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In this paper, we propose mathematical models for reconstructing the opti-
cal flow in time-harmonic elastography. In this image acquisition technique,
the object undergoes a special time-harmonic oscillation with known fre-
quency so that only the spatially varying amplitude of the velocity field has
to be determined. This allows for a simpler multi-frame optical flow analysis
using Fourier analytic tools in time. We propose three variational optical
flow models and show how their minimization can be tackled via Fourier
transform in time. Numerical examples with synthetic as well as real-world
data demonstrate the benefits of our approach.
Keywords: optical flow, elastography, Fourier transform, iteratively reweighted

least squares, Horn–Schunck method

1. Introduction

The tracking of motion along the sequence of image frames is a prominent problem in
computer vision. The main goal consists in finding the motion vector field between image
frames of moving or deformed objects. Optical flow methods trace back to the works
of Horn–Schunck [15] and Lucas–Kanade [21]. The former is an instance of variational
methods, which have proven to be a powerful tool for this task. The idea is to minimize a
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Tikhonov-type energy functional consisting of data fidelity and smoothness terms. For an
overview, we refer to the review papers [7, 12, 33] as well as the performance comparisons
[5], and the more recent meta performance analysis [35]. Practical implementations of
the optical flow estimation further rely on a combination of heuristics such as a coarse-to-
fine pyramid, image warping, and inertial smoothing between iterations as highlighted
in the extensive experimental evaluations in [27, 28]. Finally, neural network-based
methods such as RAFT [29] and its multi-frame variants [31] have shown state-of-the-art
solutions for generalized optimal flow problems. Motion magnification based on RAFT
was studied in our previous work [11]. An excellent overview of neural network-based
solutions is presented in [16].

In this paper, we consider a special optical flow problem for multiple image frames aris-
ing from optical time-harmonic elastography [17]. More precisely, an external acoustic
source, whose frequency is precisely controlled by a wave generator, causes a time-
harmonic oscillation of the specimen. Here, we assume that the flow velocity has the
special structure vpt, xq “ apxqRepeiωtq P Rd, which consists of a harmonic wave in time
t ě 0 with known frequency ω and an amplitude apxq depending only on the spatial
variable x P Rd. Having reconstructed the velocity field v, it can be used in a subsequent
step e.g. for the analysis of the material properties considered in the time-harmonic elas-
tography experiment. In particular, it is possible to reconstruct the shear modulus of the
considered material which is an important property that characterizes the mechanical
behavior of the material, see [26].

Given a sequence of images of the specimen undergoing a harmonic deformation over
multiple time steps t, we have only to reconstruct the time-independent amplitude a to
get access to the displacement. Therefore, we can efficiently utilize the image frames over
the whole time period, i.e., a multiframe approach for reconstructing the velocity field.
In contrast, most variational methods for general optical flow reconstruction rely just on
two (consecutive) image frames. Nevertheless, there exist a few variational multiframe
approaches, one of the first ones was that of Schnörr and Weickert [34]. Furthermore,
a periodic model, which is not necessarily a single harmonic, was considered in the
context of cardiac motion [20] and solved with the Horn–Schunck method. This model
was extended in [24] to a smoothed version of the total variation norm and solved via
gradient descent. Due to their different nature, our model offers a lower numerical
complexity, taking advantage of the fast Fourier transform and the fact that we need to
reconstruct only a single amplitude image.

In this paper, we propose three models to solve the time-harmonic optical flow. The
first one is an adaption of the classical Horn–Schunck approach with quadratic data
fidelity and smoothness term. We give an explicit characterization of the minimizers of
the respective energy functional via the Fourier transform in time. Based on this, we
suggest solving it efficiently as a least squares problem. The second model comprises an
L1 data fidelity term, making it more robust to noise, and a total variation smoothness
term. The third uses “the best of both worlds” by combining the data term of the second
with the smoothness of the first model, therefore yielding a smoother amplitude field as
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it is expected from the physical point of view. After reformulating in the Fourier domain,
both models are solved with an iteratively reweighted least squares (IRLS) method [18,
19]. The accuracy and the lower arithmetic complexity of our algorithms are validated
in numerical experiments with both simulated and experimental data acquired in a gel
phantom.

Outline of the paper. We start by providing our mathematical optical flow model in
time-harmonic elastography in Section 2. Then, in Section 3, we propose three vari-
ational models to approximate the optical flow. We derive formulas for finding the
minimizing amplitude of the optical flow field using Fourier transforms. Implementation
details are discussed in Section 4. Both synthetic and real-world examples which demon-
strate the very good numerical performance of our approach are given in Section 5. Final
conclusions are drawn in Section 6.

2. Time-harmonic optical flow

In this section, we provide the continuous optical flow model for the special setting when
the object undergoes a time-harmonic oscillation with known frequency.

Let T ą 0 be the observational time and Ω be a bounded domain in Rd. We are given
gray-value images I : r0, T s ˆ Ω Ñ R in C1, which means that they are continuously
differentiable in both time and space. In our applications, we deal with sequences of
two-dimensional images, i.e. d “ 2 and Ω is a rectangular domain. From the experimental
setting, we can assume that the so-called ”brightness constancy” assumption holds true,
meaning that the image gray-values (pixel intensities) move in space, but do not change
their values. Roughly speaking, we assume for all x P Ω that

Ipt, φpt, xqq “ Ip0, xq for all t P r0, T s, (1)

where φ : r0, T s ˆ Ω Ñ Rd fulfills for every x P Ω the ordinary differential equation
(ODE)

d

dt
φpt, xq “ vpt, φpt, xqq, t P r0, T s,

φp0, xq “ x,
(2)

with a sufficiently smooth velocity field v : r0, T s ˆ Ω Ñ Rd. Then (1) can be rewritten
as

0 “
d

dt
Ipt, φpt, xqq “ BtIpt, φpt, xqq ` ∇Ipt, φpt, xqq

T
Btφpt, xq, (3)

where ∇ denotes the gradient with respect to the spatial component in Rd and T is the
transposition of a matrix. By (2), and replacing φpt, xq Ñ x for every t P r0, T s, the
image sequence fulfills the partial differential equation

BtIpt, xq ` ∇Ipt, xq
Tvpt, xq “ 0, pt, xq P r0, T s ˆ Ω,

Ip0, xq “ I0pxq, x P Ω,
(4)
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where I0 is the first image frame.

For the time-harmonic optical flow elastography [17], the object undergoes a periodic,
time-harmonic displacement with frequency ω P R, which is known from the experimen-
tal setup. This implies that the displacement u : r0, T s ˆ Ω Ñ Rd in

φpt, xq “ x ` upt, xq

is time-harmonic, i.e.,
upt, xq “ Repãpxq eitωq ´ Repãpxqq, (5)

with a complex amplitude ã P C, where the term Repãpxqq comes from the second line
of (2). However, it appears to be hard to work with this approach in (4), because the
reconstruction of ã requires solving a coupled system of the two differential equations
(2) and (4). Therefore, we propose to use instead the ”ansatz”

vpt, xq “ Re
`

apxq eitω
˘

“ aRpxq cosptωq ´ aIpxq sinptωq, t P r0, T s, x P Ω,
(6)

where the amplitude a “ aR` iaI with aR, aI P R is again complex and we always assume
that a is C2. The advantage of this approach is that the systems (2) and (4) are no
longer coupled. We first reconstruct a as a solution of (4), where we substitute v by (6),
and subsequently obtain the displacement u by solving (2). The relation between both
approaches is discussed in the following paragraph.

Time-harmonic approach with v versus u. Let us consider the relation in the one-
dimensional case d “ 1. In particular, we are interested in the question if the specific
time-harmonic structure (6) of the velocity v implies that the deformation φ is also
periodic or even that u is time-harmonic. We will see that the first property is fulfilled
at least for some choices of the amplitude a. For the special amplitude function

apxq “ αpxqeiϕ0 (7)

with a locally Lipschitz continuous real-valued function α and the corresponding veloc-
ity

vpt, xq “ αpxq cosptω ` ϕ0q,

φ has to fulfill

d

dt
φpt, xq “ α pφpt, xqq cosptω ` ϕ0q, φp0, xq “ x.

This initial value problem can be solved by the separation of variables resulting for every
x P R in a solution φpt, xq which is periodic in t. In particular, if 1{α has a bijective
antiderivative A : R Ñ R, which is e.g. the case when α is bounded and bounded away
from zero, then the solution is

φpt, xq “ A´1

ˆ

Apxq ´
sinptω ` ϕ0q ´ sinpϕ0q

ω

˙

.
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0 π{2 π 3π{2 2π

´1

0

1

t

φpt, 1.2q
φpt, 0.8q
φpt, 0.4q
φpt, 0q
φpt,´0.4q
φpt,´0.8q
φpt,´1.2q

Figure 1: Trajectories φpt, xq corresponding to the velocity amplitude apxq “ 0.2x from
Example 1 with different starting values x for ω “ 1.

A first order Taylor approximation of A´1 around Apxq yields the approximate displace-
ment

upt, xq “ φpt, xq ´ x « ´αpxq
sinptω ` ϕ0q ´ sinpϕ0q

ω
,

which is a harmonic oscillation of the form (5).

Example 1 (Periodic deformation). Let apxq “ cx, x P R, for some c P R. Then
the solution of (2) becomes

φpt, xq “ x e´ c
ω
sinptωq,

which is illustrated in Figure 1. In particular, the deformation φ is again 2π
ω

periodic

I(1, ·) I(500, ·) I(1000, ·) I(1500, ·) I(2000, ·)

Figure 2: Two-dimensional images Ipt, ¨q corresponding to a harmonic velocity (6) with
a real-valued amplitude function a and period T “ 2000. The displacement u
is periodic. The second row is the zoom-in of the first row to the red rectangle.
The red ‚‚‚ depicts the position φpt, xq of a single point x at time t and the red
curve is its trajectory.
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t

φpt, 1q
φpt, 0.5q
φpt, 0q

Figure 3: Trajectories φpt, xq of Example 2 for different starting values x with ω “ 1.

in t. An illustration of a two-dimensional example, where the resulting displacement u
is periodic, is given in Figure 2. ˝

Example 2 (Non-periodic deformation). If the amplitude a does not have the form
(7), the displacement u of the motion might be non-periodic. Consider the complex
amplitude apxq “ e´ix, x P R, and frequency ω “ 1. Then the velocity is

vpt, xq “ Repeipt´xq
q “ cospt ´ xq.

A straightforward computation using trigonometric identities verifies that

φpt, xq “ t ` 2 arccot
`

t ` cot x
2

˘

I(1, ·) I(500, ·) I(1000, ·) I(1500, ·) I(2000, ·)

Figure 4: Two-dimensional images Ipt, ¨q corresponding to a harmonic velocity (6) with
an amplitude function of the form apxq P iR ˆ R and period T “ 2000. The
resulting displacement u is not periodic. The second row is the zoom-in of the
first row to the red rectangle. The red ‚‚‚ depicts the position φpt, xq of a single
point x at time t and the red curve is its trajectory.
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for x P p0, πq is a solution of (2) in this case, in particular we have

d

dt
φpt, xq “ 1 ´

2

1 ` pt ` cot x
2
q2

“ cospt ´ φpt, xqq.

Due to the asymptotics of the inverse cotangent, we have φpt, xq Ñ 8 for t Ñ 8 and
fixed x, cf. Figure 3. Hence, the same holds also for the displacement upt, xq.

An illustration of a two-dimensional example, where the resulting displacement u is
non-periodic, is given in Figure 4. ˝

An “opposite” example showing a time-harmonic displacement u that results in a peri-
odic velocity v, which is however not time-harmonic, is given in Appendix A.

3. Variational models for time-harmonic optical flow

We want to approximate the solution of the flow equation (4) with the time-harmonic
velocity field (6) from given measurements Ipt, xq, t P r0, T s, x P Ω, where we assume
that p P N periods of oscillations were observed and T :“ 2πp

ω
. More precisely, we aim

to recover the amplitude a of the velocity field v. Since the optical flow equation is
ill-posed, this is in general tackled by solving a variational problem of the form

Epvq :“

ż

Ω

ż T

0

´

D
`

∇Ipt, xq
Tvpt, xq ` BtIpt, xq

loooooooooooooooomoooooooooooooooon

“:Gvpt,xq

˘

` λRp∇vpt, xqq

¯

dt dx, (8)

with a data fidelity term D : R Ñ Rě0 enforcing the physics-based relation (4) and a
regularizer R : Rdˆd Ñ Rě0, which aims to make the problem well-posed and contains,
from a Bayesian point of view, prior knowledge on the velocity field. Both terms are
coupled by a regularization parameter λ ą 0. For an overview of data fidelity and
regularization terms used in optical flow between two image frames, see e.g. [12]. In this
section, we will discuss the following choices:

I) DpGvq :“ |Gv|2 and R :“ }∇v}2 “
řd

j,k“1

ˇ

ˇBxj
vk

ˇ

ˇ

2
,

II) DpGvq :“ |Gv| and R :“ }∇v},

III) DpGvq :“ |Gv| and R :“ }∇v}2,

where } ¨ } denotes the Euclidean norm in Rdˆd, also known as Frobenius norm. Model I
resembles the Horn–Schunck model in image processing [15] and is appropriate for image
data corrupted by Gaussian noise and a sufficiently smooth velocity field. Model II is
more robust against noise in the image frames, especially heavy-tailed noise stemming,
e.g., from the Laplace distribution and also avoids penalizing jumps in the derivative of
the velocity field too much, see the total variation model in image denoising [25] and for
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its counterpart in optical flow, e.g. [1, 14]. Such models appeared to be beneficial for
early crack detection in materials in tensile tests [2]. Note that often the above model
was only considered for two consecutive image frames and not over the whole sequence
of images. Finally, Model III combines the robustness to noise from Model II with the
regularization term of Model I and aims for a smoother reconstruction.

In the following, we will show how the Models I – III can be refined using the special time-
harmonic structure of the velocity field in (6). In particular, the incorporation of the
whole time interval, i.e. of all image frames at the same time, becomes straightforward.
To this end, we need the Fourier transform of functions f P L1pRq defined by

Frf spνq :“

ż

R
fptq e´itν dt, ν P R. (9)

If f is supported on r0, T s as it will be the case in our applications, the integral can be
just taken over r0, T s. For a vector-valued function f , the Fourier transform is defined
componentwise. In what follows, we always apply the Fourier transform in the time
variable t and leave the spatial variables fixed.

3.1. Model I

We start by minimizing the functional

Epvq :“

ż

Ω

ż T

0

`

|Gvpt, xq|
2

` λ ∥∇vpt, xq∥2
˘

dt dx, (10)

where we are only interested the special velocity fields v in (6). Then the minimizer of
Epvq is described by the following theorem.

Theorem 3. For a given frequency ω P R and p P N, set T :“ 2πp{ω. Let I : r0, T s ˆ

Ω Ñ R be an image sequence in C1 and v : r0, T s ˆΩ Ñ Rd a time-harmonic velocity in
C2 of the form (6). Then, the minimizing amplitude a corresponding to the velocity v in
(10) satisfies for all x P Ω the equation

λT∆apxq “ Fr∇I∇ITsp2ω, xqapxq ` Fr∇I∇ITsp0, xqapxq ` 2FrBtI∇Ispω, xq, (11)

where a denotes the complex conjugate of a and ∆ is the Laplace operator.

Proof: Inserting (6) into E and splitting the amplitude a “ aR ` aI as in (6), we obtain

Epvq “

ż

Ω

ż T

0

´

`

∇Ipt, xq
TaRpxq cosptωq ´ ∇Ipt, xq

TaIpxq sinptωq ` BtIpt, xq
˘2

`λ ∥∇aRpxq cosptωq ´ ∇aIpxq sinptωq∥2
˘

dt dx.
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Since we integrate over p full periods, this becomes

Epvq “

ż

Ω

ˆ
ż T

0

`

∇Ipt, xq
TaRpxq cosptωq ´ ∇Ipt, xq

TaIpxq sinptωq ` BtIpt, xq
˘2

dt

`
λT

2

`

∥∇aRpxq∥2 ` ∥∇aIpxq∥2
˘

˙

dx. (12)

The Euler–Lagrange equations yield that the minimizer a has to satisfy for all i “ 1, . . . , d
the equations

λT
d

ÿ

j“1

B
2
xj

paRqipxq “

ż T

0

2
´

∇Ipt, xq
TaRpxq cosptωq ´ ∇Ipt, xq

TaIpxq sinptωq

` BtIpt, xq

¯

Bxi
Ipt, xq cosptωq dt,

λT
d

ÿ

j“1

B
2
xj

paIqipxq “

ż T

0

2
´

∇Ipt, xq
TaRpxq cosptωq ´ ∇Ipt, xq

TaIpxq sinptωq

´ BtIpt, xq

¯ ´

´ Bxi
Ipt, xq sinptωq

¯

dt.

Using trigonometric identities 2 cos2pyq “ 1 ` cosp2yq and 2 sin2pyq “ 1 ´ cosp2yq, we
can equivalently state the last equations in vector form as

λT∆aRpxq “

ż T

0

∇Ipt, xq

´

∇Ipt, xq
TaRpxq2 cos2ptωq

´ ∇Ipt, xq
TaIpxq sinp2tωq ` BtIpt, xq2 cosptωq

¯

dt

λT∆aIpxq “

ż T

0

∇Ipt, xq

´

´ ∇Ipt, xq
TaRpxq sinp2tωq

` ∇Ipt, xq
TaIpxq2 sin2

ptωq ´ BtIpt, xq2 sinptωq

¯

dt.

Then, the temporal Fourier transform (9) yields

λT∆aRpxq “
`

ReFr∇I∇ITsp0, xq ` ReFr∇I∇ITsp2ω, xq
˘

aRpxq

` ImFr∇I∇ITsp2ω, xqaIpxq ` 2ReFrBtI∇Ispω, xq,

λT∆aIpxq “
`

ReFr∇I∇ITspx, 0q ´ ReFr∇I∇ITsp2ω, xq
˘

aIpxq

` ImFr∇I∇ITsp2ω, xqaRpxq ` 2ImFrBtI∇Ispω, xq.

Since Ipt, xq P R, we get Fr∇I∇ITspx, 0q P Rdˆd. By returning to the complex-valued
function a, we get the assertion. ˝

As the unknown a depends only on the spatial variable x and the Fourier coefficients of
the derivatives of I can be precomputed, the size of the linear system (11) is independent
of the time period T . This causes a significant runtime improvement compared to the
estimation of the optical flow velocity between all consecutive pairs of images.
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3.2. Model II

For Model II, the functional (8) becomes

Epvq :“

ż

Ω

ż T

0

p|Gvpt, xq| ` λ ∥∇vpt, xq∥q dt dx. (13)

The data fidelity term resembles the L1 norm on r0, T s ˆ Ω and is also known as least
absolute deviations [9]. A modified L1 term has been applied in optical flow estimation
between two images [10]. In particular, they used the Charbonnier penalty DpGvq “
a

|Gv|2 ` ε2 for some ε ą 0 as a part of their data fidelity term. The regularizer can be
seen as the vectorial total variation (TV) norm of v, see [13, eq. (9)].

As (13) is no longer differentiable, finding its minimizer via Euler–Lagrange equations is
not possible. While a variety of optimization techniques for (13) exist, we chose to work
with a majorize–minimize technique known as the iteratively reweighted least squares
(IRLS) [18, 19] or half-quadratic minimization [8]. For each iteration of the algorithm, a
global quadratic majorant of (13) depending on the current iterate is constructed. Then
it is minimized and its optimizer is set to be the next iterate.

To construct a majorant of (13), we consider the Huber function

hε : R Ñ r ε
2
,8q, x ÞÑ

#

|x|, |x| ě ε,
|x|2

2ε
` ε

2
, |x| ă ε,

with smoothing parameter ε ą 0. It is a smoothed version of |x| linked to its Moreau
envelope [6, Examples 6.54 and 6.62] and satisfies the following properties.

Lemma 4. Let x, z P R. For all 0 ă ε1 ď ε2, we have

hε1pxq ď hε2pxq and lim
εÓ0

hεpxq “ |x|.

Next, we replace |¨| by hε in the energy functional (13). We consider the smoothed
energy functional

Eε,δpvq :“

ż

Ω

ż T

0

phε pGvpt, xqqq ` λhδ p∥∇vpt, xq∥qq dt dx ě Epvq,

with data fidelity and regularization smoothing parameters ε, δ ą 0. It is a majorant of
Epvq, however, it is not a quadratic functional. Thus, we proceed further by utilizing
the following lemma.

Lemma 5 ([19, Lem. 2.1]). Let x, z P R and ε ą 0. Define

qεpx, zq :“
|x|2

2maxtε, |z|u
`

1

2
maxtε, |z|u. (14)

Then, qε is a quadratic majorant of hε satisfying

hεpxq ď qεpx, zq and hεpxq “ qεpx, xq.
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For u : r0, T s ˆ Ω Ñ Rd, we set

Eu,ε,δpvq :“

ż

Ω

ż T

0

pqε pGvpt, xq, Gupt, xqq ` λqδ p∥∇vpt, xq∥ , ∥∇upt, xq∥qq dt dx. (15)

Then we have
Epvq ď Eε,δpvq ď Eu,ε,δpvq.

The iteration
vk`1

“ argmin
v

Evk,ε,δpvq, k P N0,

leads to
Eε,δpv

k`1
q ď Evk,ε,δpv

k`1
q ď Evk,ε,δpv

k
q “ Eε,δpv

k
q (16)

and the values Eε,δpv
kq form a nonincreasing convergent sequence for k Ñ 8. For fixed

parameters ε and δ, this procedure only minimizes Eε,δ instead of (13). Since Eε,δ goes to
E as the smoothing parameters vanish, a common strategy is to take sequences εk, δk Ó 0
and construct the iterates

vk`1 :“ argmin
v

Evk,εk,δkpvq.

This step does not affect the convergence argument in (16) as

Eεk`1,δk`1pvk`1
q ď Eεk,δkpvk`1

q ď Eεk,δkpvkq.

A more advanced derivation [18, Thm. 6] shows that (in a slightly different setting)
with a proper decay strategy of εk`1, δk`1, the iterates vk are guaranteed to converge to
a global minimum of Epvq at a sublinear rate Opk´ 1

3 q. Furthermore, with an additional
assumption, a linear convergence is achievable [18, Thm. 9].

Now we focus on the minimization of Evk,εk,δk . In fact, it can be seen as a weighted
version of (11).

Theorem 6. Let ε, δ ą 0 and u : r0, T s ˆ Ω Ñ Rd in C1 be fixed. Consider the flow
velocity vpt, xq “ Repapxqeiωtq in C2. Then the amplitude a : Ω Ñ Cd of the minimizer v
of Eu,ε,δpvq, see (15), satisfies

FrwD∇I∇ITsp0, xqapxq ` FrwD∇I∇ITsp2ω, xqapxq ` 2FrwDBtI∇Ispω, xq

“ λ
d

ÿ

j“1

Bxj

´

FrwRsp0, xqBxj
apxq ` FrwRsp2ω, xqBxj

apxq

¯ (17)

for all x P Ω, where wD, wR : r0, T s ˆ Ω Ñ R are defined by

wDpt, xq :“
1

maxtε, |Gupt, xq|u
and wRpt, xq :“

1

maxtδ, ∥∇upt, xq∥u
. (18)
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Proof: As the second term in the definition (14) of qεpx, zq does not depend on x, we
can write Eu,ε,δpvq as

Eu,ε,δpvq “
1

2

ż

Ω

ż T

0

˜

|Gvpt, xq|2

maxtε, |Gupt, xq|u
` λ

∥∇vpt, xq∥2
maxtδ, ∥∇upt, xq∥u

¸

dt dx ` const

“
1

2

ż

Ω

ż T

0

wDpt, xq|Gvpt, xq|
2

` λwRpt, xq ∥∇vpt, xq∥2 dt dx ` const.

We first want to compute the regularization term

Rpapxqq :“

ż T

0

wRpt, xq ∥∇vpt, xq∥2 dt.

Substituting vpt, xq “ Repapxqeiωtq gives

∥∇vpt, xq∥2 “
∥∥Rep∇apxqeiωtq

∥∥2

“ 1
4

∥∥∇apxqeiωt ` ∇apxqe´iωt
∥∥2

“ 1
2
∥∇apxq∥2 ` 1

2
Re

`@

∇apxqeiωt,∇apxqe´iωt
D

Fro

˘

“
1

2
∥∇apxq∥2 `

1

2
Re

˜

d
ÿ

k,j“1

pBxj
akpxqq

2e2iωt

¸

.

Integrating over t yields

Rpapxqq “
1

2

ż T

0

wRpt, xq

«

∥∇apxq∥2 ` Re

˜

d
ÿ

k,j“1

pBxj
akpxqq

2e2iωt

¸ff

“
1

2
FrwRsp0, xq ∥∇apxq∥2 `

1

2
Re

˜

d
ÿ

k,j“1

pBxj
akpxqq

2FrwRspx,´2ωq

¸

“
1

2
FrwRsp0, xq ∥∇apxq∥2 `

1

2
Re

˜

d
ÿ

k,j“1

pBxj
akpxqq

2FrwRspx, 2ωq

¸

,

where in the last line we used that the temporal Fourier transform of the real-valued
wR is conjugate symmetric. Splitting a “ aR ` iaI into its real and imaginary parts, we
obtain

∥∇apxq∥2 “

d
ÿ

k,j“1

pBxj
paRqkpxqq

2
` pBxj

paIpxqqkq
2

12



and

Re

˜

d
ÿ

k,j“1

pBxj
akpxqq

2FrwRspx, 2ωq

¸

“

d
ÿ

k,j“1

Re
`

pBxj
akpxqq

2
˘

ReFrwRspx, 2ωq ` Im
`

pBxj
akpxqq

2
˘

ImFrwRspx, 2ωq

“

d
ÿ

k,j“1

´

pBxj
paRqkpxqq

2
´ pBxj

paIqkpxqq
2
¯

ReFrwRspx, 2ωq

` 2Bxj
paRqkpxqBxj

paIqkpxqImFrwRspx, 2ωq.

Combining all the terms and rearranging the summands ultimately gives the regularizer

Rp∇apxqq “

d
ÿ

k,j“1

1

2
pFrwRsp0, xq ` ReFrwRspx, 2ωqq pBxj

paRqkpxqq
2

`

d
ÿ

k,j“1

1

2
pFrwRsp0, xq ´ ReFrwRspx, 2ωqq pBxj

paIqkpxqq
2

`

d
ÿ

k,j“1

ImFrwRspx, 2ωqBxj
paRqkpxqBxj

paIqkpxq.

The data fidelity term is transformed analogously to Theorem 3 resulting in

Dpapxqq :“

ż T

0

wDpt, xq|Gvpt, xq|
2

“

ż T

0

wDpt, xq
`

∇Ipt, xq
TaRpxq cosptωq ` ∇Ipt, xq

TaIpxq sinp´tωq ` BtIpt, xq
˘2

dt.

In summary, the functional Eu,ε,δpvq becomes

Eu,ε,δpvq “
1

2

ż

Ω

Dpapxqq ` λRp∇apxqq dx ` const.

The Euler-Lagrange equations are then given by

BDpapxqq

BpaRqk
“ λ

d
ÿ

j“1

Bxj

BRp∇apxqq

BpBxj
paReqkpxqq

,

BDpapxqq

BpaIqk
“ λ

d
ÿ

j“1

Bxj

BRp∇apxqq

BpBxj
paIqkpxqq

13



for all k P rds. The left-hand side can be transformed similarly to the proof of Theorem 3
with wDpt, xq entering the Fourier coefficients,

BDpapxqq

BaR
“

`

ReFrwD∇I∇ITsp0, xq ` ReFrwD∇I∇ITsp2ω, xq
˘

aRpxq

` ImFrwD∇I∇ITsp2ω, xqaIpxq ` 2ReFrwDBtI∇Ispω, xq,

BDpapxqq

BaI
“

`

ReFrwD∇I∇ITsp0, xq ´ ReFrwD∇I∇ITsp2ω, xq
˘

aIpxq

` ImFrwD∇I∇ITsp2ω, xqaRpxq ` 2ImFrwDBtI∇Ispω, xq.

The right-hand side reads as

d
ÿ

j“1

Bxj

BRp∇apxqq

BpBxj
paReqkpxqq

“

d
ÿ

j“1

Bxj

`

pFrwRsp0, xq ` ReFrwRspx, 2ωqq Bxj
paRqkpxq

˘

`

d
ÿ

j“1

Bxj

`

ImFrwRspx, 2ωqBxj
paIqkpxq

˘

,

d
ÿ

j“1

Bxj

BRp∇aRpxq,∇aIpxqq

BpBxj
paImqkpxqq

“

d
ÿ

j“1

Bxj

`

pFrwRsp0, xq ´ ReFrwRspx, 2ωqq Bxj
paIqkpxq

˘

`

d
ÿ

j“1

Bxj

`

ImFrwRspx, 2ωqBxj
paRqkpxq

˘

.

Combining aR and aI into a and noticing that FrwD∇I∇ITsp0, xq P Rdˆd yields the
desired system. ˝

The reconstruction process is summarized in Algorithm 1. Similarly to Model I, the size
of the linear system (17) is independent of the time period T . However, in this case, the
weights wD and wR are time-dependent and, thus, finding a solution to Model II with
Algorithm 1 is expected to be slower than to Model I. However, if the number of IRLS
iterations K is small, this difference is less pronounced.

Algorithm 1: IRLS for Model II

Data: Images I, initial guess a0, starting smoothing parameters ε0, δ0 ą 0,
number of iterations K P N.

Result: Reconstructed density a.
for k “ 0, . . . , K ´ 1 do

Compute the velocity vkpt, xq “ Repakpxqeitωq.
Compute the weights wD and wR form (18) with vk, εk and δk.
Compute ak`1, which is the minimizer of Evk,εk,δk , by solving (17).
Update εk`1, δk`1 such that εk`1 ď εk, δk`1 ď δk.

Set a “ aK .

14



We briefly discuss our update rule for the smoothing parameters εk, δk assuming that
Ω has finite volume |Ω|. They are chosen as the minimum between the previous values
and the scaled average of the current residual, i.e.,

εk`1
“ max

"

min

"

εk,
0.1

T |Ω|
?
k ` 1

ż

Ω

ż T

0

|Gvpt, xq| dt dx

*

,
c

?
k ` 1

*

,

δk`1
“ max

"

min

"

δk,
0.1

T |Ω|
?
k ` 1

ż

Ω

ż T

0

∥∇vpt, xq∥ dt dx

*

,
c

?
k ` 1

*

,

where c “ 10´8 is a small constant. The role of the maximum is to prevent the smooth-
ing parameters from becoming zero. This choice does not come with theoretical con-
vergence guarantees, but it resembles the choices in [18, Thm. 6 and 9]. For a more
comprehensive overview of possible strategies, we refer to [18, § 7.1]. Other than the
decay strategy of the smoothing parameters, IRLS has no hyperparameters to tune,
which makes its implementation and use straightforward compared to ADMM-based or
primal-dual methods.

3.3. Model III

Model III combines the approaches of the two previous sections by taking the L1 data
fidelity term (least absolute deviations), which is more robust to outliers, and the L2

regularizer, which promotes the smoothness of the reconstructed a. In particular, we
consider the energy functional

Epvq :“

ż

Ω

ż T

0

`

|Gvpt, xq| ` λ ∥∇vpt, xq∥2
˘

dt dx

“

ż

Ω

ˆ
ż T

0

|Gvpt, xq| dt `
λT

2
∥∇apxq∥2

˙

dx.

Note that the data fidelity term scales linearly in v, while the regularizer scales quadrat-
ically. This leads to a signal- and noise-level dependent choice of the regularization
parameter λ, unlike in the previous two scenarios.

The minimization can be performed with the IRLS method similarly to Section 3.2.
Analogously to (15), we define for ε ą 0 and u, v : r0, T s ˆΩ Ñ Rd a quadratic majorant
of E at u by

Eu,εpvq :“

ż

Ω

ż T

0

`

qε pGvpt, xq, Gupt, xqq ` λ ∥∇upt, xq∥2
˘

dt dx, (19)

with qε from (14). Then, the functional (19) is iteratively minimized as in Algorithm 1.
The following theorem can be shown along the lines of Theorem 6 with wR ” 2.
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Theorem 7. Let ε ą 0 and u : r0, T sˆΩ Ñ Rd in C1 be fixed. Consider the flow velocity
vpt, xq “ Repapxqeiωtq in C2. Then the amplitude a : Ω Ñ Cd of the minimizer v of (19)
satisfies

FrwD∇I∇ITsp0, xqapxq ` FrwD∇I∇ITsp2ω, xqapxq ` 2FrwDBtI∇Ispω, xq

“ 2λT∆apxq
(20)

for all x P Ω, where F is the temporal Fourier transform (9) and

wDpt, xq “
1

maxtε, |Gupt, xq|u
.

In (19), the quadratic majorant qε includes an additional factor of 1
2
while the regular-

ization term does not. It leads to an extra factor 2 in the right-hand side of (20) or,
equivalently, wR ” 2. This is not the case for Model II, where the majorant qε is used
for both data fidelity and regularization term. Hence, the factor 1

2
has no impact on

(11).

The solution to Model III can be found analogously to Algorithm 1, where wR ” 2, the
parameter δ does not appear and the linear system (20) is solved instead of (17).

4. Numerical Implementation

In this section, we summarize implementation details for the numerical realization of
our minimization procedure. Most of these are somehow standard in optical flow com-
putation, but have to be adapted to our setting.

Discretization. We work in dimension d “ 2 with discrete images of size n1 ˆ n2.
The images can be seen as pointwise evaluations of the respective functions on a grid
Γ :“ rn1s ˆ rn2s with notation rns “ t1, . . . , nu. Consequently, in the implementation,
all integrals

ş

Ω
dx are replaced by sums over the grid

ř

xPΓ. Similarly, the images do not
form a continuum in the time variable, and thus we use t P rT s for T P N time steps.
Henceforth, we consider a discrete image as a 3D tensor I “ rIpt, xqstPrT s, xPΓ P RTˆn1ˆn2 .
We discretize the temporal Fourier transform (9) by

F rIspν, xq “
1

T

T´1
ÿ

t“0

Ipt, xq e´itν , pν, xq P rT s ˆ Γ. (21)

Derivatives. For the discrete approximation of the derivatives, we distinguish between
∇a and ∇I. The partial derivative B1I is approximated via an image filtering I ‹ hc in
the spatial coordinates as follows. The convolution with the kernel

hc “
1

8

»

–

´1 ´2 ´1
0 0 0
1 2 1

fi

fl

16



is defined by

Dc,1I :“ I ‹ hcpt; k, jq :“
1

ÿ

p,q“´1

Ipt; k ` p, j ` qqhcpp, qq, pk, jq P Γ, t P rT s, (22)

where I is padded by zeros. Note that we index the elements of the matrix hc from ´1 to
1 in order to obtain central derivatives. Analogously, we approximate B2I by I ‹hT. For
derivatives of a and time derivative of I, we use forward differences associated with the

filter kernel hfwd “
“

0 ´1 1
‰T
, i.e., with the i-th component ai “ raipxqsxPΓ, i “ 1, 2,

we approximate B1aipk, jq by

D1aipk, jq :“ ai ‹ hfwdpk, jq “ aipk ` 1, jq ´ aipk, jq, pk, jq P Γ. (23)

In contrast to the forward differences, the usage of central differences for ∇a leads to
reconstruction artifacts in our simulations. This is likely caused by the fact that our
algorithms require the computation of DT

1D1apk, jq “ apk`1, jq`apk´1, jq´2apk, jq,
which is a good approximation of the second derivative in (11).

Least squares implementation. Unlike in the classical Horn–Schunck method, which
is outlined in Appendix B, we solve the linear system (11) directly. That is, with
a “ aR ` iaI P C2ˆn1ˆn2 and the vectorization operator vec : R2ˆn1ˆn2 Ñ R2n1n2 , the
linear system (11) can be discretized in the form

C

„

vecpaRq

vecpaIq

ȷ

“ b, (24)

where b depends only on the data I and the matrix C depends on the data I and
the regularization parameter λ. The construction of C and b for the case d “ 1 is
outlined in Appendix C, where we see that the square matrix C is symmetric positive
semidefinite.

As the multiplication with C can be efficiently computed, this allows for the use of stan-
dard Matlab solvers such as the conjugate gradient (CG) method pcg, cf. [4]. Similarly,
equations (17) and (20) corresponding to Model II and III, respectively, are weighted
versions of (11) and can be rewritten analogously in the matrix form (24).

Computational complexity. For Model I, the CG method is applied to find a solution
of (24). To this end, we precompute b and Fourier coefficients in C at the expense
of OpTn1n2q operations, see Appendix C for details. The computational complexity
of a single CG iteration is proportional to the cost of a matrix-vector product with
the sparse matrix C, which has a complexity of Opn1n2q. Consequently, for Model I
performing KCG iterations of the CG method, the total computational complexity is
OppT ` KCGqn1n2q.

For Models II and III, Algorithm 1 is implemented. For each IRLS iteration, the com-
putation of the velocity vk from given ak, the weights wD, wR by (18) and the update
of the smoothing parameters ε, δ require a total of OpTn1n2q operations. Solving the
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resulting linear system has the same cost as in Model I, i.e., OppT `KCGqn1n2q. Hence,
running Models II and III for Kirls IRLS iterations and KCG inner CG iterations requires
OpKIRLSpT ` KCGqn1n2q operations. The constant in big O notation is a little smaller
for Model III than for Model II because wR is constant and a part of the computations
is not required.

Preprocessing. As a preprocessing step, the images are smoothed with a Gaussian kernel
of standard deviation σ “ 0.65. This step both filters out noise and smoothens sharp
edges in the images, which have a strong impact on the reconstruction quality.

Coarse-to-fine pyramid. We adopt the coarse-to-fine approach discussed in [27, § 4.2],
which consists in constructing a pyramid of images Iℓ as follows. Starting with the
top level L as the initial image sequence IpLq

“ I, the next level Ipℓq is obtained by
smoothing Ipℓ`1q with a Gaussian kernel and downsampling it with the factor η such
that IpL´1q

P RTˆrηn1sˆrηn2s and so on. The standard deviation of the Gaussian kernel is
commonly chosen as σ “ 1{

?
2η.

The reconstruction starts with the smallest image Ip1q. In each level ℓ P rLs, we compute
vpℓq as solution of the optical flow problem with the image Ipℓq, where we use as initial-
ization in the ℓ-th level the appropriately rescaled reconstruction vpℓ´1q. This yields a
faster recovery as we need fewer CG iterations in each level due to the initialization.

Median filtering. As a postprocessing step, a 5 ˆ 5 median filter is applied to the
reconstructions vpℓq obtained at each level of the coarse-to-fine pyramid.

Warping of derivatives. The coarse-to-fine approach provides intermediate solutions vpℓq

at each level ℓ P rLs. As these estimated velocities are good approximations of v, they
can be used to obtain a better approximation of the derivative ∇I in the variational
model (8), see [2, § 2.1].

Denote by ṽpt, xq the estimated velocity from the previous level. The first-order Taylor
approximation of φ yields

φpt ` 1, xq « φpt, xq ` Btφpt, xq “ φpt, xq ` vpt, xq.

Rewriting (22) as
Ipt, xq « Ipt ` 1, x ` vpt, xqq

and utilizing the first-order Taylor approximation of Ipt ` 1, x ` vpt, xqq around the
estimated velocity x ` ṽpt, xq gives

Ipt, xq « Ipt ` 1, x ` ṽpt, xqq ´ ∇Ipt ` 1, x ` ṽpt, xqq
T

pṽpt, xq ´ vpt, xqq.

Hence, we have

ĂGvpt, xq :“ ČBtIpt, xq ` Č∇Ipt, xq
T
vpt, xq « 0,
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where

Č∇Ipt, xq :“ ∇Ipt ` 1, x ` ṽpt, xqq,

ČBtIpt, xq :“ Ipt ` 1, x ` ṽpt, xqq ´ Ipt, xq ´ Č∇Ipt, xq
T
ṽpt, xq.

We use ĂGv to approximate the data fidelity term. Since ĂGv requires the evaluation of I
or its derivatives at points x` ṽpt, xq, which might not be on the pixel grid Γ, we use a
bicubic interpolation.

5. Numerical Results

In this section, we provide a synthetic and a real-world example to demonstrate the
performance of our three models and compare them with two optical flow algorithms
created for general velocity fields, which do not need to be harmonic. In particular, we
compare the following algorithms:

• Model I, see Theorem 3,

• Model II, see Theorem 6,

• Model III, see Theorem 7,

• the implementation of the classical Horn–Schunck method, cf. Appendix B, avail-
able in Matlab’s Image Processing Toolbox, and

• the primal-dual hybrid gradient method (PDHGM) for optical flow from [2, 3]
with an L1 data fidelity term and an isotropic total variation regularizer akin to
Model II.

The latter two algorithms compute the velocity vpt, ¨q between consecutive pairs of im-
ages Ipt, ¨q and Ipt ` 1 mod T, ¨q, t P rT s. As the resulting vpt, ¨q may not be of
the form (6), the corresponding amplitude a is retrieved via the Fourier transform
apxq “ 2Frvspω, xq.

All numerical computations were performed on an 8-core Intel Core i7-10700 with 32GB
memory running Matlab R2022a. The code for our numerical experiments will is avail-
able at [30].

5.1. Generation of synthetic data

Before we come to the reconstruction in the next section, we describe how to generate the
synthetic data: given a velocity field v : r0, T s ˆΩ Ñ R and an initial image I0 : Ω Ñ R,
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we compute a sequence of distorted images Ipt, xq satisfying (4). Assume that φ possesses
an inverse function ψ : r0, T s ˆ Ω Ñ Ω such that

φpt, ψpt, xqq “ x @pt, xq P r0, T s ˆ Ω. (25)

Substituting x by ψpt, xq in (1), we obtain

Ipt, xq “ I0pψpt, xqq. (26)

Thus, it remains to compute ψpt, xq. Differentiating (25) for t, we have

0 “
d

dt
φpt, ψpt, xqq “ Btφpt, ψpt, xqq ` ∇φpt, ψpt, xqqBtψpt, xq

“ vpt, xq ` ∇φpt, ψpt, xqqBtψpt, xq,

where the Jacobian matrix is denoted by ∇φpxq “
“

Bxj
φi

‰d

i,j“1
. Differentiating (25) for

x, we have
∇x “ Iddˆd “ ∇φpt, ψpt, xqq∇ψpt, xq

Hence, we obtain the initial value problem

Btψpt, xq “ ´∇ψpt, xqvpt, xq.

with ψp0, xq “ x. Each component of the last equation is equivalent to the optical flow
equation (3), but with different initial values in each component. For the numerical com-
putation with the forward Euler method, we usually need to smoothen the gradient.

5.2. Synthetic example

In the first experiment, we test the reconstruction algorithms on a synthetic dataset.
Let n1 “ 200, n2 “ 206, T “ 300 and consider the time-harmonic velocity field v with
frequency ω “ 6π{T and the complex amplitude a : Ω Ñ R2 given by

apxq “

«

0.8px1 ´ n1

2
q sinp

∥x´x0∥2
2000

q expp´
∥x´x0∥2

3300
q

10 expp´
∥x´0.5x0∥2

1650
q

ff

, with x0 “ 1
2

„

n1

n2

ȷ

,

which is depicted in Figure 5 (a) and (b). From a, we compute v via (6) and turn to the
simulation of the synthetic frame sequence. As an initial, undistorted image I0 depicted
in Figure 5 (c), we take the resized first frame of the ultrasound gel dataset [17], which
we will use in Section 5.3.

We generate the frame sequence I “ rI0pψpt, xqqstPrT s,xPΓ P RTˆn1ˆn2 as described in
Section 5.1, where we evaluate I0 at non-integer points or points outside the image
boundary with a spline interpolation and nearest neighbor extrapolation.

For the reconstruction of a P C2ˆn1ˆn2 from the generated images I, the algorithms
are executed with the following parameters. Model I uses a coarse-to-fine pyramid with
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Figure 5: (a), (b): Absolute values of the two components of the ground truth ampli-

tude a, (c): noiseless initial image I0, (d): initial image I0 corrupted by Pois-
son and salt-and-pepper noise.

2 levels and downsampling factor η “ 0.8, where for each level 50 CG iterations are
performed. Models II and III use 4 levels instead. Model II performs 100 CG iterations
per IRLS iteration and 5 IRLS iterations (per pyramid level), while Model III performs
25 and 4 iterations, respectively. Matlab’s Horn–Schunck does not use the coarse-to-fine
approach and performs 1000 Horn–Schunck iterations per pair of images. PDHGM uses
15 pyramid levels with a downsampling ratio η “ 0.95 and 50 iterations per level, which
are the parameters used in [2]. The regularization parameters are chosen by hand in
order to receive a good result and are reported in the corresponding figures. We chose the
mentioned numbers of iterations in a way such that more iterations yield only marginal
improvements of the reconstructed images.

To measure the quality of reconstruction, the following metrics are considered. The
relative error (RE) and relative image error (RIE) are given by

REpã,aq :“

ř2
j“1 ∥ãj ´ aj∥2
ř2

j“1 ∥aj∥2
and RIEpĨ, Iq :“

řT
t“1 }Ĩpt, ¨q ´ Ipt, ¨q}2

řT
t“1 ∥Ipt, ¨q∥2

,

where } ¨ } is the Euclidean norm on Cn1ˆn2 , ã is the reconstructed amplitude, and Ĩ is
obtained via (26) by applying to I0 the time-harmonic displacement corresponding to ã.
Note that the RE can be seen as an analog to the end-point error used in optical flow
[27]. We also report the structural similarity index measure (SSIM) [32] computed for
the four frames Repa1q, Impa1q, Repa2q, and Impa2q with Matlab’s ssim. The structural
similarity index measure between the image sequences I and Ĩ is denoted by ISSIM.

In our first test, we perform the reconstructions from the generated image sequence I
without noise. The two spatial components aj of the reconstructed vector field a are
shown in Figure 6. We see that all compared models yield reasonable results. While
Model I and the reference implementation of Matlab’s Horn–Schunck yield a slightly bet-
ter RE, Models II and III give a better SSIM. The error measurements for the PDHGM
are in a similar magnitude, but visually the second component a2 does not completely
depict the structure of the ground truth.

21



Ground truth Model I, λ “ 1000 Model II, λ “ 0.0008 Model III, λ “ 20 Matlab, λ “ 15000 PDHGM, λ “ 1000

|a1|

5

10

15

20

|a2|
5

10

RE / SSIM 0.033 / 0.807 0.069/ 0.904 0.043/0.885 0.030/0.795 0.049 / 0.829

RIE / ISSIM 0.0000114 / 0.99950 0.0000431 / 0.99804 0.0000262 / 0.99883 0.0000098/ 0.99954 0.0000132 / 0.99949

Runtime, s 2.9 14.9 7.3 53.3 211.4

Figure 6: Absolute values of the spatial components aj P Cn1ˆn2 of the reconstructed
amplitude a “ pa1,a2q from the noiseless measurements smoothed with Gaus-
sian kernel.

For our second test, the simulated images I are artificially corrupted by noise in two
steps: first with the Poisson noise

IPoissonpt, xq “ PoissonpIpt, xqq, for all x P Γ, t P rT s

and, additionally, 0.5% of the pixels in IPoisson are corrupted by salt-and-pepper noise
resulting in noisy images denoted by Inoisy. Note that the values of I are in the range
r0, 264s. The resulting RIEpInoisy, Iq is 0.012 and the first frame of Inoisy is shown in
Figure 5 (d). The algorithmic setup for noisy data is the same as before.

The reconstructions performed on the noisy images Inoisy are shown in Figure 7. Due to
the heavy-tailed noise, Models II and III perform best in this case, while also Model I

Ground truth Model I, λ “ 2000 Model II, λ “ 0.0008 Model III, λ “ 20 Matlab, λ “ 15000 PDHGM, λ “ 1000

|a1|
5

10

15

|a2|

2

4

6

8

RE / SSIM 0.141 / 0.556 0.117/ 0.525 0.121/0.586 0.167/0.547 0.879 / 0.244

RIE / ISSIM 0.0228459 / 0.59246 0.0228905 / 0.59249 0.0228924 / 0.59236 0.0229484/ 0.59168 0.0229252 / 0.58413

Runtime, s 2.9 14.8 7.3 52.9 213.3

Figure 7: Absolute values of the spatial components of the reconstructed amplitude a “

pa1,a2q from the noisy measurements In smoothed with Gaussian kernel.
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and Matlab’s Horn–Schunck yield decent results. The PDHGM algorithm performs
considerably worse, its implementation seems to be very reliant on a good choice of the
internal parameters in case of this noisy data. Overall, the RIE must always be above
a certain level due to the salt and pepper noise. Note that we compute here the RIE
between the noisy images Inoisy and the images Ĩ obtained via (26) with Inoisyp0, ¨q and
velocity corresponding to the reconstructed amplitude ã.

Considering computational times, Model I is the fastest. Models II and III take some-
what more time, since they have an outer IRLS loop and an inner CG loop, but the
inner one requires fewer iterations than Model I since it is restarted with the previous
solution. The Matlab algorithm is much slower since it solves a 2n1n2 ˆ 2n1n2 linear
system for each time step t, whereas Model I solves only one 4n1n2ˆ4n1n2 linear system
to compute a.

5.3. Real-world data

Now, we turn to the reconstruction from the real-world gel dataset, which has the
size pn1, n2q “ p992, 1024q and consists of 24 frames stemming from p “ 3 repetitions
with T “ 8 frames each. It was obtained by observing a phantom specimen consisting
of ultrasound gel mixed with Silicon carbide scatterers. The motion was induced by
targeted sound waves with a frequency of 800Hz perpendicular to the image plane,
generated via a piezo actuator and amplifier. The resulting vibrations are recorded by
a high-speed camera with a pixel size of 2 ˆ 2 µm. More details on the measurements
are found in [17].

For Model I, we perform 500 CG iterations without the coarse-to-fine pyramid. Models
II and III incorporate the coarse-to-fine pyramid with 5 levels and downsampling factor
η “ 0.5. Model II performs 300 CG and 5 IRLS iterations, and Model III executes 50
CG and 6 IRLS iterations. Matlab does not use coarse-to-fine approach and performs
1000 iterations of the Horn–Schunck algorithm per pair of images. PDHGM uses the
same parameters as in Section 5.2 above.

The reconstructions are shown in Figure 8. We observe again that the accuracy of
Model I and Matlab almost matches. As only T “ 24 images are used, the speed benefit
of Model I is less pronounced but still present. Model III is slightly faster than Model I
as it uses the coarse-to-fine pyramid and performs fewer iterations on the larger images.
Model II shows similar performance metrics while being slower than Model III. While
the structural differences of a are visible, this has only a minor impact on both RIE
and ISSIM. The reconstruction with Model III is more consistent with the physically
expected result for the homogeneous medium as it does not show such high peaks as the
other models. As with the noisy simulated data, the PDHGM yields an inferior result.
Furthermore, we provide videos of the velocity v and the images Ĩ in the supplementary
material.
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Model I, λ “ 100 Model II, λ “ 0.2 Model III, λ “ 20 Matlab, λ “ 1000 PDHGM, λ “ 1000

|a1|
50

100

150

|a2|
50

100

150

RIE/ ISSIM 0.002396 / 0.878 0.002578 / 0.872 0.002475 / 0.872 0.002399 / 0.876 0.002546 / 0.858

Runtime, s 40 175 38 143 532

Figure 8: Absolute values of the spatial components of the reconstructed amplitude a “

pa1,a2q from the gel dataset.

6. Conclusion

We have proposed three models for estimating the optical flow of time-harmonic oscil-
lations. For each of them, we have derived a fast algorithm taking advantage of the
single-frequency representation of the underlying displacement velocity. The conducted
numerical studies suggest that Model I is the best choice for low-noise scenarios, while
Model III, which combines an L1 data fidelity term with an L2 smoothness term of the
gradient, performs best in the presence of heavy noise.

The next natural step in optical time-harmonic elastography consists in using our ob-
tained velocity estimation for the reconstruction of the shear modulus of the examined
material, see [23] or [22, § 5]. This allows to infer information about elasticity and
viscosity of observed specimen with applications to medical imaging.
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A. Periodicity of u versus v

We look at another one-dimensional example where the displacement u can be described
by a single harmonic, namely

φpt, xq “ x ` cp1 ´ x2q sinptq, x P r´1, 1s, t ě 0, (27)

with some c ą 0, see Figure 9 left. Denoting again by ψ the inverse of φ as in (25), we
get

x “ ψpt, yq “
1 ´

a

4c2 sin2ptq ´ 4cy sinptq ` 1

2c sinptq

and the velocity

vpt, yq “ Btφpt, ψpt, yqq “ cpψpt, yq
2

´ 1q cosptq

“ cosptq

a

4c2 sin2ptq ´ 4cy sinptq ` 1 ` 2cy sinptq ´ 1

2c sin2ptq
,

see Figure 9 right. The flow velocity vpt, ψpt, yqq is still 2π-periodic in t, but it is not a
single harmonic anymore.

0 π{2 π 3π{2 2π

0

0.5

t

0 π{2 π 3π{2 2π

´0.1

0

0.1

t

x “ 0
x “ 0.2
x “ 0.4
x “ 0.6
x “ 0.8

Figure 9: Trajectories φpt, xq (left) and flow velocity vpt, xq (right) corresponding to (27)
for different values of x and fixed c “ 0.1 and ω “ 1.

B. The classical Horn–Schunck algorithm

The classical Horn–Schunck algorithm as proposed in [15] can be straightforwardly
adopted to solve (11) in the following way. We again split up real and imaginary part,
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as the complex equation contains both a and its conjugate a. Then, in matrix form,
(11) reads as

λT

ˆ

∆aRpxq

∆aIpxq

˙

“ Cpxq

ˆ

aRpxq

aIpxq

˙

` 2

ˆ

ReFrBtI∇xI
Tspω, xq

ImFrBtI∇xI
Tspω, xq

˙

with the coefficient matrix

Cpxq “

ˆ

ReFr∇xI∇xI
Tsp2ω, xq ImFr∇xI∇xI

Tsp2ω, xq

ImFr∇xI∇xI
Tsp2ω, xq ´ReFr∇xI∇xI

Tsp2ω, xq

˙

`I2bFr∇xI∇xI
T

spx, 0q,

where b is the Kronecker product and I2 is the 2 ˆ 2 identity matrix. By rewriting the
system as

λT

ˆ

p∆ ´ 1qaRpxq

p∆ ´ 1qaIpxq

˙

“ rCpxq ` λT I2ds

ˆ

aRpxq

aIpxq

˙

` 2

ˆ

ReFrBtI∇xI
Tspω, xq

ImFrBtI∇xI
Tspω, xq

˙

,

the right-hand side depends only on aR and aI evaluated at a single point x. If the
left-hand side were independent of the values of a at points other than x, we could
significantly simplify the computational effort and solve a separate linear system for
each x. However, the Laplacian requires the values of aR and aI in a neighborhood of
x. To avoid a large linear system, one solves (11) with the following iterative procedure.
Starting with initial a0R and a0I , we construct for k ě 0 new iterates ak`1

R and ak`1
I by

solving for each x the 2d ˆ 2d linear system

λT

ˆ

p∆ ´ 1qakRpxq

p∆ ´ 1qakI pxq

˙

“ rCpxq ` λT I2ds

ˆ

ak`1
R pxq

ak`1
R pxq

˙

` 2

ˆ

ReFrBtI∇xI
Tspω, xq

ImFrBtI∇xI
Tspω, xq

˙

.

When discretizing a on a uniform grid, p∆ ´ 1qapxq is implemented as the mean value
over the grid points adjacent to x.

C. Construction of the linear system for Model I

In this section, we consider the discretization of (11) in a one-dimensional setting. Let
d “ 1, n1 “ n and assume that T “ 2pπ{ω P N for some p P N. While it is possible to
directly replace the operators in (11) with their discrete analogues, we first go a step back
and start with the minimization of the energy functional E for Model I. Its empirical
counterpart Eemp : Cn Ñ R for observed images I P RTˆn is given by

Eemppaq “
ÿ

xPΓ

T´1
ÿ

t“0

´

`

DcIpt, xq
JaRpxq cosp´tωq ` DcIpt, xq

JaIpxq sinp´tωq ` DtIpt, xq
˘2

`λ|DaRpxq cosp´tωq ` DaIpxq sinp´tωq|
2
˘

,

where Γ “ rns is the pixel grid, Dc denotes the one-dimensional discrete central deriva-
tives as in (22) and D,Dt are the forward difference operators (23) in space and time,
respectively. As d “ 1, we leave out the extra index for the simplicity of notation.
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Minimizing Eemp can be viewed as a least squares problem. Introducing the matrices

y :“ ´

»

—

–

DtIp¨, 0q
...

DtIp¨, T ´ 1q

fi

ffi

fl

, R :“

„

D 0
0 D

ȷ

, M :“

»

—

–

M 0,1 M 0,2
...

...
MT´1,1 MT´1,2

fi

ffi

fl

,

with blocks

M t,1 :“ diagpDcIpt, ¨qq cosp´2πtp{T q, and M t,2 :“ diagpDcIpt, ¨qq sinp´2πtp{T q,

and simplifying the regularizer as in (12) transforms the energy functional Eemp into

Eemppaq “

›

›

›

›

M

„

aR

aI

ȷ

´ y

›

›

›

›

2

2

`
λT

2

›

›

›

›

R

„

aR

aI

ȷ›

›

›

›

2

2

“

›

›

›

›

›

«

M
b

λT
2
R

ff

„

aR

aI

ȷ

´

„

y
0

ȷ

›

›

›

›

›

2

2

.

Its normal equation, which is the discrete analogue of the Euler–Lagrange equations that
lead us to (11), is given by

C

„

aR

aI

ȷ

:“

ˆ

MJM `
λT

2
RJR

˙ „

aR

aI

ȷ

“ MJy “: b, (28)

which is precisely (24). Moreover, C is square, symmetric and positive semidefinite.

It remains to argue that (28) corresponds to the direct discretization of (11). For this,
we observe that the matrix C and the vector b admit the block structure

C “

„

C1,1 C1,2

C2,1 C2,2

ȷ

, b “

„

b1
b2

ȷ

,

with

C1,1 “

T´1
ÿ

t“0

diagpDcIpt, ¨q ˝ DcIpt, qq cos2p´tωq `
λT

2
DJD

“

T´1
ÿ

t“0

diagpDcIpt, ¨q ˝ DcIpt, ¨qq

„

1

2
`

cosp´2πtp{T q

2

ȷ

`
λT

2
DJD

“ diag

ˆ

1

2
F rDcI ˝ DcIsp0, ¨q `

1

2
ReF rDcI ˝ DcIsp2p, ¨q

˙

`
λT

2
DJD,

and, similarly,

C1,2 “ C2,1 “ diag

ˆ

1

2
ImF rDcI ˝ DcIsp2p, ¨q

˙

,

C2,2 “ diag

ˆ

1

2
F rDcI ˝ DcIsp0, ¨q ´

1

2
ReF rDcI ˝ DcIsp2p, ¨q

˙

`
λT

2
DJD,

b1 “ Re pF rDcI ˝ DtIspp, ¨qq , b2 “ Im pF rDcI ˝ DtIspp, ¨qq ,

where ˝ denotes the entrywise product and F is the discrete Fourier transform (21).
Since DJD is a discrete approximation of the negative Laplacian ´∆, we see that (28)
is indeed a discretization of (11).
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