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Abstract

Sliced optimal transport reduces optimal transport on multi-dimensional domains to
transport on the line. More precisely, sliced optimal transport is the concatenation of
the well-known Radon transform and the cumulative density transform, which analyti-
cally yields the solutions of the reduced transport problems. Inspired by this concept, we
propose two adaptions for optimal transport on the 2-sphere. Firstly, as counterpart to
the Radon transform, we introduce the vertical slice transform, which integrates along
all circles orthogonal to a given direction. Secondly, we introduce a semicircle transform,
which integrates along all half great circles with an appropriate weight function. Both
transforms are generalized to arbitrary measures on the sphere. While the vertical slice
transform can be combined with optimal transport on the interval and leads to a sliced
Wasserstein distance restricted to even probability measures, the semicircle transform
is related to optimal transport on the circle and results in a di�erent sliced Wasserstein
distance for arbitrary probability measures. The applicability of both novel sliced op-
timal transport concepts on the sphere is demonstrated by proof-of-concept examples
dealing with the interpolation and classi�cation of spherical probability measures. The
numerical implementation relies on the singular value decompositions of both transforms
and fast Fourier techniques. For the inversion with respect to probability measures, we
propose the minimization of an entropy-regularized Kullback�Leibler divergence, which
can be numerically realized using a primal-dual proximal splitting algorithm.

1. Introduction

Optimal transport and in particular Wasserstein distances between measures have received
much attention from a theoretical and practical point of view [62,79,87] and recently became
of interest in neural gradient �ows [4,26,49]. While Wasserstein distances are in general hard
to compute, there exist analytic formulas for optimal transport on the line. Therefore sliced
Wasserstein distances, which basically combine the Radon transform in Euclidean spaces
with optimal transport on the line, have become quite popular [58, 72, 79]. In particular,
the related Radon cumulative distribution transform has been applied for interpolation and
classi�cation as well as for model reduction [17,37,48,73,81]. The idea behind sliced optimal
transport has been generalized and transferred to many related problems. There exists sliced
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(a) Vertical slices for a �xed direction. (b) Semicircles (red) starting in a �xed point.

Figure 1: Areas of integration of the spherical transforms.

variants [8, 16] of partial optimal transport [19, 27], where only a fraction of mass is trans-
ported, and a sliced version [20] of multi-marginal optimal transport [10,12,30], considering
the transport between several measures instead of only two. For optimal transport on Rie-
mannian manifolds, sliced Wasserstein distances based on the push-forward of the eigenfunc-
tions of the Laplacian have been proposed in [77]. Especially for shape and graph analysis,
sliced optimal transport has been transferred to the Gromov�Wasserstein setting [86], which
more generally de�nes a metric between metric measure spaces [11,55,83]. Di�erently from
the Wasserstein formulation with its analytic solution, the Gromov�Wasserstein transport
on the line is more involved [13,24].
In this paper, we transfer the slicing approach to optimal transport on the two-dimensional

sphere. Spherical optimal transport has been intensely studied in recent years. For instance,
the problem can be solved using a Monge�Ampère type equation [38,54,88] or a variational
framework [22]. The regularity of optimal maps has been investigated in [51]. Spheri-
cal Wasserstein barycenters have been computed using a stochastic projected subgradient
method [82] and have been estimated on random graphs [84].
To introduce slicing frameworks on the sphere, we do not follow the Laplacian approach

in [77], but focus on spherical counterparts of the Radon transform. A well-known one is
the Funk�Radon transform [29, 39, 52, 70], which takes integrals along all great circles. In-
tegration along all circles of a �xed radius were studied in [74, 80]. Further Radon-type
transforms were considered based on intersections with planes containing a �xed point in-
side the sphere [60, 66, 68, 78], on the sphere [1, 76], and outside the sphere [2]. Moreover,
transforms including derivatives were proposed in [53,69]. However, in the context of sliced
optimal transport, we require that probability density functions on the sphere are mapped
to a family of probability density functions on one-dimensional domains. For this purpose,
we consider two speci�c spherical transforms, namely the vertical slice transform and the
normalized semicircle transform.
The vertical slice transform was �rst considered in [32] and applied in [43, 89] for pho-

toacoustic tomography. The generalization to higher dimensions is due to [75]. The basic
idea is to take means along parallel circles, see Figure 1a, which gives a probability density
function on an interval. The process is then repeated for further directions. Geometrically,
the areas of integration for a �xed direction can be imagined like an �egg cutter� applied
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to the sphere. We generalize the vertical slice transform to probability measures and use it
to de�ne a vertical sliced Wasserstein distance. Radon transforms of measures have been
considered in the context of a dual �bration, cf. [31, 59] and [39, Chap. 2, � 2], where they
are de�ned via duality. We will see that our de�nition via the push-forward of measures can
be also derived from that point of view.
An (unnormalized) semicircle transform was examined in [36,41]. It takes integrals along

semicircles starting in a �xed point, see Figure 1b, and yields a function de�ned on the one-
dimensional unit circle. The process is then repeated for further starting points. This trans-
form has been combined with optimal transport on the circle to obtain a sliced Wasserstein
distance [15]. However, the crucial point is here that the unnormalized semicircle transform
does not map probability density functions to probability density functions, meaning that
optimal transport techniques on the circle cannot be applied. In the numeric part of [15], the
authors restrict themselves to point measures, which then are projected onto great circles.
This approach corresponds to an appropriately normalized semicircle transform instead,
where the integrand is multiplied with a certain weight function. In this paper, we introduce
and study this normalized semicircle transform in a rigours manner to obtain a semicircular
sliced Wasserstein distance.

Main contributions

� We give rigorous de�nitions of the vertical slice and the normalized semicircle trans-
form, which are originally considered only for functions, and generalize them to mea-
sures using an appropriate push-forward. For absolutely continuous measures, the
generalized and initial de�nitions coincide in the sense that merely the density func-
tion has to be transformed. Furthermore, probability measures are transformed to
probability measures.

� We prove a singular value decomposition of the normalized semicircle transform, which
provides an approach for numerical computations. Moreover, the singular value de-
compositions of the vertical slice and the normalized semicircle transform allow the
inversion via their Moore�Penrose pseudoinverses.

� We de�ne sliced Wasserstein distances on the sphere based on both transform. We
show that the normalized semicircle transform is injective for all measures, and hence
the sliced Wasserstein distance indeed ful�lls the properties of a metric. Furthermore,
the vertical sliced Wasserstein distance is a metric for even measures on the sphere.

� We propose a Tikhonov-type regularization which minimizes a variational model con-
sisting of the entropy-regularized Kullback�Leibler divergence. This ensures that the
inverse is a probability measure and in particular non-negative. Further, this allows
to compute a sliced CDT interpolation between spherical probability measures to ap-
proximate Wasserstein barycenters.

Outline of the Paper We start in Section 2 with the necessary preliminaries on optimal
transport, the unit sphere and the rotation group on R3. Then, we introduce the two coun-
terparts of the Radon transform on S2, namely the vertical slice transform in Section 3
and the normalized semicircle transform in Section 4. First, we de�ne the transforms for
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functions and derive their adjoint operators and singular value decompositions on L2(S2).
In order to combine these transforms with optimal transport on the interval and the cir-
cle respectively, we have to enlarge their de�nitions to measure spaces which we have not
found in a mathematically rigorous form in the literature. Section 5 connects the above
transforms with optimal transport to introduce spherical sliced Wasserstein distances for
measures on the sphere. Section 6.1 deals with the discretization of the spherical transforms
and their inversion, which is an ill-posed problem. For an approximate inversion, we can
use the truncated Moore�Penrose pseudoinverse. However, when dealing with probability
density functions, this inversion does not guarantee the non-negativity of the reconstructed
function. Therefore, we suggest another reconstruction which minimizes a variational model
consisting of an entropy-regularized Kullback�Leibler divergence, see Section 6.2. The ac-
tual minimization can be done by a primal-dual splitting. Numerical proof-of-concept results
are reported in Section 7, where we provide two kinds of experiments. First, we show in
Section 7.1 that Wasserstein barycenters on the sphere can be approximated using sliced
Wasserstein transforms and Wasserstein interpolation on the interval and the circle respec-
tively. These results require in particular the inversion of the sliced spherical transforms.
Second, we demonstrate by a synthetic example that the binary classi�cation of di�erent
measures is in principle possible in Section 7.2.

2. Preliminaries

In this section, we �rst provide the notation and necessary preliminaries on optimal trans-
port, in particular on the interval and the circle. Then, we recall basic facts about the unit
sphere and the rotation group on R3.

2.1. Measures and Optimal Transport

Let X be a compact metric space with metric d : X × X → R, and let B(X) be the Borel
σ-algebra induced by d. By M(X), we denote the Banach space of signed, �nite measures,
and by P(X) the subset of probability measures on X. The pre-dual space of M(X) is C(X).
Let Y be another compact metric space and T : X → Y be measurable. For µ ∈ M(X), we
de�ne the push-forward measure T#µ := µ ◦ T−1 ∈ M(Y). For any measure π ∈ M(X×Y)
with �rst marginal µ ∈ M(X), i.e., π(B × Y) = µ(B) for all B ∈ B(X), we call a collection
of measures πx ∈ M(Y), x ∈ X, a disintegration family if∫

X×Y
f(x, y) dπ(x, y) =

∫
X

∫
Y
f(x, y) dπx(y) dµ(x)

for all measurable functions f on X× Y.
The p-Wasserstein distance, p ∈ [1,∞), of µ, ν ∈ P(X) is given by

Wp
p(µ, ν) := min

π∈Π(µ,ν)

∫
X2

dp(x, y) dπ(x, y), (1)

with Π(µ, ν) := {π ∈ M(X × X) : π(B × X) = µ(B), π(X × B) = ν(B) for all B ∈ B(X)}.
It de�nes a metric on P(X). The metric space Pp(X) := (P(X),Wp) is called p-Wasserstein
space and, in case p = 2, just Wasserstein space. The above Wasserstein distance is just a
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special case of the more general optimal transport problem, where dp(x, y) can be replaced
by a more general cost function c(x, y). For δ ∈ [0, 1], the p-Wasserstein barycenter between
µ, ν ∈ Pp(X) is the minimizer of

min
ω∈P(X)

(1− δ) Wp
p(µ, ω) + δ Wp

p(ν, ω), (2)

see [3]. Note that the Wasserstein barycenter between absolutely continuous measures is
unique, cf. [45].

Optimal Transport on the Interval If X is the unit interval I := [−1, 1] with the distance
d(x, y) = |x− y|, the optimal transport between two probability measures µ, ν ∈ P(I) can
be computed easily [62,79,87] using the cumulative distribution function Fµ(x) := µ([−1, x]),
x ∈ I, which is non-decreasing and right-continuous. Its pseudoinverse, the quantile function
F−1
µ (r) := min{x ∈ I : Fµ(x) ≥ r}, r ∈ [0, 1], is non-decreasing and left-continuous. The

measure µ can be recovered by µ = (F−1
µ )#σ[0,1], where σ[0,1] denotes the Lebesque measure

on [0, 1]. The p-Wasserstein distance (1) between µ, ν ∈ Pp(I) now equals Wp(µ, ν) =
∥F−1

µ −F−1
ν ∥Lp([0,1]). Moreover, if µ ∈ Pac(I), where Pac(I) denotes the probability measures

that are absolutely continuous with respect to the Lebesgue measure, then the optimal
transport plan π in (1) is uniquely given by

π = (Id, Tµ,ν)#µ with Tµ,ν(x) := F−1
ν (Fµ(x)), x ∈ I.

Based on the optimal transport map Tµ,ν , the Wasserstein space Pp(I) can be isometrically
embedded into Lpω(I) with ω ∈ Pac(I) [11, 48, 61], where Lpω(I) consists of all p-integrable
functions with respect to ω. More precisely, for the reference measure ω ∈ Pac(I), the
cumulative distribution transform (CDT) is de�ned by CDTω : Pp(I) → Lpω(I) with

CDTω[µ](x) := (Tω,µ − Id)(x) =
(
F−1
µ ◦ Fω

)
(x)− x, x ∈ I, (3)

and we especially have Wp(µ, ν) = ∥CDTω[µ] − CDTω[ν]∥Lpω(I). The CDT is in fact a
mapping from Pp(I) into the tangent space of Pp(I) at ω, see [5, � 8.5]. Due to the relation
to the optimal transport map, the CDT can be inverted by µ = CDT−1

ω [h] := (h + Id)#ω
for h = CDTω[µ]. If µ, ω ∈ Pac(I) possess the density functions fµ > 0, fω > 0, then, by the
transformation formula for push-forward measures, fµ can be recovered by

fµ(x) =
(
g−1
)′
(x) fω(g

−1(x)) with g(x) = CDTω[µ](x) + x, x ∈ I. (4)

For µ, ν ∈ P(I), and an arbitrary reference measure ω ∈ Pac(I), the 2-Wasserstein barycenter
(2) has the form

CDT−1
ω (δCDTω[ν] + (1− δ) CDTω[µ]) , (5)

see [48]. In particular for ω = µ, we have by (3) that CDTµ[µ](x) = F−1
µ (Fµ(x)) − x = 0

and therefore the barycenter (5) becomes

CDT−1
µ (δCDTµ[ν]) .
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Optimal Transport on the Circle On the circle T := R/(2πZ) equipped with the metric
d(x, y) := mink∈Z |x− y + 2πk|, the optimal transport can be computed in a similar manner
by incorporating the periodicity. Following [23, 71], we de�ne the (extended) cumulative
distribution function by F̃µ(x) := µ([0, x]) for x ∈ [0, 2π] and extend it to R by the convention
F̃µ(x + 2π) := F̃µ(x) + 1. Its pseudoinverse, the (extended) quantile function, is de�ned as
F̃−1
µ (r) := min{x ∈ R : F̃µ(x) ≥ r} for r ∈ R. Note that F̃ and F̃−1 are mappings de�ned

on entire R. The p-Wasserstein distance between µ, ν ∈ P(T) is given by

W p
p (µ, ν) = min

θ∈R

∫ 1

0
|F̃−1
µ (r)− (F̃ν − θ)−1(r)|p dr, (6)

where (F̃ν − θ)−1 is the pseudoinverse of the shifted cumulative distribution function [71].
For µ ∈ Pac(T), each minimizer θ of (6) yields an optimal transport plan

π = (Id, ι(T̃µ,ν))#µ with T̃µ,ν(x) := (F̃ν − θ)−1(F̃µ(x)), x ∈ [0, 2π),

where ι : R → T denotes the canonical projection from the line to the circle. Note that
T̃µ,ν(x) ∈ R is the representative of ι(T̃µ,ν(x)) ∈ T with

d(x, ι(T̃µ,ν(x))) = |x− T̃µ,ν(x)|.

If p > 1 and µ, ν ∈ Pac(T), the minimizer θ of (6) is unique. This follows by the proof
of [23, Lem. 5.2], where it is shown that the objective of (6) is convex in θ, but the argument
even implies strict convexity. In analogy to (3), we de�ne for p ∈ (1,∞), the circular CDT
(cCDT) of µ ∈ Pac(T) with reference measure ω ∈ Pac(T) by cCDTω : Pp(T) → Lpω(T) with

cCDTω[µ](x) := (T̃ω,µ − Id)(x) =
(
(F̃µ − θω,µ)

−1 ◦ F̃ω
)
(x)− x, x ∈ [0, 2π),

where T̃ω,µ is the optimal transport plan and θω,µ the minimizer of (6). Note that the cCDT
is no longer an isometric embedding. The cCDT can be inverted by µ = cCDT−1

ω [h] :=
(ι ◦ (h + Id))#ω for h = cCDTω[µ]. If µ, ω ∈ Pac(T) have densities fµ > 0, fω > 0, the
density fµ can be recovered similarly to (4) via

fµ(x) =
(
g−1
)′
(x) fω(g

−1(x)) with g(x) = ι (cCDTω[µ](x) + x) , x ∈ T.

In analogy to (5) with ω = µ, we interpolate between the measures µ, ν ∈ Pac(T) by

cCDT−1
µ [δ cCDTµ[ν]].

2.2. Sphere and Rotation Group

Unit Sphere The two-dimensional unit sphere is de�ned as S2 := {x ∈ R3 : ∥x∥ = 1}.
The canonical unit vectors are henceforth denoted by ej , j = 1, 2, 3. Points ξ ∈ S2 can be
parameterized in spherical coordinates

ξ = Φ(φ, ϑ) := (cosφ sinϑ, sinφ sinϑ, cosϑ) ∈ S2, φ ∈ T, ϑ ∈ [0, π].

The restriction Φ: (T× (0, π)) ∪ ({0} × {0, π}) → S2 is a bijective mapping. We denote
the �rst and second component of this restriction as azimuth angle azi(ξ) and zenith angle
zen(ξ), respectively, which are uniquely given by

azi(Φ(φ, ϑ)) = φ and zen(Φ(φ, ϑ)) = ϑ
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for all (φ, ϑ) ∈ (T× (0, π))∪ ({0} × {0, π}). The surface measure σS2 on the sphere is given
by ∫

S2
f(ξ) dσS2(ξ) =

∫ π

0

∫
T
f(Φ(φ, ϑ)) sinϑ dφdϑ.

Normalizing σS2 yields the uniform measure uS2 := (4π)−1σS2 . We denote by Lp(S2), p ∈
[1,∞], the Banach space of all (equivalence classes of) p-integrable functions on S2, where
we use the above surface measure.
We de�ne the spherical harmonics of degree n ∈ N0 and order k = −n, . . . , n by

Y k
n (Φ(φ, t)) :=

√
2n+ 1

4π

(n− k)!

(n+ k)!
P kn (cosϑ) e

ikφ, (7)

where P kn : [−1, 1] → R denotes the associated Legendre functions de�ned by

P kn (t) :=
(−1)k

2nn!
(1− t2)

k
2
dn+k(t2 − 1)n

dtn+k
, n ∈ N0, k ∈ {0, . . . , n} (8)

and

P−k
n := (−1)k

(n− k)!

(n+ k)!
P kn . (9)

The spherical harmonics {Y k
n : n ∈ N0, k = −n, , . . . , n} form an orthonormal basis of

L2(S2). Finally, the Sobolev space Hs(S2) with s ≥ 0, is de�ned as the completion of
C∞(S2) with respect to the norm

∥f∥Hs(S2) :=

∞∑
n=0

(
n+ 1

2

)2s n∑
k=−n

∣∣∣⟨f, Y k
n ⟩L2(S2)

∣∣∣2 . (10)

Rotation Group Next, we are interested in the rotation group

SO(3) := {Q ∈ R3×3 : Q⊤Q = I, det(Q) = 1}.

Any matrix in SO(3) has an Euler angle parameterization

Ψ(α, β, γ) := R3(α)R2(β)R3(γ) ∈ SO(3), α, γ ∈ T, β ∈ [0, π],

where

R3(α) :=

cosα − sinα 0
sinα cosα 0
0 0 1

 , R2(β) :=

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (11)

The rotation group SO(3) can be identi�ed with the product S2 × T via the bijection

S2 × T ∋ (ξ, γ) 7→ Ψ(azi(ξ), zen(ξ), γ) ∈ SO(3),

cf. [34]. In Euler angles, the rotationally invariant measure σSO(3) on SO(3) is given by∫
SO(3)

f(Q) dσSO(3)(Q) =

∫ 2π

0

∫ π

0

∫ 2π

0
f(Ψ(α, β, γ)) sin(β) dα dβ dγ (12)

=

∫
T

∫
S2
f(Ψ(α, β, γ)) dσS2(Φ(α, β)) dγ.
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The uniform measure on SO(3) is uSO(3) := (8π2)−1σSO(3).

The rotational harmonics or Wigner D-functions Dk,j
n of degree n ∈ N0 and orders k, j ∈

{−n, . . . , n} are de�ned by

Dk,j
n (Ψ(α, β, γ)) := e−ikα dk,jn (cosβ) e−ijγ , (13)

where the Wigner d-functions are given for t ∈ [−1, 1] by

dk,jn (t) :=
(−1)n−j

2n

√
(n+ k)!(1− t)j−k

(n− j)!(n+ j)!(n− k)!(1 + t)j+k
dn−k

dtn−k
(1 + t)n+j

(1− t)−n+j
,

see [85, chap. 4]. The rotational harmonics are the matrix entries of the left angular repre-
sentations of SO(3), i.e.,

Y k
n (Q

⊤ξ) =

n∑
j=−n

Dj,k
n (Q)Y j

n (ξ), Q ∈ SO(3), ξ ∈ S2. (14)

They satisfy the orthogonality relation∫
SO(3)

Dj,k
n (Q)Dj′,k′

n′ (Q) dQ =
8π2

2n+ 1
δn,n′δk,k′δj,j′ , (15)

for all n, n′ ∈ N0, j, k = −n, . . . , n, and j′, k′ = −n′, . . . , n′, where δ denotes the Kronecker
symbol. Then {

(
2n+1
8π2

) 1
2Dj,k

n : n ∈ N0, j, k = −n, . . . , n} form an orthonormal basis of
L2(SO(3)).
Finally, the Sobolev space Hs(SO(3)) with s ≥ 0 is de�ned as the completion of C∞(SO(3))

with respect to the Sobolev norm

∥g∥2Hs(SO(3)) :=
∞∑
n=0

(
n+ 1

2

)2s n∑
j,k=−n

8π2

2n+ 1
|⟨g,Dj,k

n ⟩|2.

3. Vertical Slice Transform

3.1. Vertical Slice Transform of Functions

In analogy to the Radon transform, the main idea behind the vertical slice transform is to
integrate a given function f : S2 → R along parallel vertical slices. To describe these slices
mathematically, we de�ne the slicing operator Sψ : S2 → I for any �xed ψ ∈ T by

Sψ(ξ) := ⟨ξ, (cosψ, sinψ, 0)⊤⟩ = cos(ψ) ξ1 + sin(ψ) ξ2,

and the corresponding slice/circle by

Ctψ := S−1
ψ (t) = {ξ ∈ S2 : Sψ(ξ) = t}, t ∈ I.

The slice Ctψ is the intersection of S2 and the plane with normal (cosψ, sinψ, 0)⊤ and dis-
tance t from the origin, An illustration of the slices Ctψ for �xed ψ is given in Figure 1a. The
vertical slice transform V is de�ned by

Vf(ψ, t) := 1

2π
√
1− t2

∫
Ctψ

f(ξ) ds(ξ), ψ ∈ T, t ∈ (−1, 1), (16)
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where ds denotes the arc-length on Ctψ. For t = ±1, the vertical slice transform is

Vf(ψ, 1) := f(cosψ, sinψ, 0) and Vf(ψ,−1) := f(− cosψ,− sinψ, 0).

For �xed ψ ∈ T, we de�ne the (normalized) restrictions

Vψ := 2π V(ψ, ·). (17)

This corresponds to projecting the mean values of f along Ctψ to t ∈ I. For an illustration
see again Figure 1a. The di�erent normalizations of V and Vψ are chosen with respect to
the later generalization to measures and ensure that density functions are transformed to
density functions by V and Vψ. By the following proposition, both operators are well de�ned
almost everywhere.

Proposition 3.1. Let 1 ≤ p ≤ ∞. For every f ∈ Lp(S2), it holds∫
I
Vψf(t) dt =

∫
S2
f(ξ) dσS2(ξ) and

∫
T

∫
I
Vf(ψ, t) dt dψ =

∫
S2
f(ξ) dσS2(ξ). (18)

Let ψ ∈ T. The operators Vψ : Lp(S2) → Lp(I) and V : Lp(S2) → Lp(T× I) are bounded with

∥Vψ∥Lp→Lp = (2π)1−1/p and ∥V∥Lp→Lp = 1.

Moreover, it holds Vψ : C(S2) → C(I) and V : C(S2) → C(T× I).

Proof. We parameterize the upper and lower hemispheres by

H±
ψ (s, t) :=

t cos(ψ)− s sin(ψ)
t sin(ψ) + s cos(ψ)

±
√
1− t2 − s2

 , s ∈
√
1− t2 I, t ∈ I.

Then the upper and lower semicircle of Ctψ can be parameterized via H±
ψ (·, t). Thus we

obtain ∫
S2
f(ξ) dσS2(ξ) =

∫
I

∫
√
1−t2 I

(
f(H+

ψ (s, t) + f(H−
ψ (s, t))

) 1√
1− t2 − s2

ds dt

=

∫
I

1√
1− t2

∫
Ctψ

f(ξ) ds(ξ) dt =

∫
I
Vψf(t) dt.

Using (17) and integrating over ψ immediately yields the second identity in (18). By Fubini's
theorem, Vψ and V are well de�ned.
Following the above computation for the absolute value of f , we obtain with the triangle

inequality ∥Vψ∥L1→L1 = ∥V∥L1→L1 = 1. Since the vertical slice transform is essentially
bounded by

|Vψf(t)| ≤
1√

1− t2

∫
Ctψ

|f(ξ)|ds(ξ) ≤ 2π ess sup
ξ∈S2

|f(ξ)|,

we further have ∥Vψ∥L∞→L∞ = 2π and ∥V∥L∞→L∞ = 1. Now the second assertion follows
from the Riesz�Thorin interpolation theorem.
The last assertion is an immediate consequence of Lebesgue's dominated convergence

theorem.
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Since all circles Ctψ are symmetric with respect to the ξ1-ξ2 plane, Vf vanishes for func-
tions f which are odd in the third coordinate, i.e., f(ξ1, ξ2, ξ3) = −f(ξ1, ξ2,−ξ3). For brevity,
we call these functions odd. In [32], an explicit inversion formula for even functions, i.e.,
f(ξ1, ξ2, ξ3) = f(ξ1, ξ2,−ξ3), is derived. However, as for the Radon inversion formula, this
formula leads to instable practical computations if we leave the range of V. For numerical
simulation, we will invert V using its singular value decomposition. For this purpose, notice
that the spherical harmonics Y k

n with even k + n are even functions, while those with odd
k + n are odd functions.

Theorem 3.2 ( [43, Thm. 3.3]). The vertical slice transform (16) ful�lls

VY k
n (ψ, t) = vkn

√
2n+1
4π eikψ Pn(t), n ∈ N0, k ∈ {−n, . . . , n}, n+ k even,

where

vkn := (−1)
n+k
2

√
(n− k)!

(n+ k)!

(n+ k − 1)!!

(n− k)!!
.

There exist constants C1, C2 > 0 such that for all n ∈ N0, k ∈ {−n, . . . , n} with n+ k even,

C1(n+ 1/2)−1/2 ≤ |vkn| ≤ C2(n+ 1/2)−1/4. (19)

Noting that the functions

Bk
n(ψ, t) :=

√
2n+ 1

4π
Pn(t) e

ikψ, ∀(ψ, t) ∈ T× I, (20)

form an orthonormal basis of L2(T × I) and that vkn → 0 as n → ∞, we deduce that
V : L2(S2) → L2(T× I) is a compact operator with singular value decomposition

Vf(ψ, t) =
∑
n∈N0

n∑
k=−n

n+k even

vknB
k
n(ψ, t). (21)

Restricting V to even functions L2
sym(S2), where L

p
sym(S2) with 1 ≤ p ≤ ∞ is de�ned as

Lpsym(S2) :=
{
f ∈ Lp(S2) : f(ξ) = f̌(ξ) a.e. on S2

}
and f̌(ξ) := f(ξ1, ξ2,−ξ3) is the re�ection at the ξ1-ξ2 plane, the operator V : L2

sym(S2) →
L2(T× I) is injective. Its Moore�Penrose pseudoinverse, cf. [25], is given by

V† : R(V)⊕R(V)⊥ → L2
sym(S2), V†g =

∑
n∈N0

n∑
k=−n

n+k even

(vkn)
−1 ⟨g,Bk

n⟩Y k
n , (22)

where R(V) denotes the range of V. We will further need the adjoint operator of V.

Proposition 3.3. Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. For 1 ≤ p < ∞, the adjoint
V∗ : Lq(T× I) → Lq(S2) of V : Lp(S2) → Lp(T× I) is given by

V∗g(ξ) =
1

2π

∫
T
g(ψ, ξ1 cosψ + ξ2 sinψ) dψ, (23)
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and the adjoint V∗
ψ : L

q(I) → Lq(S2) of Vψ : Lp(S2) → Lp(I) by

V∗
ψg(ξ) = g(ξ1 cosψ + ξ2 sinψ). (24)

Moreover, it holds V∗ : C(T× I) → C(S2) and V∗
ψ : C(I) → C(S2).

Proof. The assertion follows from Proposition 3.1, which yields

⟨Vf, g⟩ =
∫
T

∫
I
Vf(ψ, t) g(ψ, t) dt dψ =

∫
T

∫
I

1

2π
√
1− t2

∫
Ctψ

f(ξ) g(ψ, t) ds(ξ) dt dψ

=
1

2π

∫
T

∫
S2
f(ξ) g(ψ, ξ1 cosψ + ξ2 sinψ) dσS2(ξ) dψ = ⟨f,V∗g⟩

for all f ∈ Lp(S2), g ∈ Lq(T×I). The adjoint of Vψ can be established analogously�without
the integral over T and the factor (2π)−1. The last assertion again follows from Lebesgue's
dominated convergence theorem and by the de�nition of the adjoint.

3.2. Vertical Slice Transform of Measures

For functions f : S2 → R, the vertical slice transform Vf(ψ, t) in (16) and its restriction
Vψf(t) in (17) are integrals of f along the slices S−1

ψ (t). Heuristically, the related concept

for measures µ ∈ M(S2) would be to consider µ(S−1
ψ (t)). In this manner, for a �xed angle

ψ ∈ T, we generalize the (restricted) vertical slice transform Vψ by

Vψ : M(S2) → M(I), µ 7→ (Sψ)#µ = µ ◦ S−1
ψ . (25)

In the function setting, we �guratively obtain Vf by gluing the (rescaled) functions 1
2πVψf

together along the angle ψ. In the measure setting, the corresponding concept is to consider
Vψ as disintegration family. We de�ne the vertical slice transform V : M(S2) → M(T × I)
by

Vµ := (TV)#(uT × µ) with TV(ψ, ξ) := (ψ,Sψ(ξ)). (26)

The disintegration aspect becomes clear in the following proposition.

Proposition 3.4. Let µ ∈ M(S2). Then Vµ can be disintegrated into the family Vψµ with
respect to the uniform measure uT, i.e., for all g ∈ C(T× I), it holds∫

T×I
g(ψ, t) dVµ(ψ, t) =

∫
T

∫
I
g(ψ, t) dVψµ(t) duT(ψ).

Proof. Incorporating (26), and using Fubini's theorem, we obtain

⟨Vµ, g⟩ =
∫
T

∫
S2
g(ψ,Sψ(ξ)) dµ(ξ) duT(ψ) =

∫
T

∫
I
g(ψ, t) d((Sψ)#µ)(t) duT(ψ)

for every g ∈ C(T× I). By (25) this implies the assertion.

The de�ned measure-valued versions of V and Vψ are in fact the adjoints of V∗ : C(T×I) →
C(S2) in (23) and V∗

ψ : C(I) → C(S2) in (24), which explains the generalizations from the
duality point of view.
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Proposition 3.5. The vertical slice transforms (26) and (25) satisfy

⟨Vµ, g⟩ = ⟨µ,V∗g⟩ for all g ∈ C(T× I) and (27)

⟨Vψµ, g⟩ = ⟨µ,V∗
ψg⟩ for all g ∈ C(I), ψ ∈ T

with the adjoint operators from (23) and (24).

Proof. For µ ∈ M(S2) and g ∈ C(T× I), the conjecture can be established by

⟨Vµ, g⟩ =
∫
T×I

g(ψ, t) d(TV)#(uT × µ)(ψ, t) =

∫
S2

∫
T
g(ψ,Sψ(ξ)) duT(ψ) dµ(ξ) = ⟨µ,V∗g⟩

and, for µ ∈ M(S2), g ∈ C(I), and �xed ψ ∈ T, by

⟨Vψµ, g⟩ =
∫
I
g(t) d(Sψ)#µ(t) =

∫
S2
g(Sψ(ξ)) dµ(ξ) = ⟨µ,V∗

ψg⟩.

One could equivalently use the identity (27) to de�ne the vertical slice transform of a
measure, analogously as it was done for the Radon transform in [39, Chap. 2, � 2]. For ab-
solutely continuous measures with respect to σS2 , the measure- and function-valued vertical
slice transforms coincide, which now justify the di�erent scalings in (16) and (17).

Proposition 3.6. For f ∈ L1(S2), the vertical slice transforms satisfy

V[fσS2 ] = (Vf)σT×I and Vψ[fσS2 ] = (Vψf)σI.

In particular, the transformed measures are again absolutely continuous.

Proof. Let ⟨·, ·⟩M denotes the dual pairing for measures and continuous function and ⟨·, ·⟩L
the dual pairing between L1 and L∞ functions. Then the identity follows directly from
Proposition 3.5 by

⟨V[fσS2 ], g⟩M = ⟨fσS2 ,V∗g⟩M = ⟨f,V∗g⟩L = ⟨Vf, g⟩L = ⟨(Vf)σT×I, g⟩M

for all g ∈ C(T× I). For Vψ, the identity follows analogously.

By the following theorem, we see that similarly to the function setting, the vertical slice
transform is injective when restricted to the even measures (with respect to the ξ1-ξ2 plane)
given by

Msym(S2) := {µ ∈ M(S2) : ⟨µ, f⟩ =
〈
µ, f̌

〉
for all f ∈ C(S2)}. (28)

Theorem 3.7. The vertical slice transform V : Msym(S2) → M(T× I) is injective.

The proof is given in Appendix A.
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Figure 2: Semicircles Mγ
α,β (red) starting at a �xed point Φ(α, β) and with varying γ ∈ T.

Here β is the angle of Φ(α, β) to the north pole and α the angle of its projection
in the ξ1-ξ2 plane to the ξ1 axis. The blue circle is orthogonal to the semicircles.

4. Normalized Semicircle Transform

4.1. Normalized Semicircle Transform of Functions

Instead of integrating over parallel slices, the semicircle transform integrates a function along
all meridians with respect to a �xed zenith on the sphere. For any zenith Φ(α, β) ∈ S2 with
α ∈ T and β ∈ [0, π], we de�ne the azimuth operator Aα,β : S2 → T and the zenith operator
Zα,β : S2 → [0, π] as

Aα,β(ξ) := azi(Ψ(α, β, 0)⊤ ξ),

Zα,β(ξ) := zen(Ψ(α, β, 0)⊤ ξ),

i.e., we rotate the zenith back to the north pole and take the azimuth and zenith angle, see
Figure 2. For the zenith Φ(α, β) and �xed γ ∈ T, we consider the semicircles/meridians

Mγ
α,β := A−1

α,β(γ) = {ξ ∈ S2 : Aα,β(ξ) = γ}.

If γ ̸= 0, we have

Mγ
α,β = {ξ = Ψ(α, β, 0)Φ(γ, ϑ) = Ψ(α, β, γ) Φ(0, ϑ) : ϑ ∈ (0, π)}.

Otherwise, if γ = 0, we need to replace the open interval by a closed one, i.e., ϑ ∈ [0, π].
Figuratively, Mγ

α,β is a rotation of the meridian {Φ(γ, ϑ) : ϑ ∈ (0, π)} with azimuth γ by

Ψ(α, β, 0). The normalized semicircle transform W of f : S2 → R is de�ned by

Wf(α, β, γ) :=
1

4π

∫
Mγ
α,β

f(ξ) sin (Zα,β(ξ)) ds(ξ)

=
1

4π

∫ π

0
f(Ψ(α, β, 0)Φ(γ, ϑ)) sin(ϑ)dϑ.
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We may interpret Mγ
α,β as rotation of the prime median by Ψ(α, β, γ). Based on the sub-

stitution Q = Ψ(α, β, γ), the normalized semicircle transform de�nes a function on SO(3)
via

Wf(Q) :=
1

4π

∫ π

0
f (QΦ(0, ϑ)) sin(ϑ) dϑ. (29)

Henceforth, we will not distinguish between Wf(α, β, γ) and Wf(Q). Especially for the
inversion formula by the singular value decomposition, we will make use of the latter de�ni-
tion. The multiplication with (4π)−1 sin(ϑ) in the latitude ensures that density functions are
mapped to density functions allowing the later generalization to measures. For the zenith
Φ(α, β), we de�ne the (normalized) restriction

Wα,βf := 4πWf(α, β, ·).

Remark 4.1. The (unnormalized) semicircle transform W̃ : C(S2) → C(SO(3)) is de�ned
by

W̃f(Q) :=

∫ π/2

−π/2
f (Q⊤(Φ(φ, π2 ))) dφ, Q ∈ SO(3),

see [41]. It computes the mean values of f along all half great circles of the sphere, i.e.,
without the weight sin(ϑ) of (29). The injectivity of W̃ was shown in [36]. A singular value
decomposition and inversion algorithms were provided in [41]. The authors of [15] rein-
vented this transform with another parameterization using the plane through Ψ(α, β, 0)e1

and Ψ(α, β, 0)e2. More precisely, their notation was not clear to us since it seems that they
have applied the normalized transform in the numerical examples, but certain parts in their
analysis rely on the unnormalized transform.

The semicircle transforms W and Wα,β are well de�ned for continuous functions as well
as for p-integrable functions. Moreover, both transforms are continuous operators.

Proposition 4.2. Let 1 ≤ p ≤ ∞, and let Φ(α, β) ∈ S2. For every f ∈ Lp(S2), it holds∫
T
Wα,βf(γ) dγ =

∫
S2
f(ξ) dσS2(ξ) and

∫
SO(3)

Wf(Q) dσSO(3)(Q) =

∫
S2
f(ξ) dσS2(ξ).

The operators Wα,β : L
p(S2) → Lp(T) and W : Lp(S2) → Lp(SO(3)) are bounded with

∥Wα,β∥Lp→Lp ≤ 21−1/p and ∥W∥Lp→Lp ≤ (2π)1/p−1.

Moreover, it holds Wα,β : C(S2) → C(T) and W : C(S2) → C(SO(3)).

Proof. Since the surface measure on S2 is invariant under rotations, we have∫
T
Wα,βf(γ) dγ =

∫
T

∫ π

0
f(Ψ(α, β, 0) Φ(γ, ϑ)) sin(ϑ) dϑ dγ

=

∫
S2
f(Ψ(α, β, 0) ξ) dσS2(ξ) =

∫
S2
f(ξ) dσS2(ξ).

The de�nition of Wα,β and integration over α and β gives the second identity. Thus Wα,β

and W are well de�ned almost everywhere by Fubini's theorem. Using absolute values and
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the triangle inequality in the above computation yields ∥Wα,β∥L1→L1 = ∥W∥L1→L1 = 1,
where we deduce a lower bound of the norm by inserting the constant f = 1. The semicircle
transform is further essentially bounded by

|Wα,βf(γ)| ≤
∫ π

0
|f (Ψ(α, β, 0)Φ(γ, ϑ))| sin(ϑ)dϑ ≤ 2 ess sup

ξ∈S2
|f(ξ)|;

so ∥Wα,β∥L∞→L∞ = 2 and ∥W∥L∞→L∞ = (2π)−1. The second assertion now follows from
the Riesz�Thorin interpolation theorem. The last assertion is an immediate consequence of
Lebesgue's dominated convergence theorem.

Considering the semicircle transform in the Hilbert space setting, i.e., W : L2(S2) →
L2(SO(3)), we are interested in its singular value decomposition.

Theorem 4.3. The normalized semicircle transform ful�lls

WY k
n = wnZ

k
n, n ∈ N0, k ∈ {−n, . . . , n}, (30)

with the singular values wn := ∥WY k
n ∥L2(S2) and the orthonormal functions

Zkn := w−1
n

n∑
j=−n

λjnD
k,j
n ∈ L2(SO(3)), (31)

where λ00 := 2(4π)−3/2 and, for n ∈ N and j ∈ {1, . . . , n} with n+ j even,

λjn :=
(−1)j

4π

√
2n+ 1

4π

(n− j)!

(n+ j)!

j (n− 2)!! (n+ j − 1)!!

(n− j)!! (n+ 1)!!

{
2 : n even,

π : n odd,
(32)

λ−jn := (−1)jλjn, and λ
j
n = 0 otherwise. Here Y k

n denote the spherical harmonics (7) and
Dk,j
n the rotational harmonics (13). Moreover, there are constants C1, C2 > 0 such that

C1 (n+ 1)−1/2 ≤ wn ≤ C2 (n+ 1)−1/2 for all n ∈ N0. (33)

The proof is given in Appendix B. Analogously to [67, Thm. 3.13], we see that the
semicircle transform is a smoothing operator.

Corollary 4.4. For s ≥ 0, the operator W : Hs(S2) → Hs+1/2(SO(3)) is continuous.

Theorem 4.3 implies that W : L2(S2) → L2(SO(3)) is an injective, compact operator with

Wf =
∑
n∈N0

wn

n∑
k=−n

⟨f, Y k
n ⟩Zkn. (34)

Its Moore�Penrose pseudoinverse is given by

W†g =

∞∑
n=0

1

wn

n∑
k=−n

〈
g, Zkn

〉
Y k
n =

∞∑
n=0

1

(wn)2

n∑
k=−n

n∑
j=−n

λjn

〈
g,Dk,j

n

〉
Y k
n . (35)

We will also need the adjoint operator.
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Proposition 4.5. Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. For 1 ≤ p < ∞, the adjoint
W∗ : Lq(SO(3)) → Lq(S2) of W : Lp(S2) → Lp(SO(3)) is given by

W∗g(ξ) =
1

4π

∫
T

∫ π

0
g(Ψ(α, β,Aα,β ξ)) sin(β) dβ dα, (36)

and the adjoint W∗
α,β : L

q(T) → Lq(S2) of Wα,β : L
p(S2) → Lp(T) by

W∗
α,βg(ξ) = g(Aα,β ξ). (37)

Moreover, it holds W∗ : C(SO(3)) → C(S2), but W∗
α,β : C(T) ̸→ C(S2).

Proof. Let f ∈ Lp(S2) and g ∈ Lq(SO(3)). Based on (12) and (29), and using the substitu-
tion η := Φ(γ, ϑ) with γ = azi(η), we compute the adjoint by

⟨Wf, g⟩ = 1

4π

∫
T

∫ π

0

∫
T

∫ π

0
f(Ψ(α, β, 0)Φ(γ, ϑ)) g(Ψ(α, β, γ)) sin(ϑ) sin(β) dϑ dα dβ dγ

=
1

4π

∫
T

∫ π

0

∫
S2
f(Ψ(α, β, 0)η) g(Ψ(α, β, azi(η)) sin(β) dσS2(η) dβ dα

=
1

4π

∫
S2

∫
T

∫ π

0
f(ξ) g(Ψ(α, β,Aα,β(ξ)) sin(β) dβ dα dσS2(ξ) = ⟨f,W∗g⟩,

where we used ξ := Ψ(α, β, 0)η in the last line. The adjoint ofWα,β follows analogously. The
continuity ofW∗g for g ∈ C(SO(3)) can be established by Lebesgue's dominated convergence
theorem. For non-constant g ∈ C(T), the adjoint W∗

α,β is discontinuous at Φ(α, β).

4.2. Normalized Semicircle Transform of Measures

The generalization from functions to measures can be done analogously to Section 3.2. For
the zenith Φ(α, β), we generalize the (restricted) semicircle transform Wα,β by

Wα,β : M(S2) → M(T), µ 7→ (Aα,β)#µ = µ ◦ A−1
α,β. (38)

Considering the measures Wα,β µ as disintegration family, we de�ne the (normalized) semi-
circle transform W : M(S2) → M(SO(3)) by

Wµ := (TW)#(uS2 × µ) with TW(Φ(α, β), ξ) := Ψ(α, β,Aα,β(ξ)). (39)

Proposition 4.6. Let µ ∈ M(S2). Then Wµ can be disintegrated into the family Wα,β µ
with respect to the uniform measure uS2 , i.e., for all g ∈ C(SO(3)), it holds∫

SO(3)
g(Q) d(Wµ)(Q) =

∫
S2

∫
T
g(Ψ(α, β, γ)) d(Wα,βµ)(γ) dσS2(Φ(α, β)).

Proof. Inserting (39) and using Fubini's theorem, we obtain

⟨Wµ, g⟩ =
∫
S2

∫
S2
g(Ψ(α, β,Aα,β ξ)) dµ(ξ) duS2(Φ(α, β))

=

∫
S2

∫
T
g(Ψ(α, β, γ)) d(Aα,β)#µ(γ) duS2(Φ(α, β)).

for every g ∈ C(SO(3)) establishing the asserstion.
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While W can be interpreted as the adjoint of W∗ : C(SO(3)) → C(S2) in (36), the same
reasoning does not hold for Wα,β by the lack of continuity of W∗

α,βg for continuous g.

Proposition 4.7. The semicircle transforms (39) and (38) satisfy

⟨Wµ, g⟩ = ⟨µ,W∗g⟩ for all g ∈ C(SO(3)) and

⟨Wα,βµ, g⟩ =
∫
S2
W∗
α,β g(ξ) dµ(ξ) for all g ∈ C(T) (40)

with the adjoint operator from (36) and (37).

Proof. Plugging in the push-forward de�nition (39), we obtain

⟨Wµ, g⟩ =
∫
S2

∫
S2
g(Ψ(α, β,Aα,β ξ)) dµ(ξ) duS2(Φ(α, β)) = ⟨µ,W∗g⟩ .

The second identity follows analogously.

Remark 4.8. The restricted semicircle transform Wα,β : M(S2) → M(T) is indeed related
to the Lp adjointW ∗

α,β in (37). Although the integral on the right-hand side of (40) is always
well de�ned, i.e.,W ∗

α,β g ∈ L∞(S2), the integral is no dual pairing in the measure/continuous
function sense since W ∗

α,β g is discontinuous at the zenith Φ(α, β) in general. Therefore,
unlike in Proposition 3.5 for the vertical slice transform, equation (40) does not constitute
a proper de�nition of Wα,β for measures via the dual pairing.

The de�nitions of the semicircle transform in the function and measure setting are con-
sistent in the sense that both coincide for absolutely continuous measures.

Proposition 4.9. For f ∈ L1(S2), the semicircle transforms satisfy

W[fσS2 ] = (Wf)σSO(3) and Wα,β[fσS2 ] = (Wα,βf)σT.

In particular, the transformed measures are again absolutely continuous.

Proof. Both identities directly follow from Proposition 4.7 in analogy to the proof of Propo-
sition 3.6. For Wα,β the second dual pairing has to be replaced by an integral.

By the following theorem, the injectivity of W : L2(S2) → L2(SO(3)) generalizes to
W : M(S2) → M(SO(3)), which also implies the injectivity of W : Lp(S2) → Lp(SO(3)).

Theorem 4.10. The semicircle transform W : M(S2) → M(SO(3)) de�ned by (39) is in-
jective.

The proof is given in Appendix C.
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5. Spherical Sliced Wasserstein Distances

The computation of the Wasserstein distance on the sphere consists in determining a trans-
port plan between the considered probability measures. To avoid the occurring optimization
problem, the general idea behind so-called sliced Wasserstein distances [15, 47] is to trans-
form the measures �rst to one-dimensional domains, and to exploit the explicit solution
formula of the one-dimensional transport. Based on the vertical slice and the normalized
semicircle transform, we can de�ne two kinds of spherical sliced distances. For p ∈ [1,∞)
and µ, ν ∈ M(S2), we de�ne the vertical sliced Wasserstein distance

VSWp
p(µ, ν) :=

∫
T
Wp

p(Vψµ,Vψν) dψ,

and the semicircular sliced Wasserstein distance

SSWp
p(µ, ν) :=

∫
S2
Wp

p(Wα,βµ,Wα,βν) dσS2(Φ(α, β)),

which are integrals over Wasserstein distances on I and T, respectively.

Theorem 5.1. For every 1 ≤ p < ∞, the vertical sliced Wasserstein distance VSWp is a
metric on Msym(S2), which was de�ned in (28), and the semicircular Wasserstein distance
SSWp is a metric on M(S2).

Proof. The symmetry and the triangle inequality follow from the corresponding properties
of the Wasserstein distance and the p-norm on T and S2. The positive de�niteness follows
from the injectivity of V and W in Theorem 3.7 and Theorem 4.10.

Since the geodesic distance d(ξ,η) = arccos(ξ⊤η) on the sphere S2 is rotationally invari-
ant, i.e., d(Qξ,Qη) = d(ξ,η) for all Q ∈ SO(3), the Wasserstein distance (1) on S2 inherits
this property, i.e., Wp(µ, ν) = Wp(µ ◦ Q, ν ◦ Q) for all Q ∈ SO(3). The vertical sliced
Wasserstein distance is only partially rotation invariant.

Proposition 5.2. For any p ∈ [1,∞), the vertical sliced Wasserstein distance VSWp is
invariant with respect to rotations (11) around the vertical axis, i.e., for all µ, ν ∈ M(S2)
and α ∈ T, it holds

VSWp(µ, ν) = VSWp(µ ◦R3(α), µ ◦R3(α)).

Proof. We have

VSWp
p(µ ◦R3(α), µ ◦R3(α)) =

∫
T
Wp

p(Vψ[µ ◦R3(α)],Vψ[ν ◦R3(α)]) dψ

=

∫
T
Wp

p([Sψ ◦R3(α)
⊤]#µ, [Sψ ◦R3(α)

⊤]#ν) dψ.

Since [Sψ ◦R3(α)
⊤](ξ) = ⟨ξ,R3(α) (cosψ, sinψ, 0)

⊤⟩ = Sψ+α(ξ), we further obtain

VSWp
p(µ ◦R3(α), µ ◦R3(α)) =

∫
T
Wp

p(Vψ+αµ,Vψ+αν) dψ = VSWp
p(µ, ν).
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In contrast to the vertical sliced Wasserstein distance, the semicircular sliced Wasserstein
distance is invariant to general rotations.

Proposition 5.3. For any p ∈ [1,∞), the semicircular sliced Wasserstein distance SSWp

is rotationally invariant, i.e., for every µ, ν ∈ M(S2) and Q ∈ SO(3), it holds

SSWp(µ, ν) = SSWp(µ ◦Q, µ ◦Q).

Proof. For γ ∈ T, let Tγ : T → T be the shift operator given by Tγ(ψ) := ψ − γ. The key
observation to show the statement is the identity

Tγ ◦ Aα,β(ξ) = azi(Ψ(α, β, 0)⊤ ξ)− γ = azi(Ψ(α, β, γ)⊤ ξ). (41)

Exploiting the shift invariance of the Wasserstein distance on T, the identity (41), and the
rotation invariance of the surface measure on SO(3), we have

SSWp
p(µ ◦Q, ν ◦Q) =

∫
S2
Wp

p(Wα,β[µ ◦Q],Wα,β[ν ◦Q]) dσS2(Φ(α, β))

=
1

2π

∫
T

∫
S2
Wp

p([Tγ ◦ Aα,β]#(µ ◦Q), [Tγ ◦ Aα,β]#(ν ◦Q)) dσS2(Φ(α, β)) dγ

=
1

2π

∫
SO(3)

Wp
p([azi(Ψ(α, β, γ)⊤Q⊤]#µ, [azi(Ψ(α, β, γ)⊤Q⊤·)]#ν) dσSO(3)(Ψ(α, β, γ))

=
1

2π

∫
SO(3)

Wp
p([azi(Ψ(α̃, β̃, γ̃)⊤·)]#µ, [azi(Ψ(α̃, β̃, γ̃)⊤·)]#ν) dσSO(3)(Ψ(α̃, β̃, γ̃))

=
1

2π

∫
T

∫
S2
Wp

p([Tγ̃ ◦ Aα̃,β̃]#µ, [Tγ̃ ◦ Aα̃,β̃]#ν) dσS2(Φ(α̃, β̃)) dγ̃ = SSWp
p(µ, ν).

6. Discrete Spherical Transforms and Inversion

6.1. Discretization and Inversion via Moore�Penrose Pseudoinverse

We will compute the sliced spherical transforms of (probability density) functions numerically
based on the singular value decomposition in a similar way as in [41]. To this end, we need
an appropriate discretization. In particular we need quadrature formulas on S2 as well as
on the image domains T× I and SO(3) of V and W, respectively.
Let N ∈ N. We choose quadrature nodes ξm ∈ S2 and respective weights wm > 0,

m ∈ [M ] := {1, . . . ,M} such that all spherical harmonics of degree ≤ 2N are exactly
integrated by the corresponding quadrature rule, see [35,42]. To be more precise, we use the
equispaced nodes φi = iπ/(N +1), i ∈ [2N +2], and the Gauss�Legendre nodes tj ∈ [−1, 1],
j ∈ [N + 1], given by the roots of the (N + 1)st Legendre polynomial. We denote the
corresponding Gauss�Legendre weights by rj . Now we obtain the quadrature

ξm(i,j) := Φ(φi, arccos tj) and wm(i,j) := 2πrj/(2N + 2), i ∈ [2N + 2], j ∈ [N + 1],

where m(i, j) ∈ [M ] denotes the index related to the pair (i, j) and M = 2(N +1)2. Setting

f := (fm)
M
m=1 := (f(ξm))Mm=1, Y k

n := (Y k
n (ξ

m))Mm=1, and w := (wm)
M
m=1, (42)
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we approximate the spherical harmonics coe�cients
〈
f, Y k

n

〉
by

〈
f ,Y k

n

〉
w
:=

M∑
m=1

f(ξm)Y k
n (ξ

m)wm, n = 0, . . . , N, k = −n, . . . , n.

In particular, we have that
〈
f, Y k

n

〉
=
〈
f ,Y k

n

〉
w

if f is a spherical polynomial of degree
≤ N . All discrete Fourier coe�cients can be computed e�ciently in O(N2 log2N) arithmetic
operations utilizing the nonuniform fast spherical Fourier transform (NFSFT) [50,63].

Discrete Vertical Slice Transform For discretizing T × I, we use again equispaced nodes
ψi = iπ/(N + 1), i ∈ [2N + 2] and Gauss�Legendre nodes tj and weights rj , j ∈ [N + 1].
We denote the respective quadrature weights on T × I by w̃, where w̃ℓ(i,j) = πrj/(N + 1)
and ℓ(i, j) ∈ [L] with L = 2(N + 1)2 denotes the index related to the pair (i, j). The
quadrature is exact of degree 2N , i.e., for all linear combinations of basis functions Bk

n with
0 ≤ n, |k| ≤ 2N . Using the singular value decomposition (21), we discretize V by

VD : RM → RL, VDf :=
N∑
n=0

n∑
k=−n

n+k even

vkn

〈
f ,Y k

n

〉
w

Bk
n, (43)

where Bk
n := (Bk

n(ψi, tj))
L
ℓ(i,j)=1 and Bk

n is given in (20). Then VDf can be computed
using the fast Fourier transform (FFT) in ψ and a fast polynomial transform [65] in t in
O(N2 log3N) arithmetic operations. Based on the quadrature for T × I, we analogously
discretize the (truncated) Moore�Penrose pseudoinverse (22) by

V†
D : RL → RM , V†

Dg :=
N∑
n=0

n∑
k=−n

n+k even

1

vkn

〈
g, Bk

n

〉
w̃
Y k
n ,

where g := (g(ψi, tj))
L
ℓ(i,j)=1 consists of samples of g : T× I → R. For a spherical polynomial

f of degree N , the chosen quadratures ensure V†
DVDf = f .

Discrete Semicircle Transform We use quadrature nodes Qℓ ∈ SO(3) and weights w̃ =
(w̃ℓ)

L
ℓ=1 such that all rotational harmonics of degree ≤ 2N are exactly integrated. Since it

becomes clear from the context which weights are addressed, we use again w̃. In particular,
we consider a quadrature [34] on SO(3) ∼= S2 × S1 as product of a Gauss-type quadrature
on S2, see [35], and an equispaced quadrature on T. We use this product structure be-
cause we can now discretize Wα,β on a uniform grid. Similarly to (43), the singular value
decomposition (34) of W : L2(S2) → L2(SO(3)) can be truncated as

WD : RM → RL, WDf :=
N∑
n=0

n∑
j,k=−n

λjn

〈
f ,Y k

n

〉
w

Dk,j
n , (44)

where Dk,j
n := (Dk,j

n (Qℓ))
L
ℓ=1. Then (44) can be computed in O(N3 log2N + L) arithmetic

operations with the nonuniform fast SO(3) Fourier transform (NFSOFT) [64]. Further, we
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approximate the Moore�Penrose pseudoinverse (35) of W by

W†
D : RL → RM , W†

Dg :=
N∑
n=0

n∑
j,k=−n

1

(wn)2
λjn

〈
g,Dk,j

n

〉
w̃

Y k
n ,

where g := (g(Qℓ))
L
ℓ=1 for g : SO(3) → R. As above, W†

Dg can be evaluated with NFSFT

and NFSOFT algorithms. For a spherical polynomial f of degree N , we have W†
DWDf = f .

6.2. Inversion by Variational Approach

The push-forward de�nitions of the sliced spherical transforms ensure that probability mea-
sures are mapped to probability measures. In the context of optimal transport, we require
that the inverse transforms have the same behaviour. Even when restricting to the function
setting, we can however construct functions with non-trivial negative part that are trans-
formed into probability densities, e.g. by taking a function that is negative in a su�ciently
small spherical cap {ξ ∈ S2 : ξ3 < 1 − ε} and equals a positive constant otherwise. Thus
the Moore�Penrose pseudoinverse applied to a probability density is not necessarily a prob-
ability density. To overcome this issue, we consider the inversion of the discretized spherical
transforms as inverse problems, which we solve using a variational formulation.
As in (42), let f ∈ RM contain the samples of the probability density function f on

S2, and w ∈ RM the respective quadrature weights. If the quadrature is exact for f , we
have f ≥ 0 and

∫
S2 f dσS2 =

∑M
m=1wmfm = 1. Thus f can be interpreted as probability

density function with respect to the counting measure weighted by w. For the numerical
inversion, we handle both transforms simultaneously, denoting the discretizations VD and
WD by TD : RM → RL. Let g ∈ RL be the samples of the density function g on T × I or
SO(3). We equip RM with the weighted Euclidean inner product ⟨f , f̃⟩w :=

∑M
m=1wmfmf̃m,

and, analogously, RL with the inner product ⟨g, g̃⟩w̃ :=
∑L

ℓ=1 w̃ℓgℓg̃ℓ, where w̃ contains the
quadrature weights for T× I or SO(3). Furthermore, we denote the all-one vector by 1.
Now, we aim to �nd an approximate solution f of the inversion problem TDf = g in

the weighted probability simplex ∆w := {f ∈ RM : f ≥ 0, ⟨f ,1⟩w = 1}. To this end, we
introduce a regularized inverse as the minimizer of the strictly convex optimization problem

argmin
f∈∆w

KLw̃(TDf , g) + ρKLw(f ,1), ρ > 0, (45)

where KLw is the discrete Kullback�Leibler (KL) divergence on the weighted space RM given
by

KLw(f , f̃) := ⟨f , log f − log f̃⟩w + ⟨f̃ − f ,1⟩w,

for f , f̃ ≥ 0 with fm = 0 whenever f̃m = 0, and KLw(f , f̃) := +∞ otherwise. Here the
logarithm acts componentwise, and we set 0 log 0 := 0. Note that KLw(f ,1) is the negative
entropy of f . The KL divergence on RL is de�ned analoguously.
To �nd the minimizer of (45), we employ the primal-dual splitting of Chambolle and

Pock [18]. To this end, we reformulate (45) as

argmin
f ,y1,y2

KLw̃(y1, g) + ρKLw(y2,1) + χ∆w(f) s.t. TDf = y1, f = y2
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with the characteristic function χ∆w(f) = 0 for f ∈ ∆w and χ∆w(f) = +∞ else. For
θ ∈ (0, 1] and σ, τ > 0 such that 1/τσ > ∥I + T ∗

DTD∥, the algorithm converges and reads as

fk+1 := proj∆w

(
fk − τT ∗

Dy
k
1 − τyk2

)
, (46a)

f̃k+1 := fk+1 + θ(fk+1 − fk), (46b)

yk+1
1 := proxσKL∗

w̃(·,g)
(
yk1 + σTDf̃k+1

)
(46c)

yk+1
2 := proxσ(ρKLw)∗(·,1)

(
yk2 + σ f̃k+1

)
. (46d)

Here proj∆w
is the orthogonal projection onto ∆w. Further, for a function h : RM → R, the

proximal operator with respect to the weight w is given by

proxσh(x) := argmin
y∈RM

h(y) + 1
2σ ∥x− y∥2w (47)

and its Fenchel conjugate by h∗(y) := maxx∈RM ⟨x,y⟩w + h(y). On RL with weight w̃, the
proximal operator and conjugate are de�ned similarly.

Proposition 6.1. The orthogonal projection onto ∆w with respect to the inner product
⟨·, ·⟩w is given by

proj∆w
(f) = [f + λ1]+,

where [·]+ denotes the componentwise positive part, and λ is the root of ⟨1, [f + λ1]+⟩w − 1.

The statement follows line by line via incorporating the weighted inner product into the
argumentation in [9, Thm 6.27]. The function in Proposition 6.1 is monotonically increasing
and piecewise linear with �nitely many pieces; thus the root can be determined using a
bisection method to identify the piece with sign change and solving a linear equation. For
the standard probability simplex with w = 1, there exist several further numerically e�cient
approaches [21].

Proposition 6.2. Let σ, a > 0, and b ∈ RM . On the weighted Euclidean space RM , the KL
divergence satis�es

proxσ(aKL)∗(·,b)(x) = x− aW
(
σ
a b⊙ exp

(
1
a x
))
, x ∈ RM ,

where W denotes the componentwise applied Lambert's W -function that maps z to the so-
lution y of y exp y = z and ⊙ the componentwise multiplication.

Proof. Di�erentiating the objective of the weighted Fenchel conjugate and setting to zero
yields

(aKLw)
∗(y, b) = a

〈
b, exp

(
1
a y
)〉

w
+ a ⟨b,1⟩w.

Inserting the conjugated scaled KL divergence into (47), and setting the derivative again
zero, we componentwise obtain

b⊙ exp
(
1
a y
)
= 1

σ (x− y) ⇔ log(b) + 1
a x = 1

a (x− y) + log
(
1
σ (x− y)

)
⇔ σ

a b⊙ exp
(
1
a x
)
= 1

a (x− y)⊙ exp
(
1
a (x− y)

)
,

which gives the assertion.
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Note that the primal-dual algorithm requires the adjoint T ∗
D in (46a). Based on the

discretized spherical transforms in Section 6.1, we obtain their adjoint operators

V∗
Dg =

N∑
n=0

n∑
k=−n

n+k even

vkn

〈
g,Bk

n

〉
w̃

Y k
n and W∗

Dg =
N∑
n=0

n∑
k,j=−n

λjn

〈
g,Dk,j

n

〉
w̃
Y k
n .

The primal-dual iteration (46) may be summarized as follows.

Algorithm 6.3 (Primal-Dual for Regularized Inversion).
Input: g ∈ RL, θ ∈ (0, 1], σ, τ, ρ > 0.
Initialization: f0 := (4π)−1 1, y0

1 := 0, y0
2 := 0.

Iteration: For k = 0, 1, . . . until convergence do
(a) fk+1 := proj∆w

(fk − τT ∗
Dy

k
1 − τyk2 ),

(b) f̃k+1 := fk+1 + θ(fk+1 − fk),
(c) ỹk+1

1 := yk1 + σTDf̃k+1,
(d) yk+1

1 := ỹk+1
1 −W

(
σg ⊙ exp

(
ỹk+1
1

))
,

(e) ỹk+1
2 := yk1 + σ f̃k+1,

(f) yk+1
2 := ỹk+1

2 − ρW
(
σ
ρ exp

(
1
ρ ỹ

k+1
2

))
.

Output: f ∈ RM solving (45).

7. Numerical Results

In this section, we provide proof-of-concept examples that the sliced spherical transforms can
be combined in a meaningful way with optimal transport on the interval and the circle. First,
we deal with the approximation of Wasserstein barycenters on the sphere. In particular,
this requires the inversion of the sliced spherical transforms. Second, we show that these
transforms combined with optimal transport can be used for classifying classes of measures.
All numerical tests are performed in Matlab R2022a on an Intel Core i7-10700 CPU with
16GB memory.

7.1. Interpolation between Probability Measures

Given two probability measures on the sphere, we generate a measure �between� them, as
proposed in [48] for the Radon transform on R2. In particular, we compute the CDT or
cCDT of their spherical transform V or W, then we interpolate in the CDT space and go
back to S2 via the inverse of the CDT or cCDT and the spherical transforms.
For computing the forward, inverse, and adjoint spherical transforms, we truncate the

singular value decomposition at degree N = 44 and use the software package [44] for the
NFSFT and NFSOFT. We have M = (2N + 2)(N + 1) = 4050 quadrature nodes on the
sphere, cf. Section 6.1.

Interpolation between Mises�Fisher Distributions As test function on C(S2), we choose
the density of the von Mises�Fisher (vMF) distribution

fκ,η(ξ) = cκ e
κ⟨η,ξ⟩, ξ ∈ S2, (48)
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with the mean direction η ∈ S2 and the concentration κ > 0, where cκ is chosen such
that

∫
S2 fκ,η dσS2 = 1. Since V acts only on even functions, we make our �rst tests with

symmetrized vMF distributions via (fκ,η(ξ1, ξ2, ξ3) + fκ,η(ξ1, ξ2,−ξ3))/2, see Figure 3.

Figure 3: Density functions of two symmetrized vMF distributions (48).

Let µ, ν ∈ Pac(S2) be two given measures. For some δ ∈ [0, 1], we set the unregularized
V-CDT interpolation between µ and ν as

V†h, where h(ψ, t) = CDT−1
Vψµ

[
δ CDTVψµ[Vψν]

]
(t), ψ ∈ T, t ∈ I.

Here, we discretize Vψ via (43) with 2(N + 1)2 = 4050 quadrature nodes on T × I. Our
implementation of the CDT and its inverse is based on [48].1

Analogously, we de�ne the unregularized W-CDT interpolation W†h, where

h(Ψ(α, β, γ)) = CDT−1
Wα,βµ

[
δ cCDTWα,βµ[Wα,βν]

]
(γ), Ψ(α, β, γ) ∈ SO(3).

Here, the optimal parameter θ of (6), which is required for the cCDT, is determined by the
algorithm [23].2 Moreover, we compute Wµ and Wν by (44), where we use L = 118 944
quadrature points Ψ(α, β, γ) on SO(3), which are obtained as the product of a Gauss-type
quadrature3 in Φ(α, β) ∈ S2 and a uniform grid in γ.
Instead of the Moore�Penrose pseudoinverse V† or W†, we also apply the primal-dual

Algorithm 6.3 to obtain the regularized inverse (45) of h, which we call the regularized V-
CDT or W-CDT interpolation. Here we choose the regularization parameter ρ = 0.1 and
step sizes σ = 1 and τ = 1/4, and we terminate the algorithm after 200 iterations. The
CDT interpolations for δ = 0.5 are plotted in Figure 4. While the regularization has a
comparably small e�ect on the V-CDT interpolation, we note that the unregularized W-
CDT interpolation is severely negative in some areas and therefore not a probability density,
which is circumvented by the primal-dual algorithm.
As a reference, we consider the spherical 2-Wasserstein barycenter (2) and its entropy-

regularized counterpart [62], whose computation with the Sinkhorn algorithm [46] can be
implemented e�ciently, cf. [7, 14]. We apply the Python optimal transport library [28] for
both, where the Sinkhorn algorithm uses the regularization parameter 0.01 and a maxi-
mum number of 1000 iterations. In our example in Figure 4, the regularized 2-Wasserstein
barycenter looks similar to the W-CDT interpolation, while the unregularized barycenter is
very noisy and takes very long to compute with a linear program solver.
1See the Python code https://github.com/skolouri/Radon-Cumulative-Distribution-Transform
2See the Matlab code https://users.mccme.ru/ansobol/otarie/software.html
3Quadrature rule on S2 from http://www.tu-chemnitz.de/~potts/workgroup/graef/quadrature.
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(a) V-CDT interpolation
(0.01 s)

(b) V-CDT interpolation with
regularized inverse (0.3 s)

(c) W-CDT interpolation with
Moore�Penrose
pseudoinverse W† (3.2 s)

(d) W-CDT interpolation with
regularized inverse (128 s)

(e) Regularized 2-Wasserstein
barycenter (19 s)

(f) Unregularized 2-Wasserstein
barycenter (33 h)

Figure 4: CDT interpolation with δ = 0.5 of the vMF distributions from Figure 3.

Interpolation between vMF Distribution and a Mixture The W-CDT interpolation of
more evolved test functions, which are not symmetric, is depicted in Figure 5. We notice that
the W-CDT interpolation shows the �eyes� more clearly than the regularized 2-Wasserstein
barycenter. This might be caused by a too large regularization parameter of the Sinkhorn
algorithm, but when making it smaller the algorithm fails with a division by zero error.

7.2. Classi�cation of Probability Measures

In one dimension, the cumulative distribution transform (3) is known to increase the separa-
bility between certain classes of probability measures. If the considered classes are build from
prototypes using certain transformations like shifts or scalings, the constructed classes are
linearly separable in the CDT space [57,61]. For probability measures on multi-dimensional
domains, the separability of the CDT can be exploited by transforming the considered mea-
sures to a series of line measures using the Radon or generalized Radon transform [47,48]. If
we replace the Radon transform by the vertical slice or the normalized semicircle transform,
the procedure can be immediately transferred to measures on the sphere.
To show that the vertical slice and semicircle transform can in principle improve the

separability between di�erent classes of probability measures, we built �ve datasets consisting
of 100 measures each. Each datum represents a (discretized) single or mixture density
function of vMF distributions. The concentration is always chosen as κ = 50. The means
are randomly generated on S2 satisfying the restrictions in Table 1. All distributions in the
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(a) Density of vMF distribution µ (b) Density of ν (quadratic spline)

(c) W-CDT interpolation with
Moore�Penrose
pseudoinverse W†

(d) W-CDT interpolation with
regularized inverse

(e) Regularized 2-Wasserstein
barycenter

Figure 5: CDT interpolation of density functions with δ = 0.5.

mixtures are equally weighted. Figure 6 shows some examples of the di�erent classes. On
the basis of these classes, we train and test linear support vector machines (SVMs) to study
the linear separability after our spherical transformations. To be more precise, let fν be the
density function of a speci�c datum. This specimen is now transformed into(

CDTuI [Vψfν ]
)
ψ∈T and

(
cCDTuT [Wα,βfν ]

)
Φ(α,β)∈S2 ,

where u• denotes the uniform measure. For the numerical implementation, we use the
quadrature points ξm with N = 44 from Section 7.1.
Training and testing of the SVMs is here based on 10-fold cross-validations, i.e., the

dataset is divided in 10 subsets containing equally many samples of each class, the training
is performed on 9 subsets, and the testing on the remaining. The procedure is repeated 10
times such that each subset serves one time as testing set. Before training, the dimension
of the training set is reduced to 50 using a principle component analysis. The success rates
of the trained SVMs are given in Table 2. Although the vertical slice transform cannot
distinguish between the upper and lower hemisphere, the V-CDT approach yields high-
quality linear separators between the classes of single and mixture vMF densities. The
V-CDT approach only fails in experiment #3, which is not surprising since the samples from
the second class are seen as single vMF densities by V. The W-CDT approach is useless
in #1 and #2, but signi�cantly increases the separability between single and symmetrized
vMF distributions. These �rst simulations show that both spherical transforms can increase
the linear separability between certain classes.
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Table 1: Created datasets to study the distinctiveness of linear SVMs with respect to the
CDT of the vertical slice/semicircle transform respectively. Each datum consists
of a single or the equally weighted mixture of two vMF distributions with �xed
concentration κ = 50 and randomly generated η ∈ S2.

dataset 1st class 2nd class

#1 single vMF distributions mixtures of two vMFs, means with �xed distance π/2
#2 single vMF distributions mixtures of two vMFs
#3 single vMF distributions mixtures of two vMFs, means mirrored at equatorial plane
#4 single vMF distributions mixtures of two vMFs, means mirrored at ξ3 axis
#5 mixtures of two vMFs, means

mirrored at equatorial plane
mixtures of two vMFs, means mirrored at ξ3 axis

Figure 6: Examples from the generated datasets. From left to right: The means are gener-
ated with �xed distance π/2, mirrored at the equator, and mirrored at the ξ3 axis.
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A. Proof of Theorem 3.7

Any measure µ ∈ Msym(S2) is uniquely determined by its application on Csym(S2), since,
by the de�nition (28), we have for any f ∈ C(S2) that ⟨µ, f⟩ = 1

2

〈
µ, f + f̌

〉
and f + f̌ ∈

Table 2: Success rates of linear SVMs trained and tested directly on the density distributions
(�/�), the CDT and vertical sliced transformed densities (V-CDT), and the cCDT
semicicle transformed densities (W-CDT). Mean accuracy and standard deviation
are computed with respect to 10-fold cross-validations of the datasets in Table 1.

dataset #1 #2 #3 #4 #5

�/� 0.555± 0.123 0.545± 0.145 0.570± 0.079 0.585± 0.085 0.570± 0.136
V-CDT 0.985± 0.024 0.985± 0.024 0.435± 0.111 0.995± 0.016 0.995± 0.016
W-CDT 0.465± 0.097 0.565± 0.125 0.865± 0.085 0.945± 0.037 1.000± 0.000
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Csym(S2), where f̌(ξ) = f(ξ1, ξ2,−ξ3). Let µ, ν ∈ Msym(S2) such that Vµ = Vν. Then we
obtain for g ∈ C(T× I) by Proposition 3.5 that

⟨µ,V∗g⟩ = ⟨ν,V∗g⟩ .

Hence, the claim µ = ν holds true if {V∗g : g ∈ C(T × I)} is a dense subset of Csym(S2).
To show this, let s > 2 and f ∈ Hs

sym(S2), which is dense in Csym(S2). Here we denote
by Hs

sym(S2) the subset of even functions of the Sobolev space Hs(S2), see (10). Since V is
injective by Theorem 3.2, we have f = V∗g if and only if Vf = VV∗g. In the following, we
show that

g := (VV∗)−1Vf

is continuous on T× I, then we obtain f = V∗g, which shows the assertion. We proceed in
a similar manner as for the proof of Sobolev's embedding theorem, cf. [56, lem. 6.14].
Recall the right singular functions Bk

n of V from (20). Since V∗ has the same singular
functions as V and the conjugate singular values vkn = vkn, we have by Theorem 3.2

VV∗h =
∞∑
n=0

n∑
k=−n

n+k even

∣∣∣vkn∣∣∣2 〈h,Bk
n

〉
L2(SO(3))

Bk
n, ∀h ∈ L2(T× I).

Hence, again by the singular value decomposition of V, we have

(VV∗)−1Vf =

∞∑
n=0

n∑
k=−n

n+k even

1

vkn

〈
f, Y k

n

〉
L2(S2)

Bk
n. (49)

We want to show that the right hand side of (49) converges uniformly on C(T × I). Let
(ψ, t) ∈ T× I. As the Legendre polynomials satisfy |Pn(t)| ≤ 1 for all t ∈ I, cf. [33, � 8.917],
we have ∣∣∣Bk

n(ψ, t)
∣∣∣ = ∣∣∣∣∣

√
2n+ 1

4π
Pn(t) e

ikψ

∣∣∣∣∣ ≤
√

2n+ 1

4π
.

Let N ∈ N. Using the bound (19) on the singular values of V, we see that there exists C > 0
such that∣∣∣∣∣∣∣∣

∞∑
n=0

n∑
k=−n

n+k even

1

vkn

〈
f, Y k

n

〉
L2(S2)

Bk
n(ψ, t)−

N−1∑
n=0

n∑
k=−n

n+k even

1

vkn

〈
f, Y k

n

〉
L2(S2)

Bk
n(ψ, t)

∣∣∣∣∣∣∣∣
≤ C

∞∑
n=N

n∑
k=−n

n+k even

(
n+ 1

2

) ∣∣∣∣〈f, Y k
n

〉
L2(S2)

∣∣∣∣
≤ C

√√√√√ ∞∑
n=N

n∑
k=−n

n+k even

(
n+ 1

2

)2s ∣∣∣⟨f, Y k
n ⟩L2(S2)

∣∣∣2
√√√√ ∞∑

n=N

n∑
k=−n

(
n+ 1

2

)2−2s
,
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where the last line follows by the Cauchy�Schwarz inequality. In the last equation, the �rst
root converges to zero for N → ∞ since the Sobolev norm ∥f∥Hs(S2) is �nite, and the term
under the second root,

∞∑
n=N

n∑
k=−n

(
n+ 1

2

)2−2s
= 4

∞∑
n=N

(
n+ 1

2

)3−2s
,

also converges since s > 2. Hence, the right-hand side of (49), whose summands are continu-
ous themselves, converges uniformly to a continuous function on T× I, which �nally implies
that g is continuous.

B. Proof of Theorem 4.3

1. First we show for n ∈ N0, k ∈ {−n, . . . , n}, and Q ∈ SO(3) that

WY k
n (Q) =

n∑
j=−n

λjnD
k,j
n (Q), (50)

which implies (30). By (29), we have

WY k
n (Q) =

1

4π

∫ π

0
Y k
n (QΦ(0, ϑ)) sinϑ dϑ

(14)
=

1

4π

n∑
j=−n

Dj,k
n (Q⊤)

∫ π

0
Y j
n (Φ(0, ϑ)) sinϑ dϑ.

Noting that Dj,k
n (Q⊤) = D−k,−j

n (Q) by [85, � 4.4] and performing the substitution z = cosϑ,
we see that (50) holds with

λjn =
1

4π

∫ 1

−1
Y j
n (Φ(0, arccos z)) dz

(7)
=

1

4π

√
2n+ 1

4π

(n− j)!

(n+ j)!

∫ 1

−1
P jn(z) dz. (51)

If n = 0, then also j = 0 and we have P 0
0 = 1, which implies that λ00 = 2(4π)−1/2. Let n ∈ N.

If j = 0, then P 0
n is the Legendre polynomial of degree n and thus we have

∫ 1
−1 P

0
n(z) dz = 0

for n ≥ 1. If n + j is odd, then P jn is an odd function and hence its integral (51) vanishes.
Let us compute (51) for n = j ∈ N0. The substitution z = cosϑ and (8) yield∫ 1

−1
Pnn (z) dz = 2(−1)n(2n− 1)!!

∫ 1

0
(1− z2)n/2 dz

= 2(−1)n(2n− 1)!!

∫ π/2

0
(sinϑ)n+1 dϑ

= (−1)n(2n− 1)!!
n!!

(n+ 1)!!

{
2 : n even,

π : n odd,
(52)

where the last equality follows by [33, �3.621]. Let n+ j be even and n ≥ 2, j ≥ 0. We are
going to use two recurrence relations from [33, �8.731]. First, we compute the integral of the
relation

(n− j)P jn(z) = (z2 − 1)∂zP
j
n−1(z) + nzP jn−1(z).
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Using integration by parts and noting that P jn−1(1) = −P jn−1(−1) yields

(n− j)

∫ 1

−1
P jn(z) dz = (n− 2)

∫ 1

−1
zP jn−1(z) dz. (53)

Second, inserting the integral of the recurrence relation

(2n− 1)zP jn−1(z) = (n− j)P jn(z) + (n+ j − 1)P jn−2(z)

into (53) results in

(n− j)

∫ 1

−1
P jn(z) dz =

n− 2

2n− 1

∫ 1

−1

(
(n− j)P jn(z) + (n+ j − 1)P jn−2(z)

)
dz

and thus

(n− j)(n+ 1)

∫ 1

−1
P jn(z) dz = (n− 2)(n+ j − 1)

∫ 1

−1
P jn−2(z) dz.

Hence, we obtain by (52) that∫ 1

−1
P jn(z) dz =

(n− 2)(n+ j − 1)

(n− j)(n+ 1)

∫ 1

−1
P jn−2(z) dz

=
(n− 2)!!

(j − 2)!!

(n+ j − 1)!!

(2j − 1)!!

1

(n− j)!!

(j + 1)!!

(n+ 1)!!

∫ 1

−1
P jj (z) dz

= (−1)j
j!!(n− 2)!!(n+ j − 1)!!

(j − 2)!!(n− j)!!(n+ 1)!!

{
2 : n even,

π : n odd.

Together with (51) and (9), this implies (32).

2. We show that {Zkn : n ∈ N0, k = −n, . . . , n} forms an orthonormal system in L2(SO(3)).
The orthogonality follows from the orthogonality relation (15) of the rotational harmonics
and the fact that Zkn for di�erent indices (n, k) ̸= (n′, k′) contains disjoint linear combinations
of rotational harmonics. Since λnn ̸= 0, this also yields that wn ̸= 0 for any n ∈ N0, and
hence the normalization follows by de�nition of Zkn.

3. We show the bound (33). Let n ∈ N0. The squared singular values of the operator W are

(wn)
2 =

∥∥∥WY k
n

∥∥∥2
L2(S2)

=
n∑

j=−n

∣∣λjn∣∣2 ∥∥∥Dk,j
n

∥∥∥2
L2(SO(3))

(15)
=

n∑
j=1

∣∣λjn∣∣2 16π2

2n+ 1
, (54)

where we used the identity |λjn| = |λ−jn |. We have by (32) that

(wn)
2 =

1

4π

n∑
j=1

n+j even

(n− j)!

(n+ j)!

(
j (n− 2)!! (n+ j − 1)!!

(n− j)!! (n+ 1)!!

)2
{
4 : n even,

π2 : n odd.

=
1

4π

(
(n− 2)!!

(n+ 1)!!

)2 n∑
j=1

n+j even

j2
(n− j − 1)!!

(n− j)!!

(n+ j − 1)!!

(n+ j)!!

{
4 : n even,

π2 : n odd.
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We use the fact from [41, p. 9] that

(2m− 1)!!

(2m)!!
= cm(2m+ 1)−1/2, where

√
2
π ≤ cm ≤ 1, ∀m ∈ N.

We perform the proof for the case that n = 2m is even, the case of odd n is completely
analogous. We have

(w2m)
2 =

1

π

(
(2m− 2)!!

(2m+ 1)!!

)2 m∑
j=1

(2j)2
(2m− 2j − 1)!!

(2m− 2j)!!

(2m+ 2j − 1)!!

(2m+ 2j)!!

=
(2m+ 1)

π c2m (2m+ 1)2 (2m)2

m∑
j=1

4j2 cm−j cm+j√
2m− 2j + 1

√
2m+ 2j + 1

=
1

π c2m (2m+ 1) (2m)2

m∑
j=1

4j2 cm−j cm+j√
(2m+ 1)2 − (2j)2

.

Taking into account the bounds on cm and noting that the summands increase monotonic
with j, we replace the sum by an integral plus the last summand and obtain the upper bound

(w2m)
2 ≤ 1

8(2m+ 1)m2

(∫ m+1/2

0

(2x)2√
(2m+ 1)2 − (2x)2

dx+
4m2

√
4m+ 1

)

=
1

8(2m+ 1)m2

(
π(2m+ 1)2

8
+

4m2

√
4m+ 1

)
∈ O(m−1).

For the lower bound, we analogously see that

(w2m)
2 ≥ 1

2π2 (2m+ 1)m2

m∑
j=1

4j2√
(2m+ 1)2 − (2j)2

≥ 1

2π2 (2m+ 1)m2

∫ m

1

4j2 dj√
(2m+ 1)2 − (2j)2

=
1

2π2 (2m+ 1)m2

(
(2m+ 1)2

4
arcsin

(
2m

2m+ 1

)
− m

2

√
4m+ 1

)
can be bounded from below by a positive multiple of m−1 for m→ ∞.

C. Proof of Theorem 4.10

Let µ, ν ∈ M(S2) such that Wµ = Wν. By Proposition 4.7, we have

⟨µ,W∗g⟩ = ⟨ν,W∗g⟩ , ∀g ∈ C(SO(3)).

The claim holds if we can show that {W∗g : g ∈ C(SO(3))} is a dense subset of C(S2). Let
f ∈ Hs(S2) with s > 2, cf. (10), which is dense in C(S2), see [6, p. 121]. We show that
g := (WW∗)−1Wf ∈ C(SO(3)), which also implies f = W∗g by the injectivity of W. We
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proceed analogously to the proof of Sobolev's embedding theorem [6, p. 122]. Since W∗ has
the same singular functions as W and the singular values wn = wn, Theorem 4.10 implies

g =
∑
n∈N0

n∑
k=−n

1

wn

〈
f, Y k

n

〉
Zkn.

Let Q ∈ SO(3). We have by (31) and the Cauchy�Schwarz inequality∣∣∣Zkn(Q)
∣∣∣2 ≤ |wn|−2

( n∑
j=−n

∣∣λjn∣∣ ∣∣∣Dk,j
n (Q)

∣∣∣ )2 (54)

≤ 2n+ 1

16π2

n∑
j=−n

∣∣∣Dk,j
n (Q)

∣∣∣2. (55)

Again by the Cauchy�Schwarz inequality, we obtain

|g(Q)|2 ≤
( ∑
n∈N0

n∑
k=−n

|wn|−1
∣∣∣〈f, Y k

n

〉∣∣∣ ∣∣∣Zkn(Q)
∣∣∣ )2

≤
∑
n∈N0

n∑
k=−n

(n+ 1
2)

2s
∣∣∣〈f, Y k

n

〉∣∣∣2∑
n∈N0

n∑
k=−n

(n+ 1
2)

−2s |wn|−2
∣∣∣Zkn(Q)

∣∣∣2
(55)

≤ ∥f∥2Hs(S2)

∑
n∈N0

(n+ 1
2)

−2s |wn|−2 2n+ 1

16π2

n∑
k=−n

n∑
j=−n

∣∣∣Dk,j
n (Q)

∣∣∣2.
Using the addition formula

∑n
j,k=−n|D

k,j
n (Q)|2 = n+ 1, see [40, p. 17], and the bound (33)

of wn, we see that the last sum converges uniformly in Q. Since the basis functions Zkn are
continuous, this implies the continuity of g, which proves the assertion.

References

[1] A. Abouelaz and R. Daher. Sur la transformation de Radon de la sphère Sd. Bull. Soc.
Math. France, 121(3):353�382, 1993. URL: http://eudml.org/doc/87670.

[2] M. L. Agranovsky and B. Rubin. On two families of Funk-type transforms. Anal. Math.
Phys., 10(4):44, 2020. doi:10.1007/s13324-020-00388-x.

[3] M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal.,
43(2):904�924, 2011. doi:10.1137/100805741.

[4] F. Altekrüger, J. Hertrich, and G. Steidl. Neural Wasserstein gradient �ows for max-
imum mean discrepancies with Riesz kernels. In A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Re-
search, pages 664�690. PMLR, 2023. URL: https://proceedings.mlr.press/v202/
altekruger23a.html.

[5] L. Ambrosio, N. Gigli, and G. Savaré. Gradient �ows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2005.
doi:10.1007/b137080.

32

http://eudml.org/doc/87670
https://doi.org/10.1007/s13324-020-00388-x
https://doi.org/10.1137/100805741
https://proceedings.mlr.press/v202/altekruger23a.html
https://proceedings.mlr.press/v202/altekruger23a.html
https://doi.org/10.1007/b137080


[6] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere:
An Introduction. Springer, Heidelberg, 2012. doi:10.1007/978-3-642-25983-8.

[7] F. A. Ba and M. Quellmalz. Accelerating the Sinkhorn algorithm for sparse multi-
marginal optimal transport via fast Fourier transforms. Algorithms, 15(9):311, 2022.
doi:10.3390/a15090311.

[8] Y. Bai, B. Schmitzer, M. Thorpe, and S. Kolouri. Sliced optimal partial transport. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13681�13690, 2023. URL: https://openaccess.thecvf.com/content/
CVPR2023/html/Bai_Sliced_Optimal_Partial_Transport_CVPR_2023_paper.html.

[9] A. Beck. First-order methods in optimization. Number 25 in MOS-SIAM Series on Opti-
mization. Society for Industrial and Applied Mathematics, Philadelphia; Mathematical
Optimization Society, Philadelphia, 2017. doi:10.1137/1.9781611974997.ch1.

[10] F. Beier, R. Beinert, and G. Steidl. Multi-marginal Gromov�Wasserstein transport and
barycenters, 2022. arXiv:2205.06725.

[11] F. Beier, R. Beinert, and G. Steidl. On a linear Gromov�Wasserstein distance. IEEE
Trans. Image Process., 31:7292�7305, 2022. doi:10.1109/TIP.2022.3221286.

[12] F. Beier, J. von Lindheim, S. Neumayer, and G. Steidl. Unbalanced multi-marginal
optimal transport. J. Math. Imaging. Vis., 2022. doi:10.1007/s10851-022-01126-7.

[13] R. Beinert, C. Heiss, and G. Steidl. On assignment problems related to Gromov�
Wasserstein distances on the real line. SIAM J. Imaging Sci., 16(2):1028�1032, 2023.
doi:10.1137/22M1497808.

[14] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman pro-
jections for regularized transportation problems. SIAM J. Sci. Comput., 37(2):A1111�
A1138, 2015. doi:10.1137/141000439.

[15] C. Bonet, P. Berg, N. Courty, F. Septier, L. Drumetz, and M.-T. Pham. Spherical
sliced-Wasserstein. In International Conference on Learning Representations, 2023.
URL: https://openreview.net/forum?id=jXQ0ipgMdU.

[16] N. Bonneel and D. Coeurjolly. SPOT: Sliced partial optimal transport. ACM Trans.
Graph., 38(4):89:1�13, 2019. doi:10.1145/3306346.3323021.

[17] N. Bonneel, J. Rabin, G. Peyré, and H. P�ster. Sliced and Radon Wasserstein
barycenters of measures. J. Math. Imaging Vis., 51(1):22�45, 2015. doi:10.1007/

s10851-014-0506-3.

[18] A. Chambolle and T. Pock. An introduction to continuous optimization for imaging.
Acta Numer., 25:161�319, 2016. doi:10.1017/S096249291600009X.

[19] L. Chapel, M. Z. Alaya, and G. Gasso. Partial optimal tranport with applications
on positive-unlabeled learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,

33

https://doi.org/10.1007/978-3-642-25983-8
https://doi.org/10.3390/a15090311
https://openaccess.thecvf.com/content/CVPR2023/html/Bai_Sliced_Optimal_Partial_Transport_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Bai_Sliced_Optimal_Partial_Transport_CVPR_2023_paper.html
https://doi.org/10.1137/1.9781611974997.ch1
http://arxiv.org/abs/2205.06725
https://doi.org/10.1109/TIP.2022.3221286
https://doi.org/10.1007/s10851-022-01126-7
https://doi.org/10.1137/22M1497808
https://doi.org/10.1137/141000439
https://openreview.net/forum?id=jXQ0ipgMdU
https://doi.org/10.1145/3306346.3323021
https://doi.org/10.1007/s10851-014-0506-3
https://doi.org/10.1007/s10851-014-0506-3
https://doi.org/10.1017/S096249291600009X


pages 2903�2913. Curran Associates, 2020. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf.

[20] S. Cohen, A. Terenin, Y. Pitcan, B. Amos, M. P. Deisenroth, and K. S. S. Kumar.
Sliced multi-marginal optimal transport, 2021. arXiv:2102.07115.

[21] L. Condat. Fast projection onto the simplex and the l1 ball. Math. Program., 158(1�
2):575�585, 2016. doi:10.1007/s10107-015-0946-6.

[22] L. Cui, X. Qi, C. Wen, N. Lei, X. Li, M. Zhang, and X. Gu. Spherical optimal transporta-
tion. Computer-Aided Design, 115:181��193, 2019. doi:0.1016/j.cad.2019.05.024.

[23] J. Delon, J. Salomon, and A. Sobolevski. Fast transport optimization for Monge costs
on the circle. SIAM J. Appl. Math., 70(7):2239�2258, 2010. doi:10.1137/090772708.

[24] T. Dumont, T. Lacombe, and F.-X. Vialard. On the existence of Monge maps for the
Gromov�Wasserstein problem, 2023. arXiv:2210.11945.

[25] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems, volume
375 of Mathematics and Its Applications. Kluwer, Dodrecht, 1996.

[26] J. Fan, Q. Zhang, A. Taghvaei, and Y. Chen. Variational Wasserstein gradient �ow.
In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 6185�6215. PMLR, 2022.

[27] A. Figalli. The optimal partial transport problem. Arch. Ration. Mech. Anal.,
195(2):533�560, 2010. doi:10.1007/s00205-008-0212-7.

[28] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon,
L. Chapel, A. Coren�os, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Ja-
nati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland,
R. Tavenard, A. Tong, and T. Vayer. POT: Python optimal transport. J. Mach. Learn.
Res., 22(78):1�8, 2021. URL: http://jmlr.org/papers/v22/20-451.html.

[29] P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann.,
74(2):278�300, 1913. doi:10.1007/BF01456044.

[30] W. Gangbo and A. �wi�ech. Optimal maps for the multidimensional Monge-Kantorovich
problem. Comm. Pure Appl. Math., 51(1):23�45, 1998. doi:10.1002/(SICI)

1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H.

[31] I. Gel'fand and G. Shmelev. Geometric structures of double bundles and their relation
to certain problems in integral geometry. Funct. Anal. Its Appl., 17:84��96, 1983.
doi:10.1007/BF01083134.

[32] S. Gindikin, J. Reeds, and L. Shepp. Spherical tomography and spherical integral geom-
etry. In E. T. Quinto, M. Cheney, and P. Kuchment, editors, Tomography, Impedance
Imaging, and Integral Geometry, volume 30 of Lectures in Appl. Math, pages 83�92.
American Mathematical Society, 1994.

34

https://proceedings.neurips.cc/paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf
http://arxiv.org/abs/2102.07115
https://doi.org/10.1007/s10107-015-0946-6
https://doi.org/0.1016/j.cad.2019.05.024
https://doi.org/10.1137/090772708
http://arxiv.org/abs/2210.11945
https://doi.org/10.1007/s00205-008-0212-7
http://jmlr.org/papers/v22/20-451.html
https://doi.org/10.1007/BF01456044
https://doi.org/10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-0312(199801)51:1<23::AID-CPA2>3.0.CO;2-H
https://doi.org/10.1007/BF01083134


[33] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic
Press, New York, 8th edition, 2014. doi:10.1016/C2010-0-64839-5.

[34] M. Gräf and D. Potts. Sampling sets and quadrature formulae on the rotation group.
Numer. Funct. Anal. Optim., 30:665�688, 2009. doi:10.1080/01630560903163508.

[35] M. Gräf and D. Potts. On the computation of spherical designs by a new optimization
approach based on fast spherical Fourier transforms. Numer. Math., 119:699�724, 2011.
doi:10.1007/s00211-011-0399-7.

[36] H. Groemer. On a spherical integral transformation and sections of star bodies.
Monatsh. Math., 126(2):117�124, 1998. doi:10.1007/BF01473582.

[37] S. Guan, B. Liao, Y. Du, and X. Yin. Vehicle type recognition based on Radon-CDT
hybrid transfer learning. In 10th International Conference on Software Engineering and
Service Science (ICSESS). IEEE, 2019. doi:10.1109/ICSESS47205.2019.9040687.

[38] B. Hamfeldt and A. Turnquist. A convergence framework for optimal transport on the
sphere. Numer. Math., 151:627��657, 2022. doi:10.1007/s00211-022-01292-1.

[39] S. Helgason. Integral Geometry and Radon Transforms. Springer, New York, 2011.
doi:10.1007/978-1-4419-6055-9.

[40] R. Hielscher. The Radon Transform on the Rotation Group�Inversion and Application
to Texture Analysis. Dissertation, Technische Universität Bergakademie Freiberg, 2007.

[41] R. Hielscher, D. Potts, and M. Quellmalz. An SVD in spherical surface wave tomog-
raphy. In B. Hofmann, A. Leitao, and J. P. Zubelli, editors, New Trends in Param-
eter Identi�cation for Mathematical Models, Trends in Mathematics, pages 121�144.
Birkhäuser, 2018. doi:10.1007/978-3-319-70824-9_7.

[42] R. Hielscher and M. Quellmalz. Optimal molli�ers for spherical deconvolution. Inverse
Problems, 31(8):085001, 2015. doi:10.1088/0266-5611/31/8/085001.

[43] R. Hielscher and M. Quellmalz. Reconstructing a function on the sphere from its means
along vertical slices. Inverse Probl. Imaging, 10(3):711�739, 2016. doi:10.3934/ipi.

2016018.

[44] J. Keiner, S. Kunis, and D. Potts. NFFT 3.5, C subroutine library. http://

www.tu-chemnitz.de/~potts/nfft. Contributors: F. Bartel, M. Fenn, T. Görner,
M. Kircheis, T. Knopp, M. Quellmalz, M. Schmischke, T. Volkmer, A. Vollrath.

[45] Y.-H. Kim and B. Pass. Wasserstein barycenters over Riemannian manifolds. Adv.
Math., 307:640�683, 2017. doi:10.1016/j.aim.2016.11.026.

[46] P. A. Knight. The Sinkhorn�Knopp algorithm: convergence and applications. SIAM J.
Matrix Anal. Appl., 30(1):261�275, 2008. doi:10.1137/060659624.

[47] S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. K. Rohde. Generalized sliced
Wasserstein distances. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32 (NeurIPS 2019), 2019.

35

https://doi.org/10.1016/C2010-0-64839-5
https://doi.org/10.1080/01630560903163508
https://doi.org/10.1007/s00211-011-0399-7
https://doi.org/10.1007/BF01473582
https://doi.org/10.1109/ICSESS47205.2019.9040687
https://doi.org/10.1007/s00211-022-01292-1
https://doi.org/10.1007/978-1-4419-6055-9
https://doi.org/10.1007/978-3-319-70824-9_7
https://doi.org/10.1088/0266-5611/31/8/085001
https://doi.org/10.3934/ipi.2016018
https://doi.org/10.3934/ipi.2016018
http://www.tu-chemnitz.de/~potts/nfft
http://www.tu-chemnitz.de/~potts/nfft
https://doi.org/10.1016/j.aim.2016.11.026
https://doi.org/10.1137/060659624


[48] S. Kolouri, S. R. Park, and G. K. Rohde. The Radon cumulative distribution transform
and its application to image classi�cation. IEEE Trans Image Process., 25(2):920�34,
2016. doi:10.1109/TIP.2015.2509419.

[49] A. Korotin, D. Selikhanovych, and E. Burnaev. Neural optimal transport. In The
Eleventh International Conference on Learning Representations, 2023. URL: https:
//openreview.net/forum?id=d8CBRlWNkqH.

[50] S. Kunis and D. Potts. Fast spherical Fourier algorithms. J. Comput. Appl. Math.,
161:75�98, 2003. doi:10.1016/S0377-0427(03)00546-6.

[51] G. Loeper. Regularity of optimal maps on the sphere: the quadratic cost and the
re�ector antenna. Arch. Rational Mech. Anal., 199(1):269�289, 2010. doi:10.1007/

s00205-010-0330-x.

[52] A. K. Louis, M. Riplinger, M. Spiess, and E. Spodarev. Inversion algorithms for the
spherical Radon and cosine transform. Inverse Problems, 27(3):035015, 2011. doi:

10.1088/0266-5611/27/3/035015.

[53] E. Makai, H. Martini, and T. Ódor. On an integro-di�erential transform on the sphere.
Studia Sci. Math. Hungar., 38(1-4):299�312, 2001.

[54] A. T. T. McRae, C. J. Cotter, and C. J. Budd. Optimal-transport�based mesh adaptiv-
ity on the plane and sphere using �nite elements. SIAM J. Sci. Comput., 40(2):A1121�
A1148, 2018. doi:10.1137/16M1109515.

[55] F. Mémoli. Gromov�Wasserstein distances and the metric approach to object matching.
Found. Comput. Math., 11(4):417�487, 2011.

[56] V. Michel. Lectures on Constructive Approximation: Fourier, Spline, and Wavelet
Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, New York, 2013.
doi:10.1007/978-0-8176-8403-7.

[57] C. Moosmüller and A. Cloninger. Linear optimal transport embedding: provable
Wasserstein classi�cation for certain rigid transformations and perturbations. Inf. In-
ference, 12(1):363�389, 2022. doi:10.1093/imaiai/iaac023.

[58] K. Nguyen, T. Ren, H. Nguyen, L. Rout, T. M. Nguyen, and N. Ho. Hierarchical
sliced Wasserstein distance. In The Eleventh International Conference on Learning
Representations, 2023. URL: https://openreview.net/forum?id=CUOaVn6mYEj.

[59] V. P. Palamodov. Distributions and harmonic analysis. In Commutative Harmonic
Analysis III, volume 72 of Encyclopaedia Math. Sci., pages 1�127. Springer, Berlin,
1995.

[60] V. P. Palamodov. Reconstruction from Integral Data. Monographs and Research Notes
in Mathematics. CRC Press, Boca Raton, FL, 2016. doi:10.1201/b19575.

[61] S. R. Park, S. Kolouri, S. Kundu, and G. K. Rohde. The cumulative distribution
transform and linear pattern classi�cation. Appl. Comput. Harmon. Anal., 45(3):616�
641, 2018. doi:10.1016/j.acha.2017.02.002.

36

https://doi.org/10.1109/TIP.2015.2509419
https://openreview.net/forum?id=d8CBRlWNkqH
https://openreview.net/forum?id=d8CBRlWNkqH
https://doi.org/10.1016/S0377-0427(03)00546-6
https://doi.org/10.1007/s00205-010-0330-x
https://doi.org/10.1007/s00205-010-0330-x
https://doi.org/10.1088/0266-5611/27/3/035015
https://doi.org/10.1088/0266-5611/27/3/035015
https://doi.org/10.1137/16M1109515
https://doi.org/10.1007/978-0-8176-8403-7
https://doi.org/10.1093/imaiai/iaac023
https://openreview.net/forum?id=CUOaVn6mYEj
https://doi.org/10.1201/b19575
https://doi.org/10.1016/j.acha.2017.02.002


[62] G. Peyré and M. Cuturi. Computational optimal transport. Found. Trends Mach.
Learn., 11(5-6):355�607, 2019. doi:10.1561/2200000073.

[63] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis. Ap-
plied and Numerical Harmonic Analysis. Birkhäuser, Basel, 2018. doi:10.1007/

978-3-030-04306-3.

[64] D. Potts, J. Prestin, and A. Vollrath. A fast algorithm for nonequispaced Fourier
transforms on the rotation group. Numer. Algorithms, 52:355�384, 2009. doi:10.

1007/s11075-009-9277-0.

[65] D. Potts, G. Steidl, and M. Tasche. Fast algorithms for discrete polynomial transforms.
Math. Comput., 67:1577�1590, 1998. URL: http://www.jstor.org/stable/2584863.

[66] M. Quellmalz. A generalization of the Funk�Radon transform. Inverse Problems,
33(3):035016, 2017. doi:10.1088/1361-6420/33/3/035016.

[67] M. Quellmalz. Reconstructing Functions on the Sphere from Circular Means. Disser-
tation. Universitätsverlag Chemnitz, 2019. URL: https://nbn-resolving.org/urn:
nbn:de:bsz:ch1-qucosa2-384068.

[68] M. Quellmalz. The Funk-Radon transform for hyperplane sections through a common
point. Anal. Math. Phys., 10(38), 2020. doi:10.1007/s13324-020-00383-2.

[69] M. Quellmalz, R. Hielscher, and A. K. Louis. The cone-beam transform and spher-
ical convolution operators. Inverse Problems, 34(10):105006, 2018. doi:10.1088/

1361-6420/aad679.

[70] M. Quellmalz, L. Weissinger, S. Hubmer, and P. D. Erchinger. A frame decomposition
of the Funk-Radon transform. In L. Calatroni, M. Donatelli, S. Morigi, M. Prato, and
M. Santacesaria, editors, Scale Space and Variational Methods in Computer Vision,
SSVM 2023, volume 14009 of Lecture Notes in Computer Science, pages 42�54, Cham,
2023. Springer. doi:10.1007/978-3-031-31975-4_4.

[71] J. Rabin, J. Delon, and Y. Gousseau. Transportation distances on the circle. J. Math.
Imaging Vis., 41:147�167, 2011. doi:10.1007/s10851-011-0284-0.

[72] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its ap-
plication to texture mixing. In A. Bruckstein, B. ter Haar Romeny, A. Bronstein,
and M. Bronstein, editors, Scale Space and Variational Methods in Computer Vision,
SSVM 2011, Lecture Notes in Computer Science, pages 435�446, Berlin, 2012. Springer.
doi:10.1007/978-3-642-24785-9_37.

[73] J. Ren, W. R. Wolf, and X. Mao. Model reduction of traveling-wave problems via
Radon cumulative distribution transform. Phys. Rev. Fluids, 6(8):L082501, 2021. doi:
10.1103/PhysRevFluids.6.L082501.

[74] B. Rubin. Generalized Minkowski-Funk transforms and small denominators on the
sphere. Fract. Calc. Appl. Anal., 3(2):177�203, 2000.

37

https://doi.org/10.1561/2200000073
https://doi.org/10.1007/978-3-030-04306-3
https://doi.org/10.1007/978-3-030-04306-3
https://doi.org/10.1007/s11075-009-9277-0
https://doi.org/10.1007/s11075-009-9277-0
http://www.jstor.org/stable/2584863
https://doi.org/10.1088/1361-6420/33/3/035016
https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-384068
https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-384068
https://doi.org/10.1007/s13324-020-00383-2
https://doi.org/10.1088/1361-6420/aad679
https://doi.org/10.1088/1361-6420/aad679
https://doi.org/10.1007/978-3-031-31975-4_4
https://doi.org/10.1007/s10851-011-0284-0
https://doi.org/10.1007/978-3-642-24785-9_37
https://doi.org/10.1103/PhysRevFluids.6.L082501
https://doi.org/10.1103/PhysRevFluids.6.L082501


[75] B. Rubin. The vertical slice transform on the unit sphere. Fractional Calculus and
Applied Analysis, 22(4):899�917, 2019. doi:10.1515/fca-2019-0049.

[76] B. Rubin. On the spherical slice transform. Anal. Appl., 20(3):483��497, 2022. doi:

10.1142/S021953052150024X.

[77] R. M. Rustamov and S. Majumdar. Intrinsic sliced Wasserstein distances for comparing
collections of probability distributions on manifolds and graphs, 2020. arXiv:2010.

15285.

[78] Y. Salman. Recovering functions de�ned on the unit sphere by integration on a spe-
cial family of sub-spheres. Anal. Math. Phys., 7(2):165�185, 2017. doi:10.1007/

s13324-016-0135-7.

[79] F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress
in Nonlinear Di�erential Equations and Their Applications. Birkhäuser, Cham, 2015.
doi:10.1007/978-3-319-20828-2.

[80] R. Schneider. Functions on a sphere with vanishing integrals over certain subspheres.
J. Math. Anal. Appl., 26:381�384, 1969. doi:10.1016/0022-247X(69)90160-7.

[81] M. Shifat-E-Rabbi, X. Yin, A. H. M. Rubaiyat, S. Li, S. Kolouri, A. Aldroubi, J. M.
Nichols, and G. K. Rohde. Radon cumulative distribution transform subspace modeling
for image classi�cation. J. Math. Imaging Vis., 63:1185�1203, 2021. doi:10.1007/

s10851-021-01052-0.

[82] M. Staib, S. Claici, J. M. Solomon, and S. Jegelka. Parallel streaming Wasserstein
barycenters. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30 (NIPS 2017), 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
253f7b5d921338af34da817c00f42753-Abstract.html.

[83] K.-T. Sturm. The space of spaces: curvature bounds and gradient �ows on the space
of metric measure spaces. arXiv:1208.0434, 2020. arXiv:1208.0434.

[84] M. Theveneau and N. Keriven. Stability of entropic Wasserstein barycenters and ap-
plication to random geometric graphs, 2022. arXiv:2210.10535.

[85] D. Varshalovich, A. Moskalev, and V. Khersonskii. Quantum Theory of Angular Mo-
mentum. World Scienti�c Publishing, Singapore, 1988. doi:10.1142/0270.

[86] T. Vayer, R. Flamary, N. Courty, R. Tavenard, and L. Chapel. Sliced Gromov�
Wasserstein. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, 2019. URL: https://proceedings.neurips.cc/paper_
files/paper/2019/file/a9cc6694dc40736d7a2ec018ea566113-Paper.pdf.

[87] C. Villani. Topics in Optimal Transportation. Number 58 in Graduate Studies in
Mathematics. American Mathematical Society, Providence, 2003. doi:10.1090/gsm/

058.

38

https://doi.org/10.1515/fca-2019-0049
https://doi.org/10.1142/S021953052150024X
https://doi.org/10.1142/S021953052150024X
http://arxiv.org/abs/2010.15285
http://arxiv.org/abs/2010.15285
https://doi.org/10.1007/s13324-016-0135-7
https://doi.org/10.1007/s13324-016-0135-7
https://doi.org/10.1007/978-3-319-20828-2
https://doi.org/10.1016/0022-247X(69)90160-7
https://doi.org/10.1007/s10851-021-01052-0
https://doi.org/10.1007/s10851-021-01052-0
https://proceedings.neurips.cc/paper/2017/hash/253f7b5d921338af34da817c00f42753-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/253f7b5d921338af34da817c00f42753-Abstract.html
http://arxiv.org/abs/1208.0434
http://arxiv.org/abs/2210.10535
https://doi.org/10.1142/0270
https://proceedings.neurips.cc/paper_files/paper/2019/file/a9cc6694dc40736d7a2ec018ea566113-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/a9cc6694dc40736d7a2ec018ea566113-Paper.pdf
https://doi.org/10.1090/gsm/058
https://doi.org/10.1090/gsm/058


[88] H. Weller, P. Browne, C. Budd, and M. Cullen. Mesh adaptation on the sphere using
optimal transport and the numerical solution of a Monge�Ampère type equation. J.
Comput. Physics, 308:102�123, 2016. doi:10.1016/j.jcp.2015.12.018.

[89] G. Zangerl and O. Scherzer. Exact reconstruction in photoacoustic tomography
with circular integrating detectors II: Spherical geometry. Math. Methods Appl. Sci.,
33(15):1771�1782, 2010. doi:10.1002/mma.1266.

39

https://doi.org/10.1016/j.jcp.2015.12.018
https://doi.org/10.1002/mma.1266

	Introduction
	Preliminaries
	Measures and Optimal Transport
	Sphere and Rotation Group

	Vertical Slice Transform
	Vertical Slice Transform of Functions
	Vertical Slice Transform of Measures

	Normalized Semicircle Transform
	Normalized Semicircle Transform of Functions
	Normalized Semicircle Transform of Measures

	Spherical Sliced Wasserstein Distances
	Discrete Spherical Transforms and Inversion
	Discretization and Inversion via Moore–Penrose Pseudoinverse
	Inversion by Variational Approach

	Numerical Results
	Interpolation between Probability Measures
	Classification of Probability Measures

	Proof of Theorem 3.7
	Proof of Theorem 4.3
	Proof of Theorem 4.10

