3)!

n! (d− 2)!
, (12)

we call an orthonormal basis {Y k
n,d | k ∈ JNn,dK} of Yn,d a basis of spherical harmonics on

Sd−1 of degree n, cf. [6]. Then {Y k
n,d | n ∈ N0, k ∈ JNn,dK} forms an orthonormal basis of

L2(Sd−1). In particular, we can write any f ∈ L2(Sd−1) as spherical Fourier series

f =

∞∑
n=0

Nn,d∑
k=1

f̂kn,d Y
k
n,d, where f̂kn,d :=

〈
f, Y k

n,d

〉
L2(Sd−1)

.

The Legendre polynomial Pn,d of degree n ∈ N0 in dimension d ≥ 2 is given by [6, (2.70)]

Pn,d(t) := (−1)n (d− 3)!!

(2n+ d− 3)!!
(1− t2)

3−d
2

(
d

dt

)n
(1− t2)n+

d−3
2 , t ∈ [−1, 1].

Up to normalization, the Legendre polynomials are equal to the Gegenbauer or ultraspherical
polynomials, see [6, (2.145)]. The normalized Legendre polynomials

P̃n,d(t) :=

√
Nn,d |Sd−2|
|Sd−1|

Pn,d(t) =

√
(2n+ d− 2) (n+ d− 3)!

2(d−2)/2
√
n! Γ(d−1

2 )
Pn,d(t) (13)

satisfy the orthonormality relation
∫ 1
−1 P̃n,d(t) P̃m,d(t) (1− t

2)
d−3
2 dt = δn,m, where δ denotes

the Kronecker symbol.
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2.3. Rotation Group

We define the rotation group

SO(d) := {Q ∈ Rd×d | Q⊤Q = I, det(Q) = 1}.

We are especially interested in the 3D rotation group SO(3). Every rotation matrix can be
written as the rotation around an axis n ∈ S2 with an angle ω ∈ T , i.e.,

Rn(ω) := (1− cosω)nn⊤ +

 cosω −n3 sinω n2 sinω
n3 sinω cosω n1 sinω
−n2 sinω n1 sinω cosω

 ∈ SO(3). (14)

Furthermore, we consider the Euler angle parameterization

Ψ: T× [0, π]× T→ SO(3), Ψ(α, β, γ) := Re3(α)Re2(β)Re3(γ).

The rotationally invariant Lebesgue measure σSO(3) on SO(3) is given by∫
SO(3)

f(Q) dσSO(3)(Q) = 2

∫ π

0

∫
S2
f(Rξ(ω))(1− cos(ω)) dσS2(ξ) dω, (15)

see [33, p. 8], and the uniform measure on SO(3) is uSO(3) := (8π2)−1σSO(3).
The rotational harmonics or Wigner D-functions Dk,j

n of degree n ∈ N0 and orders k, j ∈
{−n, . . . , n} are defined by

Dk,j
n (Ψ(α, β, γ)) := e−ikα dk,jn (cosβ) e−ijγ , (16)

where the Wigner d-functions are given for t ∈ [−1, 1] by

dk,jn (t) :=
(−1)n−j

2n

√
(n+ k)!(1− t)j−k

(n− j)!(n+ j)!(n− k)!(1 + t)j+k
dn−k

dtn−k
(1 + t)n+j

(1− t)−n+j
,

see [70, chap. 4]. The rotational harmonics satisfy the orthogonality relations∫
SO(3)

Dj,k
n (Q)Dj′,k′

n′ (Q) dσSO(3)(Q) =
8π2

2n+ 1
δn,n′δk,k′δj,j′ (17)

and ∫ π

0
dj,kn (β)dj,kn′ (β) sin(β) dβ =

2

2n+ 1
δn,n′ (18)

for all n, n′ ∈ N0, j, k = −n, . . . , n, and j′, k′ = −n′, . . . , n′. The normalized rotational
harmonics

D̃j,k
n :=

√
2n+ 1

8π2
Dj,k
n , n ∈ N0, j, k = −n, . . . , n, (19)

form an orthonormal basis of L2(SO(3)).
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3. Sliced OT on the Sphere

We present a slicing approach for OT on the sphere X = Sd−1 for d ≥ 3. We define the
parallel slicing operator for a fixed ψ ∈ Sd−1 by

SSd−1

ψ : Sd−1 → I, SSd−1

ψ (ξ) := ⟨ξ,ψ⟩ . (20)

We will omit the superscript of Sψ if no confusion arises. The corresponding slice is the
(d− 2)-dimensional subsphere

Ctψ := S−1
ψ (t) = {ξ ∈ Sd−1 | Sψ(ξ) = t} = {ξ ∈ Sd−1 | ⟨ψ, ξ⟩ = t}, t ∈ I, (21)

which is the intersection of Sd−1 and the hyperplane of Rd with normal ψ and distance t
from the origin.

In this section, we first analyze the respective Radon transform for functions and measures
on Sd−1, and then show that the sliced Wasserstein distance is a metric on P(Sd−1).

3.1. Parallel Slice Transform of Functions

For f : Sd−1 → R, we define the parallel slice transform

Uf(ψ, t) :=


1

|Sd−1|
√
1− t2

∫
Ct
ψ

f(ξ) ds(ξ), ψ ∈ Sd−1, t ∈ (−1, 1),

1

2
δd,3 f(±ψ), ψ ∈ Sd−1, t = ±1,

(22)

where ds denotes the (d − 2)-dimensional volume element on Ctψ and δ is the Kronecker
symbol. For fixed ψ ∈ Sd−1, the (normalized) restriction

Uψ := |Sd−1| U(ψ, ·) (23)

belongs to the class of convolution operators [56], and is known as the spherical section
transform [60], translation [21] or shift operator [62]. The chosen normalization will become
clear in Proposition 3.5. The following proposition was shown, e.g., in [54, Cor. 3.3].

Proposition 3.1 (Integration in t). For every f ∈ L1(Sd−1) and ψ ∈ Sd−1, we have Uψ ∈
L1(I) and ∫

I
Uψf(t) dt =

∫
Sd−1

f(ξ) dσSd−1(ξ). (24)

Proof. Since Ctψ is a (d− 2)-dimensional sphere, we can express (22) via an integral over a
rotated sphere Sd−2. We apply to (22) for ψ = ed the substitution (9) and (10), and obtain

Uf(ed, t) = (1− t2)
d−3
2

|Sd−1|

∫
Sd−2

f

(√
1− t2 η
t

)
dσSd−2(η), ∀t ∈ [−1, 1]. (25)

Let ψ ∈ Sd−1. We choose Q ∈ SO(d) such that Qed = ψ. Applying (10) to the function
f ◦Q, we have∫

Sd−1

f ◦Q(ξ) dσSd−1(ξ) =

∫ 1

−1

∫
Sd−2

f ◦Q
(√

1− t2 η
t

)
dσSd−2(η) (1− t2)

d−3
2 dt.

Using the rotational invariance of the spherical measure σSd−1 together with (23) and (25)
yields the assertion.
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Theorem 3.2 (Positivity). Let f ∈ C(Sd−1). Then we have f(ξ) ≥ 0 for all ξ ∈ Sd−1 if
and only if Uf(ψ, t) ≥ 0 for all ψ ∈ Sd−1 and t ∈ I.

Proof. Let f ∈ C(Sd−1). If f ≥ 0 everywhere, then Uf is non-negative everywhere as the
integral of a non-negative function. Conversely, let η ∈ Sd−1 such that f(η) = −δ < 0.
By continuity, there exists ε > 0 such that f(ξ) < −δ/2 for all ξ ∈ Sd−1 with d(ξ,η) ≤ ε.

Because all points in Ccos(ε)
η have spherical distance ε to η, we conclude that

Uf(η, cos(ε)) = 1

|Sd−1| sin(ε)

∫
C

cos(ε)
η

f(ξ) ds(ξ) < 0.

There is no analogue to Theorem 3.2 for the vertical slice nor for the semicircle transform
considered in [14, 55] since one can always construct a function that is negative on a small
ball and positive outside such that either transform is non-negative everywhere.

Theorem 3.3 (Singular value decomposition). For each n ∈ N0, let {Y k
n,d | k ∈ JNn,dK} be

an orthonormal basis of Yn,d. Then (22) is a compact operator U : L2(Sd−1)→ L2
wd

(Sd−1×I),
where wd(ξ, t) := (1− t2)(3−d)/2, with the singular value decomposition

UY k
n,d(ψ, t) = λUn,d Y

k
n,d(ψ) P̃n,d(t) (1− t2)

d−3
2 , ∀n ∈ N0, k ∈ JNn,dK, (26)

where P̃n,d are given in (13) and the singular values are

λUn,d :=
2

d
2 4
√
π
√
n! Γ(d2)√

(2n+ d− 2) (n+ d− 3)!
. (27)

Proof. The theorem basically follows from the generalized Funk–Hecke formula [10, (4.2.10)],
which states for ξ ∈ Sd−1, t ∈ (−1, 1), and Yn,d ∈ Yn,d(Sd−1) that

1

|Sd−2| (1− t2)
d−2
2

∫
⟨ξ,η⟩=t

Yn,d(η) dσSd−2(η) =
Pn,d(t)

Pn,d(1)
Yn,d(ξ).

Inserting the normalization (13) yields (26) with

λUn,d =

√
|Sd−2|

|Sd−1|Nn,d

(8),(12)
=

√
π Γ(d2)n! (d− 2)!

Γ(d−1
2 ) (2n+ d− 2) (n+ d− 3)!

.

The Legendre duplication formula Γ(d−1
2 ) Γ(d2) = 2−d

√
π Γ(d − 1) yields (27). Expanding

the product (12) asymptotically for n→∞, we have

Nn,d = (2n+ d− 2)
(n+ d− 3) (n+ d− 2) · · · (n+ 1)

(d− 2)!
=

2

(d− 2)!

(
nd−2 +O(nd−3)

)
and hence the singular values λUn,d converge to zero. Together with the orthonormality of
(13), we deduce that (26) is a singular value decomposition.
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Theorem 3.4 (Adjoint). Let 1 ≤ p, q ≤ ∞ with 1/p+1/q = 1. For 1 ≤ p <∞, the adjoint
U∗ : Lq(Sd−1 × I)→ Lq(Sd−1) of U : Lp(Sd−1)→ Lp(Sd−1 × I) is given by

U∗g(ξ) =
1

|Sd−1|

∫
Sd−1

g(⟨ξ,ψ⟩) dσSd−1(ψ), (28)

and the adjoint U∗
ψ : Lq(I)→ Lq(Sd−1) of Uψ : Lp(Sd−1)→ Lp(I) by

U∗
ψg(ξ) = g(⟨ξ,ψ⟩) (29)

for all ξ ∈ Sd−1. Both adjoint operators map continuous functions to continuous functions.

Proof. Let f ∈ Lp(Sd−1) and g ∈ Lq(Sd−1 × I). We have

⟨Uf, g⟩ =
∫
Sd−1

∫
I
Uf(ψ, t) g(ψ, t) dt dσSd−1(ψ)

(22)
=

∫
Sd−1

∫
I

1

|Sd−1|
√
1− t2

∫
Ct
ψ

f(ξ) g(ψ, t) ds(ξ) dtdσSd−1(ψ)

(21)
=

∫
Sd−1

∫
I

1

|Sd−1|
√
1− t2

∫
Ct
ψ

f(ξ) g(ψ, ⟨ψ, ξ⟩) ds(ξ) dtdσSd−1(ψ)

(24)
=

1

|Sd−1|

∫
Sd−1

∫
Sd−1

f(ξ) g(ψ, ⟨ψ, ξ⟩) dσSd−1(ξ) dσSd−1(ψ).

The adjoint of Uψ can be established analogously without the outer integral. The continuity
follows from Lebesgue’s dominated convergence theorem.

3.2. Parallel Slice Transform of Measures

We extend the definition (22) to measures as pushforward of the slicing operator (20). For
ψ ∈ Sd−1, we define

Uψ :M(Sd−1)→M(I), µ 7→ (Sψ)#µ = µ ◦ S−1
ψ . (30)

and U :M(S2)→M(T× I) by

Uµ := T#(uSd−1 × µ) with T (ψ, ξ) := (ψ,Sψ(ξ)). (31)

Proposition 3.5 (Connection with adjoint). Let µ ∈ M(Sd−1). The transforms (31) and
(30) satisfy

⟨Uµ, g⟩ = ⟨µ,U∗g⟩ for all g ∈ C(Sd−1 × I) and

⟨Uψµ, g⟩ = ⟨µ,U∗
ψg⟩ for all g ∈ C(I), ψ ∈ Sd−1

with the adjoint operators from (28) and (29).

Proof. For g ∈ C(Sd−1 × I), we have by the definition in (31)

⟨Uµ, g⟩ =
∫
Sd−1×I

g(ψ, t) dT#(uSd−1 × µ)(ψ, t)

=

∫
Sd−1

∫
Sd−1

g(ψ, ⟨ψ, ξ⟩) duSd−1(ψ) dµ(ξ) = ⟨µ,U∗g⟩.
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For g ∈ C(I), and fixed ψ ∈ Sd−1,

⟨Uψµ, g⟩ =
∫
I
g(t) d(Sψ)#µ(t) =

∫
Sd−1

g(⟨ψ, ξ⟩) dµ(ξ) = ⟨µ,U∗
ψg⟩.

The last proposition provides an alternative way of defining U for measures, similarly to
what was done for the Radon transform, e.g. in [12].

For absolutely continuous measures with respect to the surface measure σSd−1 , the
measure- and function-valued transforms coincide.

Proposition 3.6 (Absolutely continuous measures). For f ∈ L1(Sd−1), we have

U [fσSd−1 ] = (Uf)σSd−1×I and Uψ[fσSd−1 ] = (Uψf)σI ∀ψ ∈ Sd−1.

In particular, the transformed measures are again absolutely continuous.

Proof. Let g ∈ C(T× I). The first identity follows from Proposition 3.5 by

⟨U [fσSd−1 ], g⟩ = ⟨fσSd−1 ,U∗g⟩ =
∫
Sd−1

f(ξ)U∗g(ξ) dσSd−1(ξ)

=

∫ 1

−1

∫
Sd−1

Uf(ψ, t) g(ψ, t) dσSd−1(ψ) dt = ⟨(Uf)σT×I, g⟩.

The identity for Uψ follows analogously.

3.3. Spherical Sliced Wasserstein Distance

For p ∈ [1,∞) and µ, ν ∈ P(Sd−1), the parallel-sliced spherical Wasserstein distance

PSWp
p(µ, ν) :=

∫
Sd−1

Wp
p(Uψµ,Uψν) duSd−1(ψ) (32)

is the mean value of Wasserstein distances on the unit interval I. Since the geodesic distance
(7) on the sphere is rotationally invariant, i.e., d(Qξ,Qη) = d(ξ,η) for all rotations Q ∈
SO(d), the spherical Wasserstein distance inherits this property, Wp(µ, ν) = Wp(µ◦Q, ν◦Q).

Theorem 3.7 (Metric). For every p ∈ [1,∞), the sliced spherical Wasserstein distance
PSWp is a metric on P(Sd−1), which induces the same topology as the spherical Wasserstein
distance Wp. There exist constants cd,p, Cd,p > 0 such that

cd,p PSWp(µ, ν) ≤Wp(µ, ν) ≤ Cd,p PSWp(µ, ν)
1

p(d+1) , ∀µ, ν ∈ P(Sd−1). (33)

It is rotationally invariant in the sense that for every µ, ν ∈ P(S2) and Q ∈ SO(d), we have

PSWp(µ, ν) = PSWp(µ ◦Q, ν ◦Q).

The proof is given in Appendix A. Even though the Wasserstein Wp and sliced Wasserstein
metric PSWp on P(Sd−1) are topologically equivalent, they are not bilipschitz equivalent. As
Sd−1 is a compact set, the p-Wasserstein metrics for all p ∈ [1,∞) induce the same topology
onM(Sd−1), see [64, § 5.2]. We conclude this section by mentioning another slicing approach.
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Remark 3.8 (Semicircular slices). A different approach due to [13, 14] uses slicing along
semicircles and maps to the one-dimensional torus T := R/(2π). We mention here the case
d = 3 following [55]. We denote the components of the inverse of the bijective spherical
coordinate transform (11) by Φ−1(ξ) = (azi(ξ), zen(ξ)). For ψ = Φ(φ, θ) ∈ S2, we define the
slicing operator

Aψ : S2 → T, ξ 7→ azi(Ψ(φ, θ, 0)⊤ξ).

The semicircular sliced Wasserstein distance

SSWp
p(µ, ν) :=

∫
S2
Wp

p((Aψ)#µ, (Aψ)#ν) duS2(ψ)

is also a rotationally invariant metric, see [55], but an equivalence as in (33) is not known.
Furthermore, it requires solving the one-dimensional OT on the torus, which is more difficult
than on an interval, see [22,58,59].

4. Sliced OT on SO(3)

We present an approach to generate sliced Wasserstein distances on X = SO(3). We denote
the angle of the rotation Q ∈ SO(3) by

∠(Q) := arccos
−1 + trace(Q)

2
∈ [0, π].

We take D = SO(3) and the slicing operator

dQ : SO(3)→ [0, π], P 7→ ∠(Q⊤P ), ∀Q ∈ SO(3). (34)

The respective slice d−1
Q (ω) can be parameterized as follows.

Proposition 4.1 (Parameterization). Let Q ∈ SO(3) and ω ∈ [0, π]. Then

d−1
Q (ω) = {A ∈ SO(3) | d(A,Q) = ω} = {QRξ(ω) | ξ ∈ S2}.

Proof. We have ∠(Rη(ω)) = ω for all η ∈ S2 and ω ∈ [0, π]. Let A ∈ SO(3). We write
Q⊤A in axis–angle form (14) as Q⊤A = Rξ(σ) with σ = ∠(Q⊤A) and some ξ ∈ S2. Then
we have A ∈ d−1

Q (ω) if and only if ω = ∠(Q⊤A) = σ, which shows the claim.

4.1. A Two-Dimensional Radon Transform on SO(3)

Let f ∈ L1(SO(3)). We define the Radon transform on the rotation group for anyQ ∈ SO(3)
and ω ∈ [0, π] by

T f(Q, ω) := 1

4π2
(1− cos(ω))

∫
S2
f(QRξ(ω)) dσS2(ξ), (35)

and its restriction TQf(ω) := 8πT (Q, ω). By Proposition 4.1, the domain of integration of
f is the slice d−1

Q (ω). With (15), we obtain∫
SO(3)

f(A) dσSO(3)(A) =

∫ π

0
TQf(ω) dω, ∀f ∈ L1(SO(3)),

which serves as analogue to (24). By Fubini’s theorem, the last equation implies that TQf ∈
L1([0, π]) and T f ∈ L1(SO(3)× [0, π]) if f ∈ L1(SO(3)).
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Theorem 4.2 (Singular value decomposition). The Radon transform (35) is one-to-one

T : L2(SO(3))→ L2(SO(3)× [0, π])

and has the singular value decomposition

T D̃j,k
n = λTn F

j,k
n , ∀n ∈ N0, j, k ∈ {−n, . . . , n} (36)

with the orthonormal basis D̃j,k
n of L2(SO(3)), see (19), the singular values

λT0 =

√
3

2
π−1/2 and λTn :=

1

(2n+ 1)
√
π

∀n ∈ N,

and the set of orthonormal functions on L2(SO(3)× [0, π]) defined by

F j,kn (Q, ω) :=


2√
π
D̃j,k
n (Q) sin

(
(n+ 1

2)ω
)
sin(ω2 ), n ̸= 0,√

8
3π D̃

0,0
0 (Q)

(
sin(ω2 )

)2
, n = 0,

(Q, ω) ∈ SO(3)× [0, π].

The proof is postponed to Appendix B. Restricting T (·, ω) to a fixed radius ω, we obtain
the following injectivity result, which is of a similar structure as for the spherical cap [68] or
spherical slice transform [65] on S2.

Corollary 4.3 (Injectivity for fixed ω). For fixed ω ∈ (0, π), the Radon transform T (·, ω)
is injective as operator L2(SO(3)) → L2(SO(3)) if and only if ω/π = p/q where p/q is a
reduced fraction and p ∈ N is even and q ∈ N is odd.

Proof. As a direct consequence of Theorem 4.2 and the orthonormality of the rotational
harmonics, the restricted transformation has the eigenvalue decomposition

T D̃j,k
n (Q, ω) =

2

(2n+ 1)π
sin((n+ 1

2)ω) sin(
ω
2 ) D̃

j,k
n (Q), ∀Q ∈ SO(3).

It is injective if and only if all eigenvalues 2
(2n+1)π sin((n + 1

2)ω) sin(
ω
2 ) are non-zero. The

n-th eigenvalue is zero if and only if (n + 1/2)ω ∈ πN, i.e., there exists k ∈ N such that
ω/π = 2k/(2n+1), the quotient of an even and an odd integer. Since this fraction can only
be reduced with an odd factor, also the reduced fraction consists of an even divided by an
odd integer.

Theorem 4.4 (Adjoint). Let Q ∈ SO(3). The adjoint of TQ : L2(SO(3)) → L2([0, π]) is
given by

T ∗
Qg(A) = g(dQ(A)), ∀A ∈ SO(3),

and the adjoint of T : L2(SO(3))→ L2(SO(3)× [0, π]) is

T ∗(A) =
1

8π2

∫
SO(3)

g(Q, dQ(A)) dσSO(3)(Q), ∀A ∈ SO(3).
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Proof. Let f ∈ C(SO(3)), g ∈ C([0, π]), and Q ∈ SO(3). We have with the substitution
A = QRξ(ω) and (15)∫

SO(3)
f(A)g(dQ(A)) dσSO(3)(A) = 2

∫ π

0

∫
S2
f(QRξ(ω))g(ω)(1− cos(ω)) dσS2(ξ) dω

=

∫ π

0
TQf(ω)g(ω) dω.

The second claim follows analogously by considering g ∈ C(SO(3) × [0, π]) and integration
over Q ∈ SO(3).

4.2. Slicing of Measures

We generalize the definition (35) to a measure µ ∈ M(SO(3)) via the pushforward of the
slicing operator (34), i.e.,

TQµ := (dQ)#µ ∈ P([0, π]) and
T µ := T#(uSO(3) × µ) ∈ P(SO(3)× [0, π]), with T (Q,A) = (Q, dQ(A)).

Proposition 4.5 (Connection with adjoint). Let Q ∈ SO(3) and µ ∈M(SO(3)). Then

⟨TQµ, g⟩ =
〈
µ, T ∗

Qg
〉
, ∀g ∈ C([0, π]),

⟨T µ, g⟩ = ⟨µ, T ∗g⟩ , ∀g ∈ C(SO(3)× [0, π]).

Proposition 4.6 (Absolutely continuous measures). Let µ ∈ M(SO(3)) be absolutely con-
tinuous, i.e., there exists a density function f ∈ L1(SO(3)) such that µ = fσSO(3). Then

TQµ = (TQf)σ[0,π], and

T µ = (T f)σSO(3)×[0,π].

The last two propositions can be proven analogously to Propositions 3.5 and 3.6.

Theorem 4.7 (Injectiviy). The Radon transform T : M(SO(3)) → M(SO(3) × [0, π]) is
injective.

The proof, which uses the singular value decomposition, is given in Appendix B.

4.3. Sliced Wasserstein Distance on SO(3)

Let p ∈ [1,∞). We define the sliced Wasserstein distance between measures µ, ν ∈ P(SO(3))
by

SOSWp
p(µ, ν) :=

∫
SO(3)

Wp
p

(
TQµ, TQν

)
duSO(3)(Q), (37)

which is the mean of Wasserstein distances on the interval [0, π].

Theorem 4.8. Let p ∈ [1,∞). The sliced Wasserstein distance (37) is a metric on P(SO(3))
that is invariant to rotations, i.e., for any A ∈ SO(3) and µ, ν ∈ P(SO(3)), we have

SOSWp
p(µ(A·), ν(A·)) = SOSWp

p(µ, ν).
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Proof. The positive definiteness is due to Theorem 4.7, while the symmetry and triangular
inequality follow from the respective properties of the Wasserstein distance on [0, π]. By
definition in (37), we have

SOSWp
p(µ(A·), ν(A·)) =

∫
SO(3)

Wp
p

(
µ ◦A ◦ d−1

Q , ν ◦A ◦ d−1
Q

)
duSO(3)(Q).

Let ω ∈ [0, π]. We have B ∈ A ◦ d−1
Q (ω) if and only if ω = dQ(A

⊤B) = dAQ(B), cf. (34).
Hence

SOSWp
p(µ(A·), ν(A·)) =

∫
SO(3)

Wp
p

(
(dAQ)#µ, (dAQ)#ν

)
duSO(3)(AQ) = SOSWp

p(µ, ν).

In Appendix C, we provide a relation between the sliced Wasserstein distances on SO(3)
and on S3.

5. Barycenter algorithms

There exist two approaches to compute barycenters of measures using 1D Wasserstein dis-
tances along projected measures, namely sliced Wasserstein barycenters and Radon Wasser-
stein barycenters, cf. [15]. We adapt them to our slicing in Section 5.1 and 5.2, respectively.

5.1. Sliced Wasserstein barycenters

For sliced Wasserstein barycenters, we replace in (2) the Wasserstein distance W2 by its sliced
counterpart. In particular, with the general notion of slicing in (6), the sliced Wasserstein
barycenter of given measures µi ∈ P(X), i ∈ JMK, and λ ∈ ∆M , is defined by

BarySWX (µi, λm)
M
i=1 := argmin

ν∈P(X)

M∑
i=1

λi SW
2
2(ν, µi).

Remark 5.1. Although the different slicing approaches often yield similar barycenters, as
we will see in the numerics, they differ considerably in the extreme case of two antipodal
point measures on the sphere S2. Denote by δξ the Dirac measure at ξ ∈ S2. The Wasserstein
barycenter BaryWS2 of δe3 and δ−e3 with equal weights λ1 = λ2 = 1/2 consists of the measures
ν ∈ P(S2) with support on the equator. However, all measures in P(S2) are parallelly sliced
Wasserstein barycenters BaryPSWS2 . For the semicircular slices of Remark 3.8, we can show
that the uniform distribution on the equator is a candidate for the barycenter BarySSWS2 ,
while uS2 is not. The details are provided in Appendix D.

We consider two types of discretization to compute sliced Wasserstein barycenters. Free-
support barycenters are based on a Lagrangian discretization: measures are represented
by samples, and the minimization is carried out over the coordinates of those samples,
see [15, 52, 59]. Fixed-support barycenters are based on a Eulerian discretization: a fixed
grid is considered for all the measures which are represented by the weights given to each
grid point, and the minimization is carried out over those weights, cf. [9, 17].
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5.1.1. Free-support discretization

For X = (Xk)
N
k=1 ∈ XN , we note µX := 1

N

∑N
k=1 δXk

. We consider M discrete measures
µY (i) ∈ P(X) with Y (i) ∈ XN for all i ∈ JMK. The aim is to compute a discrete barycenter
of these measures, i.e., we want to minimize the functional

E : XN → R, X 7→
∑
i∈JMK

λi SW
2
2(µX , µY (i)), (38)

which is not convex in general, via a stochastic gradient descent, as it has been applied in the
Euclidean space X = Rd in [59, sect. 3.2] and [52, sect. 10.4]. Since X is on a manifold X, the
gradient is in its tangent space TxX at x ∈ X. By Whitney’s embedding theorem [44, thm.
6.15], we can assume X to be embedded in Euclidean space Rd for sufficiently large d. If
f : D → R is differentiable on an open setD ⊂ Rd withD ⊃ X, then the Riemannian gradient
of the restriction of f to X is given by ∇f(x) = projTxX(∇Rdf(x)), where ∇Rd denotes the
gradient in Euclidean space and projTxX the orthogonal projection to the tangent space,
see [2, sect. 3.6.1]. The gradient of the functional (38) can be expressed as follows.

Theorem 5.2. Let X be a smooth submanifold of Rd and X,Y ∈ XN consist of pairwise
distinct points Xk, k ∈ JNK. Assume that the slicing operator Sψ : X → R is differentiable
for all ψ ∈ D, that (x,ψ) 7→ Sψ(x) is bounded on X×D, and that ψ 7→ ∇Sψ(x) is integrable
on D uniformly for every x ∈ X. Furthermore, assume that Sψ(x1) ̸= Sψ(x2) for uD-almost
every ψ ∈ D if x1 ̸= x2. Then the gradient of the sliced Wasserstein distance between the
two measures µX and µY with respect to X reads

∇Xk
SW2

2(µX , µY ) =
2

N

∫
D

[
Sψ (Xk)− Sψ

(
YσY,ψ◦σ−1

X,ψ(k)

)]
∇Sψ(Xk) duD(ψ), (39)

where σX,ψ : JNK→ JNK is a permutation which sorts Sψ(Xk), i.e.,

Sψ(XσX,ψ(1)) ≤ Sψ(XσX,ψ(2)) ≤ ... ≤ Sψ(XσX,ψ(N)).

Proof. Let ψ ∈ D. For the sake of simplicity, we write Sψ(X) := (Sψ(Xk))1≤k≤N ∈ RN .
The pseudo-inverse of the cumulative density function of µSψ(X) is written, for r ∈ (0, 1),

F−1
µSψ(X)

(r) = min

{
x ∈ R ∪ {−∞}

∣∣∣∣∣ 1

N

N∑
k=1

1[Sψ(Xk),1](x) ≥ r

}
= Sψ

(
XσX,ψ(⌈rN⌉)

)
.

Then

W2
2

(
(Sψ)#µX , (Sψ)#µY

)
= W2

2

(
µSψ(X), µSψ(Y )

)
=

∫
[0,1]

∣∣∣F−1
µSψ(X)

(r)− F−1
µSψ(Y )

(r)
∣∣∣2 dr

=
N∑
k=1

1

N

∣∣∣Sψ (XσX,ψ(k)

)
− Sψ

(
YσY,ψ(k)

) ∣∣∣2
=

1

N

N∑
k=1

∣∣∣Sψ (Xk)− Sψ
(
YσY,ψ◦σ−1

X,ψ(k)

)∣∣∣2 ,
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is bounded and, thus, integrable with respect to ψ on (D, uD). Its gradient is given by

∇Xk
W2

2

(
(Sψ)#µX , (Sψ)#µY

)
=
[
Sψ (Xk)− Sψ

(
YσY,ψ◦σ−1

X,ψ(k)

)]
∇Sψ(Xk) (40)

for uD-almost every ψ ∈ D. Indeed, we assume that Xk, k ∈ JNK, are pairwise distinct, so
Sψ(Xk) are uD-almost surely pairwise distinct, so σX,ψ is uD-almost surely uniquely defined,
and constant in the neighborhood of X. Hence, (40) is integrable on D since ∇Sψ is and the
rest is bounded by assumption. Therefore, similarly to [15], we have

SWp
p(µY , µX) =

∫
D
Wp

p

(
(Sψ)#µX , (Sψ)#µY

)
du(ψ)

=
1

N

∫
D

N∑
k=1

∣∣∣Sψ (Xk)− Sψ
(
YσY,ψ◦σ−1

X,ψ(k)

)∣∣∣p du(ψ)

and

∇Xk
SW2

2(µY , µX) =

∫
D
∇Xk

W2
2

(
µSψ(Y ), µSψ(X)

)
du(ψ)

=
2

N

∫
D

[
Sψ (Xk)− Sψ

(
YσY,ψ◦σ−1

X,ψ(k)

)]
∇Sψ(Xk) du(ψ).

We discretize (39) over ψ via considering (ψq)
P
q=1 distributed according to the uniform

measure uD to get a numerical approximation. This enables us to devise a stochastic gradient
descent algorithm with initialization X0 ∈ XN and whose step l ∈ N is given by

X l+1
k = expX

Xl
k
(−τl∇E(X l)k)

= expX
Xl

k

−τl M∑
i=1

2λi
NP

P∑
q=1

[
Sψq

(
X l
k

)
− Sψq

(
Y

(i)

σ
Y (i),ψq

◦σ−1

Xl,ψq
(k)

)]
∇Sψ(X l

k)

 (41)

for every k ∈ JNK, where expXx denotes exponential map, which maps a subset of the tangent
space TxX to the manifold X, and τl > 0 is the step size, also known as the learning rate.

Remark. The last theorem can be extended to the case where both measures have dif-
ferent numbers of points. The squared Wasserstein distance between µx and µy, with
x = (xi)1≤i≤N ∈ RN and y = (yj)1≤j≤M ∈ RM two sorted lists of real numbers, is not any-
more 1

N ∥x− y∥
2
RN but is of the shape

∑
i,j πi,j(xi− yj)2 with the transport plan π ∈ RN×M

that depends only on N and M (not x nor y). Because the matrix π is sparse with support
close to the diagonal i

j ≈
N
M , we can generalize our algorithm while keeping its complexity

O((N +M) log(N +M)).

Application to PSW on the sphere We look at the stochastic gradient descent step for
the sphere with the parallel slicing operator (20). Let x,ψ ∈ Sd−1. The projection to the
tangential plane TxSd−1 = {v ∈ Rd | ⟨v,x⟩ = 0} is

projTxSd−1 : Rd → TxSd−1, v 7→ v − ⟨x,v⟩x,
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and we have ∇Sψ(x) = projTxSd−1(ψ). As a consequence, the stochastic gradient descent
step (41) is

X l+1
k = expS

d−1

Xl
k

−τl projT
Xl

k
Sd−1

 M∑
i=1

2λi
NP

P∑
q=1

〈
ψq, X

l
k − Y

(i)

σ
Y (i),ψq

◦σ−1

Xl,ψq
(k)

〉
ψq


(42)

with the exponential map expS
d−1

x (v) := cos(∥v∥)x+ sin(∥v∥) v
∥v∥ .

The numerical complexity of this step isO(MN log(N)P ) withM the number of measures,
N the number of points in each measure and P the number of directions (i.e. of projections
or slices), since the sorting has complexity O(N log(N)).

Application to SOSW on the rotation group Let us now look at case X = SO(3) with the
slicing operator SSO(3)

ψ (R) = trace(R⊤ψ) for ψ ∈ D = SO(3) and R ∈ SO(3). Here we take
a monotone transformation of the slicing operator (34) in order to simplify computation while
keeping the properties of SOSW. The gradient descent step (41) is similar to the case of the
sphere. The tangent space is TRSO(3) = {A ∈ R3×3 | R⊤A = −A⊤R}. Utilizing that the
orthogonal projection on the set of skew-symmetric matrices is given by A 7→ 1

2(A −A
⊤),

one can show similarly that the projection to TRSO(3) is given by

projTRSO(3) : R3×3 → TRSO(3), A 7→ 1
2(A−RA

⊤R).

The exponential map is given by [73, 3.37]

exp
SO(3)
R : TRSO(3)→ SO(3), A 7→ R exp(R⊤A).

In order to avoid the computation of the matrix exponential, one could replace the expo-
nential map by a retraction, see [2, Sect. 4.1].

5.1.2. Fixed-support discretization

Fixed-support sliced Wasserstein barycenters correspond to a Eulerian discretization. As
opposed to Section 5.1.1, the support is the same, fixed set for all measures (including the
barycenter), and we minimize over the weights of the Dirac measures. We first study the
1-dimensional case of fixed-support OT.

Theorem 5.3. Let {tj | j ∈ JNK} ⊂ R with t1 < t2 < ... < tN . Further, let w,v ∈ ∆N

and the discrete probability measures µw =
∑N

j=1wjδtj and µv =
∑N

j=1 vjδtj . We introduce
the partial sums w̃ = (

∑k
j=1wj)

N
k=1 and ṽ = (

∑k
j=1 vj)

N
k=1 in RN as well as the vectors

y = (w̃1, ..., w̃N−1, ṽ1, ..., ṽN−1) ∈ R2N−2 and z = (uσ(j))
2N−2
j=1 with σ a permutation such

that uσ(1) ≤ uσ(2) ≤ ... ≤ uσ(2N−2). We set

aj =
∣∣tmin{k|w̃k≥zj+1} − tmin{k|ṽk≥zj+1}

∣∣p for j ∈ J2N − 3K,

and a0 = a2N−2 = 0. Then the gradient of Wp
p(µw, µv) in ∆N with respect to w is given

almost everywhere by

∇wWp
p(µw, µv) = projH


N−1∑

k=j

(
aσ−1(k)−1 − aσ−1(k)

)N

j=1

 , (43)
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where projH : RN → H, x 7→ x − ⟨x,1⟩1 is the orthogonal projection on the hyperplane
H = {x ∈ RN | ⟨x,1⟩ = 0}.

Proof. The pseudo-inverse of the cumulative distribution function of µw is

F−1
µw (r) = min

{
s ∈ R

∣∣∣∣∣
N∑
i=1

wi1[ti,+∞)(s) ≥ r

}
= tmin{k|w̃k≥r}, ∀r ∈ (0, 1),

and analogously for v. We thus have

Wp
p(µw, µv) =

∫ 1

0

∣∣F−1
µw (r)− F

−1
µv (r)

∣∣p dr

=

∫ 1

0

∣∣tmin{k|w̃k≥r} − tmin{k|ṽk≥r}
∣∣p dr

=

2N−3∑
j=1

∣∣∣tmin{k|w̃k≥zj+1} − tmin{k|ṽk≥zj+1}

∣∣∣p (zj+1 − zj)

=
2N−3∑
j=1

aj(zj+1 − zj),

where we have ignored the segment (0, z1] on which the integrand is 0, and the segment
[z2N−2, 1) on which the integrand is 0 or which is empty if z2N−2 = 1.

We extend the map w 7→ Wp
p(µw, µv) from ∆N to some neighborhood in the Euclidean

space RN by making it constant in the last component wN , then d
dwN

Wp
p(µw, µv) = 0. For

k ∈ JN − 1K, since zj = w̃σ(j), we have

d

dw̃k
Wp

p(µw, µv) = aσ−1(k)−1 − aσ−1(k), a.e.

Indeed, aj is almost everywhere constant with respect to w̃k. It is justified using the fact
that the zj are almost surely pairwise distinct. So, if w̃k = zj+1, then zj+1 “moves” (a.s.)
with w̃k, such that {k′ | w̃k′ ≥ zj+1} does not change. If w̃k ̸= zj+1, it is obvious that
{k′ | w̃k′ ≥ zj+1} is locally constant with respect to w̃k. The definition of w̃ gives a bijection
between (wj)

N−1
j=1 and (w̃k)

N−1
k=1 , so we obtain for any j ∈ JN − 1K

d

dwj
Wp

p(µw, µv) =
N∑
k=1

dw̃k
dwj

d

dw̃k
Wp

p(µw, µv) =
N−1∑
k=j

d

dw̃k
Wp

p(µw, µv),

The projection onto the hyperplane H yields the Riemannian gradient in ∆N .

We now come to the sliced OT on X ∈ {Sd−1,SO(3)}. We consider a family X = (xj)
N
j=1 ∈

XN of points on X representing the fixed support and measures of the form

µw =

N∑
j=1

wjδxj
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with some weight vector w ∈ ∆N . Let v(i) ∈ ∆N for i ∈ JMK be given probability vectors
of the measures whose barycenter we want to compute. Therefore, we minimize

E : ∆N → R, w 7→
M∑
i=1

λi SW
p
p(µw, µv(i)).

We have, for i ∈ JMK,

SWp
p(µw, µv(i)) =

∫
D
Wp

p

(
(Sψ)#µw, (Sψ)#µv(i)

)
duD(ψ)

=

∫
D
Wp

p

 N∑
j=1

wjδSψ(xj),
N∑
j=1

v
(i)
j δSψ(xj)

 duD(ψ),

and therefore

∇w SWp
p(µw, µv(i)) =

∫
D
∇wWp

p

 N∑
j=1

wjδSψ(xj),

N∑
j=1

v
(i)
j δSψ(xj)

 duD(ψ).

As the integrand of the last equation is handled in Theorem 5.3, we can thus compute ∇E
and devise a stochastic gradient descent, as synthesized in Algorithm 1, where we use P
projections per descent step as above.

The complexity of the computation of the gradient (43) is O(N logN), as we need to sort
the points (tj)

N
j=1 and the vector u, and all other operations are done in linear time. The

projection proj∆N
: RN → ∆N on the probability simplex can be computed in complexity

O(N log(N)) using the algorithm from [72], see also [18] for further numerical approaches.
Therefore, one iteration of Algorithm 1 has the arithmetic complexity O(MN log(N)P ).

5.2. Radon Wasserstein barycenters

Radon Wasserstein barycenters are obtained by first computing the 1D barycenter (5) for
every slice, stacking them together, and then applying the pseudoinverse of the respective
Radon transform, cf. [15, 40]. Denoting by Z : P(X) → P(D × I) the generalized slicing
transformation, we set for µm ∈ Pac(X) the Radon barycenter

BaryZX (µm, λm)
M
m=1 := Z†

((
BaryI(λm, (Sψ)#µm)Mm=1

)
ψ∈D

)
, (44)

where Z† is the pseudoinverse whose argument is viewed as a density function on D× I. In
general, it is not clear if the pseudoinverse yields again a nonnegative function, which then
gives a probability density. On Sd−1, it is fulfilled for the parallel slicing V by Theorem 3.2,
but not for the semicircular slicing, see [55, sect. 6.2].

The discretization is based on a fixed support. We describe the parallel slicing case Z = U
analogously to the semicircular case Z =W from [55]. Let ψp ∈ Sd−1, p ∈ JP K, be the nodes
of a quadrature rule with weights w ∈ ∆P , and some grid tℓ, ℓ ∈ JLK, on the interval I.
We denote the density function of µm by fµm and assume that we are given fµm(ψp) for
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Algorithm 1 Fixed support sliced Wasserstein Barycenter algorithm

Require: Support X = (xj)1≤j≤N ∈ XN ⊂ RN×d, weights v(i) ∈ ∆N ,∀i ∈ JMK, step size
τ > 0, initialization w0 ∈ ∆N , number P of slices
for l = 1, ... do

(ψq)1≤q≤P ← generate_uniform_samples_on_D(P )
for i ∈ JMK and q ∈ JP K do

(sj)1≤j≤N ← (Sψq(xj))1≤j≤N

ρ← argsort ((sj)1≤j≤N )
t←

(
sρ(j)

)
1≤j≤N ▷ sorted

w̃ ← cumsum
(
wlρ(j)

)
1≤j≤N−1

▷ cumulative sum

ṽ ← cumsum
(
v
(i)
ρ(j)

)
1≤j≤N−1

u← concatenate(w̃, ṽ)
mw← (1, ..., 1, 0, ..., 0) ∈ R2N−2

σ ← argsort(u)
z ← (uσ(j))1≤j≤2N−2

mw← (mwσ(j))1≤j≤2N−2

idx_w← cumsum(mw) + 1
idx_v← cumsum(1− mw) + 1
a← (|tidx_w(j) − tidx_v(j)|p)1≤j≤2N−2

a0 ← 0

g̃ ← (aσ−1(k)−1 − aσ−1(k))1≤k≤N−1

g ← cumsum_adj(g̃) ▷ cumulative sum from right to left
gN = 0
gradi,q = (gρ−1(j))1≤j≤N

end for
gradRN ← 1

P

∑M
i=1 λi

∑P
q=1 gradi,q

grad∆N
← projH(gradRN ) = gradRN − 1√

N
⟨gradRN ,1N ⟩

wl+1 ← proj∆N
(wl − τlgrad∆N

)
end for
Output: wl+1
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p ∈ JP K. Firstly, we approximate Uψp(tℓ) via the singular value decomposition (26) for fixed
truncation degree D ∈ N by

Uψpf
µm(tℓ) ≈

D∑
n=0

Nn,d∑
j=1

λUn,dY
j
n,d(ψp)P̃n,d(tℓ)

P∑
i=1

fµm(ψi)Y
j
n,d(ψi)wi.

Secondly, we compute the density of the one-dimensional barycenters (5) of the measures
Uψpµm. In particular, we set g(ψp, ·) as the density function of

CDT−1
ω

(
M∑
m=1

λmCDTω[Uψpµm]

)
.

Using again the singular value decomposition Theorem 4.2, we note that the Moore–Penrose
pseudoinverse [23] of U is given by

U† : Range(U)⊕ Range(U)⊥ → L2(Sd−1), U†g =
∞∑
n=0

Nn,d∑
k=1

1

λUn,d

〈
g, Y k

n,d P̃n,d

〉
Y k
n,d.

Finally, we discretize the Moore–Penrose pseudoinverse to approximate the density of the
desired barycenter BaryUSd−1 by

U†g(ψp) ≈
D∑
n=0

Nn,d∑
j=1

1

λUn,d
Y j
n,d(ψp)

1

L

P∑
i=1

L∑
ℓ=1

g(ψi, tℓ)Y
j
n,d(ψi)P̃n,d(tℓ)wi.

We analyze the complexity for S2. The sums over n and j constitute a nonuniform spherical
Fourier transform, and the sum over i its adjoint, which can both be computed efficiently in
O(D2 log(D) + P ) steps, see [43] and [53, sect. 9.6]. The CDT (3) and its inverse (4) have
linear complexity and can be computed with the algorithm [41]. Therefore, we obtain an
overall complexity of O((D2 log(D)+P )LM). Since the number of points is usually P ∼ D2,
the complexity grows slower than for the algorithms of Section 5.1.

6. Numerical results

In this section, we present numerical computations of sliced barycenters between two mea-
sures on the sphere S2. We compare two notions of slicing: our parallel slicing (20) and the
semicircular slicing of Remark 3.8, each for the two different notions of free and fixed support
sliced Wasserstein barycenters from Section 5.1 and the Radon barycenters from Section 5.2.
Further, we compare the fixed-support and Radon barycenters with the entropy-regularized
version [52] of the Wasserstein barycenter (2) computed with PythonOT [25]. Our code is
available online.1

1https://github.com/leo-buecher/Sliced-OT-Sphere
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6.1. Free-support sliced Wasserstein barycenters

For the free-support discretization of Section 5.1.1, we compute the parallelly sliced Wasser-
stein barycenter (PSB) BaryPSWS2 with the stochastic gradient descent (42), and the semicir-
cular sliced Wasserstein barycenter (SSB) BarySSWS2 , see Remark 3.8, with the algorithm [14],
which uses a similar gradient descent scheme.2

The von Mises–Fisher (vMF) distribution with center η ∈ S2 and concentration κ > 0 has
the density function

f(ξ) =
κ

4π sinhκ
eκ⟨ξ,η⟩, ξ ∈ S2. (45)

In the first setting, we consider the sliced Wasserstein barycenters of two vMF distributions
with centers on the equator shifted by 90◦ and concentration κ = 100, represented by
N = 200 samples each. We use 1000 iterations, P = 500 slices, a step size of τ = 40 for the
PSB algorithm and 80 for the SSB algorithm, and we take samples of the uniform distribution
uS2 as initialization X0. The computed sliced Wasserstein barycenters are displayed in
Figure 2. We observe that the SSB is slightly more extended toward the poles.

Figure 2: PSB (left) and SSB (right) of two vMF distributions. The green and orange points
represent the two input measures, and the blue points the barycenter.

In the second setting, we consider vMF distributions that are highly concentrated near
the poles with κ = 400, to illustrate the observations of Remark 5.1. The resulting sliced
Wasserstein barycenters are shown in Figure 3. The PSB is seemingly uniform on the sphere,
which corresponds to the initial distribution X0. This is coherent with the observation that
all measures on the sphere are PSB of two antipodal Dirac measures. Conversely, the SSB
is supported on a ring around the equator.

The third setting is with two “croissant” measures spanning from the South Pole to the
North Pole, and rotated from each other by an angle of 120◦. The resulting PSB and SSB
in Figure 4 are quite similar, which illustrates the fact that in many cases the two notions
of barycenters seem more or less to coincide.

Convergence We study the convergence of the algorithms using the same measures as in
Figure 2, but with N = 50 samples. Figure 5 shows the evolution of the loss function (38)
and the step norm, which is the L2 norm of the step X l+1−X l, depending on the iteration.
The curves stop at different iterations because we use a stopping criterion based on the
slope of the loss and the uncertainty in its estimation. The two losses are rescaled so that

2See the code https://github.com/clbonet/Spherical_Sliced-Wasserstein
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Figure 3: PSB (left) and SSB (right) of highly concentrated measures. The green and orange
points represent the two input measures, and the blue points the barycenter.

Figure 4: PSB (left) and SSB (right) for 2 “croissants” measures. The green and orange points
represent the two input measures, and the blue points represent the barycenter.

the initial loss coincides, as they cannot be compared in absolute value. Despite this, these
loss evolutions remain difficult to compare, as they highly depend on the chosen step size τ .
However, we observed that for appropriate step sizes τ (i.e. that avoid oscillatory behavior
around the minimizer), the PSB algorithm converges significantly faster.

Complexity We study the execution times of the two algorithms on an Intel Core i5 pro-
cessor with 16 GB memory. Figure 6 shows the execution time depending on the number N
of points of each given measure and the number P of slices, both for a fixed number of 20
iterations without stopping criterion. We observe that the PSB algorithm is between 40 and
100 times faster than the SSB algorithm. This comes from the fact that the SSB requires to
solve an OT problem on the torus T, which is more difficult than on the real line. In terms of
the evolution along N , the two algorithms (PSB, SSB) have a complexity of O(PN log(N)),
which is coherent with our observations. The dependence on P is linear, but experiments
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Figure 5: Loss function (left) and step norm (right) depending on the number of iterations.

with bigger values of P would be required to confirm this.

Figure 6: Execution time of the PSB and SSB algorithms with 20 iterations.
Left: Dependence on the number N of points with P = 200 slices.
Right: Dependence on the number P of slices with N = 40 points.

6.2. Fixed-support sliced Wasserstein barycenters

We test the fixed-support sliced barycenter algorithm from Section 5.1.2 and compare the
resulting barycenters with the free-support ones. As input measures, we take a vMF dis-
tribution with κ = 30 and a “smiley” distribution, see Figure 7. We use the gradient
descent Algorithm 1 with a grid of 150 × 50 points on the sphere, P = 100 slices, 500
iterations, the uniform distribution as initialization, and an empirically chosen step size
τ = 0.005 (1+k/20)−1/2 in the k-th iteration. We noticed that the results highly depend on
the step size.

The resulting fixed-support PSB is displayed in Figure 7, along with the free-support PSB
and SSB from Section 5.1.1 and the regularized Wasserstein barycenter from PythonOT with
regularization parameter 0.05. For the free-support sliced Wasserstein barycenters (PSB and
SSB), the two input measures are sampled N = 200 points and the resulting barycenters are
represented using kernel density estimation [29] with the density of the vMF distributions
(45) as kernel function. We notice that all barycenters look similarly.
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(a) First input measure (b) Second input measure (c) Density estimation of the
free-support PSB (0.2 s)

(d) Density estimation of the
free-support SSB (44 s)

(e) Fixed-support PSB (106 s) (f) Regularised Wasserstein
barycenter (6.2 s)

Figure 7: Fixed-support and free-support barycenters between two input measures. The
execution times were measured on an Intel Core i7 processor with 16GB memory

6.3. Radon Wasserstein barycenters

We compare the Radon PSB BaryUS2 of Section 5.2 with the Radon SSB BaryWS2 . For the
latter, we apply the algorithm [55]. Both use the truncation degree N = 120 in (44) and P =
29282 slices, which equals the number of points on the 121× 242 grid on S2. Figure 8 shows
the barycenters of vMF distributions concentrated at the poles. As above, the Wasserstein
barycenter is computed with the POT library with the regularization parameter 0.05 (or
0.01 for the “smiley” test). The regularized Wasserstein barycenter is somehow “between”
the Radon PSB and SSB. Different from Figure 3, the Radon is concentrated on a ring
around the equator, which might be explained by the fact that, other than in Remark 5.1,
the measures are not Dirac measures. Furthermore, the computation of the Radon PSB
is much faster than the Radon SSB. Moreover, we compare the Radon barycenters of the
“croissant” shape in Figure 9 as well as the “smiley” in Figure 10. Again, the Wasserstein
barycenter seems to be between the Radon PSB and SSB.

7. Conclusions

We investigated a new approach for sliced Wasserstein distance of spherical measures and
proved that this parallel slicing provides a rotational invariant metric on P(Sd−1) that in-
duces the same topology as the Wasserstein distance. We provided numerical algorithms for
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(a) First input
distribution

(b) Radon PSB (0.7 s) (c) Radon SSB (89 s) (d) Wasserstein
barycenter (364 s)

Figure 8: First input measure (the second is the antipodal) and the Radon barycenters.

(a) First input
distribution

(b) Second input
distribution

(c) Radon PSB (d) Radon SSB (e) Wasserstein
barycenter

Figure 9: Input measures and their Radon barycenters.

the computation of the respective sliced barycenters, both with free or fixed support, that
are considerably faster than for the semicircular slicing, while producing comparable results
in most cases, except when the input measures are highly concentrated around antipodal
points.

Extending our method to the rotation group SO(3), we proved the metric properties of
the proposed sliced Wasserstein distance based on a new Radon transform on SO(3) and its
singular value decomposition. An extensive numerical evaluation of the latter transform is
planned, but out of the scope of this paper. Further, it will be interesting to incorporate our
slicing approach into gradient flows on Sd−1 for d≫ 2.
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A. Metric properties of the parallelly sliced Wasserstein
distance

In the following, we show bounds between the sliced Wasserstein distance PSWp and the
spherical Wasserstein distance Wp by a relation to the Euclidean case [16, Sect. 5.1].
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(a) First input
distribution

(b) Second input
distribution

(c) Radon PSB (d) Radon SSB (e) Wasserstein
barycenter

Figure 10: Input measures and their Radon barycenters.

Lemma A.1. The geodesic distance (7) on the sphere and the Euclidean distance are related
via

∥ξ − η∥ ≤ d(ξ,η) ≤ π

2
∥ξ − η∥ , ∀ξ,η ∈ Sd−1.

Proof. We first show that
√
2− 2x ≤ arccos(x) ≤ π

2

√
2− 2x, ∀x ∈ I. (46)

For x ∈ I, we have by [1, 4.4.2]

arccos(x) =

∫ 1

x

1√
1− t2

dt =

∫ 1

x

1√
1 + t

√
1− t

dt ≥
∫ 1

x

1√
2− 2t

dt =
√
2− 2x,

which is the first inequality of (46). Analogously, we have for x ∈ [0, 1] that

arccos(x) =

∫ 1

x

1√
1− t2

dt ≤
∫ 1

x

1√
1− t

dt = 2
√
1− x.

Because arccos is convex on [−1, 0] and arccos(−1) = π, we obtain the second inequality of
(46) for all x ∈ [−1, 1]. The assertion follows from the fact that

∥ξ − η∥ =
√
∥ξ∥2 + ∥η∥2 − 2 ⟨ξ,η⟩ =

√
2− 2 ⟨ξ,η⟩

and d(ξ,η) = arccos(⟨ξ,η⟩) for all ξ,η ∈ Sd−1 by (7).

We extend a spherical measure µ ∈ P(Sd−1) to a measure µ̃ ∈ P(Rd) that is supported
on Sd−1 by setting

µ̃(B) := µ(B ∩ Sd−1), ∀B ∈ B(Rd).

Lemma A.2. Let µ, ν ∈ P(Sd−1) be spherical measures with extensions µ̃, ν̃ ∈ P(Rd).
Then the following inequalities between the spherical Wasserstein distance Wp(µ, ν) and the
Euclidean Wasserstein distance Wp(µ̃, ν̃) on Rd holds:

Wp(µ̃, ν̃) ≤Wp(µ, ν) ≤
π

2
Wp(µ̃, ν̃).

Proof. The Euclidean Wasserstein distance on X = Rd is given in (1) with d(x,y) = ∥x− y∥.
Any transport plan γ̃ ∈ Π(µ̃, ν̃) is supported only on Sd−1 × Sd−1. Hence, its restriction to
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Sd−1×Sd−1 yields a transport plan in Π(µ, ν). Conversely, a transport plan γ ∈ Π(µ, ν) can
be extended to Rd by setting it to zero outside the sphere. Hence, we have

Wp
p(µ, ν) = inf

γ∈Π(µ,ν)
d(x,y) dγ(x,y) = inf

γ̃∈Π(µ̃,ν̃)
d(x,y) dγ̃(x,y).

The claim follows by Lemma A.1.

Proof of Theorem 3.7. We first show (33) via applying the respective result from the Eu-
clidean space. We briefly recall sliced OT on Rd, see [15], with the slicing operator SRd

ψ : Rd →
R, x 7→ ⟨ψ,x⟩ for ψ ∈ Sd−1 and the sliced Wasserstein distance

RSWp
p(µ, ν) :=

∫
Sd−1

Wp
p

(
(SRd

ψ )#µ, (SR
d

ψ )#ν
)
duSd−1(ψ), µ, ν ∈ P(Rd).

Comparing the Euclidean sliced Wasserstein distance RSW with the spherical sliced Wasser-
stein distance (32), we see that

PSWp(µ, ν) = RSWp(µ̃, ν̃). (47)

By [16, thm. 5.1.5], there exist constants c̃d,p, C̃d,p such that for all measures µ̃, ν̃ ∈ P(Rd)
which are supported in a ball of fixed radius R > 0 we have

RSWp(µ̃, ν̃) ≤ c̃d,pWp(µ̃, ν̃) ≤ C̃d,pR
1− 1

p(d+1) RSWp(µ̃, ν̃)
1

p(d+1) .

As ν̃ and µ̃ are by construction supported in a ball of radius 1+ ε for any ε > 0, the validity
of (33) follows by invoking (47) and Lemma A.2.

Next we prove the metric properties. The symmetry and the triangle inequality follow
from the corresponding properties of the Wasserstein distance and the p-norm on Sd−1. The
positive definiteness and the equivalence to the spherical Wasserstein distance follow from
(33). The rotational invariance of PSW follows since U is rotationally invariant.

B. Proofs from Section 4

Proof of Theorem 4.2. Let n ∈ N0 and j, k ∈ {−n, . . . , n}. Using the product identity [33,
cor. 2.11]

Dj,k
n (PQ) =

n∑
ℓ=−n

Dj,ℓ
n (P )Dℓ,k

n (Q) ∀P ,Q ∈ SO(3), (48)

we have

T Dj,k
n (Q, ω) =

1

4π2
(1− cos(ω))

n∑
ℓ=−n

Dj,ℓ
n (Q)

∫
S2
Dℓ,k
n (Rξ(ω)) dσS2(ξ).

We write ξ = Φ(φ, ϑ) with the spherical coordinates (11). Since

RΦ(φ,ϑ)(ω) = Re3(φ)Re2(ϑ)Re3(φ)Re3(ω)Re2(−ϑ)Re3(−φ) = Ψ(φ, ϑ, 0)Ψ(ω,−ϑ,−φ),
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we have by (16) and (48)

Dj,k
n (RΦ(φ,ϑ)(ω)) =

n∑
ℓ=−n

Dj,ℓ
n (Ψ(φ, ϑ, 0)) e−iℓωDℓ,k

n (Ψ(0,−ϑ,−φ)),

cf. [70, § 4.5]. Hence, we obtain

T Dj,k
n (Q, ω) =

1

4π2
(1− cos(ω))

n∑
ℓ=−n

Dj,ℓ
n (Q)

n∑
m=−n

∫ π

0

∫
T
Dℓ,m
n (Ψ(φ, ϑ, 0))e−imωDm,k

n (Ψ(0,−ϑ,−φ)) dφ sin(ϑ) dϑ.

With the symmetry Dm,k
n (Q) = Dk,m

n (Q⊤) and (16), we see that

T Dj,k
n (Q, ω) =

1

4π2
(1− cos(ω))

n∑
ℓ=−n

Dj,ℓ
n (Q)

n∑
m=−n

e−imω

∫ π

0

∫
T
e−iℓφdℓ,mn (cos(ϑ))dk,mn (cos(ϑ))eimφ dφ sin(ϑ) dϑ.

With the orthogonality of the exponentials and the d-functions in (18), we obtain

T Dj,k
n (Q, ω) = (1− cos(ω))

1

(2n+ 1)π
Dj,k
n (Q)

n∑
ℓ=−n

e−iℓω.

The expansion relation of the Dirichlet kernel

n∑
ℓ=−n

e−iℓω =
sin((n+ 1

2)ω)

sin(ω2 )

and the half angle formula (1− cos(ω)) = 2 sin(ω/2)2 yield

T Dj,k
n (Q, ω) =

2

(2n+ 1)π
Dj,k
n (Q) sin

(
(n+ 1

2)ω
)
sin(ω2 ),

which implies (36). The orthogonality of F j,kn follows from the orthonormality (17) of the ro-
tational harmonics D̃j,k

n . Using the identity (sin(ω2 ))
2 = (1+cos(ω))/2 and the orthogonality

of the cosine, we obtain∫ π

0

(
sin
(
(n+ 1

2)ω
))2 (

sin(ω2 )
)2

dω =

{
π/4, n ∈ N,
3π/8, n = 0.

Proof of Theorem 4.7. This proof uses a similar structure as [55, Thm. 3.7]. Let µ, ν ∈
M(SO(3)) such that T µ = T ν. For g ∈ C(SO(3)× I), we have by Proposition 3.5

⟨µ, T ∗g⟩ = ⟨ν, T ∗g⟩ .

We show that {T ∗g : g ∈ C(SO(3)× I)} is a dense subset of C(SO(3)), which implies µ = ν.
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The Sobolev space Hs(SO(3)) with s ≥ 0 is defined as the completion of C∞(SO(3)) with
respect to the Sobolev norm

∥f∥2Hs(SO(3)) :=
∞∑
n=0

(
n+ 1

2

)2s n∑
j,k=−n

8π2

2n+ 1
|⟨f,Dj,k

n ⟩|2. (49)

Let s > 2, then Hs(SO(3)) is dense in C(SO(3)), cf. [33, Lem. 2.22]. Let f ∈ Hs(SO(3)).
Since T is injective on L2(SO(3)) by Theorem 4.2, we have f = T ∗g if and only if T f =
T T ∗g. In the following, we show that

g := (T T ∗)−1T f

is in C(SO(3)×[0, π]), then we obtain f = T ∗g, which shows thatHs(SO(3)) ⊂ T ∗(C(SO(3)×
[0, π]) and therefore the assertion.

Since T ∗ has the same singular functions as T and the conjugate singular values, we obtain
by the singular value decomposition (36) that

(T T ∗)−1T f =
∞∑
n=0

n∑
j,k=−n

1

λTn

〈
f,Dj,k

n

〉
L2(SO(3))

F j,kn . (50)

We want to show that the right-hand side of (50) converges uniformly on C(SO(3)× [0, π]).
Let (Q, ω) ∈ SO(3)× [0, π] and N ∈ N. Inserting λTn from Theorem 4.2, we have∣∣∣∣∣∣

∞∑
n=0

n∑
j,k=−n

1

λTn

〈
f,Dj,k

n

〉
L2(SO(3))

F j,kn (Q, ω)−
N−1∑
n=0

n∑
j,k=−n

1

λTn

〈
f,Dj,k

n

〉
L2(SO(3))

F j,kn (Q, ω)

∣∣∣∣∣∣
≤ 1

2

∞∑
n=N

n∑
j,k=−n

(
n+ 1

2

) ∣∣∣∣〈f,Dj,k
n

〉
L2(S2)

∣∣∣∣ ∣∣∣D̃j,k
n (Q)

∣∣∣
≤ 1

2

√√√√ ∞∑
n=N

n∑
j,k=−n

(
n+ 1

2

)2s ∣∣∣∣〈f,Dj,k
n

〉
L2(S2)

∣∣∣∣2
√√√√ ∞∑

n=N

(
n+ 1

2

)2−2s
n∑

j,k=−n

∣∣∣D̃j,k
n (Q)

∣∣∣,
where we made use of the Cauchy–Schwarz inequality. In the last equation, the first part is
bounded by the Sobolev norm (49). For the second part, the addition theorem [33, Thm.
2.14] yields

∞∑
n=N

(
n+ 1

2

)2−2s
n∑

j,k=−n

∣∣∣D̃j,k
n (Q)

∣∣∣ = ∞∑
n=N

(
n+ 1

2

)2−2s (2n+ 1)(n+ 1)

8π2
<∞

since s > 2. Hence, the right-hand side of (50) converges uniformly to a continuous function
on SO(3)× [0, π], which finally implies that g is continuous.

C. Relation of the rotation group with the 3-sphere

We show a relation of the sliced Wasserstein distance (37) with an analogue of PSW on the
sphere S3, making use of the representation of SO(3) via unit quaternions, see [48, § 2.6].
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The algebra of quaternions H consists of vectors q = (q0, q1, q2, q3) = (q0, q
′) ∈ R4, where

q′ = (q1, q2, q3) is called the vector part, with the standard addition and the multiplication

q ⋄ r := (r0q0 − q′ · r′, q0r′ + r0q
′ + q′ × r′), (51)

where · is the scalar product and × is the cross product in R3. The unit quaternions
{q ∈ H | q20 + q21 + q22 + q23 = 1} can be identified with S3. The inverse of q ∈ S3 with respect
to ⋄ is q̄ = (q0,−q1,−q2,−q3). The map

ϕ : S3 → SO(3), q 7→ R
q′/
√

1−q20
(2 arccos(q0))

is surjective and satisfies ϕ−1(ϕ(q)) = {q,−q} for all q ∈ S3. It is a homomorphism in the
sense that ϕ(q ⋄ r) = ϕ(q)ϕ(r). By [33, (2.6)], the integral on SO(3) is transformed via∫

SO(3)
f(Q) dσSO(3)(Q) =

∫ 1

−1
f ◦ ϕ(q0, q′)4

√
1− q20 dq0 dσS2

(√
1− q20q

′
)

(10)
= 4

∫
S3
f ◦ ϕ(q) dσS3(q).

(52)

We denote the set of even probability measures on SO(3) by

Peven(S3) := {µ ∈ P(S3) | µ(B) = µ(−B) ∀B ∈ B(S3)}.

Theorem C.1. Let µ, ν ∈ P(SO(3)) and p ∈ [1,∞). We define c : I → [0, π], c(t) :=
2 arccos |t| . Then

SOSWp
p(µ, ν) =

∫
S3
Wp

p (c#Uq(µ ◦ ϕ), c#Uq(ν ◦ ϕ)) duS3(q). (53)

Proof. Let ξ ∈ S3, Q ∈ SO(3) and q ∈ ϕ−1(SO(3)). By the multiplication-invariance of ϕ,
we have

dQ ◦ ϕ(ξ) = ∠(Q⊤ϕ(ξ)) = ∠(ϕ(q̄ ⋄ ξ)).

We note that since the pushforward ϕ# is bijective from Peven(S3) to P(SO(3)), and its
inverse is given by µ ◦ϕ ∈ Peven(S3). Since ∠(ϕ(r)) = 2 arccos |r0| for any r ∈ S3, we obtain
by (51)

dQ ◦ ϕ(ξ) = 2 arccos
∣∣q0ξ0 + q′ · ξ′∣∣ = 2arccos |q · ξ| = c ◦ Sq(ξ).

Since ϕ#(µ ◦ ϕ) = µ, we obtain

SOSWp
p(µ, ν)

(37)
=

1

8π2

∫
SO(3)

Wp
p ((dQ ◦ ϕ)#(µ ◦ ϕ), (dQ ◦ ϕ)#(ν ◦ ϕ)) dσSO(3)(Q)

(52)
=

4

8π2

∫
S3
Wp

p ((c ◦ Sq)#(µ ◦ ϕ), (c ◦ Sq)#(ν ◦ ϕ)) dσS3(q).

The right-hand side of (53) mimics the parallelly sliced Wasserstein distance (32) on S3
between µ ◦ ϕ and ν ◦ ϕ, except for the additional transformation c. We want to point out
that this equivalence in Theorem C.1 holds only for even measures on S3, since we always
have µ ◦ ϕ ∈ Peven(S3).
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D. Sliced Wasserstein distances for antipodal point measures

We study sliced Wasserstein barycenters of two antipodal Dirac measures µ1 = δe3 and
µ2 = δ−e3 on the sphere S2, as presented in Remark 5.1. This case exhibits some differ-
ences between the Wasserstein distance, the parallelly sliced Wasserstein distance and the
semicircular sliced Wasserstein distance. We define the equator C := {ξ ∈ S2 | ξ3 = 0}.

Proposition D.1. The 2-Wasserstein barycenters of the two antipodal Dirac measures µ1
and µ2 are the probability measures ν ∈ P(S2) whose support is included in the equator C.

Proof. The Wasserstein barycenters of µ1 and µ2 on the sphere are the measures in P(S2)
minimizing EW(ν) := 1

2 W
2
2(ν, µ1) +

1
2 W

2
2(ν, µ2). Let ν ∈ P(S2). With the map zen: S2 →

[0, π], ξ 7→ arccos(ξ3), we have

W2
2(ν, δe3) =

∫
S2
dS2(ψ, e

3)2 dν(ψ) =

∫ π

0
t2 d(zen)#ν(t)

and similarly

W2
2(ν, δ−e3) =

∫ π

0
(π − t)2 d(zen)#ν(t).

Hence
EW(ν) =

1

2

∫ π

0

[
t2 + (π − t)2

]
d(zen)#ν(t).

The integrand has a unique minimizer t = π
2 and its minimum is π2

4 . Therefore, EW(ν) ≥ π2

4
for all ν ∈ P(S2) with equality if and only if (zen)#ν(dt) = δπ

2
, i.e., if ν(C) = 1.

However, this observation does not apply to the parallelly sliced Wasserstein barycenters.

Proposition D.2. All probability measures on the sphere are parallelly sliced Wasserstein
barycenters of µ1 and µ2.

Proof. Let ν ∈ P(S2). We have

EV (ν) :=
1

2
PSW2

2(ν, δe3) +
1

2
PSW2

2(ν, δ−e3)

=
1

2

∫
S2

[
W2

2

(
Uψν,Uψδe3

)
+W2

2

(
Uψν,Uψδ−e3

)]
duS2(ψ).

Using that Uψδ±e3 = δ⟨ψ,±e3⟩ = δ±ψ3 and Uψν = (Sψ)#ν for all ψ ∈ S2, we have

EV (ν) =
1

2

∫
S2

[∫ 1

−1

∣∣t− 〈ψ, e3〉∣∣2 d(Sψ)#ν(t) +
∫ 1

−1

∣∣t+ 〈ψ, e3〉∣∣2 d(Sψ)#ν(t)
]
duS2(ψ)

=
1

2

∫
S2

∫ 1

−1

[
2t2 + 2

〈
ψ, e3

〉2 ]
d(Sψ)#ν(t) uS2(dψ).

Using (10) and the rotation invariance of the spherical integral, we have∫
S2
⟨ψ, ξ⟩2 duS2(ψ) =

1

2

∫ 1

−1
t2 dt =

1

3
∀ψ ∈ S2.

Hence, we obtain

EV (ν) =
∫
S2

∫
S2

[
⟨ψ, ξ⟩2 +

〈
ψ, e3

〉2]
duS2(ψ) dν(ξ) =

2

3
.
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Let us now consider the case of the semicircular sliced Wasserstein distance. Such slicing
operator is much harder to manipulate. Therefore, we did not manage to determine the semi-
circular sliced Wasserstein barycenters of µ1 and µ2, but we can show that the observation
made in Proposition D.2 does not hold in the case of the SSW distance.

Proposition D.3. The uniform probability measure on the sphere is not a semicircular sliced
2-Wasserstein barycenter. In particular, considering χ, the uniform probability measure on
the equator C, and uS2 the uniform probability measure on S2, we have

1
2 SSW

2
2(µ1, χ) +

1
2 SSW

2
2(µ2, χ) <

1
2 SSW

2
2(µ1, uS2) +

1
2 SSW

2
2(µ2, uS2).

Proof. Recall the circle T = R/2πZ. For any x ∈ R, we note [x] = x+ 2πZ the equivalence
class of x and for any γ ∈ T we note γ̃ its representative in [0, 2π[. Let µ ∈ P(S2). The
semicircular sliced Wasserstein barycenters are the minimizers of the functional

ES(µ) :=
1

2
SSW2

2(µ, δe3) +
1

2
SSW2

2(µ, δ−e3),

where
SSW2

2(µ, δe3) =

∫
S2
W2

2(Aψ#µ,Aψ#δe3) duS2(ψ)

and the slicing operator Aψ is given in Remark 3.8. Let ψ = Φ(φ, θ) ∈ S2. Since we integrate
over S2, we can assume ψ /∈ {±e3}. Then we have (Aψ)#δe3 = δ[π] and (Aψ)#δ−e3 = δ[0].
Therefore,

W2
2(Aψ#µ,Aψ#δe3) =

∫
T
|γ̃ − π|2 dAψ#µ(t) =

∫
S2

∣∣∣Ãψ(ξ)− π∣∣∣2 dµ(ξ). (54)

Using spherical coordinates ξ = Φ(α, β), we see that

Aψ(ξ) = azi
(
Ψ(0,−θ,−φ) Φ(α, β)

)
= azi

(
Ψ(0,−θ,−φ+α) Φ(0, β)

)
= AΦ(φ−α,θ)(Φ(0, β)).

Hence, with the substitution φ 7→ φ− α, we have

SSW2
2(µ, δe3) =

1

4π

∫
S2

∫ π

0

∫ 2π

0

∣∣∣ÃΦ(φ−α,θ)(Φ(0, β))− π
∣∣∣2 sin(θ) dφdθ dµ(Φ(α, β))

=
1

4π

∫
S2

∫ π

0

∫ 2π

0

∣∣∣ÃΦ(φ,θ)(Φ(0, β))− π
∣∣∣2 sin(θ) dφdθ dµ(Φ(α, β))

=
1

4π

∫
S2

∫ π

0

∫ 2π

0

∣∣∣ÃΦ(φ,θ)(Φ(0, β))− π
∣∣∣2 sin(θ) dφdθ d zen# µ(β).

Introducing the functions

F1 : [0, π]→ R, β 7→ 1

4π

∫ 2π

0

∫ π

0

∣∣∣ÃΦ(−φ,θ)(Φ(0, β))− π
∣∣∣2 sin(θ) dθ dφ,

and
F : [0, π]→ R, β 7→ 1

2F1(β) +
1
2F1(π − β),
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we obtain by using the symmetry that

ES(µ) = 1
2 SSW

p
p(µ, δe3) +

1
2 SSW

p
p(µ, δ−e3) =

∫ π

0
F (β) d zen# µ(β).

Let β ∈ [0, π]. We study fβ(φ, θ) := ÃΦ(−φ,θ)(Φ(0, β)). For θ ∈ (0, π) and φ ∈ (0, 2π) \ {π},
we have

fβ(φ, θ) = azi
(
Re2(−θ)Re3(φ)Φ(0, β)

)
= azi

([
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

][
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

][
sin(β)

0
cos(β)

])
= azi

([
cos(θ) cos(φ) sin(β)−sin(θ) cos(β)

sin(φ) sin(β)
sin(θ) cos(φ) sin(β)+cos(θ) cos(β)

])
.

We identify some symmetries. For φ ∈ (0, 2π) \ {π}, and θ ∈ (0, π), we have

fβ(2π − φ, θ) = 2π − fβ(φ, θ) or fβ(2π − φ, θ) = fβ(φ, θ).

In both cases, (fβ(2π − φ, θ)− π)2 = (fβ(φ, θ)− π)2. Moreover, for φ, θ ∈ (0, π),

fβ(φ, π − θ) = fβ(π − φ, θ) and fπ−β(φ, θ) = π − fβ(π − φ, θ). (55)

Hence, we have

F1(β) =
1

π

∫ π

0

∫ π
2

0
(fβ(φ, θ)− π)2 sin(θ) dθ dφ and

F1(π − β) =
1

π

∫ π

0

∫ π
2

0
fβ(φ, θ)

2 sin(θ) dθ dφ.

Eventually, F is given by

F (β) =
1

π

∫ π

0

∫ π
2

0

(
fβ(φ, θ)−

π

2

)2
sin(θ) dθ dφ +

π2

4
,

where, for β, φ, θ ∈ (0, π), we have

fβ(φ, θ) =
π

2
− arctan

(
cos(θ) cot(φ)− sin(θ)

sin(φ)
cot(β)

)
.

Let us now focus on the two particular cases of the theorem. Let χ be a measure supported
by the equator. By the symmetry (55), we have

ES(χ) = F
(π
2

)
=

1

π

∫ π

0

∫ π
2

0

(
fπ

2
(φ, θ)− π

2

)2
sin(θ) dθ dφ +

π2

4

=
2

π

∫ π
2

0

∫ π
2

0

(
arctan

(
tan(φ)

cos(θ)

)
− π

2

)2

sin(θ) dθ dφ +
π2

4
.

Since arctan
(
tan(φ)
cos(θ)

)
> φ for any φ, θ ∈ (0, π2 ), and t 7→

(
t− π

2

)2 is strictly decreasing on
[0, π2 ], we obtain

ES(χ) <
2

π

∫ π
2

0

∫ π
2

0

(
φ− π

2

)2
sin(θ) dθ dφ +

π2

4
=
π2

12
+
π2

4
=
π2

3
.
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For the uniform measure uS2 on the sphere, we have Aψ#uS2 = uT for any ψ ∈ S2. From
the first equality of (54), we obtain

SSW2
2(uS2 , δe3) =

1

2π

∫
S2

∫ 2π

0
|t− π|2 dt duS2(ψ) =

π2

3
.

By symmetry, we have ES(u) = π2

3 , and therefore ES(u) > ES(χ).
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