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Abstract
The double Fourier sphere (DFS) method uses a clever trick to transform a func-
tion defined on the unit sphere to the torus and subsequently approximate it by a
Fourier series, which can be evaluated efficiently via fast Fourier transforms. Similar
approaches have emerged for approximation problems on the disk, the ball, and the
cylinder. In this paper, we introduce a generalized DFS method applicable to various
manifolds, including all the above-mentioned cases and many more, such as the rota-
tion group. This approach consists in transforming a function defined on a manifold
to the torus of the same dimension. We show that the Fourier series of the transformed
function can be transferred back to the manifold, where it converges uniformly to
the original function. In particular, we obtain analytic convergence rates in case of
Hölder-continuous functions on the manifold.

Keywords Double Fourier sphere method · Approximation on manifolds · Fourier
series

Mathematics Subject Classification 41A65 · 42B05 · 42C10 · 65T50

1 Introduction

Approximation on manifolds Throughout the mathematical literature, there is con-
siderable interest in approximating functions defined on manifolds, cf. e.g., [12, 20,
29, 48]. The problem of representing and numerically manipulating such functions
arises in various areas as application including weather prediction [9, 10, 31], protein
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docking [39], active fluids in biology [2], geosciences [21, 24], and astrophysics [22,
43].

Onemethod to tackle this problem is atlas-based; smooth charts relate local patches
on the manifold to Euclidean space, where well-known approximation theory can be
applied. The local approximations are subsequently combined to a global approxima-
tion. In case of overlapping patches, one is faced with the issue of suitably blending
them. Doing so might require the solution of non-linear equations [48], incorpo-
rating tangent space projections [11, 12], or partition-of-unity methods [30]. With
non-overlapping patches, e.g. in computer-aided design, non-linear smoothness con-
ditions or complicated patch-stitching methods [8] might be required.

Another approach to approximating functions on manifolds is the ambient approx-
imation method, cf. e.g., [29, 37]. Here, a function on an embedded submanifold is
extended into some subset of the ambient space, usually a tubular neighborhood of the
manifold [29, sect. 3.1]. The extended function can then be approximated in R

d and
restricted to the submanifold again. ByWhitney’s embedding theorem [28, thm. 6.15],
any manifold can be embedded into R

d for sufficiently large d, thus this approach is
applicable to general manifolds. However, the ambient approximation method entails
the solution of an approximation problem in a space of possibly higher dimension.

One advantage of both of the previouslymentionedmethods is their generality; they
are applicable to any manifold, even if there is little information on the underlying
geometry, see, e.g., [37, 48]. However, often the manifold of interest is actually well-
known and relatively simple. In such situations, approximation bases distinctly tailored
to the manifold can be used instead. As a prominent example, the spherical harmonics
[32] are well-suited for various applications and allow for an efficient computation
[15, 27, 35, 45, 47].
DFS methods The double Fourier sphere (DFS) method represents functions defined
on the sphere by transforming them to a torus and subsequently considering the two-
dimensional Fourier series of the transformed functions. Thus, one can take advantage
of the efficiency of the FFT to approximate spherical functions. The classical DFS
method was originated in 1972 byMerilees [31] and found various applications since,
e.g., [4, 9, 14, 17, 36, 38, 41, 49, 51, 52]. Recently, we have shown analytic approxi-
mation properties of the classical DFS method [33]. Further DFS methods have been
invented for other geometries such as the disk [50], the cylinder [19], the ball [3],
and two-dimensional axisymmetric surfaces [34]. The software Chebfun [16] uses
DFS methods for computing with functions and solving differential equations on the
sphere, the disk, and the ball.

In this paper, we introduce a unified approach to all these DFSmethods and show its
analytic convergence properties. To this end, we define a generalized DFSmethod that
contains as special cases all the above-mentioned manifolds. Starting with a function
f : M → C on a d-dimensional submanifold M of R

d ′ , the fundamental idea is to
apply a coordinate transformationφ : T

d → Mwith certain smoothness and symmetry
properties to obtain a (2π -periodic) function f̃ = f ◦φ defined on the d-dimensional
torus

T
d :=R

d/(2πZ
d).
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In particular, we construct a one-to-one connection between f and the transformed
function f̃ : T

d → C, which admits certain symmetries and can be represented by a
d-dimensional Fourier series.

Due to the imposed symmetry properties of φ, we can relate linear combinations
of the Fourier basis ei〈n,·〉, n ∈ Z

d , on the torus T
d to an orthogonal basis on the

manifold M. Thus, we can approximate the original function f by a series expansion
on M that is based on the Fourier series of f̃ on the torus. Therefore, the numerical
computation and evaluation of this series expansion can be performed efficiently by
employing the FFT.

We prove that our generalized DFS method transfers certain smoothness classes
on the manifold M to the respective ones on the torus. Accordingly, the DFS series
representation of a Hölder-continuous function on M exhibits convergence rates com-
parable to those of Fourier series of functions in the corresponding Hölder space on
the torus T

d . We derive explicit upper bounds on the respective constants, depending
on the smoothness class of the function f , the dimension d of the manifold M, and
the dimension d ′ of its ambient space.

The generalized DFS method combines aspects of the three approximation
approaches mentioned above: While not being atlas-based, it does depend on trans-
forming functions from a manifold to a subset of the Euclidean space, where the
well-known theory of Fourier series can be applied. Our proof of the approximation
rates relies on an extension of f into the ambient space R

d ′ , but the DFS method
itself does not require the construction of such extensions. To avoid the complications
of combining various patches, the method instead depends on a transformation that
does not necessarily capture the topology of the manifold properly. As a consequence,
the basis functions on the manifold might be non-smooth on a set of measure zero,
such as the poles of the sphere. However, the method still ensures fast uniform conver-
gence of the respective series expansion when used to approximate sufficiently smooth
functions.

Note that the generalized DFS method differs from the approach of Fourier con-
tinuation [7, 25], which works in the case of a full-dimensional submanifold with
sufficiently smooth boundary. Then the function is extended to the surrounding of the
manifold such that this continuation is smooth with compact support and can therefore
be approximated well by a Fourier series on a larger, rectangular domain.
Outline of this paper In Sect. 2, we define Hölder spaces and related function spaces
on the torus and embedded submanifolds. In Sect. 3, we introduce the generalized DFS
method and present some of its basic properties. Section4 is dedicated to proving that
the generalized DFS method preserves Hölder spaces and to providing upper bounds
on the corresponding semi-norms. In Sect. 5, we develop the series approximation of
functions on a manifold via the DFSmethod. Section5.1 is concerned with the Fourier
series of DFS functions and the corresponding series on the manifold, for which we
need to incorporate considerations on the symmetry properties of DFS functions. In
Sect. 5.2, we study sufficient conditions for the absolute convergence of the previously
introduced series and show bounds on the speed of convergence. Section6 considers
various manifolds to which the DFS method can be applied. Besides the well-known
cases of the disk, the sphere, the cylinder, and the ball, we also consider the rotation
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group, higher-dimensional spheres and balls, as well as products of manifolds that
themselves admit DFS methods.

2 Function spaces on embeddedmanifolds and on the torus

In this section, we give an overview of the notation used throughout the paper. Let
d, d ′ ∈ N. We write [d]:={1, 2, ..., d}. For x ∈ C

d , we denote by

|x| :=
d∑

j=1

∣∣x j
∣∣ and ‖x‖ :=

√√√√
d∑

j=1

∣∣x j
∣∣2

the 1-norm and the Euclidean norm, respectively. For k ∈ N0, we set

Bd
k :={β ∈ N

d
0 | |β| ≤ k}.

Definition 2.1 (Function spaces in R
d ). Let k ∈ N0 and let U ⊂ R

d and V ⊂ C
d ′ ,

whereU is assumed to be open if k > 0. We define the differentiability space of order
k by

Ck(U , V )

:=
{
f : U → V

∣∣∣∣∣
Dβ f exists and is bounded

and continuous for all β ∈ Bd
k

}

with the norm

‖ f ‖Ck (U ,V ) := max
β∈Bd

k

sup
x∈U

∥∥Dβ f (x)
∥∥.

For 0 < α < 1, the (k, α)-Hölder space is

Ck,α(U , V )

:=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ Ck(U , V )

∣∣∣∣∣∣∣∣
| f |Ck,α(U ,V ) := sup

x, y∈U , x �= y
β∈Bd

k , |β|=k

∥∥Dβ f (x)− Dβ f ( y)
∥∥

‖x − y‖α <∞

⎫
⎪⎪⎬

⎪⎪⎭

with the norm

‖ f ‖Ck,α(U ,V ) := ‖ f ‖Ck (U ,V ) + | f |Ck,α(U ,V ) .

Finally, we set the Lipschitz space of order k

Lipk(U , V )
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:=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ Ck(U , V )

∣∣∣∣∣∣∣∣
| f |Lipk (U ,V ) := sup

x, y∈U , x �= y
β∈Bd

k , |β|=k

∥∥Dβ f (x)− Dβ f ( y)
∥∥

‖x − y‖ <∞

⎫
⎪⎪⎬

⎪⎪⎭

with the norm

‖ f ‖Lipk (U ,V ) := ‖ f ‖Ck (U ,V ) + | f |Lipk (U ,V ) .

All three spaces, equipped with the given norms, are Banach spaces. We denote the
space of smooth functions with bounded partial derivatives by

C∞(U , V ):=
⋂

k∈N0

Ck(U , V ).

The corresponding function spaces on the torus T
d = R

d/(2πZ
d) are obtained by

restricting the function spaces on R
d to 2π -periodic functions:

Definition 2.2 (Function spaces on T
d ). Let X be any of the function spaces Ck , Ck,α ,

Lipk or C∞ from Definition 2.1, and let V ⊂ C
d ′ . We define the respective function

space on the torus T
d by

X (Td , V ):={ f ∈ X (Rd , V ) | f (2πe j + ·) = f (·) for all j ∈ [d]},

where e j denotes the j th unit vector for j ∈ [d].
When considering scalar-valued functions in either of the previous definitions, i.e.,

when we have V = C, then V is usually omitted.

Definition 2.3 (Function spaces on embedded manifolds). Let M ⊂ R
d ′ be a smooth

embedded submanifold with or without corners. For f : M → C, we call f ∗ : U → C

an extension of f ifU is an open set inR
d ′ withM ⊂ U ⊂ R

d ′ andwe have f ∗
∣∣
M
= f .

For k ∈ N0, we call f ∗ a Ck-extension of f , if it is an extension of f and f ∗ ∈ Ck(U ).
Then, the Ck-extension seminorm of f ∗ is

∣∣ f ∗
∣∣∗Ck (M)

:= sup
β∈Bd′

k

∥∥Dβ f ∗
∥∥C(M)

. (1)

We define the differentiability space of order k on M by

Ck(M):=

⎧
⎪⎨

⎪⎩
f : M → C

∣∣∣∣∣∣∣
‖ f ‖Ck (M) := inf

Ck -extensions
f ∗ of f

∣∣ f ∗
∣∣∗Ck (M)

<∞

⎫
⎪⎬

⎪⎭
(2)

and write C∞(M):=⋂
k∈N0

Ck(M).
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Analogously, for 0 < α < 1, we call f ∗ a Ck,α-extension of f , if it is an extension
of f and f ∗ ∈ Ck,α(U ). The Ck,α-extension seminorm is then given by

∣∣ f ∗
∣∣∗Ck,α(M)

:= ∣∣ f ∗
∣∣∗Ck (M)

+ sup
ξ ,η∈M, ξ �=η

β∈Bd′
k , |β|=k

∥∥Dβ f ∗(ξ)− Dβ f ∗(η)
∥∥

‖ξ − η‖α . (3)

Finally, we define the (k, α)-Hölder space on M by

Ck,α(M):=

⎧
⎪⎨

⎪⎩
f : M → C

∣∣∣∣∣∣∣
‖ f ‖Ck,α(M) := inf

Ck,α-extensions
f ∗ of f

∣∣ f ∗
∣∣∗Ck,α(M)

<∞

⎫
⎪⎬

⎪⎭
. (4)

3 The generalized DFSmethod

We define a generalization of the classical DFS method to other manifolds in a way
that covers generalizations from the literature, such as ball and cylinder, and yields
results analogous to those we presented in [33] for the sphere.

The classical double Fourier sphere (DFS) method transforms a function defined
on the sphere S

2:={x ∈ R
3 | ‖x‖ = 1} to the torus T

2 and subsequently represents
it via a Fourier series. Thereby, a function f : S

2 → C is concatenated with the DFS
coordinate transform

φS2 : T
2 → S

2, (x1, x2) �→ (cos x1 sin x2, sin x1 sin x2, cos x2),

which covers the sphere twice. The transform φS2 is smooth, and the transformed
function f ◦ φS2 has a convergent Fourier series for sufficiently smooth f , see [33].
Furthermore, we have φS2(x1, x2) = φS2(x1 + π,−x2) for (x1, x2) ∈ T

2, so that the
transformed function is block-mirror-centrosymmetric (BMC), cf. [49, sect. 2.2], as
illustrated in Fig. 1.

Because the restriction of φS2 to (−π, π ] × (0, π) ∪ {(0, 0), (0, π)} is bijective,
there is a one-to-one connection between BMC-functions on the torus and functions
on the sphere without its poles. This makes it possible to relate the Fourier expansion
of a transformed function f ◦ φS2 to a series expansion of f defined directly on the
sphere, see [33].

The core concept of our generalization of this method is to transform a function
defined on a d-dimensional manifold to a function on the torus T

d . The transformed
function can then be represented via a Fourier series, which allows for fast numerical
computations by the FFT on the torus. To ensure similar properties as in the classical
case, we impose smoothness and symmetry assumptions on the transform.

Definition 3.1 Let d, d ′ ∈ N and let M ⊂ R
d ′ be a d-dimensional smooth embedded

submanifold with or without corners. We call a surjective function

φ : T
d → M
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Fig. 1 Left: Topographic data f (ξ) of the earth. Right: DFS function f ◦ φ
S2 (x)

a generalizedDFS transform ofM if it fulfills the following smoothness and symmetry
assumptions: We say φ has the smoothness properties of a DFS transform if φ ∈
C∞(Td) and for all μ ∈ N

d
0 and l ∈ [d ′], it holds that

∥∥Dμφl
∥∥C(Td )

≤ 1. (5)

We say that φ has the symmetry properties of a DFS transform if, firstly, for some
integer p ∈ N0, shift vectors Si ∈ {0, π}d , i ∈ [p], and reflection maps

Mi : T
d → T

d , Mi (x):=Mi x, i ∈ [p], (6)

associated to some diagonal matrices Mi ∈ Z
d×d with diagonal entries in {−1, 1}, the

map φ is invariant under the symmetry functions

si : T
d → T

d , si (x):=Si +Mi (x), i ∈ [p], (7)

i.e., φ ◦ s I = φ for all I ⊂ [p], where the repeated composition of functions is written
as

s{i1, i2,...}:= ◦i∈{i1, i2,...} si :=si1 ◦
(
si2 ◦ ...

)
, {i1, i2, ...} ⊂ [p],

with the convention that the empty composition is the identity. Secondly, for the
symmetry properties to be satisfied, there must exist a rectangular set D ⊂ T

d of
representatives of T

d/∼, where ∼ is the equivalence relation x ∼ y ⇐⇒ y ∈
{s I (x) | I ⊂ [p]}, and disjoint measurable subsets D1, D2 ⊂ D such that

(i) D◦ = D◦1 and φ[D2] is closed,
(ii) the restriction φ

∣∣
D1∪̇D2

: D1∪̇D2 → M is a bijection on the disjoint union

D1∪̇D2,
(iii) the inverse

(
φ
∣∣
D1

)−1 : M \ φ[D2] → D1 is continuous, and
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(iv) the Jacobian ∇φ(x) has full rank for all x ∈ D◦1.
The set D being “rectangular” is to be understood as it being the Cartesian product of
connected subsets of T

1, i.e., it can be identified with a rectangle in R
d . We always

assume p to be chosen minimally and call it the symmetry number of φ.
For f : M → C, we define the generalized DFS function (with respect to φ) of f

by

f̃ : T
d → M, f̃ := f ◦ φ.

The matrix–vector product (6) of Mi and x ∈ T
d can be performed with any

representative of x in R
d since the matrix Mi only has integer entries. The addition

of shifts Si and the reflections Mi are, as functions on the torus, self-inverse and
commute, so we do not need to consider the order of compositions. We have s I (·) =∑

i∈I Si + MI (·), and ∼ as defined above is indeed an equivalence relation on T
d .

Because D is a set of representatives of T
d/∼, properties (i) and (ii) together with the

invariance assumption on φ imply that the symmetry functions si , i ∈ [p], are unique
up to compositions.

Remark 3.2 We consider the class of smooth submanifolds with corners because the
finite Cartesian product of smooth manifolds with corners is again a smooth manifold
with corners, whereas the same is not true for smoothmanifoldswith boundary, as their
product might lack a smooth structure in the right sense, cf. [28, p. 29]. Thus, choosing
this class of manifolds allows us to generate DFS methods on product manifolds, such
as the cylinder, in Sect. 6.4. As the set of corner points or the boundary of suchmanifold
might be empty, cf. [28, p. 26 & p. 417], we usually write “with or without corners”.

Remark 3.3 The bound in (5) is somewhat arbitrary and arises from the specific appli-
cations. We could instead allow for any uniform bound on the partial derivatives, i.e.,
consider φ̃ ∈ C∞(Td) with φ̃[Td ] = M and some C > 0 such that ‖Dμφ̃l‖C(Td ) ≤ C
for all μ ∈ N

d
0 and l ∈ [d ′]. The results in this paper can then be applied to a function

f : M → C by transforming it to the scaled manifold C−1M.

The next lemma provides some basic properties of generalized DFS transforms: as
φ is surjective, a right inverse always exists and can be chosen canonically by (ii) in
Definition 3.1. This inverse has certain regularity properties due to (iii) and (iv).

Lemma 3.4 Let M ⊂ R
d ′ be a smooth embedded submanifold with or without corners

that has generalized DFS transform φ : T
d → M. Let p, D, D1, D2, and si , i ∈ [p],

be as in Definition 3.1. Then φ evenly covers φ[D◦1] in the sense that

s I (D◦1) ∩ s J (D◦1) = ∅, I , J ⊂ [p] with I �= J . (8)

Furthermore,φ[D2] andM\φ[D◦1] havemeasure zero inM andT
d\(⋃I⊂[p] s I (D◦1)

)

has measure zero in T
d . The inverse of φ

∣∣
D1∪̇D2

is continuous on M\φ[D2] and
smooth in the manifold interior of M without φ[D2], i.e., for any ξ ∈ M\φ[D2]
in the manifold interior of M, there exists a neighborhood U of ξ in M such that
(φ
∣∣
D1∪̇D2

)−1
∣∣
U ∈ C∞(U ). We call φ[D2] the set of singularities.
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Proof For (8), one can show that s I (x) �= x for all x ∈ D◦ and non-empty I ⊂ [p].
Furthermore, for x, y ∈ D with s I (x) = y for some I ⊂ [p], we must have x = y,
as D is a set of representatives of T

d/∼, with ∼ as in Definition 3.1. Thus, we have
s I (D◦) ∩ D◦ = ∅ for all I ⊂ [p]. Clearly, for any I ⊂ [p] the set s I (D) is also a set
of representatives of T

d/∼ and, since s I is a diffeomorphism, s I (D◦) is open. Thus,
we can use the same arguments to show that s I (D◦)∩ s J (D◦) = ∅ for all I , J ⊂ [p]
with I �= J , this is (8).

The boundary of a rectangular subset of T
d is a set of measure zero in T

d . Thus, (i)
in Definition 3.1 implies that D2 ⊂ D \ D◦1 ⊂ ∂D is a set of measure zero in T

d .
In particular, φ[D2] and M\φ[D◦1] ⊂ φ[∂D] have measure zero in M since φ is
smooth, cf. [28, thm. 6.9]. Furthermore, we have for all I , J ⊂ [p] with I �= J that
s I (D◦1) ⊂ s I (D) and s J (D◦1)∩ s I (D) = ∅, where we used (8) and the fact that s I (D)

and s J (D) are rectangular. Since D is a set of representatives of T
d/∼, we obtain that

T
d \

( ⋃

I⊂[p]
s I (D◦1)

)
=

⋃

I⊂[p]

(
s I (D) \ s I (D◦1)

) ⊂
⋃

I⊂[p]
s I (∂D),

are sets of measure zero in T
d .

The continuity of
(
φ
∣∣
D1∪̇D2

)−1 in M\φ[D2] follows immediately form (ii) and (iii)
in Definition 3.1. For the smoothness in the manifold interior, we observe that, by (i),
the set M \φ[D2] is open in M and thus a smooth submanifold with boundary of R

d ′ .
Since homeomorphisms preserve manifold boundaries, (iii) implies that φ[D◦1] is the
manifold interior of M\φ[D2], in particular φ[D◦1] is a smooth submanifold without
boundary of R

d ′ . Similarly D◦1 is open in T
d and thus a smooth manifold without

boundary. By (iv), ∇φ(x) has full rank for all x ∈ D◦1, thus we can apply the inverse
function theorem [28, thm. 4.5] toφ

∣∣
D◦1
.We obtain thatφ

∣∣
D◦1

is a local diffeomorphism,

in particular the inverse of φ
∣∣
D◦1

is smooth, in the sense that coordinate representations

are infinitely differentiable, and can thus be extended to a function defined on an open
neighborhood of φ[D◦1] ⊂ R

d ′ that has continuous partial derivatives of all orders.

However, these derivatives might be unbounded, thus we obtain
(
φ
∣∣
D◦1

)−1 ∈ C∞ only

locally, cf. Definitions 2.1 and 2.3. ��

As in the special case of the classical DFS method, the symmetry properties of the
generalized method impose symmetry upon the DFS functions. Furthermore, func-
tions on the torus that are invariant under the DFS symmetry functions correspond to
functions well-defined on the manifold without the set of singularities. This relation-
ship is formalized in the following lemma, which will later allow us to transfer the
series approximation of transformed functions on the torus back to the manifold.

Lemma 3.5 Let φ : T
d → M be a generalized DFS transform with symmetry number

p and let D1, D2, and si , i ∈ [p], be as in Definition 3.1. We call some function
g : T

d → C aBMC function (of type φ) if it is invariant under the symmetry functions
si , i.e., g = g ◦ si for all i ∈ [p]. For any f : M → C, its DFS function f̃ is a BMC
function. Conversely, if g : T

d → C is a BMC function, then there exists f : M → C
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such that

f̃ (x) = g(x), x ∈
⋃

I⊂[p]
s I [D1].

All possible choices of such f coincide on M\φ[D2]. Setting f :=g ◦ (φ
∣∣
D1∪̇D2

)−1

yields the unique f that also satisfies f̃ (x) = g(x) for x ∈ D2.

Proof ByDefinition 3.1, we know that φ is si -invariant for any i ∈ [p]. Thus, any DFS
function is a BMC function. By (ii) in Definition 3.1, the transform φ bijectively maps
D1∪̇D2 to M. In particular, the function f :=g ◦ (φ

∣∣
D1∪̇D2

)−1 is well-defined and it is
clearly the unique choice of functionwhoseDFS function coincides with g on D1∪̇D2.
If g is a BMC function both f̃ and g are invariant under the symmetry functions and
thus the equality extends to ∪I⊂[p]s I [D1∪̇D2]. Inversely, if f̃1(x) = g(x) = f̃2(x)

for x ∈ D1, then we have for ξ ∈ φ[D1] = M\φ[D2] that

f1(ξ) = ( f1 ◦ φ)
(
(φ
∣∣
D1

)−1(ξ)
) = ( f2 ◦ φ)

(
(φ
∣∣
D1

)−1(ξ)
) = f2(ξ).

��

We need the following proposition, whose proof can be found in [33, p. 7].

Proposition 3.6 Let U ⊂ R
d be an open set, V ⊂ U, and g : U → C. If g is bounded

and Lipschitz-continuous on V , then g is α-Hölder continuous on V for all 0 < α < 1
with

|g|Cα(V ) ≤ max
{|g|Lip(V ) , 2 ‖g‖C(V )

}
. (9)

Furthermore, if V is convex and g ∈ C1(U ), then g is Lipschitz-continuous on V with

|g|Lip(V ) ≤ ‖∇g‖C(U ,Cd ) . (10)

Utilizing the smoothness (5) of the generalized DFS transform, we can immediately
conclude the following properties.

Corollary 3.7 Letφ : T
d → MbeageneralizedDFS transformof some smooth embed-

ded submanifold with or without corners M of R
d ′ . Then, for all μ ∈ N

d
0 and l ∈ [d ′]

we have Dμφl ∈ Lip(Td) and Dμφl ∈ Cα(Td) with

∣∣Dμφl
∣∣
Lip(Td )

≤ √d, (11)
∣∣Dμφl

∣∣Cα(Td )
≤ 2
√
d. (12)
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4 Hölder continuity of DFS functions

In this section, we show that the DFS transform preserves Hölder-smoothness. More
precisely, it maps the function spaces Ck+1(M) and Ck,α(M) into the Hölder space
Ck,α(Td). We prove respective norm bounds. In Sect. 5, we will utilize these findings
to obtain convergence rates of the series representation of the DFS function. The
results in this section only require the smoothness (5) of the DFS transform and are
straightforward generalizations of the work [33, sect. 4] on the classical DFS method.

The following technical lemma,which is proven inAppendixA, bounds the number
of summands in the multivariate chain rule for higher partial derivatives of vector-
valued functions.

Lemma 4.1 For d, d ′ ∈ N and k ∈ N0, let h : U → V and g : V → C be k-times
continuously differentiable functions defined on some open setsU ⊂ R

d and V ⊂ R
d ′ ,

respectively. Then, for any β ∈ Bd
k , we have

Dβ(g ◦ h) =
n∑

i=1

(
Dγ i g ◦ h)

mi∏

j=1
Dμi j h�i j (13)

for some constants depending on β, which fulfill

n ∈ N0, n ≤ (k+d ′−1)!
(d ′−1)! , (14)

mi ∈ N0, mi ≤ k, i ∈ [n], (15)

γ i ∈ Bd ′
k , i ∈ [n], (16)

μi j ∈ Bd
k , i ∈ [n], j ∈ [mi ], (17)

�i j ∈ [d ′], i ∈ [n], j ∈ [mi ]. (18)

Theorem 4.2 Let M ⊂ R
d ′ be a smooth embedded submanifold with or without

corners that admits a generalized DFS transform φ : T
d → M. For k ∈ N0 and

f ∈ Ck+1(M), the generalized DFS function f̃ = f ◦ φ is in Ck,α(Td) for all
0 < α < 1. If k + d ′ ≥ 2, we have

∣∣ f̃
∣∣Ck,α(Td )

≤ √d
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) , (19)

and if k + d ′ = 1, then
∣∣ f̃
∣∣Cα(T1)

≤ 2 ‖ f ‖C1(M). Furthermore, it holds that f̃ ∈
Ck+1(Td) with

∥∥ f̃
∥∥Ck+1(Td )

≤ (k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) . (20)
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Proof We first prove

∥∥Dβ f̃
∥∥C(Rd )

≤ (k′ + d ′ − 1)!
(d ′ − 1)! ‖ f ‖Ck′ (M)

(21)

for all k′ ∈ N0 with k′ ≤ k + 1 and all β ∈ Bd
k′ , which then also implies (20).

Let f ∗ ∈ Ck′(U ) be a Ck′-extension of f , where U ⊂ M is some open set as in
Definition 2.3. Since φ satisfies φ[Rd ] = M ⊂ U , it can be considered as a function
φ : R

d → U . Thus, we can apply Lemma 4.1 to f̃ = f ∗ ◦ φ and obtain f̃ ∈ Ck′(Rd)

and

Dβ f̃ = Dβ( f ∗ ◦ φ) =
n∑

i=1

(
Dγ i f ∗ ◦ φ

) mi∏

j=1
Dμi j φ�i j

for some constants satisfying (14)–(18) for k′. This implies that for all x ∈ R
d

∣∣Dβ f̃ (x)
∣∣ ≤

n∑

i=1

∣∣ (Dγ i f ∗ ◦ φ
)
(x)

∣∣
mi∏

j=1

∣∣Dμi j φ�i j (x)
∣∣

≤
(1),(5)

n
∣∣ f ∗

∣∣∗Ck′ (M)
≤

(14)

(k′ + d ′ − 1)!
(d ′ − 1)!

∣∣ f ∗
∣∣∗Ck′ (M)

.

Since this bound holds for any Ck′-extension f ∗ of f , we can replace | f ∗|∗Ck′ (M)
by

‖ f ‖Ck′ (M)
, see (2), on the right hand side. This proves (21). Next, we show

∣∣Dβ f̃
∣∣
Lip(Rd )

≤ √d
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) (22)

for all β ∈ Bd
k . We know that Dβ f̃ is continuously differentiable and by (21) for

k′ = k + 1, we obtain

∥∥∇(Dβ f̃
)∥∥C(Rd ,Rd )

= sup
x∈Rd

√√√√
d∑

p=1

∣∣(Dep+β f̃
)
(x)

∣∣2

≤
√

d

(
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M)

)2

= √d
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) .

Together with (10) this proves (22). Combining (21) for k′ = k with (22) and applying
(9), we conclude for all β ∈ Bd

k that Dβ f̃ is α-Hölder continuous. We obtain

∣∣Dβ f̃
∣∣Cα(Rd )

≤ max
{∣∣Dβ f̃

∣∣
Lip(Rd )

, 2
∥∥Dβ f̃

∥∥C(Rd )

}

≤ max

{√
d

(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) , 2

(k + d ′ − 1)!
(d ′ − 1)! ‖ f ‖Ck (M)

}
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≤ max

{√
d,

2

k + d ′

}
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) ,

where we used that ‖ f ‖Ck (M) ≤ ‖ f ‖Ck+1(M). Since the right hand side is independent

of β, it follows that f̃ is (k, α)-Hölder continuous with

∣∣ f̃
∣∣Ck,α(Td )

= sup
β∈Bd

k ,|β|=k

∣∣Dβ f̃
∣∣Cα(Rd )

≤ max

{√
d,

2

k + d ′

}
(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck+1(M) .

(23)

We note that
√
d ≥ 2/(k + d ′) holds if k+ d ′ ≥ 2 and otherwise we have d = d ′ = 1

and k = 0. Thus, (23) proves the theorem. ��
Theorem 4.3 Let M ⊂ R

d ′ be a smooth embedded submanifold with or without cor-
ners that admits a generalized φ : T

d → M. For k ∈ N, 0 < α < 1, and f ∈ Ck,α(M),
the generalized DFS function f̃ = f ◦ φ is in Ck,α(Td). If k + d ′ ≥ 2, we have

∣∣ f̃
∣∣Ck,α(Td )

≤ 2
√
d

(k + d ′)!
(d ′ − 1)! ‖ f ‖Ck,α(M) , (24)

and if k + d ′ = 1, then
∣∣ f̃
∣∣Cα(T1)

≤ ‖ f ‖Cα(M).

Proof Let f ∗ ∈ Ck,α(U ) be a Ck,α-extension of f . We first prove

∣∣Dγ f ∗ ◦ φ
∣∣Cα(Td )

≤ max
{√

d d ′, 2
} ∣∣ f ∗

∣∣∗Ck,α(M)
(25)

for all γ ∈ Bd ′
k . For |γ | = k this follows from the definition of the extension seminorm

since we have for all x, y ∈ R
d that

∣∣(Dγ f ∗ ◦ φ
)
(x)− (

Dγ f ∗ ◦ φ
)
( y)

∣∣ ≤
(3)

∣∣ f ∗
∣∣∗Ck,α(M)

‖φ(x)− φ( y)‖α

≤ ∣∣ f ∗
∣∣∗Ck,α(M)

( d ′∑

�=1
|φ�(x)− φ�( y)|2

) α
2

≤
(11)

∣∣ f ∗
∣∣∗Ck,α(M)

(
d d ′ ‖x − y‖2

) α
2

≤ ∣∣ f ∗
∣∣∗Ck,α(M)

√
d d ′ ‖x − y‖α .

If d = d ′ = 1 and k = 0, this shows the claim | f̃ |Cα(T1) ≤ ‖ f ‖Cα(M) in the case
k + d ′ = 1. For |γ | < k, we have Dγ f ∗ ∈ C1(U ) and thus Dγ f ∗ is a C1 extension of
the restriction (Dγ f ∗)

∣∣
M

and

∥∥(Dγ f ∗
) ∣∣

M

∥∥C1(M)
≤ ∣∣Dγ f ∗

∣∣∗C1(M)
= max

�∈[d ′]
∥∥De� (Dγ f ∗

) ∥∥C(M)
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≤ max
γ̃∈Bd′

k

∥∥Dγ̃ f ∗
∥∥C(M)

= ∣∣ f ∗
∣∣∗Ck (M)

≤ ∣∣ f ∗
∣∣∗Ck,α(M)

.

By (23), this implies

∣∣Dγ f ∗ ◦ φ
∣∣Cα(Td )

≤ max

{√
d,

2

d ′

}
d ′!

(d ′ − 1)!
∣∣ f ∗

∣∣∗Ck,α(M)
,

which shows (25). As in the proof of Theorem 4.2, we apply Lemma 4.1 to conclude
that f̃ ∈ Ck(Td) and for β ∈ Bd

k we obtain

Dβ f̃ = Dβ
(
f ∗ ◦ φ

) =
n∑

i=1

(
Dγ i f ∗ ◦ φ

) mi∏

j=1
Dμi j φ�i j

for some constants satisfying (14)–(18). For x, y ∈ R
d , we apply the triangle inequal-

ity and get

∣∣Dβ f̃ (x)− Dβ f̃ ( y)
∣∣ ≤

∑n

i=1
∣∣ (Dγ i f ∗ ◦ φ

)
(x)− (

Dγ i f ∗ ◦ φ
)
( y)

∣∣ ∏mi

j=1
∣∣Dμi j φ�i j (x)

∣∣
︸ ︷︷ ︸

=:A
+
∑n

i=1
∣∣ (Dγ i f ∗ ◦ φ

)
( y)

∣∣
∣∣∣
∏mi

j=1 D
μi j φ�i j (x)−

∏mi

j=1 D
μi j φ�i j ( y)

∣∣∣
︸ ︷︷ ︸

=:B

.

The first sum can be estimated as

A ≤
(5)

n∑

i=1

∣∣ (Dγ i f ∗ ◦ φ
)
(x)− (

Dγ i f ∗ ◦ φ
)
( y)

∣∣

≤
(25)

n∑

i=1
max

{√
d d ′, 2

} ∣∣ f ∗
∣∣∗Ck,α(M)

‖x − y‖α

≤
(14)

(k + d ′ − 1)!
(d ′ − 1)! max

{√
d d ′, 2

} ∣∣ f ∗
∣∣∗Ck,α(M)

‖x − y‖α .

Furthermore, we use (3) to bound the second sum by

B ≤
n∑

i=1

∣∣ f ∗
∣∣∗Ck,α(M)

∣∣∣
mi∏

j=1
Dμi j φ�i j (x)−

mi∏

j=1
Dμi j φ�i j ( y)

∣∣∣.

By a telescoping sum, we rewrite the last sum as

B ≤
n∑

i=1

∣∣ f ∗
∣∣∗Ck,α(M)

∣∣∣
mi∑

r=1

(
Dμir φ�ir (x)− Dμir φ�ir ( y)

) r−1∏

j=1
Dμi j φ�i j (x)

mi∏

j=r+1
Dμi j φ�i j ( y)

∣∣∣.
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Thus, we have

B ≤
(5)

n∑

i=1

mi∑

r=1

∣∣ f ∗
∣∣∗Ck,α(M)

∣∣Dμir φ�ir (x)− Dμir φ�ir ( y)
∣∣

≤
(12)

n∑

i=1

mi∑

r=1

∣∣ f ∗
∣∣∗Ck,α(M)

2
√
d ‖x − y‖α .

Finally, the bounds (14) and (15) yield

B ≤ (k + d ′ − 1)!
(d ′ − 1)! 2k

√
d
∣∣ f ∗

∣∣∗Ck,α(M)
‖x − y‖α .

We combine the estimates on A and B to obtain

∣∣Dβ f̃ (x)− Dβ f̃ ( y)
∣∣ ≤ (k + d ′ − 1)!

(d ′ − 1)!
(
2k
√
d +max

{√
d d ′, 2

}) ∣∣ f ∗
∣∣∗Ck,α(M)

‖x − y‖α

≤ (k + d ′)!
(d ′ − 1)! 2

√
d
∣∣ f ∗

∣∣∗Ck,α(M)
‖x − y‖α .

The last equation holds for arbitrary x, y ∈ R
d and β ∈ Bd

k , thus we have

∣∣ f̃
∣∣Ck,α(Td )

≤ 2
√
d

(k + d ′)!
(d ′ − 1)!

∣∣ f ∗
∣∣∗Ck,α(M)

.

Since this holds independently of the choice of Ck,α-extension f ∗ of f , we can take
the infimum over all such extensions. By the definition of the Ck,α(M)-norm in (4),
this yields (24). ��
Remark 4.4 For the special case of the sphere M = S

2, [33, thm. 4.3] states that
| f̃ |Ck,α(T2) ≤ (k + 3)! ‖ f ‖Ck+1(S2) for f ∈ Ck+1(S2). The corresponding result (19)

in this paper improves the estimate by the factor
√
2. On the other hand [33, thm. 4.5]

states that | f̃ |Ck,α(T2) ≤ (k + 3)! ‖ f ‖Ck,α(S2) for f ∈ Ck,α(S2). Comparing this with

(24) for the sphere, we observe that the new general estimate is larger by a factor
√
2.

This is due to (12) not being optimal for the spherical DFS transform, in fact [33, lem.
4.2] proves that the respective estimate in this special case.

5 Series expansions with the DFSmethod

We propose a series representation of functions with the generalized DFS method. In
Sect. 5.1, we explore properties of the Fourier series of DFS functions and define an
analogue series expansion on the manifold. In Sect. 5.2, we combine our findings from
Theorems 4.2 and 4.3 with results from multi-dimensional Fourier analysis to show
pointwise and uniform convergence of the Fourier series of DFS functions.
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Throughout this section, let M ⊂ R
d ′ be an d-dimensional smooth embed-

ded submanifold with or without corners that admits a generalized DFS transform
φ : T

d → M. We write f̃ = f ◦ φ : T
d → C for the generalized DFS function of a

function f : M → C.

5.1 Fourier series and the DFSmethod

Let L2(T
d) denote the Hilbert space of square-integrable complex-valued functions

on T
d that is equipped with the inner product

〈g, h〉L2(Td ) :=(2π)−d
∫

[−π,π ]d
g(x) h(x) dx, g, h ∈ L2(T

d)

and the induced norm ‖g‖L2(Td ) := 〈g, g〉1/2L2(Td )
. As the complex exponentials ei〈n,·〉,

n ∈ Z
d , form an orthonormal basis therein, we define the respective Fourier expansion.

Definition 5.1 Let g ∈ L2(T
d) and n ∈ Z

d . We define the nth Fourier coefficient of
g by

cn(g):=
〈
g, ei〈n,·〉〉

L2(Td )
= (2π)−d

∫

[−π,π ]d
g(x) e−i〈n,x〉 dx.

Let�h, h ∈ N, be an expanding sequence of bounded sets that exhaustsZ
d .We define

the hth partial Fourier sum of g by

F�h g(x):=
∑

n∈�h

cn(g) e
i〈n,x〉, x ∈ T

d ,

and theFourier series of g byFg:= limh→∞ F�h g. This limit iswell-defined in L2(T
d)

for any choice of expanding sequence and we have Fg = g in L2(T
d). We call a

multi-series
∑

n∈Zd an convergent whenever for all expanding sequences �h, h ∈ N,
of bounded sets exhausting Z

d the partial sums
∑

n∈�h
an converge as h → ∞, cf.

[26, p. 6].

The generalized DFS method represents a function f : M → C via the Fourier
series of its DFS function f̃ : T

d → C, i.e.,

F f̃ (x) =
∑

n∈Zd

cn( f̃ ) e
i〈n,x〉, x ∈ T

d . (26)

Ultimately, we are interested in representing the function f , not its DFS function f̃ .
Thus, the question whether we can relate the Fourier series (26) to a series defined on
M arises naturally. Choosing D1 and D2 as in Definition 3.1, (ii), we observe that
the restriction of φ to D1 ∪ D2 is bijective, so we could just apply its inverse to the
basis functions ei〈n,·〉, n ∈ Z

d . However, this would yield some redundancies in the
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expansion since ei〈n,·〉 is in general not a BMC function, cf. Lemma 3.5. We account
for this by defining an orthogonal basis of BMC functions in L2(Td) consisting of
suitable linear combinations of the functions ei〈n,·〉. To this end, we will also require
a suitable subset of the indices in Z

d . This way, we can obtain a respective basis on
the manifold M in the following.

From Definition 3.1, we recall the symmetry number p, the shift vectors Si , the
reflection maps Mi , and the symmetry functions si defined in (7). Note that the func-
tions Mi are well-defined on Z

d by the matrix multiplication in (6). For � ⊂ Z
d , we

set

M(�):=
{
n ∈ Z

d | MI (n) =
(
◦i∈IMi

)
(n) ∈ � for some I ⊂ [p]

}
,

and M(n):=M({n}) for n ∈ Z
d . For I ⊂ [p], we introduce the map

NI : Z
d → Z, NI (n):=

∑

i∈I

∑

j∈[d],Sij=π

n j

and we write Ni (n):=N{i}(n). For n ∈ Z
d , we define

rn,n:=
{
1, NI (n) is even for all I ⊂ [p] with MI (n) = n

0, NI (n) is odd for some I ⊂ [p] with MI (n) = n.
(27)

Note that if the reflections Mi act on pairwise disjoint sets of variables, then for any
I ⊂ [p], we have MI (n) = n if and only if Mi (n) = n for all i ∈ I . In this situation,
we therefore only need to check the parity of Ni (n) for all i ∈ [p] to determine rn,n.
For J ⊂ [p] and m:=MJ (n), we define

rn,m:=(−1)NJ (n) rn,n. (28)

The next lemma will show that rn,m is thus well-defined for m ∈M(n). For I , J ⊂
[p], we use #I to denote the cardinality of I and we define the symmetric difference

I�J := (I \ J ) ∪̇ (J \ I ) .

Lemma 5.2 Let n ∈ Z
d and m ∈M(n). It holds that

n#:=#{I ⊂ [p] | MI (n) = n} = #{I ⊂ [p] | MI (n) = m} (29)

and we have

rn,m = 1

n#

∑

I⊂[p],
MI (n)=m

(−1)NI (n). (30)
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In particular rn,m is well-defined by (27) and (28). Furthermore, we have for I , J ⊂
[p] that

(−1)NI (n)+NJ (n) = (−1)NI�J (n) (31)

and

MI
(
MJ (n)

)
= MI�J (n). (32)

Proof For I ⊂ [p] and � ∈ [p], we have

(−1)NI (n)+N�(n) = (−1)NI (n)±N�(n) =
{

(−1)NI∪{�}(n), � /∈ I

(−1)NI\{�}(n), � ∈ I .

This inductively yields (31). Analogously, we obtain (32) from

MI
(
M�(n)

)
=
{(◦i∈I∪{�}Mi

)
(n), � /∈ I(◦i∈I\{�}Mi

)
(n), � ∈ I ,

where we used that the reflections Mi are self-inverse and commute. By (32), we
observe that the map

{I ⊂ [p] | MI (n) = n} → {I ⊂ [p] | MI (n) = m}
I �→ I�J

is self-inverse. In particular, this proves (29).
Next, we show (30) for the case m = n. If NJ (n) is odd for some J ⊂ [p] with

NJ (n) = n, then

1

n#

∑

I⊂[p],
MI (n)=n

(−1)NI (n) = 1

2n#

∑

I⊂[p],
MI (n)=n

(−1)NI (n) + (−1)NI�J (n)

=
(31)

1

2n#

∑

I⊂[p],
MI (n)=n

(1+ (−1)NJ (n))︸ ︷︷ ︸
=0

(−1)NI (n) = 0 =
(27)

rn,n.

On the other hand, if NI (n) is even for all I ⊂ [p] with MI (n) = n, then

1

n#

∑

I⊂[p],
MI (n)=n

(−1)NI (n)

︸ ︷︷ ︸
=1

= n#
n#
= 1 =

(27)
rn,n.
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Now, let m ∈M(n) be arbitrary. For J ⊂ [p] with MJ (n) = m, we obtain (30) by

(−1)NJ (n) rn,n = (−1)NJ (n) 1

n#

∑

I⊂[p],
MI (n)=n

(−1)NI (n)

=
(31)

1

n#

∑

I⊂[p],
MI (n)=n

(−1)NI�J (n) = 1

n#

∑

I⊂[p],
MI (n)=m

(−1)NI (n).

Note that the right hand side is independent of J . This proves that rn,m is
well-defined. ��

To construct a BMC basis, we choose an index set �φ ⊂ Z
d that satisfies both

M(n) ∩M(m) = ∅ for all n,m ∈ �φ with n �= m (33)

and

M(�φ) = {n ∈ Z
d | rn,n �= 0}. (34)

The next theorem shows the existence of such an �φ and gives a BMC basis.

Theorem 5.3 There exists a set �φ ⊂ Z
d that fulfills (33) and (34). For n ∈ �φ , the

function

en(x):=
∑

m∈M(n)

rn,m ei〈m,x〉, x ∈ T
d , (35)

is a BMC function with

‖en‖2L2(Td )
= #M(n) ≤ 2p.

Furthermore, the family en, n ∈ �φ , is an orthogonal basis of the subspace of BMC
functions in L2(T

d). For any BMC function g ∈ L2(T
d) and any finite � ⊂ �φ , we

have

FM(�)g(x) =
∑

n∈M(�)

cn(g) e
i〈n,x〉 =

∑

n∈�

cn(g) en(x), x ∈ T
d . (36)

Proof We first construct an�φ that fulfills (33) and (34). We consider the equivalence
relation n ∼ m ⇔ M(n) = M(m) on the finite set {−2,−1, 0, 1, 2}d and choose
some set � of representatives of the corresponding quotient space. We then define

�′:={n ∈ � | rn,n �= 0}
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and

�φ :=
⋃

n∈�′

(
d×
j=1

(
n j + 2 sgn(n j ) N0

)
)

,

where× denotes the Cartesian product of sets. For n,m ∈ Z
d , we have M(n) =

M(m) or M(n) ∩M(m) = ∅. Since the reflection maps Mi , i ∈ [p], only change
signs, we have M(n) = M(m) if and only if

∣∣n j
∣∣ = ∣∣m j

∣∣ for all j ∈ [m] and
M(ñ) = M(m̃), where ñ j = sgn(n j ) and m̃ j = sgn(m j ). Thus, �φ satisfies (33).
Furthermore, we observe that the value of rn,n only depends on which components of
n are zero andwhich components are odd. In particular, rm,m = rn,n for allm ∈M(n)

and adding even integers to �′ ensures (34).
We now show that for all n ∈ Z

d the function en, as defined by (35), is a BMC
function. By (30) and the definition of M(n), we can rewrite en as

en =
∑

m∈M(n)

1

n#

∑

I⊂[p],
MI (n)=m

(−1)NI (n) ei〈m,·〉 = 1

n#

∑

I⊂[p]
(−1)NI (n) ei

〈
MI (n),·〉.

(37)

Let � ∈ [p] and x ∈ T
d . For the symmetry function s� from Definition 3.1, we have

ei
〈
n,s�(x)

〉
= ei

〈
n,S�+M�(x)

〉
= ei

〈
n,S�

〉
ei
〈
n,M�(x)

〉

= e
iπ

∑
j∈[d],S�

j=π
n j

ei
〈
M�(n),x

〉
= (−1)N�(n)ei

〈
M�(n),x

〉
.

(38)

For I ⊂ [p] it clearly holds that
(
Mi (n)

)
j = ±n j and thus

(−1)N�
(
MI (n)

)
= (−1)

∑
j∈[d],S�

j=π
±n j = (−1)

∑
j∈[d],S�

j=π
n j = (−1)N�(n). (39)

Altogether, using the definition of M(n), this implies

en(s
�(x)) =

(37)

1

n#

∑

I⊂[p]
(−1)NI (n) ei

〈
MI (n),s�(x)

〉

=
(38)

1

n#

∑

I⊂[p]
(−1)NI (n)(−1)N�

(
MI (n)

)
ei
〈
M�

(
MI (n)

)
,x
〉

=
(39)

1

n#

∑

I⊂[p]
(−1)NI (n)+N�(n) ei

〈
M�

(
MI (n)

)
,x
〉

=
(31),(32)

1

n#

∑

I⊂[p]
(−1)NI�{�}(n) ei

〈
MI�{�}(n),x

〉
=

(37)
en(x),

which proves that en is a BMC function.
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The orthonormality of the Fourier basis ei〈n,·〉, n ∈ Z
d , combined with (34) imme-

diately implies for all n ∈ �φ that

‖en‖2L2(Td )
=

∑

m∈M(n)

r2n,m︸︷︷︸
= 1

= #M(n) ≤ #P([p]) = 2p,

where P denotes the power set.
Next, we show the orthogonality of en, n ∈ �φ . Let n,m ∈ �φ with n �= m.

Then, by (33), we haveM(n) ∩M(m) = ∅. Hence, for any I , J ⊂ [p], it holds that
MI (n) �= MJ (m), which implies

〈
ei
〈
MI (n),·〉, ei

〈
MJ (m),·〉〉

L2(Td )
= 0, I , J ⊂ [p].

The bilinearity of the inner product and (37) now immediately yield 〈en, em〉L2(Td ) =
0.

Let g ∈ L2(T
d) be a BMC function and i ∈ [p]. We employ (38), properties of si ,

and a change of variables to obtain that for any n ∈ Z
d

(2π)d cn(g) =
∫

Td
g(x) e−i〈n,x〉 dx =

∫

Td
g(si (x)) e−i〈n,x〉 dx

=
∫

Td
g(x) e−i

〈
n,si (x)

〉
dx = (−1)Ni (n)

∫

Td
g(x) e−i

〈
Mi (n),x

〉
dx.

Division by (2π)d and induction yields

cn(g) = (−1)NI (n) cMI (n)(g), n ∈ Z
d , I ⊂ [p]. (40)

We can now show (36). Consider some finite set � ⊂ �φ . It is clear from (33) and
the definition of M(�) that

M(�) =
⋃̇

n∈�

M(n),

where ∪̇ stands for a disjoint union. For n ∈ �, we have
∑

m∈M(n)

cm(g) ei〈m,·〉 =
(29)

1

n#

∑

I⊂[p]
cMI (n)(g) e

i
〈
MI (n),·〉

=
(40)

1

n#

∑

I⊂[p]
(−1)NI (n) cn(g) e

i
〈
MI (n),·〉 =

(37)
cn(g) en.

This shows

FM(�)g =
∑

n∈�

cn(g) en

and in particular implies (36).
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We show the completeness of en, n ∈ �φ . Let g ∈ L2(T
d) be a BMC function

such that 〈g, en〉 = 0 for all n ∈ �φ . We need to show that cm(g) = 0 for all m ∈ Z
d ,

which implies g = 0. Let m ∈ Z
d . If rm,m = 0, then there exists I ⊂ [p] with NI (m)

odd and MI (m) = m. By (40), we have cm(g) = −cm(g) and hence cm(g) = 0. If
rm,m �= 0, by (34), there exists n ∈ �φ and J ⊂ [p] such that MJ (n) = m and we
obtain

0 = 〈g, en〉 =
(37)

1

n#

∑

I⊂[p]
(−1)NI (n) cMI (n)(g)

=
(29),(40)

#M(n) cn(g) =
(40)

#M(n) (−1)NJ (n)

︸ ︷︷ ︸
�= 0

cm(g),

which proves completeness. ��
Remark 5.4 Instead of using a standard FFT for the expansion in the basis en,
symmetry-dependent FFT variants can be used and thereby reduce computational
cost. In one dimension, the discrete cosine transform (DCT) and discrete sine trans-
form (DST) [6] arewell-known replacements of the FFT for real-valued functionswith
even or odd symmetries, respectively. Similarly, computational cost can be reduced if
a Fourier series consists only of even or odd degrees [44]. Symmetry-dependent FFT
variants also exist in higher dimensions, see e.g., [1]. Such algorithms often consist of
combining one-dimensional techniques [13, 46], for example by row-columnmethods
[40, ch. 5.3.5].

The functions en in the last theorem are BMC functions and thus, by Lemma 3.5,
they correspond to functions defined on the manifold M without the null set of sin-
gularities. We use this correspondence to define an analogue to the Fourier series on
M.

Definition 5.5 For n ∈ �φ , we define the nth DFS basis function

bn(ξ):=en
((

φ
∣∣
D1∪̇D2

)−1
(ξ)

)
, ξ ∈ M, (41)

with en as in Theorem 5.3. Let �h, h ∈ N, be an expanding sequence of bounded
sets exhausting �φ . For f : M → C with f̃ ∈ L2(T

d), we define the hth partial DFS
Fourier sum of f by

S�h f (ξ):=
∑

n∈�h

cn( f̃ ) bn(ξ), ξ ∈ M,

and the DFS Fourier series of f by S f := limh→∞ S�h f .

The basis functions bn might be non-smooth on the set of singularities φ[D2].
Regardless, we will later show that S f converges uniformly on M provided that f is
sufficiently smooth.
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Theorem 5.6 Let f : M → C such that f̃ ∈ L2(T
d), and let � ⊂ �φ be finite. Then,

the partial DFS Fourier sum S� f is given by

S� f (ξ) = FM(�) f̃
((

φ
∣∣
D1∪̇D2

)−1
(ξ)

)
, ξ ∈ M (42)

and it is the unique function on M that satisfies

(
(S� f ) ◦ φ

)
(x)=:S̃� f (x) = FM(�) f̃ (x), x ∈

⋃

I⊂[p]
s I [D1] ∪ D2. (43)

In particular, this equality holds almost everywhere on T
d . Furthermore, S� f is

continuous on M\φ[D2] and smooth in M
◦\φ[D2], where M

◦ denotes the manifold
interior. If F f̃ is pointwise convergent to f̃ , then S f is pointwise convergent to f .

Proof By Lemma 3.5, the DFS function f̃ of f is a BMC function. Thus, we obtain
by Theorem 5.3 that

FM(�) f̃ (x) =
∑

n∈�

cn( f̃ ) en(x), x ∈ T
d .

Applying the inverse of φ
∣∣
D1∪̇D2

to both sides of the equation immediately yields (42)

by the definition of bn in (41). Since FM(�) f̃ is the finite sum of BMC functions, and
thus a BMC function, we can apply Lemma 3.5 again to prove (43). The regularity
follows immediately form Lemma 3.4. We observe that for any expanding sequence
�h , h ∈ N, of bounded sets exhausting �φ , the sequence M(�h), h ∈ N, is an
expanding sequence of bounded sets exhausting {n ∈ Z

d | rn,n �= 0}. Since f̃ is
a BMC function, we have cn( f̃ ) = 0 for any n ∈ Z

d with rn,n = 0 and thus the
pointwise convergence follows with (36) and (42). ��

Theorem 5.7 We set g(x):= ∣∣det
(∇φ(x)ᵀ∇φ(x)

)∣∣1/2 for x ∈ D◦1 . Let L̃2(M) denote
the L2-space induced by the weighted inner product

〈 f1, f2〉L̃2(M)
:=

∫

M

f1(ξ) f2(ξ)
2p−dπ−d(

g ◦ (φ
∣∣
D◦1

)−1
)
(ξ)

dω(ξ), f1, f2 : M → C,

where dω denotes the surface measure onM. The set bn, n ∈ �φ , forms an orthogonal
basis of L̃2(M) and we have for all f ∈ L̃2(M) that

cn( f̃ ) =
〈 f̃ , en〉L2(Td )

‖en‖2L2(Td )

= 〈 f , bn〉L̃2(M)

‖bn‖2L̃2(M)

, n ∈ �φ. (44)

In particular, the DFS Fourier series S f of any f ∈ L̃2(M) is convergent in L̃2(M)

and we have S f = f .
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Proof By Lemma 3.4, the set M \ φ[D◦1] has measure zero in M and by (iv) in Def-
inition 3.1, we have g(x) �= 0 for all x ∈ D◦1. Hence, we can apply the substitution
rule [28, prop. 15.31] for the orientable submanifold φ[D◦1] ⊂ M and we obtain for
f1, f2 ∈ L̃2(M) the isometry

〈 f̃1, f̃2〉L2(Td ) = (2π)−d
∫

Td
f̃1(x) f̃2(x) dx = (2π)−d

∑

I⊂[p]

∫

s I [D◦1 ]
f̃1(x) f̃2(x) dx

= 2p−dπ−d
∫

D◦1

f1
(
φ(x)

)
f2
(
φ(x)

)
(
g ◦ (φ

∣∣
D◦1

)−1
)(

φ(x)
) g(x) dx = 〈 f1, f2〉L̃2(M)

,

where we used (8) in the second equality and the s I–invariance of DFS functions in
the third equality. Since b̃n = en almost everywhere in T

d , we obtain (44). ��

5.2 Convergence of the Fourier series

In this subsection, we finally obtain convergence results for DFS Fourier series on the
manifold M. Here, we closely follow the derivation in [33, sect. 5.2] and generalize it
to higher dimensions. For brevity of notation, we set Ck,1(M) := Ck+1(M) for k ∈ N0,
and the same for M replaced by T

d .

Lemma 5.8 Let k ∈ N0, 0 < α ≤ 1, and f ∈ Ck,α(M). Let cn( f̃ ), n ∈ Z
d , denote

the Fourier coefficients of the generalized DFS function f̃ of f . Then, the series

∑

n∈Zd

∣∣cn( f̃ )
∣∣b (45)

converges for all b ∈ R with b > 2d/
(
d + 2 (k + α)

)
.

Proof If α < 1, we can apply Theorem 4.3 to obtain f̃ ∈ Ck,α(Td). By [26, p. 87],
this immediately implies the convergence of (45) for all b > 2d/

(
d + 2 (k + α)

)
. If

α = 1, we choose 0 < ε < 1 such that b > 2d/
(
d + 2 (k + 1− ε)

)
. Theorem 4.2

then yields f̃ ∈ Ck,1−ε(Td) and the convergence of (45) follows as before. ��
Theorem 5.9 Let k ∈ N0 and 0 < α ≤ 1 such that 2 (k + α) > d. For f ∈ Ck,α(M)

the Fourier series F f̃ converges uniformly to the DFS function f̃ and for � ⊂ Z
d , it

holds that

∥∥ f̃ − F� f̃
∥∥C(Td )

≤
∑

n∈Zd\�

∣∣cn( f̃ )
∣∣.

Furthermore, the DFSFourier series S f converges to f uniformly onM. For� ⊂ �φ ,
we obtain

∥∥ f − S� f
∥∥C(M)

≤
∑

n∈Zd\M(�)

∣∣cn( f̃ )
∣∣.
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Proof We apply Lemma 5.8 for b = 1 > 2d/
(
d + 2 (k + α)

)
and obtain that the

series
∑

n∈Zd |cn( f̃ )| is convergent. Thus, we conclude by [40, thm. 4.7] that the
Fourier series F f̃ converges to f̃ uniformly on T

d . For x ∈ T
d and � ⊂ Z

d , we
obtain

∣∣ f̃ (x)− F� f̃ (x)
∣∣ =

∣∣∣
∑

n∈Zd

cn( f̃ ) e
i〈n,x〉 −

∑

n∈�

cn( f̃ ) e
i〈n,x〉

∣∣∣ ≤
∑

n∈Zd\�

∣∣cn( f̃ ) ei〈n,x〉∣∣.

Theorem 5.6 now directly yields the second statement. ��
We prove explicit bounds on the speed of convergence for the special cases of

rectangular and circular partial Fourier sums [26, p. 7 f.]. The proof of the following
technical lemma, which is based on [23, Thm. 3.2.16], is found in Appendix A.

Lemma 5.10 Let k ∈ N0, 0 < α < 1, and g ∈ Ck,α(Td). Then, we have for all � ∈ N0

∑

n∈Zd , 2�≤|n|<2�+1
|cn(g)| ≤ 2d−α dk+

3
2 πα 2

�
(
d
2−(k+α)

)

|g|Ck,α(Td ) . (46)

Theorem 5.11 Let k ∈ N0, 0 < α ≤ 1 such that 2 (k + α) > d and let f ∈ Ck,α(M).
We define the circular partial DFS Fourier sums Kh f :=S�h f , h ∈ N, associated
with �h = {n ∈ �φ | |n| ≤ h}. It holds that

‖ f − Kh f ‖C(M) ≤ Md,d ′,k,α ‖ f ‖Ck,α(M) h
d
2−k−α, (47)

where

Md,d ′,k,α:=2
d
2+k+1−�α� dk+2 πα (k + d ′)!

(1− 2
d
2−k−α) (d ′ − 1)!

for k + d ′ ≥ 2 (48)

and M1,1,0,α:=2 1
2+�α� πα/(1− 2

1
2−α). Here, �·� denotes rounding down to an integer.

Proof ByTheorem 5.9, we can bound the left-hand-side by the sum over the remaining
Fourier coefficients. We observe that M(�h) = {n ∈ Z

d | |n| ≤ h, rn,n �= 0}. This
yields

∥∥ f − Kh f
∥∥C(M)

≤
∑

n∈Zd , |n|>h

∣∣cn( f̃ )
∣∣ ≤

∞∑

�=�log2 h�

∑

n∈Zd , 2�≤|n|<2�+1

∣∣cn( f̃ )
∣∣.

Ifα < 1,we applyTheorem4.2 to get f̃ ∈ Ck,α(Td) and thusweobtain byLemma5.10
that

∥∥ f − Kh f
∥∥C(M)

≤ 2d−α dk+
3
2 πα

∣∣ f̃
∣∣Ck,α(Td )

∞∑

�=�log2 h�
2
�
(
d
2−(k+α)

)

.
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Since d/2− (k + α) < 0 and 2�log2 h� ≥ h/2, we can evaluate the geometric sum

∞∑

�=�log2 h�
2
�
(
d
2−(k+α)

)

= 2
�log2 h�

(
d
2−k−α

)

1− 2
d
2−k−α

≤ 2k+α− d
2 h

d
2−k−α

1− 2
d
2−k−α

.

Theorem 4.3 yields that, if k+d ′ ≥ 2, we have | f̃ |Ck,α(Td ) ≤ 2
√
d (k+d ′)!

(d ′−1)! ‖ f ‖Ck,α(M),
and, if k+ d ′ = 1, we have | f̃ |C0,α(T1) ≤ ‖ f ‖C0,α(M). Thus, we overall obtain (47). In

the case of α = 1, we use Theorem 4.2 to deduce f̃ ∈ Ck,1−ε(Td) for any 0 < ε < 1.
Choosing ε small enough, we have d/2 − k − 1 + ε < 0 and obtain, by the same
arguments as before, that

∥∥ f − Kh f
∥∥C(M)

≤ 2d−(1−ε) dk+
3
2 π1−ε

∣∣ f̃
∣∣Ck,1−ε(Td )

2k+1−ε− d
2 h

d
2−k−1+ε

1− 2
d
2−k−1+ε

.

By (19), we have | f̃ |Ck,1−ε(Td ) ≤
√
d (k+d ′)!

(d ′−1)! ‖ f ‖Ck,1(M) if k+d ′ ≥ 2 and if k+d ′ = 1,
we have | f̃ |C0,1−ε(T1) ≤ 2 ‖ f ‖C0,1(M). Since the rest of the expression on the right-
hand-side of the last inequality is continuous in ε, we can pass to the limit ε → 1 and
finally obtain (47) for α = 1. ��
Remark 5.12 An analogue to Theorem 5.11 still holds for the rectangular partial
Fourier sums S�h f , h ∈ N, associated with �h = {n ∈ �φ | ‖n‖∞ < h}. In
Appendix A, we show that in this situation, the bound (46) and therefore the constant
in (48) for k + d ′ ≥ 2 can be improved to

M rect
d,d ′,k,α =

2
d
2+k+1−�α� d πα (k + d ′)!
(1− 2

d
2−k−α) (d ′ − 1)!

.

6 The DFSmethod for specific manifolds

We present some application examples of the general DFS method. Furthermore, the
DFS methods on the disk, ball, and cylinder from the literature are reviewed in the
context of our generalized description,wherewe cannowstate theDFSbasis functions.

6.1 The interval

A “toy example” of our general framework is the following generalized DFS method
on the one-dimensional manifold M = [−1, 1] ⊂ R. We can easily show that

φ[−1,1] : T
1 → [−1, 1], x �→ cos x (49)

is a generalized DFS transform of M with symmetry number p = 1 and symmetry
function s1(x) = −x , x ∈ T

1. Restricted to D1:=[0, π ], the map φ[−1,1] is bijective
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with its continuous inverse given by the arccosine. The derivative ∇φ[−1,1](x) =
sin(x) is non-zero in D◦1 = (0, π). We set D2:=∅.

We have M(n) = {n,−n} and N1(n) = 0 for all n ∈ Z, thus we can set
�[−1,1]:=N0. For n ∈ N0 and ξ ∈ [−1, 1], we obtain by Definition 5.5 that

bn(ξ) = en
((

φ[−1,1]
∣∣[0,π ]

)−1
(ξ)

)
=
{
ein arccos ξ + e−in arccos ξ = 2Tn(ξ), n �= 0

ei0 arccos ξ = T0(ξ), n = 0.

Here, Tn denotes the nth Chebyshev polynomial of the first kind defined by

Tn(ξ):= cos(n arccos ξ), ξ ∈ [−1, 1].

As in Theorem 5.7, the transform φ[−1,1] induces a weighted Hilbert space L̃2(−1, 1),
where the inner product of f1, f2 ∈ L̃2(−1, 1) is given by

〈 f1, f2〉L̃2(−1,1):=
1

π

∫ 1

−1
f1(ξ) f2(ξ)√

1− ξ2
dξ = 1

2π

∫

T1
f̃1(x) f̃2(x)dx = 〈 f̃1, f̃2〉L2(T1).

The Chebyshev polynomials Tn , n ∈ N0, form an orthogonal basis of this space. The
nth partial Chebyshev expansion of f ∈ L̃(−1, 1) coincides with the DFS Fourier
sum S{0,...,n} f for all n ∈ N0.

Remark 6.1 Our framework of generalized DFSmethods of a d-dimensional manifold
M relies on transforming a function fromM toT

d and subsequently expanding it with a
Fourier series. In contrast, some DFS-like methods discussed in the literature, namely
for the unit disk [50], the cylinder [19], and the ball [3], use coverings where some
variables are on the interval [−1, 1] instead of the torus T

1. This also fits into our
approach, since the connection between the one-dimensional Chebyshev series and
a DFS Fourier series easily extends to the multivariate case, where we get mixed
Fourier–Chebyshev series.

6.2 The hyperball

We define the d-dimensional closed unit ball

B
d :={u ∈ R

d | ‖u‖ ≤ 1}.

Let d ≥ 2. A parameterization of B
d is given by the spherical coordinates

ξ(ρ,λ) = (
ξ j (ρ,λ)

)d
j=1, ξ j (ρ,λ) =

{
ρ cos(λ j )

∏ j−1
�=1 sin(λ�), j < d

ρ
∏d−1

�=1 sin(λ�), j = d

for ρ ∈ [0, 1] and λ ∈ [0, π ]d−2 × [−π, π ]. Extending the domain of the angular
variables λ j , j ∈ [d − 2], to [−π, π ] and substituting the radial variable ρ by cos x1,
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we obtain a generalized DFS transform φBd of B
d . For j ∈ [d], the j th component of

φBd in x ∈ T
d is given by

(
φBd (x)

)
j :=

{
cos(x1) cos(x j+1)

∏ j
�=2 sin(x�), j < d

cos(x1)
∏d

�=2 sin(x�), j = d.
(50)

We check the requirements of Definition 3.1 for φBd . The smoothness properties of
φBd are obvious. The symmetry number is p = d and symmetry functions are given
by

s1(x) = (−x1, x2, ..., xd), x ∈ T
d ,

s2(x) = (x1 + π, x2 + π, x3, ..., xd), x ∈ T
d ,

si (x) = (x1, ..., xi−2,−xi−1, xi + π, xi+1, ..., xd), x ∈ T
d , 3 ≤ i ≤ d.

(51)

These symmetry functions together with the sets

D1 = [0, π/2)× (0, π)d−2 × (−π, π ],

D2 =
d−1⋃

j=2

(
[0, π/2)× (0, π) j−2 × {0, π} × {0}d− j

)
∪ {π/2} × {0}d−1,

understood as subsets of T
d via the canonical identification of points in R

d with their
equivalence classes in T

d , satisfy (i) to (iv) in Definition 3.1. To show (iii), we note
that the arccosine is continuous and for x ∈ D1, we have cos(x1) =

∥∥φBd (x)
∥∥ �= 0

as well as sin(x�) �= 0 for all � ∈ {2, .., d − 1}. Therefore, (50) yields for x ∈ D1 and
j ∈ [d − 1] that

cos(x j+1) =
(
φBd (x)

)
j

cos(x1)
∏ j

�=2 sin(x�)
and sin(xd) =

(
φBd (x)

)
d

cos(x1)
∏d−1

�=2 sin(x�)
,

which inductively implies that the inverse of φBd

∣∣
D1

is continuous. Furthermore, we

have |det∇φBd (x)| = sin(x1) cosd−1(x1)
∏d−1

j=2 sind− j (x j ) �= 0 for x ∈ D◦1, which
is (iv). For n ∈ Z

d we have

M(n) = {m ∈ Z
d | m j = ±n j for j < d and md = nd},

N1(n) = 0, N2(n) = n1+ n2, and Ni (n) = ni for all 3 ≤ i ≤ d. Since the reflections
Mi act on pairwise disjoint sets variables, we observe that rn,n = 0 if and only if
Ni (n) is odd for some i ∈ [d] with Mi (n) = n, i.e., if and only if n1 + n2 is odd or
ni−1 = 0 and ni is odd for some 3 ≤ i ≤ d. We define

�Bd :=
{
n ∈ N

d−1
0 × Z

∣∣∣ n1 + n2 is even and (ni−1 �= 0 or ni is even for all 3 ≤ i ≤ d)
}
.
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Let n ∈ �Bd . We set In:={i ∈ {3, ..., d} | ni−1 �= 0} and Jn:=In if n1 = 0 and
Jn:=In ∪ {1} otherwise. Then the map I �→ MI (n) is bijective from Jn into M(n).
By (28), we have rn,MI (n) = (−1)NI (n) rn,n for all I ⊂ [d]. Since N1(n) = 0, this
yields for I ⊂ In that

rn,MI∪{1}(n) = rn,MI (n) = (−1)NI (n) =
∏

i∈I
(−1)ni .

Furthermore, for x ∈ T
d and j ∈ [d − 1], it holds that

ein j x j + (−1)n j+1e−in j x j =
{
2 cos(n j x j ), n j+1 is even
2i sin(n j x j ), n j+1 is odd.

Overall, we obtain by (35) the basis function

en(x) =
∑

m∈M(n)

rn,m ei〈m,x〉 =
∑

I⊂Jn

rn,MI (n) e
i
〈
MI (n),x

〉

=
∑

I⊂In

ein1x1 + e−in1x1
21+#In−#Jn

( ∏

i∈In\I
eini−1xi−1

) (∏

i∈I
(−1)ni e−ini−1xi−1

)
eind xd

= ein1x1 + e−in1x1
21+#In−#Jn

( ∏

2≤ j≤d−1
n j �=0

(
ein j x j + (−1)n j+1 e−in j x j

))
eind xd

= 2#Jn cos(n1x1)
( ∏

2≤ j≤d−1
n j �=0

n j+1 even

cos(n j x j )
) ( ∏

2≤ j≤d−1
n j �=0

n j+1 odd

i sin(n j x j )
)
eind xd .

Let ρ ∈ [0, 1],λ ∈ [0, π ]d−2 × [−π, π ] such that (arccos(ρ),λ) ∈ D1 ∪ D2. For
n ∈ �Bd , we obtain from the definition of bn in (41) that

bn(ξ(ρ,λ)) = 2#{ j∈[d−1]|n j �=0}Tn1(ρ)
(∏

j∈[d−2]
n j+1 �=0
n j+2 even

cos(n j+1λ j )
)(∏

j∈[d−2]
n j+1 �=0
n j+2 odd

i sin(n j+1λ j )
)
eindλd−1 .

For the special cases of d ∈ {2, 3}, DFSmethods ofBd already exist in the literature.
In the following, we discuss their connection to our general framework in more detail.
The disk The unit disk D:=B

2 can be parameterized by the polar coordinates

ξ(ρ, λ) = (ρ cos λ, ρ sin λ), (ρ, λ) ∈ [0, 1] × T
1.

Themap ξ is 2π -periodic in the angular variableλ, thus a series expansion of a function
on the unit disk can be realized directly by a shifted Chebyshev–Fourier expansion in
polar coordinates, cf. [5, sect. 18.5]. In 1995, Fornberg [18] presented an alternative
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Fig. 2 Top left: A disk-shaped section f (ξ) of the Mona Lisa. Bottom left: f (ξ(ρ, λ)) in extended polar
coordinates. Right: DFS function f ◦ φD(x)

approach; to eliminate the boundary at ρ = 0 via extending the domain of the radius
ρ to [−1, 1]. The resulting extended polar coordinates act on [−1, 1] ×T

1 and cover
the disk twice. A DFS-like method of the disk consists of transforming functions to
the extended polar coordinates and subsequently expanding them via a Chebyshev–
Fourier series, see [50]. Substituting (ρ, λ) = (cos x1, x2) with (x1, x2) ∈ T

2 yields
the DFS transform φD from (50). This substitution changes the symmetry structure:
φD covers the disk four times instead of twice and satisfies

φD(x1, x2) = φD(−x1, x2) = φD(x1 + π, x2 + π), (x1, x2) ∈ T
2,

which agrees with the symmetry functions from (51). This is illustrated in Fig. 2.
Let n ∈ �D:={n ∈ N0 × Z | n1 + n2 is even}. For (ρ, λ) ∈ (0, 1] × [−π, π ] ∪

{(0, 0)}, we have

bn(ξ(ρ, λ)) = ein2λ
{
1, n1 = 0

2 Tn1(ρ), n1 �= 0.

The ball The three-dimensional ball B3 is parameterized by the spherical coordinates

ξ(ρ, θ, λ) = (ρ cos θ, ρ cos λ sin θ, ρ sin λ sin θ), (ρ, θ, λ) ∈ [0, 1] × [0, π] × [−π, π].

Extending the domain of the radius ρ to [−1, 1] and the polar angle θ to [−π, π ],
we obtain so-called extended spherical coordinates. Functions defined on the ball
and represented in these extended spherical coordinates can then be expanded into
Chebyshev–Fourier–Fourier series, cf. [3]. The DFS transform φB3 from (50) is
obtained by substituting (ρ, θ, λ) = (cos x1, x2, x3) with (x1, x2, x3) ∈ T

3 thus cov-
ering the ball eight times.
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Let (ρ, θ, λ) ∈ (0, 1]×(0, π)×[−π, π ], or (ρ, θ, λ) = (0, 0, 0), or ρ ∈ (0, 1], θ ∈
{0, π} andλ = 0. For n ∈ �B3 = {n ∈ N

2
0×Z | n1+n2 is even and n3 is even if n2 =

0}, we have

bn(ξ(ρ, θ, λ)) = 2#{ j∈[2]|n j �=0} Tn1(ρ) ein3λ
{

cos(n2θ), n3 is even

i sin(n2θ), n3 is odd.

6.3 The hypersphere

We define the d-dimensional unit sphere

S
d :={u ∈ R

d+1 | ‖u‖ = 1},

which is a smooth submanifold of R
d ′ with d ′ = d + 1. This subset of the ball B

d+1
can be parameterized by restricting the (d + 1)-dimensional spherical coordinates to
ρ = 1. A DFS transform of S

d is obtained by restricting the DFS transform φBd+1
from (50) to x1 = arccos(1) = 0, i.e.,

φSd : T
d → C, x �→ φBd+1(0, x).

One can easily show that the DFS smoothness and symmetry properties of φBd+1
transfer to φSd , hence φSd is a DFS transform of S

d with symmetry number p = d−1.
By a similar derivation as for the DFS method of B

d+1 in Sect. 6.2, we can set

�Sd :={n ∈ N
d−1
0 × Z | ni �= 0 or ni+1 even, for all i < d}

and we obtain for all n ∈ �Sd and λ ∈ D1 ∪ D2 that

bn(ξ(0,λ)) = 2#{ j∈[d−1]|n j �=0}
(∏

j∈[d−1]
n j �=0

n j+1 even

cos(n jλ j )
)(∏

j∈[d−1]
n j �=0

n j+1 odd

i sin(n jλ j )
)
eindλd ,

where

D1 = (0, π)d−1 × (−π, π ], D2 =
d−1⋃

j=1

(
(0, π) j−1 × {0, π} × {0}d− j

)
.

The classical DFSmethod for the case d = 2was already discussed in the introduction.
Numerical experiments validating the proven convergence rates can be found in [33].

6.4 Product manifolds

Let φ1 and φ2 be generalized DFS transforms of some d1-dimensional manifoldM1 ⊂
R
d ′1 and some d2-dimensional manifoldM2 ⊂ R

d ′2 , respectively. It is not hard to verify
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that

φ : T
d1 × T

d2 → M1 ×M2, x = (x1, x2) �→ φ(x) = (φ1(x1), φ2(x2))

defines a generalized DFS transform of the product manifold M1 ×M2 ⊂ R
d ′1+d ′2 .

The smoothness properties are straightforward and the symmetry properties are as
follows: For � ∈ {1, 2}, let p� denote the symmetry number, si�, i ∈ [p�] the symmetry
functions, and D�

1 and D�
2 the subsets from Definition 3.1 with respect to φ�. Then, for

φ, we have the sets D1:=D1
1 × D2

1 and D2:=(D1
1 × D2

2) ∪ (D1
2 × D2

1) ∪ (D1
2 × D2

2),
the symmetry number p1 + p2, and symmetry functions si , i ∈ [p1 + p2], can be
chosen as

si : T
d1 × T

d2 → T
d1 × T

d2 , (x1, x2) �→
{(

si1(x1), x2
)
, i ≤ p1(

x1, s
i−p1
2 (x2)

)
, i > p1.

Setting �φ :=�φ1 × �φ2 , simple calculations yield for all n = (n1, n2) ∈ �φ and
that

bn(ξ) = bn1(ξ1) bn2(ξ2), ξ = (ξ1, ξ2) ∈ M1 ×M2.

The cylinder An application of this product structure is the cylinder C :=D×[−1, 1],
where a DFS-like method was already derived in [19]. Combining our results on the
disk D and the interval [−1, 1] from the previous subsections, we see that

φC : T
2 × T

1 → C, (x1, x2) �→ (φD(x1), φ[−1,1](x2))

is a DFS transform of C with symmetry number 3. For (x1, x2, x3) ∈ T
3 ∼= T

2 × T
1,

the product symmetry structure yields

φC (x1, x2, x3) = φC (−x1, x2, x3) = φC (x1 + π, x2 + π, x3) = φC (x1, x2,−x3).

Let n ∈ �C :=�D × N0 = {n ∈ N0 × Z × N0 | n1 + n2 is even}. In cylindrical
coordinates, we have for all (ρ, λ, z) ∈ (0, 1] × [−π, π ] × [−1, 1] as well as for
(ρ, λ) = (0, 0) and z ∈ [−1, 1] that

bn(ρ cos λ, ρ sin λ, z) = 2#{ j∈{1,3}|n j �=0} Tn1(ρ) ein2λ Tn3(z). (52)

Note that [19] considers the ordinary Chebyshev–Fourier–Chebyshev basis func-
tions Tn1(ρ) ein2λ Tn3(z) for all n ∈ N0 × Z× N0, whereas our DFS basis bn in (52)
contains only elements n ∈ �C since we eliminated redundancies caused by the DFS
symmetry. However, the low-rank approximation of the Fourier coefficients in [19]
also implicitly takes care of this symmetry. Similar observations also hold in the cases
of the disk and the ball in Sect. 6.2.
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6.5 The rotation group

The three-dimensional rotation group

SO(3):={A ∈ R
3×3 | det(A) = 1 and A−1 = Aᵀ}

can be parametrized by the Euler angles

(α, β, γ ) �→ Rz(α)Ry(β)Rz(γ ), (α, β, γ ) ∈ T
1 × [0, π ] × T

1,

where

Rz(θ):=
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ , Ry(θ):=
⎛

⎝
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞

⎠ , θ ∈ T
1

describe rotations around the z-axis and the y-axis, respectively. Different conventions
regarding the choice and order of rotational axes exist, here we employ the zyz-
convention, cf. [42, p. 4]. The authors are not aware of any DFS method being used in
the literature to approximate functions on SO(3). However, extending the domain of
the second Euler angle β yields a generalized DFS transform of SO(3) that fits within
our framework. Because Definition 3.1 requires a submanifold of a Euclidean space,
we employ the canonical column-wise embedding

R
3,3 � A = (ai j )

3
i, j=1 �→ (a11, a21, a31, a12, a22, a32, a13, a23, a33) ∈ R

9,

which is an isometric isomorphism from R
3×3 equipped with the Frobenius norm to

(R9, ‖·‖). We define a generalized DFS transform of SO(3) by

φSO(3)(x):=Rz(x1)Ry(x2)Rz(x3) ∈ R
3×3 ∼= R

9, x ∈ T
3.

We need to verify that φSO(3) satisfies the smoothness properties of a DFS transform.
Explicit calculation of the matrix product Rz(x1)Ry(x2)Rz(x3) and component-wise
taking of partial derivatives shows that for allμ ∈ N

3
0 and � ∈ [9] the partial derivative

Dμφ� exists, whereφ� denotes the �th component ofφSO(3). Let x = (x1, x2, x3) ∈ T
3.

Up to translations and interchange of the variables, Dμφ� is either a product of cosines,
which is uniformly bounded by 1, or of the form

Dμφl(x) = cos(x1) cos(x2) cos(x3)+ sin(x1) sin(x3).

In the latter case, if sgn
(
cos(x1) cos(x3)

) = sgn
(
sin(x1) sin(x3)

)
, we have by the

triangle inequality and the angle subtraction formula that

∣∣Dμφl(x)
∣∣ ≤ |cos(x2)| |cos(x1) cos(x3)| + |sin(x1) sin(x3)|
≤ |cos(x1) cos(x3)| + |sin(x1) sin(x3)|
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= |cos(x1) cos(x3)+ sin(x1) sin(x3)| = |cos(x1 − x3)| ≤ 1.

Otherwise, we apply the previous argument to (−x1, x2 + π, x3) and obtain

∣∣Dμφl(x1, x2, x3)
∣∣ = ∣∣−Dμφl(−x1, x2 + π, x3)

∣∣ ≤ 1.

This proves (5), i.e., φSO(3) satisfies the smoothness properties of a DFS transform.
One can also show that φSO(3) satisfies the symmetry properties of a DFS transform

with symmetry number p = 1, symmetry function

s1(x1, x2, x3) = (x1 + π,−x2, x3 + π), x = (x1, x2, x3) ∈ T
3,

and the subsets D1:=(−π, π ] × (0, π)× (−π, π ] and D2:=(−π, π ] × {0, π} × {0}.
For n ∈ Z

3, we have N1(n) = n1 + n3 and M(n) = {n, (n1,−n2, n3)}. We set

�SO(3):={n ∈ Z× N0 × Z | n2 �= 0 or n1 + n3 even}.

Let (α, β, γ ) ∈ D1 ∪ D2. Then, the function bn, n ∈ �SO(3), is given by

bn
(
Rz(α)Ry(β)Rz(γ )

) = ein1α ein3γ

⎧
⎪⎨

⎪⎩

1, n2 = 0

2 cos(n2β), n2 �= 0, n1 + n3 even

2i sin(n2β), n2 �= 0, n1 + n3 odd.

A: Appendix

Proof Lemma 4.1 This is a generalization of the proof of [33, lem. 4.1] to higher dimen-
sions. The claim of the lemma clearly holds for β = 0 and all k. If β = ep for some
p ∈ [d], where ep denotes the pth unit vector, we can apply the chain rule to get

Dβ(g ◦ h) = Dep (g ◦ h) =
d∑

�=1

(
De�g ◦ h

)
Dep h�,

so the claim holds for all k ∈ N with

n = d ′ = d ′!
(d ′ − 1)! ≤

(d ′ + k − 1)!
(d ′ − 1)! .

For k > 1 and |β| > 1, we proceed inductively: Let β+ = β + ep ∈ Bd
k for some

p ∈ [d] and β ∈ Bd
k−1. Assume that

Dβ(g ◦ h) =
n∑

i=1

(
Dγ i g ◦ h)

mi∏

j=1
Dμi j h�i j ,
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for some constants that satisfy (14) to (18) for k − 1. Since g and h are k-times con-
tinuously differentiable, their composition is also k-times continuously differentiable
and, by the product rule, we have

Dβ+ (g ◦ h) = Dep
(
Dβ(g ◦ h)

)
=

n∑

i=1
Dep

( (
Dγ i g ◦ h)

mi∏

j=1
Dμi j h�i j

)

=
n∑

i=1
Dep (Dγ i g ◦ h)

mi∏

j=1
Dμi j h�i j

︸ ︷︷ ︸
=:A

+
n∑

i=1

(
Dγ i g ◦ h) Dep

( mi∏

j=1
Dμi j h�i j

)

︸ ︷︷ ︸
=:B

.

Since by our assumptions Dγ i g and h are continuously differentiable for all i , we can
apply the chain rule to each summand of A and get

A =
n∑

i=1
Dep (Dγ i g ◦ h)

mi∏

j=1
Dμi j h�i j =

n∑

i=1

d ′∑

�=1

(
De�+γ i g ◦ h

)
Dep h�

mi∏

j=1
Dμi j h�i j .

Similarly, we know that Dμi j h�i j is continuously differentiable for all i and j and
thus, we can simplify B by applying the product rule. This yields

B =
n∑

i=1

(
Dγ i g ◦ h) Dep

( mi∏

j=1
Dμi j h�i j

)
=

n∑

i=1

mi∑

r=1

(
Dγ i g ◦ h) Dep+μir h�ir

mi∏

j=1
j �=r

Dμi j h�i j .

We combine the resulting sums and relabel the constants to obtain

Dβ+(g ◦ h) =
n+∑

i=1

(
Dγ+

i g ◦ h
) m+i∏

j=1
Dμ+i j h�+i j

,

where for all i+ ∈ [n+] and j+ ∈ [m+i+] there exist i ∈ [n], j ∈ [mi ], and � ∈ [d ′]
such that

γ+i+ = e� + γ i or γ+i+ = γ i  ⇒
(16)

∣∣γ+i+
∣∣ ≤ k,

m+i+ = 1+ mi or m
+
i+ = mi  ⇒

(15)

m+i+ ≤ k,

μ+i+ j+ = ep, μ+i+ j+ = μi j , or μ+i+ j+ = ep + μi j  ⇒
(17)

∣∣∣μ+i+ j+
∣∣∣ ≤ k,

�+i+ j+ = �i j or �+i+ j+ = �  ⇒
(18)

�+i+ j+ ∈ [d ′],
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and by (14), we have

n+ =
n∑

i=1

( d ′∑

�=1
1+

mi∑

r=1
1
)
= n

(
d ′ + n

max
i=1 mi

)
≤ n (d ′ + (k − 1)) ≤ (d ′ + k − 1)!

(d ′ − 1)! .

Thus, we have found constants that satisfy (13) to (18) for β+ and k. ��
Proof of Lemma 5.10 We closely follow the proof of [23, thm. 3.2.16]. We replicate
the proof here for the convenience of the reader as [23] does not explicitly provide the
constant and also uses different conventions. In particular, they work with 1-periodic
functions and with the Euclidean norm of multi-indices, as opposed to 2π -periodic
functions and the �1-norm as in our work; this makes some small adjustments in the
proof necessary. By the Cauchy-Schwarz inequality, we obtain

⎛

⎝
∑

n∈Zd , 2�≤|n|<2�+1
|cn(g)|

⎞

⎠
2

≤
⎛

⎝
∑

n∈Zd , 2�≤|n|<2�+1
12

⎞

⎠

⎛

⎝
∑

n∈Zd , 2�≤|n|<2�+1
|cn(g)|2

⎞

⎠ .

We write ‖n‖∞ := sup j∈[d]
∣∣n j

∣∣. For the first factor, it holds that

∑

n∈Zd , 2�≤|n|<2�+1
12 ≤ #{n ∈ Z

d | |n| < 2�+1} ≤ #{n ∈ Z
d | ‖n‖∞ < 2�+1} ≤ 2�d+2d .

Clearly, the same bound holds when summing over {n ∈ Z
d | 2� ≤ ‖n‖∞ < 2�+1}.

Next, we show an estimate on the second factor. Let n ∈ Z
d with 2� ≤ |n| < 2�+1.

We choose j ∈ [d] such that
∣∣n j

∣∣ = ‖n‖∞. We thus have 0 < 2�

d ≤ |n|
d ≤ ∣∣n j

∣∣ ≤
|n| < 2�+1. It is true that

∣∣eit − 1
∣∣ ≥ 2

π
|t | for all −π ≤ t ≤ π . Therefore, we obtain

∣∣∣ei
〈
n, π

2�+1 e
j
〉

− 1
∣∣∣ =

∣∣∣eiπ
n j

2�+1 − 1
∣∣∣ ≥ 2

π

∣∣∣
π n j

2�+1
∣∣∣ ≥ 1

d
. (53)

Now, we can bound the second factor as follows

∑

n∈Zd , 2�≤|n|<2�+1
|cn (g)|2 ≤

d∑

j=1

∑

n∈Zd , 2�≤|n|<2�+1
|n j |=‖n‖∞

|cn (g)|2

≤
(53)

d2
d∑

j=1

∑

n∈Zd , 2�≤|n|<2�+1
|n j |=‖n‖∞

∣∣∣ei
〈
n, π

2�+1 e
j
〉

− 1
∣∣∣
2 |cn (g)|2

∣∣n j
∣∣2k

∣∣n j
∣∣2k

.

The factor d2 on the right-hand side can be omitted when substituting ‖n‖∞ for
|n| everywhere, since then (53) can correspondingly be estimated by 1. Using the
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differentiation identity cn(Dke j g) = (i n j )
k cn(g), cf. [40, p. 162], and the inequality

1|n j | ≤
d
2� , we further estimate

≤d2k+2

22�k

d∑

j=1

∑

n∈Zd , 2�≤|n|<2�+1
|n j |=‖n‖∞

∣∣∣ei
〈
n, π

2�+1 e
j
〉

− 1
∣∣∣
2 ∣∣∣cn

(
Dke j g

)∣∣∣
2
.

If we replace |n| by ‖n‖∞, we can again eliminate the powers of d in the estimate.
Applying the translation identity ei〈n,x〉 cn(g) = cn

(
g(·+x)

)
, x ∈ R

d , cf. [40, p. 162],
and the linearity of Fourier coefficients, we obtain

≤d2k+2

22�k

d∑

j=1

∑

n∈Zd

∣∣∣cn
(
Dke j g

(
· + π

2�+1 e j
)
− Dke j g

)∣∣∣
2
.

Finally, we get by the Parseval identity [40, thm. 4.5]

=d2k+2 2−2�k
d∑

j=1

∥∥∥Dke j g
(
· + π

2�+1 e j
)
− Dke j g

∥∥∥
2

L2(Td )

≤d2k+2 2−2�k d sup
|β|=k

∣∣Dβg
∣∣2Cα(Td )

∣∣ π

2�+1
∣∣2α

≤d2k+3 2−2�k−2α(�+1) π2α |g|2Ck,α(Td )
.

Overall, this yields

∑

n∈Zd , 2l≤|n|<2�+1
|cn (g)| ≤ 2d−α dk+

3
2 πα 2

�
(
d
2−(k+α)

)

|g|Ck,α(Td ) .

For rectangular dyadic sums in Remark 5.12, we analogously obtain

∑

n∈Zd , 2�≤‖n‖∞<2�+1
|cn (g)| ≤ 2d−α d

1
2 πα 2

�
(
d
2−(k+α)

)

|g|Ck,α(Td ) .
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