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ABSTRACT

The fast computation of large kernel sums is a challenging task, which arises as
a subproblem in any kernel method. We approach the problem by slicing, which
relies on random projections to one-dimensional subspaces and fast Fourier sum-
mation. We prove bounds for the slicing error and propose a quasi-Monte Carlo
(QMC) approach for selecting the projections based on spherical quadrature rules.
Numerical examples demonstrate that our QMC-slicing approach significantly
outperforms existing methods like (QMC-)random Fourier features, orthogonal
Fourier features or non-QMC slicing on standard test datasets.

1 INTRODUCTION

We consider fast algorithms for computing the kernel sums

sm =

N∑
n=1

wnK(xn, ym), for all m = 1, ...,M, (1)

where xn, ym ∈ Rd and wn ∈ R for n = 1, ..., N , m = 1, ...,M and K : Rd × Rd → R is a radial
kernel, i.e., K(x, y) = F (∥x− y∥) for the Euclidean norm ∥ · ∥ and some F : R≥0 → R. This sum-
mation problem appears in most kernel methods including kernel density estimation (Parzen, 1962;
Rosenblatt, 1956), classification via support vector machines (Steinwart & Christmann, 2008), di-
mensionality reduction with kernelized principal component analysis (Schölkopf & Smola, 2002;
Shawe-Taylor & Cristianini, 2004), distance measures on the space of probability measures like
maximum mean discrepancies or the energy distance (Gretton et al., 2006; Székely, 2002), corre-
sponding gradient flows (Arbel et al., 2019; Galashov et al., 2024; Hagemann et al., 2024; Hertrich
et al., 2024; Kolouri et al., 2022), and methods for Bayesian inference like Stein variational gradient
descent (Liu & Wang, 2016). Computing (1) exactly for all m = 1, ...,M has complexity O(MN),
which can be restricting if M and N are large.

In low dimensions, there is a rich literature on fast approximation algorithms, we include a (non-
exhaustive) list in the “related work” section. One particular approach is the fast Fourier summation
(Kunis et al., 2006; Potts et al., 2004), which approximates the kernel by a truncated Fourier series
and reformulates (1) using the fast Fourier transform on non-equispaced data (Beylkin, 1995; Dutt &
Rokhlin, 1993). We provide a short overview in Appendix I. This kind of methods usually provides
a computational complexity of O(M + N + Nft log(Nft)), where Nft is the number of relevant
Fourier coefficients, and admits very fast error rates for Nft → ∞ (even exponential if the kernel is
sufficiently smooth). However, the number Nft of relevant Fourier coefficients grows exponentially
with the dimension d, such that this method is computationally intractable for dimensions larger
than four.

As a remedy for higher dimensions, Rahimi & Recht (2007) proposed random Fourier features
(RFF). They represent a positive definite kernel via Bochner’s theorem (Bochner, 1933) as the
Fourier transform of a non-negative measure. Sampling randomly from this measure at D ∈ N
points (features) leads to an approximation algorithm with computational complexity O(D(N+M))

independent of the dimension d. However, the error decays only with rate O(1/
√
D), which can be

limiting if a high accuracy is required. Moreover, RFF are limited to positive definite kernels and
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do not apply to other kernels, like the negative distance kernel K(x, y) = −∥x − y∥, which has
applications, e.g., within the energy distance (Székely, 2002) that is used for defining a distance on
the space of probability measures.

A related approach is slicing (Hertrich, 2024), which represents the kernel sum (1) as an expectation
of one-dimensional kernel sums of the randomly projected data points with a different kernel. Dis-
cretizing the expectation by sampling at P random projections, the kernel sums (1) can be approx-
imated by P one-dimensional kernel sums, which can be computed efficiently, e.g., by fast Fourier
summation. Similarly as for RFF, this leads to a complexity of O(P (N +M +Nft logNft)), where
the expected error can be bounded by O(1/

√
P ). For positive definite kernels, a close relation be-

tween RFF and slicing was established by Rux et al. (2024), see the short overview in Appendix G.
One advantage of slicing is the applicability to kernels that are not positive definite.

A way to improve the O(1/
√
P ) rate is to replace the uniformly chosen directions with specific

sequences of points. This yields so-called quasi-Monte Carlo (QMC) algorithms on the sphere,
see (Brauchart et al., 2014). Note that there also exist QMC approaches for RFF (Avron et al.,
2016). However, they depend on the restrictive assumption that the measure from Bochner’s theorem
decouples over the dimension, which is true for the Gauss and L1-Laplace1 kernel, but false for most
other common kernels like the Laplace, Matérn or negative distance kernel.

Contributions Our contributions to the slicing approach for fast kernel summation are as follows:

- We derive bounds on the slicing error for various kernels in Theorem 1. In particular, we
exactly compute the variance for the negative distance kernel, the thin plate spline, the
Laplace kernel and the Gauss kernel.

- We exploit QMC sequences on the sphere in order to improve the error rate O(1/
√
P ). To

ensure the applicability of the QMC error bounds, we prove certain smoothness results for
the function which maps a direction ξ ∈ Sd−1 to the corresponding one-dimensional kernel
in Theorem 3. The improved error rates are outlined in Corollary 4.

- We conduct extensive numerical experiments on standard test datasets for several kernels
and different popular QMC sequences, and demonstrate that our QMC-slicing approach
significantly outperforms the non-QMC slicing method as well as (QMC-)RFF. While the
advantage of QMC-slicing is most significant in dimensions d ≤ 100, it also performs
better in higher dimensions.

Outline In Section 2, we first revisit the slicing approach in detail and present our improved error
bounds. Afterwards, in Section 3, we consider quadrature and QMC sequences on the sphere and
prove the applicability of the approaches for slicing. We present our numerical results in Section 4
and draw conclusions in Section 5. Additional proofs, plots and evaluations are contained in the
appendix. The code for the numerical examples is provided online2.

RELATED WORK

Low-Dimensional Kernel Summation Fast summation algorithms have been extensively stud-
ied in the literature. They include fast kernel summations based on (non-)equispaced fast Fourier
transforms (Greengard et al., 2022; Kunis et al., 2006; Potts et al., 2004), fast multipole methods
(Beatson & Newsam, 1992; Greengard & Rokhlin, 1987; Lee & Gray, 2008; Yarvin & Rokhlin,
1999), tree-based methods (March et al., 2015a;b) or H- and mosaic-skeleton matrices (Hackbusch,
1999; Minden et al., 2017; Tyrtyshnikov, 1996). For the Gauss kernel, the fast Gauss transform was
proposed by Greengard & Strain (1991) and improved by Yang et al. (2003; 2004). More general
fast kernel transforms were considered by Ryan et al. (2022).

QMC and Quadrature on Spheres QMC designs on spheres were studied by Brauchart et al.
(2014). Here, the quadrature points optimizing the worst-case error in certain Sobolev spaces are

1In literature, there exist two versions of the Laplace kernel K(x, y) = exp(−α∥x− y∥1) and K(x, y) =
exp(−α∥x − y∥), which differ in the used norm. Since our analysis focuses on radial kernels, we will only
consider the second version in the rest of this paper.

2available at https://github.com/johertrich/fastsum_QMC_slicing
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given by spherical t-designs, which integrate all polynomials up to degree t on the sphere exactly
(Delsarte et al., 1977; Bannai & Bannai, 2009). The construction of spherical designs is highly
non-trivial and intractable in high dimensions. For S2 and S3, several examples were computed
numerically by Gräf & Potts (2011) and Womersley (2018). Gräf et al. (2012) related quadrature
rules on the sphere with halftoning problems. The specific problem of QMC rules for the three-
dimensional sliced Wasserstein distance was considered in Nguyen et al. (2024).

Random Fourier Features Random Fourier features (RFFs) were proposed by Rahimi & Recht
(2007) and were further analyzed in several papers Bach (2017); Hashemi et al. (2023); Li et al.
(2021). To improve the error rates, Avron et al. (2016) proposed a quasi-Monte Carlo approach for
RFFs under the restrictive assumption that the measure from Bochner’s theorem decouples over the
dimensions. This approach was refined by Huang et al. (2024) and Munkhoeva et al. (2018). Yu
et al. (2016) proposed orthogonal Fourier features. In a very recent preprint, Belhadji et al. (2024)
derive an explicit quadrature rule in the Fourier space for efficient summations of the Gauss kernel.

2 SLICING OF RADIAL KERNELS

Let K : Rd × Rd be a radial kernel of the form K(x, y) = F (∥x − y∥) for some basis function
F : R≥0 → R. Throughout this paper, we will assume that K has the form

K(x, y) = Eξ∼USd−1
[k(⟨ξ, x⟩, ⟨ξ, y)⟩]

for some one-dimensional radial kernel k: R×R → R with basis function f : R≥0 → R, where we
surpress the dependence of f and F onto the dimension d. By inserting the basis functions of the
kernels, this corresponds to the slicing relation

F (∥x∥) = Eξ∼USd−1
[f(|⟨ξ, x⟩|)]. (2)

A pair (F, f) of basis functions in L∞
loc(R≥0) fulfills this relation if and only if F is the generalized

Riemann–Liouville fractional integral transform given by

F (t) =
2Γ(d2 )√
πΓ(d−1

2 )

∫ 1

0

f(ts)(1− s2)
d−3
2 ds, (3)

for 2 ≤ d ∈ N, see (Hertrich, 2024, Prop 2 and Rubin, 2003). In order to find the one-dimensional
basis function f for a given F , we have to invert the transform (3). This can be done explicitly if

i) F is analytic on R≥0, i.e., there exists (an)n∈N ⊂ R such that F (x) =
∑∞

n=0 anx
n for all

x ≥ 0, or
ii) F (∥ ·∥) : Rd → R is continuous, bounded and positive definite, i.e., for allN ∈ N, all pair-

wise distinct xj ∈ Rd and all aj ∈ R for j = 1, ..., N it holds that
∑N

j,k=1 ajakF (∥xj −
xk∥) ≥ 0,

see (Hertrich, 2024, Thm 3 and Rux et al., 2024, Cor 4.11). We include a list of pairs (F, f)
fulfilling (2) in Appendix A. In particular, it includes the basis functions of Gauss, Laplace and
Matérn kernels. Moreover, f can be computed for other important choices that fulfill neither i) nor
ii), e.g., the thin-plate spline and the generalized Riesz kernel.

2.1 FAST KERNEL SUMMATION VIA SLICING

In order to compute the kernel sums (1) efficiently, we approximate F (∥ · ∥) by projections and the
one-dimensional basis function f , i.e., we aim to find directions ξ1, ..., ξP ∈ Sd−1 such that

F (∥x∥) ≈ 1

P

P∑
p=1

f(|⟨ξp, x⟩|) for all x ∈ Rd. (4)

Then, the kernel sums (1) read as

sm =

N∑
n=1

wnK(xn, ym) =

N∑
n=1

wnF (∥xn − ym∥) ≈ 1

P

P∑
p=1

N∑
n=1

wnf(|⟨ξp, xn − ym⟩|). (5)

3



For computing the one-dimensional sums
∑N

n=1 wnf(|⟨ξp, xn − ym⟩|) for all m = 1, ...,M , there
exists algorithms with complexity O(M + N) or O((M + N) log(M + N)) in literature. These
include fast summations based on non-equispaced Fourier transforms (Kunis et al., 2006; Potts et al.,
2004), fast multipole methods (Greengard & Rokhlin, 1987) or sorting algorithms (Hertrich et al.,
2024). In particular, we can approximate the vector s = (s1, ..., sM ) via (5) with a complexity of
O(P (M +N)).

2.2 ERROR BOUNDS FOR UNIFORMLY DISTRIBUTED SLICES

To bound the error of the slicing procedure from the previous subsection, we consider error estimates
for the approximation in (4). To this end, we assume that the directions ξ1, ..., ξP are iid samples
from the uniform distribution on the sphere. Then, we exactly compute the variance

Vd[f ](x) := Eξ∼USd−1

[
(f(|⟨ξ, x⟩|)− F (∥x∥))2

]
, (6)

which bounds the mean squared error through the Bienaymé’s identity as

Eξ1,...,ξP∼USd−1

( 1

P

P∑
p=1

f(|⟨ξp, x⟩|)− F (∥x∥)

)2
 =

Vd[f ](x)

P
.

In particular, our results show relative error bounds of the negative distance kernelK(x, y) = −∥x−
y∥ and the thin plate spline (except around ∥x∥ = 1), which do not depend on the dimension d. The
proof is given in Appendix C.
Theorem 1. Let F : R≥0 → R and f : R≥0 → R fulfill the slicing relation (2).

i) If F (∥ · ∥) is continuous and positive definite on Rd, then Vd[f ](x) ≤ f(0)2 − F (∥x∥)2.

ii) For the generalized Riesz kernel F (∥x∥) = −∥x∥r with r > 0, we have

Vd[f ](x) =

(√
πΓ(r + 1

2 )

Γ( r+1
2 )2

Γ(d+r
2 )2

Γ(d2 )Γ(r +
d
2 )

− 1

)
(F (∥x∥))2

≤
(√

πΓ(r + 1
2 )

Γ( r+1
2 )2

− 1

)
(F (∥x∥))2 . (7)

iii) For the thin plate spline F (∥x∥) = ∥x∥2 log(∥x∥), we have

Vd[f ](x) =

(
2 +

c1
log(∥x∥)

+
c2 +O(d−1 log d)

log(∥x∥)2

)(
1 + 2

d

)
(F (∥x∥))2 ,

with the numerical constants
c1 := −3γ − log(8) + 8 ≈ 4.189, and

c2 :=
3

4

(
ψ(1)

(
5
2

)
+
(
ψ(0)

(
5
2

)
+ log(2)

)2)
+ 2(γ + log(2)− 2)2 ≈ 2.895.

(8)

iv) For F (∥x∥) =
∑∞

n=0 an∥x∥n and d ≥ 3 odd, we have

Vd[f ](x) =

∞∑
n=0

(
n∑

k=0

(
Π

d−1
2

i=1

(
1 +

k(n− k)

(2i− 1)(n+ 2i− 1)

)
− 1

)
akan−k

)
∥x∥n.

In particular,

- for the Laplace kernel F (∥x∥) = exp(−α∥x∥), we have

V3[f ](x) =
1

4α∥x∥
(
1− (2(α∥x∥)2 + 2α∥x∥+ 1)F (∥x∥)2

)
,

- and for the Gauss kernel F (∥x∥) = exp(−∥x∥2/(2σ2)), we have

V3[f ](x) =
σ2

2∥x∥2

(
1−

(
∥x∥4

2σ4
+

∥x∥2

σ2
+ 1

)
F (∥x∥)2

)
.
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Note that some weaker error bounds for the Gaussian and Riesz kernel were also shown in Hertrich
(2024). In all cases, the variance is independent of the dimension d. The dependence on x differs
between the kernels: For positive definite kernels, which are always bounded, we obtain an absolute
error bound i) independent of ∥x∥. For the Riesz kernel, we have a relative error bound in ii). For
the thin plate spline, iii) behaves like a relative bound for ∥x∥ → ∞ and ∥x∥ → 0, but as a constant
around ∥x∥ = 1, which is a zero of F . For the Laplace and Gauss kernel, the dependence on ∥x∥
changes drastically between ∥x∥ → ∞ and ∥x∥ → 0. In fact, V3[f ](x) is monotonically increasing
in ∥x∥ with global upper bound 1/(4α), and converges quadratically in ∥x∥ to zero for ∥x∥ → 0.
For the case d > 3, we conjecture a similar behavior, see Appendix D for the discussion.

3 QUASI-MONTE CARLO SLICING

For directions drawn independently from the uniform measure USd−1 on the sphere Sd−1, our ex-
periments from the numerical part suggest that the rate O(1/

√
P ) from Theorem 1 is optimal. As

a remedy, we employ quadrature and quasi-Monte Carlo designs on the sphere for improving these
error rates. To this end, we first revisit the corresponding literature in Subsection 3.1. Afterwards,
we apply these results for our slicing method in Subsection 3.2.

3.1 QUASI-MONTE CARLO METHODS ON THE SPHERE

Let ξP = (ξP1 , ..., ξ
P
P ) ∈ (Sd−1)P for P ∈ N. In the following, we aim to construct ξP such that the

worst case error in a certain Sobolev space is asymptotically optimal. The definition of the Sobolev
space Hs(Sd−1) is given in Appendix B.

Definition 2. A sequence (ξP )P with P → ∞ is called a sequence of QMC designs for Hs(Sd−1)
if there exists some c(s, d) > 0 independent of P such that the worst case error

sup
f∈Hs(Sd−1)

∥f∥
Hs(Sd−1)

≤1

∣∣∣∣∣ 1

|Sd−1|

∫
Sd−1

f(ξ)dξ − 1

P

P∑
p=1

f(ξPp )

∣∣∣∣∣ ≤ c(s, d)

P s/(d−1)
∈ O(P−s/(d−1)). (9)

It was proven by Hesse (2006) that the error rate O(P−s/(d−1)) is optimal, see also Brauchart et al.
(2014). For s > d−1

2 , the existence of sequences of QMC designs is ensured by so-called spherical
designs. More precisely, ξP is called a spherical t-design if the quadrature at these points integrates
all polynomials of degree t ∈ N exactly, i.e., if it holds

1

|Sd−1|

∫
Sd−1

ψ(ξ)dξ =
1

P

P∑
p=1

ψ(ξPp ), for all polynomials ψ of degree ≤ t.

It can be shown that for any t there exists a spherical t-design with P = O(td−1) points, see
Bondarenko et al. (2013). It was proven in (Brauchart & Hesse, 2007, Cor 3.6) that a sequence of
such spherical t-designs is a sequence of QMC designs, see also (Brauchart et al., 2014, Sect 1) for
a summary.

Unfortunately, the construction of spherical t-designs in arbitrary dimension is numerically in-
tractable. Instead, many QMC methods rely on low-discrepancy point sets. It was shown in
(Brauchart et al., 2014, Thm 14) that a sequence ξP that minimizes the sum of powers of Euclidean
distances

E(ξP ) := −
P∑

p,q=1

∥ξPp − ξPq ∥2s−d−1 (10)

is a QMC design forHs(Sd−1) for s ∈ (d−1
2 , d+1

2 ). In the numerics, we will consider s = d
2 , so that

we get a QMC design forHd/2(Sd−1). Note that, up to a constant, (10) coincides with the maximum
mean discrepancy with the Riesz kernel K(x, y) = −∥x− y∥2s−d−1 between the probability mea-
sures 1

P

∑P
i=1 δξPp and USd−1 , which is also known as energy distance Székely (2002). Furthermore,

one can easily transform the QMC sequence into an unbiased estimator in (4), see Appendix E.
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3.2 SMOOTHNESS OF ONE-DIMENSIONAL BASIS FUNCTIONS

In order to apply the above theorems for our approximation (2), we need to ensure that for any
x ∈ Rd the spherical function gx : Sd−1 → R given by

ξ 7→ gx(ξ) = f(|⟨ξ, x⟩|) (11)

is sufficiently smooth on Sd−1. For some specific examples, this is verified in the next theorem,
whose proof is given in Appendix F. For part ii), we explicitly compute the Sobolev norm of
gx. In the special case s = 0, this relates to the variance (6) by the formula ∥gx∥2H0(Sd−1) =

|Sd−1|(Vd[f ](x) + F (∥x∥)2) for (f, F ) fulfilling (2).
Theorem 3. Let x ∈ Rd with x ̸= 0. For the Gauss, Riesz and Matérn kernel, the following
smoothness results hold true:

i) For F (t) = exp(− t2

2σ2 ), we have gx ∈ Hs(Sd−1) for all s ≥ 0.

ii) For F (t) = tr with t ≥ 0 and r > −1, we have gx ∈ Hs(Sd−1) if and only if s < r + 1
2 .

iii) For F (t) = 21−ν

Γ(ν) (
√
2ν
β t)νKν(

√
2ν
β t), t ≥ 0, we have gx ∈ Hs(Sd−1) if s < 2ν + 1

2 .

Note that the theorem also includes the Laplace kernel, which is the Matérn kernel for ν = 1
2 . Com-

bining this theorem with the results from the previous subsection leads to improved error bounds for
the Gauss and Matérn kernel in the following corollary. For the Riesz kernel, the last theorem can
be seen as a negative result that the theory from the previous subsection is not applicable.
Corollary 4. Let d ∈ N and s > d−1

2 . Then there exists a constant c(s, d) and a sequence (ξP )P

with P → ∞ such that for the Gauss and Matérn kernel with basis functions F (t) = exp(− t2

2σ2 )

and F (t) = 21−ν

Γ(ν) (
√
2ν
β x)νKν(

√
2ν
β t) with ν > 2s−1

4 , respectively, it holds that

sup
x∈Rd

∣∣∣∣∣F (∥x∥)− 1

P

P∑
p=1

f(|⟨ξp, x⟩|)

∣∣∣∣∣ ≤ c(s, d)

P
s

d−1
.

For s ∈ (d−1
2 , d+1

2 ), such ξP are given by minimizers of (10).

4 NUMERICAL EXAMPLES

In the following, we evaluate the kernel approximation with QMC slicing for several QMC se-
quences and compare our results with random Fourier feature-based (RFF, Rahimi & Recht, 2007)
methods. We implement the comparison in Julia and Python, and provide the code online3. In
Subsection 4.1, we describe the used QMC sequences, RFF-methods and kernels. Afterwards, in
Subsection 4.2, we numerically evaluate the approximation error in (4). Finally, we apply our ap-
proximation for fast kernel summations in Subsection 4.3. We include additional numerical exam-
ples in Appendix J.

4.1 QMC SEQUENCES AND KERNELS

QMC Sequences Beside standard slicing where the projections ξP are drawn iid from the uniform
distribution on Sd−1, we consider the following sequences:

- Sobol Sequence: Two commonly used QMC sequences on [0, 1]d are Sobol (Sobol’, 1967)
and Halton (Halton, 1960) sequences. They can be transformed to QMC sequences for
the normal distribution by applying the inverse cumulative density function along each
dimension of the sequence, which was used for deriving a QMC method for random Fourier
features Avron et al. (2016). To obtain a QMC sequence on the sphere, Nguyen et al.
(2024) proposed to project the QMC sequence for the multivariate normal distribution onto
the sphere by the transformation ξ = θ/∥θ∥, see also Beltrán et al. (2023). To generate

3available at https://github.com/johertrich/fastsum_QMC_slicing
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the original Sobol sequence on [0, 1]d, we use the implementation from SciPy (Virtanen
et al., 2020) in Python and the Sobol.jl package in Julia. Our numerical experiments
suggest that the Sobol sequence lead to slightly better results than the Halton sequence.
Therefore, we omit the Halton sequence in our comparison.

- Orthogonal: Even though this is technically not a QMC sequence, we adapt the approach
of orthogonal features (Yu et al., 2016) for slicing and generate directions ξ as follows: We
generate ⌈P

d ⌉ orthogonal matrices from the uniform distribution on O(d) (this can be done
by taking the Q-factor of the QR decomposition applied on a matrix with standard normally
distributed entries). Together, these matrices have d⌈P

d ⌉ columns from which we choose
ξP to be the first P of those.

- Distance: In Section 3.1, we considered the QMC sequence ξP for H
d
2 (Sd−1) that is a

minimizer of E(ξP ) = −
∑P

p,q=1 ∥ξp − ξq∥, see (10). In our application, we have the
additional symmetry that f(|⟨x, ξ⟩|) = f(|⟨x,−ξ⟩|). Therefore, we construct a QMC
sequence ξP by minimizing the interaction energy functional Esym(ξP ) := E((ξP ,−ξP )).
We do this numerically with the Adam optimizer (Kingma & Ba, 2015) and the PyKeops
package (Charlier et al., 2021), which takes from a couple of seconds (for d = 3) up to
one hour (for d = 200 and P ≈ 5000) on an NVIDIA RTX 4090 GPU. In Appendix H,
we show that if P ≤ d, the orthogonal points from above minimize Esym, so this approach
differs only if P > d.

- Spherical Design: For d = 3, several spherical t-designs on the S2 were computed by
Gräf & Potts (2011) up to t ≤ 1000 and P ≤ 1002000 and are available online4. Spherical
t-designs for S3 were computed by Womersley (2018) up to t ≤ 31 and P ≤ 3642. Unfor-
tunately, the computation in higher dimensions appears to be intractable such that we only
use the spherical designs for d = 3.

Compared Methods We compare our results with the following methods:

- Random Fourier Features (RFF, Rahimi & Recht, 2007): see Appendix G for a descrip-
tion.

- Orthogonal Random Features (ORF, Yu et al., 2016): The directions of the RFF features
are chosen in the same way as explained above for the orthogonal slicing.

- QMC-Random Fourier Features (Sobol RFF, Avron et al., 2016): For the Gauss kernel,
we also compare with QMC random Fourier features, which are only applicable for kernels
where the Fourier transform decouples as a product over the dimensions. For the kernels
from Table 2, this is only true for the Gauss kernel. As a QMC sequence in [0, 1]d, we
choose the Sobol sequence.

Kernels We use the Gauss, Laplace, Matérn (with ν = p + 1
2 for p ∈ {1, 3}) and the negative

distance kernel (Riesz kernel with r = 1), see Table 2 in the appendix for the pairs (f, F ). The
parameters σ, α and β are chosen by the median rule (see, e.g., Garreau et al., 2017 for an overview
and history). That is, we choose σ = β = 1

α = γm, where m is the median of all considered input
norms ∥x∥ of the basis functions F and γ is some scaling factor which we set to γ ∈ { 1

2 , 1, 2}.

4.2 NUMERICAL EVALUATION OF THE SLICING ERROR

We examine the approximation error in (4) numerically. To this end, we draw a sample x from
N (0, 0.1I) and evaluate the absolute error

∣∣F (∥x∥)− 1
P

∑P
p=1 f(|⟨ξp, x⟩|)

∣∣. We average this error
over 50 realizations of ξP (whenever ξP is random) and 1000 samples of x. The average results for
the scale factor γ = 1 and dimension d ∈ {3, 10, 50} with the Gauss, Laplace and Matérn kernel
are given in Figure 1. We observe that all methods despite the spherical designs for the Gauss kernel
converge with rate O(P−r) for some r > 0. To estimate the rate r numerically, we fit a regression
line in the loglog plot. The resulting rates r are given in Table 1. Further plots and tables are given in
Appendix J.1 considering the negative distance kernel, higher dimensions and smaller/larger kernel
widths.

4
https://www-user.tu-chemnitz.de/˜potts/workgroup/graef/quadrature/index.php.en
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Figure 1: Loglog plot of the approximation error
∣∣F (∥x∥)− 1

P

∑
p f(|⟨ξp, x⟩|)

∣∣ for approximating
the function F by slicing (4) versus the number P of projections (or the number D = P of features
for RFF and ORF) for different kernels and dimensions (left d = 3, middle d = 10, right d = 50).
The results are averaged over 50 realizations of ξP and 1000 realizations of x. The kernel parameters
are set by the median rule with scaling factor γ = 1. We fit a regression line in the loglog plot for
each method to estimate the convergence rate r, see also Table 1.

Table 1: Estimated convergence rates for the different methods. We estimate the rate r by fitting
a regression line in the loglog plot. Then, we obtain the estimated convergence rate P−r for some
r > 0. Consequently, larger values of r correspond to a faster convergence. The resulting values of
r are given in the below tables, the best values are highlighted in bold. The kernel parameters are
the same as in Figure 1 (median rule with scaling factor γ = 1).

Gauss kernel with median rule and scaling γ = 1

RFF-based Slicing-based

Dimension RFF Sobol ORF Slicing Sobol Orth Distance

d = 3 0.50 0.98 0.50 0.50 0.96 0.57 2.10
d = 10 0.50 0.86 0.50 0.50 0.78 0.50 1.38
d = 50 0.50 0.76 0.67 0.50 0.72 0.70 0.78

Matérn kernel with ν = 3 + 1
2 and median rule with scaling γ = 1

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.51 0.51 0.50 0.96 0.54 2.11 4.01
d = 10 0.51 0.50 0.50 0.74 0.50 1.13 -
d = 50 0.56 0.57 0.50 0.67 0.64 0.71 -

Matérn kernel with ν = 1 + 1
2 and median rule with scaling γ = 1

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.51 0.51 0.95 0.53 2.11 2.24
d = 10 0.50 0.50 0.50 0.70 0.50 0.89 -
d = 50 0.50 0.54 0.50 0.63 0.60 0.66 -

Laplace kernel with median rule and scaling γ = 1

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.50 0.50 0.88 0.52 1.26 1.28
d = 10 0.50 0.50 0.50 0.63 0.50 0.68 -
d = 50 0.49 0.52 0.50 0.59 0.56 0.60 -
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Figure 2: Loglog plot of the relative L1 approximation error versus computation time for computing
the kernel summations (1) with different kernels and methods. We use the Letters dataset (M =
N = 20000 points), MNIST (reduced to dimension d = 20 via PCA, M = N = 60000 points) and
FashionMNIST (reduced to dimension d = 30 via PCA, M = N = 60000 points). We run each
method 10 times. The shaded area indicates the standard deviation of the error. For Fourier slicing,
we use P = 5 · 2k slices for k = 1, ..., 10. In order to obtain similar computation times, we use
5 · 2k−1 slices for RFF-10 slicing and D = 2P features for RFF and ORF.

Overall, the distance QMC points perform best in most examples. Only when the (provably optimal)
spherical design is applicable, it outperforms the distance for smooth kernels and reaches machine
precision already for P ≈ 250. In accordance with Definition 2, the benefits of QMC slicing are
better for smooth kernels and in low dimensions. But also for d = 50, a significant advantage of
QMC slicing is visible. In particular, we often observe much faster convergence rates than the proven
the worst case error rates r = d

2(d−1) on Hs(Sd−1) with the distance QMC sequence, see Section 3.
Furthermore, the slight advantage of the distance QMC points versus the spherical designs for the
Laplace kernel is because the former ones are chosen specifically for symmetric functions.
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4.3 FAST KERNEL SUMMATION

Finally, we test our kernel approximation for computing the whole kernel sums from (1). For com-
puting the one-dimensional kernel sums sm =

∑N
n=1 wnf(|⟨ξp, xn − ym⟩|), we use the following

methods combined with either random or QMC points on the sphere:

- (QMC) Sorting-Slicing: For the negative distance kernel, we use the sorting algorithm
from Hertrich et al. (2024), see also (Hertrich, 2024, Sec 3.2).

- (QMC) Fourier-Slicing: For the Gauss, Matérn and Laplace kernel, we use fast Fourier
summation based on the non-equispaced fast Fourier transform (NFFT) for the one-
dimensional kernel summation. A general overview on NFFTs and fast Fourier summa-
tion can be found in the text book (Plonka et al., 2023, Sec 7.5). Similar as in (Hertrich,
2024, Sec 2.3), we do not evaluate the one-dimensional basis functions, but directly com-
pute the Fourier transforms. We revisit the background on the one-dimensional fast Fourier
summation and specify the used parameters in Appendix I.

- (QMC) RFF-k Slicing: For positive definite kernels (Gauss, Laplace, Matérn), we use
one-dimensional random Fourier features with k features for the basis function f . For iid
or orthogonal slices and k = 1, this approach is related to RFF and ORF, as outlined in
Appendix G.

As QMC designs ξP , we use the distance QMC points since we have seen in the previous subsection
that it performs best among the QMC rules. Moreover, we use the randomization from Appendix E
for the QMC points to obtain an unbiased estimator. We evaluate the kernel sums on Letters dataset
(d = 16, Slate, 1991), MNIST (reduced to d = 20 dimensions via PCA, LeCun et al., 1998) and
FashionMNIST (reduced to d = 30 dimensions via PCA, Xiao et al., 2017), where (x1, ..., xN ) and
(y1, ..., yM ) constitute the whole dataset and the weights (w1, ..., wN ) are set to 1. In particular, we
have M = N = 20000 for the Letters dataset and M = N = 60000 for MNIST and Fashion-
MNIST. Then, we approximate the vector s = (s1, ..., sM ) from (1) and report the absolute error
∥s − strue∥1. We choose the kernel parameters by the median rule with scale factor γ = 1 based
on 1000 example pairs (x, y). We benchmark the computation times on a single thread of an AMD
Ryzen Threadripper 7960X CPU and compare our results with RFF, ORF and (non-QMC) slicing.
Since the QMC sequences ξP depend neither on the dataset nor on the kernel, we consider its con-
struction not as a part of the computation time. For the Gauss kernel, we also compare with QMC
(Sobol) RFF (Avron et al., 2016), which is not applicable for the other kernels. We use P = 5 · 2k
slices for k = 1, ..., 10 in the slicing method. In order to obtain similar computation times, we use
5 · 2k−1 slices for RFF-10 slicing and D = 2P features for RFF and ORF.

We visualize the approximation error (including standard deviations) in Figure 2 for the Gauss,
Laplace and Matérn kernel. The results for the negative distance kernel, for higher dimensional
datasets (including the full MNIST and FashionMNIST with d = 784) and a GPU comparison are
included in Appendix J.2. We can see that QMC Fourier-slicing has a significantly smaller error
than the other methods. Moreover, it has the smallest standard deviation of the error.

5 CONCLUSIONS

Summary and Outlook We proposed a slicing approach to compute large kernel sums in
O(P (N +M + Nft logNft)) instead of the naı̈ve O(NM) arithmetic operations. In the case of
iid directions, we proved error bounds with rate O(1/

√
P ). To improve this rate, we proposed a

QMC-approach based on spherical quadrature rules. We demonstrated by numerical methods that
our QMC-slicing approach outperforms existing methods, where the advantage is most significant
for dimensions d ≤ 100. In the future, we want to improve our theoretical analysis on QMC slic-
ing in order to match the convergence rate from the numerical section. One possible approach for
that could be to study worst case errors for symmetric functions on the sphere, since the mappings
ξ → gx(ξ) from Section 3.2 are always symmetric. From a practical side, we want to apply the
slicing approach in some actual applications.

Limitations In the numerical part, we observe significantly better error rates than we can prove
theoretically. Moreover, the computation of the QMC directions can be very costly and depends

10



strongly on the chosen method. For the spherical designs, it is even intractable for high dimensions.
Finally, the advantage of QMC slicing becomes smaller for higher dimensions, which is a well-
known effect for most QMC methods.
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Manuel Gräf, Daniel Potts, and Gabriele Steidl. Quadrature rules, discrepancies and their relations to
halftoning on the torus and the sphere. SIAM Journal on Scientific Computing, 34(5):2760–2791,
2012.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73(2):325–348, 1987.

Leslie Greengard and John Strain. The fast Gauss transform. SIAM Journal on Scientific and
Statistical Computing, 12(1):79–94, 1991.

Philip Greengard, Manas Rachh, and Alex Barnett. Equispaced Fourier representations for efficient
Gaussian process regression from a billion data points. arXiv preprint arXiv:2210.10210, 2022.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel
method for the two-sample-problem. Advances in Neural Information Processing Systems, 19,
2006.

Wolfgang Hackbusch. A sparse matrix arithmetic based on H-Matrices. Part I: Introduction to H-
Matrices. Computing, 62(2):89–108, 1999.

Paul Hagemann, Johannes Hertrich, Fabian Altekrüger, Robert Beinert, Jannis Chemseddine, and
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ability metrics. In IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 4513–4517, 2022.

Stefan Kunis, Daniel Potts, and Gabriele Steidl. Fast Gauss transforms with complex parameters
using NFFTs. Journal of Numerical Mathematics, 14(4):295, 2006.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dongryeol Lee and Alexander Gray. Fast high-dimensional kernel summations using the Monte
Carlo multipole method. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances
in Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random
Fourier features. The Journal of Machine Learning Research, 22(1):4887–4937, 2021.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. Advances in Neural Information Processing Systems, 29, 2016.

William B March, Bo Xiao, and George Biros. ASKIT: Approximate skeletonization kernel-
independent treecode in high dimensions. SIAM Journal on Scientific Computing, 37(2):A1089–
A1110, 2015a.

William B March, Bo Xiao, D Yu Chenhan, and George Biros. An algebraic parallel treecode in ar-
bitrary dimensions. In 2015 IEEE International Parallel and Distributed Processing Symposium,
pp. 571–580. IEEE, 2015b.

Victor Minden, Anil Damle, Kenneth L Ho, and Lexing Ying. Fast spatial Gaussian process maxi-
mum likelihood estimation via skeletonization factorizations. Multiscale Modeling & Simulation,
15(4):1584–1611, 2017.

Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets. Quadrature-based
features for kernel approximation. Advances in Neural Information Processing Systems, 31, 2018.

Khai Nguyen, Nicola Bariletto, and Nhat Ho. Quasi-Monte Carlo for 3d sliced Wasserstein. In
International Conference on Learning Representations, 2024.

NIST. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release
1.2.1 of 2024-06-15, 2024.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathe-
matical Statistics, 33(3):1065–1076, 1962.

Gerlind Plonka, Daniel Potts, Gabriele Steidl, and Manfred Tasche. Numerical Fourier Analysis.
Springer, 2 edition, 2023.

Daniel Potts, Gabriele Steidl, and Arthur Nieslony. Fast convolution with radial kernels at nonequi-
spaced knots. Numerische Mathematik, 98:329–351, 2004.

13

https://dlmf.nist.gov/


Michael Quellmalz. The Funk–Radon transform for hyperplane sections through a common point.
Analysis and Mathematical Physics, 10(38), 2020. doi: 10.1007/s13324-020-00383-2.

David L. Ragozin. Rotation invariant measure algebras on Euclidean space. Indiana University
Mathematics Journal, 23(12):1139–54, 1974.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 20, 2007.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, pp. 832–837, 1956.

Boris Rubin. Notes on Radon transforms in integral geometry. Fractional Calculus and Applied
Analysis, 6(1):25–72, 2003.

Boris Rubin. The λ-cosine transforms with odd kernel and the hemispherical transform. Fractional
Calculus and Applied Analysis, 17(3):765–806, 2014. doi: 10.2478/s13540-014-0198-9.

Nicolaj Rux, Michael Quellmalz, and Gabriele Steidl. Slicing of radial functions: a dimension walk
in the Fourier space. arXiv preprint arXiv:2408.11612, 2024.

John P Ryan, Sebastian E Ament, Carla P Gomes, and Anil Damle. The fast kernel transform. In
International Conference on Artificial Intelligence and Statistics, pp. 11669–11690. PMLR, 2022.

Bernhard Schölkopf and Alexander J Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, 2004.

Yu-hsuan Shih, Garrett Wright, Joakim Andén, Johannes Blaschke, and Alex H Barnett. cuFIN-
UFFT: a load-balanced GPU library for general-purpose nonuniform FFTs. In IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2021. doi:
10.1109/IPDPSW52791.2021.00105.

David Slate. Letter Recognition. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5ZP40.

Il’ya Meerovich Sobol’. On the distribution of points in a cube and the approximate evaluation of
integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Science & Business
Media, 2008.
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A BASIS FUNCTION PAIRS (F, f)

We include a list of pairs of basis functions (F, f) that fulfill the slicing formula and the correspond-
ing Fourier transforms in Table 2. The pairs are taken from (Hertrich, 2024, Table 1). We use the
convention that the Fourier transform of a function g ∈ L1(Rd) is defined by

Fd[g](ω) =

∫
Rd

g(x)e−2πi⟨ω,x⟩dx. (12)

The basis functions from the table involve a couple of special functions, which are defined as fol-
lows:

- Gamma function: Γ(z) =
∫∞
0
tz−1e−tdt, Re(z) > 0,

- Modified Bessel function of first kind: Iα(x) =
∑∞

m=0
1

m!Γ(m+α+1)

(
x
2

)2m+α
,

- Modified Bessel function of second kind: Kα(x) =
π
2

I−α(x)−Iα(x)

sin(απ) ,

- Modified Struve function: Lα(x) =
∑∞

m=0
1

Γ(m+ 3
2 )Γ(m+α+ 3

2 )

(
x
2

)2m+α+1
.

The formula for the Fourier transform of the Matérn kernel (and thus for the Laplace kernel with
ν = 1/2) can be found in (Williams & Rasmussen, 2006, (4.15)). Consequently, we recover the
well-known results that the Fourier transforms of the Gauss, Laplace and Matérn kernels are the
Fourier transforms of the Gauss, Cauchy and Student-t (with 2ν degrees of freedom) distribution.
To compute the Fourier transforms F−1

1 [f(| · |)], we apply (Rux et al., 2024, Prop 3.1), see also
(Hertrich, 2024, Lem 6) for the Gauss kernel. For the Riesz and thin plate spline kernel, the Fourier
transform does not exist in a classical sense, but only in a distributional one, see Rux et al. (2024)
and (Wendland, 2004, Sect 8.3) for details. For the sliced Laplace f(x) = exp(−αx), we have by
(Hertrich, 2024, (3)) and (Gradshteyn & Ryzhik, 2007, 3.387.5)

F (t) =

∫ 1

0

exp(−αst)(1− s2)
d−3
2 ds =

√
π2

d−4
2 Γ(d−1

2 )

(αt)
d−2
2

(
I d−2

2
(−αt) + L d−2

2
(−αt)

)
. (13)

Table 2: Basis functions F for different kernels K(x, y) = F (∥x − y∥) and corresponding basis
functions f from k(x, y) = f(|x− y|). We added the inverse Fourier transforms F−1

d [F (∥ · ∥)] and
F−1

1 [f(| · |)] to the table.

Kernel F (x) F−1
d [F (∥ · ∥)](∥ω∥) f(x) F−1

1 [f ](|ω|)
Gauss exp(− x2

2σ2 ) (2πσ2)d/2 exp(−2π2σ2ω2) 1F1(
d
2 ;

1
2 ;

−x2

2σ2 )
πσ exp(−2π2σ2ω2)(2π2σ2ω2)(d−1)/2

2Γ( d
2 )

Laplace exp(−αx) Γ( d+1
2 )2dπ

d−1
2

αd (1 + 4π2ω2

α2 )−
d+1
2

∑∞
n=0

(−1)nαn√πΓ(n+d
2 )

n!Γ( d
2 )Γ(

n+1
2 )

xn
Γ( d+1

2 )2dπ
d−1
2 |ω|d−1

Γ( d
2 )α

d (1 + 4π2ω2

α2 )−
d+1
2

Sliced Laplace See (13) Γ( d
2 )

πd/2|ω|d−1
2α

α2+4π2ω2 exp(−αx) 2α
α2+4π2ω2

Matérn 21−ν

Γ(ν) (
√
2ν
β x)νKν(

√
2ν
β x)

Γ( 2ν+d
2 )2

d
2 π

d
2 βd

Γ(ν)ν
d
2

(1 + 2π2β2ω2

ν )−
2ν+d

2 (Hertrich, 2024, Appendix C) Γ( 2ν+d
2 )2

d
2 πdβd|ω|d−1

Γ( d
2 )Γ(ν)ν

d
2

(1 + 2π2β2ω2

ν )−
2ν+d

2

Riesz for r ∈ (0, 2) −xr not a function −
√
πΓ( d+r

2 )

Γ( d
2 )Γ(

r+1
2 )

xr not a function

Thin Plate Spline x2 log(x) not a function
dx2 log(x) + Cdx

2, with
Cd = d

2

(
H d

2
− 2 + log(4)

) not a function

B SPHERICAL SOBOLEV SPACES

We briefly introduce spherical harmonics and Sobolev spaces following Atkinson & Han (2012).
We denote by |Sd−1| = 2πd/2

Γ(d/2) the volume of the unit sphere Sd−1. Let Y k
n , k = 1, . . . , Nn,d be

an L2-orthonormal basis of spherical harmonics of degree n ∈ N0, i.e., harmonic polynomials in d
variables that are homogeneous of degree n. Here, the dimension of the space of spherical harmonics
of degree n is

Nn,d =
(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
≃ 2

(d− 2)!
nd−2 for n→ ∞. (14)

The spherical harmonics Y k
n , n ∈ N0, k = 1, . . . , Nn,d form an orthonormal basis of L2(Sd−1).
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The spherical Sobolev space Hs(Sd−1) for s ∈ R can be defined as the completion of C∞(Sd−1)
with respect to the norm

∥g∥2Hs(Sd−1) =

∞∑
n=0

Nn,d∑
k=1

(
n+ d−2

2

)2s |⟨g, Y k
n ⟩L2(Sd−1)|2, (15)

where ⟨g, Y k
n ⟩L2(Sd−1) =

∫
Sd−1 g(ξ)Y

k
n (ξ)dξ. Note that the factor (n + d−2

2 )2d can be replaced
by another one with the same asymptotic behavior with respect to n, yielding an equivalent norm.
For s = 0, we can identify Hs(Sd−1) with L2(Sd−1). The Sobolev spaces are nested in the sense
that Hs(Sd−1) ⊂ Ht(Sd−1) whenever s > t. If s > d−1

2 , each function in the Sobolev space
Hs(Sd−1) is continuous (more specifically, it has a continuous representative). If s is an integer,
then Hs(Sd−1) consists of all functions whose (distributional) derivatives up to order s are square
integrable, cf. (Dai & Xu, 2013, Sect 4.5 and 4.8). An alternative characterization of the Sobolev
norm uses the Laplace–Beltrami operator ∆∗, which consists of the spherical part of the Laplace,
and is given by

∥g∥Hs(Sd−1) =
∥∥∥(−∆∗ + (d−2

2 )2
)s/2

g
∥∥∥
L2(Sd−1)

.

If s is an even integer, the operator applied to g is a usual differentiable operator, otherwise it is a
pseudodifferential operator.

C PROOF OF THEOREM 1

i): Since F is continuous and positive definite, so is f by (Rux et al., 2024, Corollary 4.11). Further,
because E[f (|⟨ξ, x⟩|)] = F (∥x∥) and due to the fact that positive definite functions are maximal in
the origin, we deduce

Vd[f ] = Eξ∼USd−1
[f(|⟨ξ, x⟩|)2]− F (∥x∥)2 ≤ f(0)2 − F (∥x∥)2.

ii): We write ξ = (ξ1, ..., ξd)
T , where ξd ∈ [−1, 1] denotes the d-th component of ξ. We assume

w.l.o.g. that x = λed with λ ̸= 0 and recall that we can decompose the unnormalized surface
measure on Sd−1 as

dSd−1(ξ) = dSd−2(η)(1− t2)
d−3
2 dt,

where ξ =
√
1− t2η+ted and η ∈ Sd−2×{0}, see (Atkinson & Han, 2012, (1.16)). Consequently,

Eξ∼USd−1

[
|⟨ξ, x⟩|2r

]
=

∥x∥2r

|Sd−1|

∫
Sd−1

|ξd|2rdSd−1(ξ)

=
∥x∥2r

|Sd−1|

∫
Sd−2

∫ 1

−1

|t|2r(1− t2)
d−3
2 dSd−2(η)dt =

∥x∥2r

|Sd−1|
∣∣Sd−2

∣∣ ∫ 1

−1

(t2)r(1− t2)
d−3
2 dt.

Further, with B(·, ·) denoting the Beta function and the substitution u = t2, we have∫ 1

−1

t2r(1− t2)
d−3
2 dt =

∫ 1

0

ur−
1
2 (1− u)

d−1
2 −1du = B

(
r +

1

2
,
d− 1

2

)
=

Γ
(
r + 1

2

)
Γ
(
d−1
2

)
Γ
(
r + d

2

) ,

(16)
and

|Sd−2|
|Sd−1|

=
2π

d−1
2

Γ
(
d−1
2

) Γ (d2)
2π

d
2

=
Γ
(
d
2

)
√
πΓ
(
d−1
2

) .
Combining both expressions yields

Eξ∼USd−1

[
|⟨ξ, x⟩|2r

]
= ∥x∥2r

Γ(r + 1
2 )

Γ(r + d
2 )

Γ(d2 )√
π
, (17)

and hence

πΓ
(
d+r
2

)2
Γ
(
d
2

)2
Γ
(
r+1
2

)2Eξ∼USd−1

[
|⟨ξ, x⟩|2r

]
=

∥x∥2r
√
πΓ(r + 1

2 )

Γ( r+1
2 )2

Γ(d+r
2 )2

Γ(d2 )Γ(r +
d
2 )
.
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The asymptotic expansion Γ(z + a)/Γ(z) ∼ za for z → ∞, see (NIST, 5.11.12), implies that

lim
d→∞

Γ(d+r
2 )2

Γ(d2 )Γ(r +
d
2 )

= 1.

On the other hand, Γ( d+r
2 )2

Γ( d
2 )Γ(r+

d
2 )

is increasing with respect to d because the identity Γ(z+1) = zΓ(z)

yields that

Γ(d+2+r
2 )2

Γ(d+2
2 )Γ(r + d+2

2 )

/
Γ(d+r

2 )2

Γ(d2 )Γ(r +
d
2 )

=

(
d+r
2

)2
(d2 )

(
r + d

2

) =
(d+ r)

2

2dr + d2
≥ 1.

Hence, we see that
Γ(d+r

2 )2

Γ(d2 )Γ(r +
d
2 )

≤ 1,

and thus finally

Vd[f ] ≤ Eξ∼USd−1

[
f(|⟨ξ, x⟩|)2

]
=

πΓ
(
d+r
2

)2
Γ
(
d
2

)2
Γ
(
r+1
2

)2Eξ∼USd−1

[
|⟨ξ, x⟩|2r

]
≤

√
π Γ(r + 1

2 )

Γ( r+1
2 )2

∥x∥2r,

which proves (7).

iii): We move on to the thin plate spline kernel with f(t) = d|t|2 log(|t|) + Cd|t|2. As above,
w.l.o.g. we assume that x = sed with s ≥ 0. Then

E
[
f(|⟨ξ, x⟩|)2

]
=

|Sd−2|
|Sd−1|

2

∫ 1

0

(
ds2ξ2d log(sξd)− Cds

2ξ2d
)2

(1− ξ2d)
d−3
2 dξd

=
Γ
(
d
2

)
√
πΓ
(
d−1
2

) d2
2

∫ 1

0

s4ξ4d

(
2 log (ξd) + 2 log(s) +H d

2
− 2 + log(4)

)2
(1− ξ2d)

d−3
2 dξd

=
d2Γ

(
d
2

)
2
√
πΓ
(
d−1
2

)s4(4 ∫ 1

0

ξ4d log
2(ξd)(1− ξ2d)

d−3
2 dξd (18)

+4(2 log(s) +H d
2
− 2 + log(4))

∫ 1

0

ξ4d log(ξd)(1− ξ2d)
d−3
2 dξd

+
(
2 log(s) +H d

2
− 2 + log(4)

)2 ∫ 1

0

ξ4d(1− ξ2d)
d−3
2 dξd

)
.

We analyze the terms separately. Denote by ψ(n) the n-th derivative of the digamma function and
by γ ≈ 0.57 the Euler–Mascheroni constant. In the following, we use the asymptotics

Hx = log(x) + γ +O(x−1), ψ(0)(x) = log(x) +O(x−1), ψ(1)(x) = O
(
x−1

)
.

By (Gradshteyn & Ryzhik, 2007, 4.261.21), we have∫ 1

0

ξ4d log
2(ξd)(1− ξ2d)

d−3
2 dξd

=
3
√
π Γ
(
d−1
2

)
32Γ

(
d+4
2

) (
ψ(1)( 52 )− ψ(1)(d+4

2 ) +
(
ψ(0)( 52 )− ψ(0)(d+4

2 )
)2)

,

=
3
√
π Γ
(
d−1
2

)
32Γ

(
d+4
2

) (
log(d)2 − 2

(
ψ(0)

(
5
2

)
+ log(2) +O( 1d )

)
log(d)

+ψ(1)
(
5
2

)
+
(
ψ(0)

(
5
2

)
+ log(2)

)2
+O

(
d−1

))
,
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and ∫ 1

0

ξ4d log(ξd)(1− ξ2d)
d−3
2 dξd = −

√
πΓ
(
d−1
2

)
16Γ

(
d+4
2

) (−8 + 3H1+ d
2
+ log(64)

)
= −

√
πΓ
(
d−1
2

)
16Γ

(
d+4
2

) (3 log(d) + 3γ − 8 + log(8) +O(d−1)
)
.

Recall from (16) that ∫ 1

0

ξ4d(1− ξ2d)
d−3
2 dξd =

3
√
πΓ
(
d−1
2

)
8Γ
(
d+4
2

) .

Furthermore, using that log(4) = 2 log(2), we obtain

2 log(s) +H d
2
− 2 + log(4) = 2 log(s) + log(d) + γ + log(2)− 2 +O(d−1),(

2 log(s) +H d
2
− 2 + log(4)

)2
=
(
2 log(s) + log(d) + γ + log(2)− 2 +O(d−1)

)2
= 4 log(s)2 + log(d)2 + 4 log(s) log(d)

+ 2(γ + log(2)− 2) log(d) + 4 log(s)(γ + log(2)− 2)

+ (γ + log(2)− 2)2 +O(d−1).

Plugging this into (18) yields

4
Γ
(
d+4
2

)
√
πΓ
(
d−1
2

)√πΓ (d−1
2

)
Γ
(
d
2

)
d2s4

E
[
f(|⟨ξ, x⟩|)2

]
=

1 + 2/d

s4
E
[
f(|⟨ξ, x⟩|)2

]
=

3

4

(
log(d)2 − 2

(
ψ(0)( 52 ) + log(2) +O( 1d )

)
log(d) + ψ(1)( 52 ) +

(
ψ(0)( 52 ) + log(2)

)2
+O( 1d )

)
− 1

8
(2 log(s) + log(d) + γ + log(2)− 2 +O( 1d ))

(
3 log(d) + 3γ − 8 + log(8) +O( 1d )

)
+

3

4

(
4 log(s)2 + log(d)2 + 4 log(s) log(d) + 2(γ + log(2)− 2) log(d)

+4 log(s)(γ + log(2)− 2) + (γ + log(2)− 2)2 +O
(
d−1

))
= log(d)2

(
3

4
− 3

2
+

3

4

)
+ log(d)

(
−3

2

(
ψ(0)( 52 ) + log(2) +O( 1d )

)
− 1

2
(3γ − 8 + log(8))

−3

2
((2 log(s) + γ + log(2)− 2) +

3

4
(4 log(s) + 2(γ + log(2)− 2))

)
+ 3 log(s)2 − log(s) (3γ − 8 + log(8))

+
3

4

(
ψ(1)( 52 ) +

(
ψ(0)( 52 ) + log(2)

)2)
+ 2(γ + log(2)− 2)2 +O

(
d−1

)
= log(d)

(
−3

2
ψ(0)( 52 )−

3

2
γ − 3 log(2) + +O( 1d )

)
+ 3 log(s)2 − log(s)(3γ + log(8)− 8)

+
3

4

(
ψ(1)( 52 ) +

(
ψ(0)( 52 ) + log(2)

)2)
+ 2(γ + log(2)− 2)2 +O(d−1).

With (8) and the identity ψ(0)( 52 ) = −2 log(2)− γ + 8
3 , we obtain

1 + 2/d

s4
E
[
f(|⟨ξ, x⟩|)2

]
= 3 log(s)2 + c1 log(s) + c2 +O

(
d−1 log d

)
.

iv): By (Hertrich, 2024, Thm 3), the transformed function has the form

f(s) =

∞∑
n=0

bnx
n with bn =

√
πΓ
(
n+d
2

)
Γ
(
d
2

)
Γ
(
n+1
2

)an.
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Moreover,

f(s)2 =

∞∑
n=0

cns
n :=

∞∑
n=0

(
n∑

k=0

bkbn−k

)
sn

and, by (17),

Eξ∼USd−1

[
f(|⟨ξ, x⟩|)2

]
=

∞∑
n=0

Γ
(
d
2

)
Γ
(
n+1
2

)
√
πΓ
(
n+d
2

) cn∥x∥n.

Using that d is odd and applying the identities Γ(z + 1) = Γ(z)z and Γ( 12 ) =
√
π, we have

c̃k,n,d :=
Γ
(
d
2

)
Γ
(
n+1
2

)
√
πΓ
(
n+d
2

) √
πΓ
(
k+d
2

)
Γ
(
d
2

)
Γ
(
k+1
2

) √
πΓ
(
n−k+d

2

)
Γ
(
d
2

)
Γ
(
n−k+1

2

)
=

Γ
(
n+1
2

)
Γ
(
n+1+d−1

2

) Γ (k+1+d−1
2

)
Γ
(
k+1
2

) √
πΓ
(
n−k+1+d−1

2

)
Γ
(
d
2

)
Γ
(
n−k+1

2

)
=

d−1
2∏

j=1

(k + 2j − 1)(n− k + 2j − 1)

(n+ 2j − 1)(2j − 1)
.

Hence, we obtain

Vd[f ](x) =

∞∑
n=0

(
n∑

k=0

(c̃k,n,d − 1)akan−k

)
∥x∥n.

We apply the identity 4xy = (x+ y)
2 − (x− y)

2 to the numerator (with x = k + 2j − 1, y =
n− k + 2j − 1) and denominator (with x = n+ 2j − 1, y = 2j − 1), and obtain

c̃k,n,d =

d−1
2∏

j=1

(k + 2j − 1)(n− k + 2j − 1)

(n+ 2j − 1)(2j − 1)
=

d−1
2∏

j=1

(n+ 2(2j − 1))2 − (n− 2k)2

(n+ 2(2j − 1))2 − n2

=

d−1
2∏

j=1

(
1 +

n2 − (n− 2k)2

(n+ 2(2j − 1))2 − n2

)
=

d−1
2∏

j=1

(
1 +

k(n− k)

(2j − 1)(n+ 2j − 1)

)
.

For F the Laplace kernel, assuming w.l.o.g. that α = 1, we have an := (−1)n/n!. Consequently,

V3[f ](x) =

∞∑
n=0

n∑
k=0

k(n− k)

n+ 1

1

k!(n− k)!
(−∥x∥)n =

∞∑
n=0

(−∥x∥)n

(n+ 1)!

n∑
k=0

(
n

k

)
(kn− k2)

=

∞∑
n=0

(−∥x∥)n

(n+ 1)!

(
n22n−1 − n(n+ 1)2n−2

)
=

1

4

∞∑
n=0

(−2∥x∥)n

(n+ 1)!
n(n− 1)

=
1

4

∞∑
n=2

(−2∥x∥)n

(n+ 1)!
(n+ 1− 2)n =

1

4

∞∑
n=2

(−2∥x∥)n

(n− 1)!
− 1

2

∞∑
n=2

(−2∥x∥)n

(n+ 1)!
n. (19)

For the first term, we obtain
∞∑

n=2

(−2∥x∥)n

(n− 1)!
= −2∥x∥

∞∑
n=1

(−2∥x∥)n

n!
= −2∥x∥

(
e−2∥x∥ − 1

)
, (20)

and for the second
∞∑

n=2

(−2∥x∥)n

(n+ 1)!
(n+ 1− 1) =

∞∑
n=2

(−2∥x∥)n

n!
−

∞∑
n=2

(−2∥x∥)n

(n+ 1)!

= e−2∥x∥ − 1 + 2∥x∥+ 1

2∥x∥

(
e−2∥x∥ − 1 + 2∥x∥ − 2∥x∥2

)
. (21)
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Figure 3: The scaled variance of the Laplace kernel fL with α = 1 (in red) and the Gauss kernel fG
with σ = 1/

√
2 (in blue) for dimension d = 3 (solid lines), d = 9 (dashed lines) and d = 15 (dotted

lines). The variance is multiplied times ∥x∥ (Laplace kernel) and ∥x∥2 (Gauss kernel). We observe
that the scaled variance increases monotonically in all cases, seemingly bounded from above by a
constant (black solid line).

Plugging (20) and (21) into (19) finally yields

V3[f ](x) =
−∥x∥
2

(e−2∥x∥ − 1)− 1

2

(
e−2∥x∥ − 1 + 2∥x∥+ e−2∥x∥

2∥x∥
− 1

2∥x∥
+ 1− ∥x∥

)
=

e−2∥x∥

4∥x∥

(
e2∥x∥ − (2∥x∥2 + 2∥x∥+ 1)

)
=

1

4∥x∥

(
e2∥x∥ − (2∥x∥2 + 2∥x∥+ 1)

)
F (∥x∥)2.

For the Gauss kernel, we can follow exactly the same lines, after considering w.l.o.g. σ2 = 1/2 and
replacing ∥x∥ with ∥x∥2.

D THE VARIANCE OF GAUSS AND LAPLACE KERNEL FOR d > 3

For d > 3, d odd, we evaluated Vd(f) for d = 5, ..., 15, and make the following conjecture. Let

Tn(f) =
∑n

k=0
f(k)(0)

k! xk denote the Taylor expansion of f in zero up to order n. We conjecture
that, for d ≥ 3, d odd, and the Laplace kernel F (x) = e−αx, it holds that

Vd[f ](x) =
e−2α∥x∥

cd(α∥x∥)d−2

 d−3
2∑

i=0

(α∥x∥)2i(−1)
d−5
2

−ici,dTd−2i

(
e2α∥x∥

)
+

d−5
2∑

i=0

bi,d(−1)i(α∥x∥)d+i

 ,

where
cd = (12 + 4(d− 5)) cd−2 for d ≥ 5 with c3 = 4,

c0,d = (d− 2)2(d− 4)c0,d−2 for d ≥ 5 with c0,3 = 1,

b d−5
2 ,d = 2b d−5

2 ,d−2 for d ≥ 7 with b0,5 = 4.

For the remaining coefficients, we have not found a general simple rule. Our numerical computations
indicate that they are positive and that Vd[f ](x)∥x∥ is monotonically increasing in ∥x∥, with upper
bound sd/α and quadratic convergence to 0 for x → 0. The upper bound sd increases slowly in d,
and our simulations hint that it might be bounded by a constant independently of d, see Figure 3.
For the Gauss kernel, the variance has the same form, except that α−1 is replaced with σ/

√
2 and

∥x∥ with ∥x∥2 at all occurrences.

E RANDOMIZATION OF A QMC SEQUENCE

Having a QMC sequence (ξP )P , see Section 3.1, we can easily obtain an unbiased estimator in (4)
by considering the QMC sequence (AξP )P with a uniformly chosen orthogonal matrix A ∼ UO(d)
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because, according to (Ragozin, 1974, (2.3)), we have

EA∼UO(d)
[ψ(AξPp )] =

∫
O(d)

ψ(AξPp )dUO(d)(A) =

∫
Sd−1

ψ(η)dUSd−1(η),

where UO(d) is the uniform distribution on the set O(d) of orthogonal d× d matrices. Furthermore,
note that 1

P

∑P
i=1 f(ξ

P
i ) converges to

∫
Sd−1 f(ξ)dUSd−1(ξ) for P → ∞ and all continuous func-

tions f because Hs(Sd−1) is dense in C(Sd−1) and the weights are all one, cf. (Atkinson, 1991,
Sect 5.2).

F PROOF OF THEOREM 3

Gauss kernel: A sufficient criterion for the function gx being in the Sobolev spaceHs(Sd−1) is that
f(| · |) is s times continuously differentiable. For F (t) = exp(− t2

2σ2 ), the one-dimensional basis
function is given by the confluent hypergeometric function f(t) = 1F1(

d
2 ;

1
2 ;

−t2

2σ2 ). We know by

(Hertrich, 2024, Lem 6) that f = F1(g) with g(ω) = dπσ exp(−2π2σ2ω2)(2π2σ2ω2)(d−1)/2

√
2Γ( d+2

2 )
, where F1

denotes the one-dimensional Fourier transform. Then, gk(ω) := ωkg(ω) is absolutely integrable for
any k ∈ N such that the differentiation/multiplication formula for the Fourier transform yields that
the k-th derivative of f exists and is given by the continuous function f (k) = (2πi)kF1(gk).

Riesz kernel: With fixed x ∈ Rd \ {0}, we have gx(ξ) =
√
πΓ( d+r

2 )

Γ( d
2 )Γ(

r+1
2 )

|⟨ξ, x⟩|r. We set η := x
∥x∥ ∈

Sd−1, then x = ∥x∥η and accordingly gx(ξ) = ∥x∥rgη(ξ). The Sobolev norm (15) reads

∥gx∥2Hs(Sd−1) =

∞∑
n=0

Nn,d∑
k=1

(
n+ d−2

2

)2s ∣∣∣∣∥x∥r ∫
Sd−1

gη(ξ)Y k
n (ξ)dξ

∣∣∣∣2 .
The last integral can be computed with the help of the so-called λ-cosine transform. By (Rubin,
2014, (3.5) and (3.8)), the λ-cosine transform of a function h ∈ L1(Sd−1) for λ > −1 is defined by

Cλ[h](ω) =
1

|Sd−1|

√
πΓ(−λ

2 )

Γ(d2 )Γ(
λ+1
2 )

∫
Sd−1

h(θ)|⟨ω, θ⟩|λdθ,

for ω ∈ Sd−1 and satisfies

Cλ[Y k
n ](ω) = Y k

n (ω)

{
(−1)

n
2

Γ(n−λ
2 )

Γ(n+d+λ
2 )

, n even,

0, n odd.

Hence, we obtain that∫
Sd−1

gη(ξ)Y k
n (ξ)dξ =

|Sd−1|Γ(d+r
2 )

Γ(− r
2 )

Cr
[
Y k
n

]
(η) = (−1)

n
2
|Sd−1|Γ(n−r

2 )Γ(d+r
2 )

Γ(n+d+r
2 )Γ(− r

2 )
Y k
n (η)

if n is even and 0 if n is odd. The addition formula for spherical harmonics,

Nn,d∑
k=1

|Y k
n (η)|2 =

Nn,d

|Sd−1|
,

see Atkinson & Han (2012), and the substitution n = 2m yield

∥gx∥2Hs(Sd−1) =

∞∑
m=0

(
2m+

d− 2

2

)2s

∥x∥2r
(

Γ(m− r
2 )Γ(

d+r
2 )

Γ(m+ d+r
2 )Γ(− r

2 )

)2

|Sd−1|N2m,d.

The asymptotic relations Nn,d ∼ nd−2 from (14) and Γ(z + a)/Γ(z) ∼ za for z → ∞, see (NIST,
5.11.12), yield that the m-th summand behaves asymptotically like a multiple of (2m)2s−2r−2,
therefore the series converges if and only if s < r + 1

2 .
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Matérn kernel: The one-dimensional basis function of the Matérn kernel is (Hertrich, 2024, Appx
C.1)

f(t) = 1F2

(
d
2 ;

1
2 , 1− ν; νt2

2β2

)
︸ ︷︷ ︸

=:f1(t)

− |t|2ν︸︷︷︸
=:f2(t)

Γ(1− ν)Γ(ν + d
2 (2ν)

ν

Γ(d2 )Γ(2ν + 1)β2ν 1F2

(
ν + d

2 ; ν +
1
2 , ν + 1; νt2

2β2

)
︸ ︷︷ ︸

=:f3(t)

.

The above hypergeometric functions f1 and f3, whose parameters do not contain any nonpositive
integers, are entire functions in R. Hence, the corresponding spherical functions (g1)x and (g3)x
from (11) are in C∞(Sd−1), because they can be extended to smooth functions defined on a neigh-
borhood of Sd−1. Furthermore, since f2 is a multiple of the one-dimensional basis function of the
Riesz kernel, we know from above that (g2)x ∈ Hs(Sd−1) for s < 2ν + 1

2 . Hence, by (Quellmalz,
2020, Thm 5.2), we see that the product (g2)x(g3)x is also in Hs(Sd−1). Note that the referenced
theorem is only formulated for in integer s, but this can be easily extended using an interpolation
argument (Quellmalz, 2020, Sect 5.3), because the multiplication with a smooth function constitutes
a continuous operator both H⌊s⌋(Sd−1) → H⌊s⌋(Sd−1) and H⌊s⌋+1(Sd−1) → H⌊s⌋+1(Sd−1).

G RELATION BETWEEN SLICING AND RFF

We denote by M+(Rd) the space of finite positive Borel measures on Rd. Such measures can be
identified with linear functional on the space C0(Rd) of continuous functions that vanish at infinity.
The Fourier transform of measures is a linear operator defined by

Fd : M+(Rd) → C0(Rd), Fd[µ](x) =

∫
Rd

e−2πi⟨x,v⟩dµ(v),

cf. (Plonka et al., 2023, Sect 4.4). By Bochner’s theorem, the Fourier transform is bijective from
M+(Rd) to the set of positive definite functions on Rd, see ii) in Section 2 for the definition. If µ is
a probability measure, i.e., µ(Rd) = 1, we have Fd[µ](0) = 1.

In the following, let F ◦ ∥ · ∥ be a positive definite function on Rd with F (0) = 1.

RFF: Random Fourier features (RFF), see Rahimi & Recht (2007), use that, by Bochner’s theorem,
F (∥ · ∥) is the Fourier transform of a probability measure µ ∈ M+(Rd), i.e.,

F (∥x∥) = Fd[µ](x) = Ev∼µ

[
e−2πi⟨x,v⟩

]
.

Using that F is real-valued and sampling D ∈ N instances vp iid from µ, we obtain the approxima-
tion

F (∥x∥) = Ev∼µ [cos(2π⟨x, v⟩)] ≈
1

D

D∑
p=1

cos(2π⟨x, vp⟩). (22)

By (Altekrüger et al., 2023, Prop C.2), the radial measure µ can be decomposed as follows. We de-
fine ι : Rd → [0,∞), ι(x) = ∥x∥ and its pushforward measure µ̃ := ι∗µ = µ ◦ ι−1 ∈ M+([0,∞)),
then we have

µ = T (µ̃⊗ USd−1), where T (r, ξ) = rξ.

Hence, sampling from µ can be realized by vp = rpξp, where ξp ∼ USd−1 and rp ∼ µ̃. Then (22)
becomes

F (∥x∥) ≈ 1

D

D∑
p=1

cos(2πrp⟨x, ξp⟩). (23)

Slicing: The slicing approach uses the approximation (4), i.e.,

F (∥x∥) ≈ 1

P

P∑
p=1

f(|⟨x, ξp⟩|),

where ξp ∼ USd−1 . By (Rux et al., 2024, Cor 4.11), the function f(| · |) is positive definite and hence
possesses a Fourier transform, which is a probability measure on R because f(0) = F (0) = 1.
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Applying RFF with Q points to the one-dimensional function f(| · |), we obtain

F (∥x∥) ≈ 1

PQ

P∑
p=1

Q∑
q=1

cos(2πrp,q⟨x, ξp⟩), (24)

where rp,q ∼ F−1
1 [f(| · |)]. According to (Rux et al., 2024, Cor 4.11), we have

F−1
1 [f(| · |)] = A∗

1ι∗µ = A∗
1µ̃,

where A∗
1 : M+([0,∞)) → M+(R) is the symmetrization operator that extends a measure on

[0,∞) to an even measure on the real line and is defined for any ν ∈ M+([0,∞)) and g ∈ C0(R)
by ⟨A∗

1ν, g⟩ = ⟨ν, g + g(−·)⟩. Since the right-hand side of (24) is independent of the sign of rp,q ,
it stays the same when we sample rp,q from µ̃ instead of A∗

1µ̃. Therefore, if Q = 1, we see that the
right-hand side of (24) is the same as the right-hand side of (23). In particular, RFF can be viewed
as a special case of slicing.

H RELATION BETWEEN DISTANCE QMC POINTS AND ORTHOGONAL
POINTS

Consider the QMC design ξP that is a minimizer (10) for s = d
2 . To improve the error, Wom-

ersley (2018) suggested symmetric QMC designs, meaning that for every point ξ it contains also
the antipodal point −ξ. However, since the function (11) we want to integrate is symmetric, i.e.,
gx(ξ) = gx(−ξ), we can discard one of the antipodal points ξ and −ξ and get the same result.
Therefore, we minimize the functional

Esym(ξP ) = E((ξP ,−ξP )) = −2

P∑
p,q=1

(
∥ξPp − ξPq ∥+ ∥ξPp + ξPq ∥

)
.

Our numerical trials indicate that indeed the minimizers of Esym yield a smaller integration error
than the minimizers of E . Using ∥ξp∥ = 1, we see that

−
(
∥ξPp − ξPq ∥+ ∥ξPp + ξPq ∥

)2
= −

(√
2− 2⟨ξPp , ξPq ⟩+

√
2 + 2⟨ξPp , ξPq ⟩

)2
= −4− 2

√
4− 4⟨ξPp , ξPq ⟩2,

attains its minimum if and only if ⟨ξPp , ξPq ⟩ = 0. Hence, if P ≤ d and ξP is an orthonormal system
in Rd, then ξP a minimizer of Esym. However, this argumentation does not work if P > d, as we
can only choose d orthogonal vectors.

I BACKGROUND ON ONE-DIMENSIONAL FAST FOURIER SUMMATION

In this section, we review literature about one-dimensional fast Fourier summation used in Sec-
tion 4.3 and specify the parameters used in our numerical examples. Fast Fourier summations were
proposed in Kunis et al. (2006); Potts et al. (2004) based on the non-equispaced fast Fourier trans-
form (Beylkin, 1995; Dutt & Rokhlin, 1993), which is implemented in several libraries (Knopp et al.,
2023; Keiner et al., 2009; Shih et al., 2021). In our numerical examples, we use the Julia library
Knopp et al. (2023). Here, we follow a similar workflow as in Hertrich (2024).

Let x1, ..., xN ∈ Rd, y1, ..., yM ∈ Rd, w1, ..., wN ∈ R and k(x, y) = f(|x − y|) = g(x − y). We
want to compute for ξ ∈ Sd−1, xn,ξ := ⟨xn, ξ⟩ and ym,ξ := ⟨ym, ξ⟩ the one-dimensional kernel
sums

tm =

N∑
n=1

wnk(xn,ξ, ym,ξ) =

N∑
n=1

wng(xn,ξ − ym,ξ).

Step 1: Rescaling For Step 2 and 3, we will need two properties. First, since we will use discrete
(fast) Fourier transforms, we require that xn,ξ, ym,ξ, xn,ξ − ym,ξ ∈ [− 1

2 ,
1
2 ). For the important

example of positive definite kernels, which decay to zero, we often can derive explicit formulas
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for the Fourier transform of g via Bochner’s integral and Rux et al. (2024), see Table 2 for some
examples. In order to use this explicit formula for the fast Fourier summation, we will additionally
require that g(x) ≈ 0 for |x| > 1

2 .

Both properties can be achieved by rescaling the problem. More precisely, let T < 0.5 and c =
max {maxn=1...,N ∥xn∥,maxm=1,...,M ∥ym∥}. For the case of decaying positive definite kernels,
assume that g(x) ≈ 0 for |x| > gmax. Then, it holds that

tm =

N∑
n=1

wng(xn,ξ − ym,ξ) =

N∑
n=1

wng̃(x̃n,ξ − ỹm,ξ),

with

g̃(x) := g
(x
τ

)
, x̃n,ξ := τxn,ξ = ⟨τxn, ξ⟩, ỹn,ξ := τyn,ξ = ⟨τyn, ξ⟩,

where the constant τ := min
{

T
c ,

1
2gmax

}
does not depend on ξ. Then, by definition, the two

properties from above are fulfilled. For the rest of the section, we will denote the rescaled points
x̃n,ξ, ỹm,ξ and the rescaled kernel function g̃ again by xn,ξ, ym,ξ and g.

In the case of the Gauss, Laplace or Matérn kernels, the rescaled kernel k̃(x, y) = g̃(x− y) is again
a Gauss, Laplace or Matérn kernel with the altered parameter σ̃ = τσ, α̃ = α/τ or β̃ = τβ. In our
numerics, we set gmax = 5m with m = σ = β = 1

α for the Gauss, Laplace and Matérn kernel.
Moreover, we set the threshold T to 0.3 for the Gauss kernel, to 0.2 for the Matérn kernel and to 0.1
for the Laplace kernel.

Step 2: Computation of the Fourier Coefficients of the Kernel In the next step, we expand g
into its Fourier series on [− 1

2 ,
1
2 ) and truncate it by

g(x) =
∑
k∈Z

ck(g)e
2πikx ≈

∑
k∈C

ck(g)e
2πikx, ck(g) =

∫ 1
2

− 1
2

g(x)e−2πikxdx

for C = {−Nft

2 , . . . , Nft

2 − 1} with some even Nft ∈ N. To compute the Fourier coefficients ck(g),
we employ that g(x) ≈ 0 for |x| > 1

2 such that Poisson’s summation formula (see, e.g., Plonka
et al., 2023, Thm 2.26) implies

ck(g) ≈ ck

(∑
k∈Z

g(x+ k)

)
= F1[g](k),

where F1[g](ω) is the Fourier transform (12).

In our experiments, we choose Nft = 128 for the Gauss, Nft = 512 for the Matérn and Nft = 1024
for the Laplace kernel. Note that the coefficients ck(g) do not depend on the input points and need
to be computed only once for different choices of ξ. The function F1[g] is analytically given for the
Gauss, Laplace and Matérn kernel in Table 2.

Step 3: Fast Fourier Summation Finally, we use this expansion to compute the kernel sums

tm ≈
N∑

n=1

∑
k∈C

wnck(g)e
2πik(ym,ξ−xn,ξ) =

∑
k∈C

ck(g)e
2πikym,ξ

N∑
n=1

wne
−2πikxn,ξ

︸ ︷︷ ︸
=:ŵk

.

The computation of the second sum ŵk is the adjoint discrete Fourier transform of the vector
w = (w1, ..., wN ) at the non-equispaced knots (−x1,ξ, ...,−xN,ξ). Afterward, the computation
of the vector t = (t1, ..., tM ) is the Fourier transform of the vector (ck(g)ŵk)k∈C at the non-
equispaced knots (−y1,ξ, ...,−yM,ξ). These Fourier transforms can be computed by the NFFT in
time complexity O(N +Nft logNft) and O(M +Nft logNft) leading to an overall complexity of
O(N +M +Nft logNft).
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J ADDITIONAL NUMERICAL RESULTS

J.1 ADDITIONAL PLOTS AND TABLES FOR SECTION 4.2

In the following, we redo the experiments from Figure 1 and Table 1 and vary some parameters.
More precisely, we redo it for the negative distance kernel, choose other length scale parameters of
the kernel and perform it in higher dimensions (d = 200).

Negative Distance Kernel We do the same experiment as in Figure 1 and Table 1 with the negative
distance kernel. The results are given in Figure 4 and Table 3. We can see that the advantage of QMC
slicing is not as large as for smooth kernels, which is expected considering the theoretical results
from Section 3. In particular, the spherical function (11) is not in Hd/2(Sd−1) if d ≥ 3/2, so the
assumptions of the bound (9) are not fulfilled. Nevertheless, QMC slicing is still significantly more
accurate than non-QMC slicing. Note that RFF based methods are not available for the negative
distance kernel since it is not positive definite and therefore Bochner’s theorem does not apply.

Other Length Scales of the Kernels We redo the experiment from Figure 1 and Table 1 with
scale factors s = 1

2 and s = 2 of the kernel parameter. The results are given in Figure 5 and Table 4
for s = 1

2 and in Figure 6 and Table 5 for s = 2. We observe that the advantage of QMC is more
significant of for larger scale factors, which is expected since the function ξ 7→ f(|⟨ξ, x⟩|) is more
regular for larger s than for smaller s.

Higher Dimensions Finally, we do the same experiment as in Figure 1 and Table 1 for the higher
dimension d = 200. Here, we use the negative distance kernel, the Matérn kernel with ν = 3 + 1

2
and the Gauss kernel, where the parameters are chosen by the median rule with scale factor γ = 1.
The results are given in Figure 7 and Table 6. The advantage of QMC is less pronounced in such
high dimensions, but still visible.

J.2 ADDITIONAL RESULTS FOR SECTION 4.3

Negative Distance Kernel We redo the experiment from Section 4.3 for the negative distance
kernel. The results are given in Figure 8. We can see that QMC Fourier slicing outperforms standard
slicing clearly in all cases. Note that RFF based methods are not available for the negative distance
kernel since it is not positive definite and Bochner’s theorem does not apply.

Higher Dimensions We run the same experiment as in Section 4.3 on the MNIST and FashionM-
NIST dataset without dimension reduction and therefore d = 784. The results are given in Figure 9.
We can see that the advantage of QMC slicing is smaller than for the lower-dimensional examples
but still clearly visible for some kernels. In accordance with the considerations of Appendix H, the
advantage comes in when P > d.

GPU Comparison Finally, we want to demonstrate the advantage of our method in a GPU-
comparison with a large number of data points. As a test dataset we concatenate the MNIST and
FashionMNIST in all eight orientations arising rotating and mirroring the images and reduce the di-
mension via PCA to d = 30. The arising dataset has N =M = 960000 entries. Then, we compare
RFF, ORF, QMC (Sobol) RFF, Slicing and QMC Slicing, where the QMC directions for slicing are
chosen by minimizing the distance functional, see Section 4.1. This experiment is implemented in
Python using PyTorch and we use brute-force kernel summation by the PyKeOps library (Charlier
et al., 2021) as a baseline. The results are given in Figure 10. Even though the RFF-based methods
parallelize a bit better on the GPU than the fast Fourier summations, the conclusions are mainly
the same as for the CPU experiments. We can clearly see the advantage of QMC slicing over the
comparisons. Particularly, for non-smooth kernels, slicing-based methods work much better than
RFF-based methods.
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Figure 4: Loglog plot of the approximation error in (4) versus the number P of projections for the
negative distance kernel. The results are averaged over 50 realizations of ξP and 1000 realizations
of x. We fit a regression line in the loglog plot for each method to estimate the convergence rate, see
also Table 3.

Table 3: Estimated convergence rates for the different methods and the negative distance kernel.
We estimate the rate r by fitting a regression line in the loglog plot. Then, we obtain the estimated
convergence rate O(P−r) for some r > 0. Consequently, larger values of r correspond to a faster
convergence. The resulting values of r are given in the below tables, the best values are highlighted
in bolt. See Figure 4 for a visualization.

Negative distance kernel
Slicing-based

Dimension Slicing Sobol Orth Distance spherical design

d = 3 0.49 0.94 0.55 1.27 1.29
d = 10 0.50 0.72 0.50 0.71 -
d = 50 0.50 0.69 0.65 0.70 -
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Figure 5: Loglog plot of the approximation error in (4) versus the number P of projections for
different kernels and dimensions (left d = 3, middle d = 10, right d = 50). The results are averaged
over 50 realizations of ξP and 1000 realizations of x. The kernel parameters are set by the median
rule with scale factor γ = 1

2 . We fit a regression line in the loglog plot for each method to estimate
the convergence rate, see also Table 4.

Table 4: Estimated convergence rates for the different methods. We estimate the rate r by fitting a
regression line in the loglog plot. Then, we obtain the estimated convergence rate O(P−r) for some
r > 0. Consequently, larger values of r correspond to a faster convergence. The resulting values of
r are given in the below tables, the best values are highlighted in bolt. The kernel parameters are the
same as in Figure 5 (scale factor γ = 1

2 ).

Gauss kernel with kernel scaling γ = 1
2

RFF-based Slicing-based

Dimension RFF Sobol ORF Slicing Sobol Orth Distance

d = 3 0.50 0.99 0.50 0.51 0.97 0.58 2.09
d = 10 0.50 0.85 0.50 0.50 0.77 0.50 1.36
d = 50 0.50 0.77 0.67 0.50 0.74 0.70 0.77

Matérn kernel with ν = 3 + 1
2 and kernel scaling γ = 1

2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.49 0.48 0.49 0.96 0.55 2.11 4.01
d = 10 0.49 0.50 0.50 0.74 0.50 1.12 -
d = 50 0.57 0.57 0.50 0.69 0.63 0.70 -

Matérn kernel with ν = 1 + 1
2 and kernel scaling γ = 1

2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.51 0.51 0.96 0.53 2.11 2.24
d = 10 0.50 0.50 0.50 0.70 0.50 0.88 -
d = 50 0.49 0.53 0.50 0.65 0.60 0.65 -

Laplace kernel with kernel scaling γ = 1
2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.50 0.49 0.88 0.52 1.26 1.28
d = 10 0.50 0.50 0.50 0.64 0.50 0.69 -
d = 50 0.51 0.50 0.50 0.61 0.56 0.60 -
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Figure 6: Loglog plot of the approximation error in (4) versus the number P of projections for
different kernels and dimensions (left d = 3, middle d = 10, right d = 50). The results are averaged
over 50 realizations of ξP and 1000 realizations of x. The kernel parameters are set by the median
rule with scale factor γ = 2. We fit a regression line in the loglog plot for each method to estimate
the convergence rate, see also Table 5.

Table 5: Estimated convergence rates for the different methods. We estimate the rate r by fitting a
regression line in the loglog plot. Then, we obtain the estimated convergence rate O(P−r) for some
r > 0. Consequently, larger values of r correspond to a faster convergence. The resulting values of
r are given in the below tables, the best values are highlighted in bolt. The kernel parameters are the
same as in Figure 6 (scale factor γ = 2).

Gauss kernel with kernel scaling γ = 2

RFF-based Slicing-based

Dimension RFF Sobol ORF Slicing Sobol Orth Distance

d = 3 0.50 1.00 0.51 0.51 0.97 0.59 2.08
d = 10 0.50 0.85 0.50 0.50 0.77 0.50 1.37
d = 50 0.50 0.76 0.66 0.50 0.72 0.70 0.77

Matérn kernel with ν = 3 + 1
2 and kernel scaling γ = 2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.51 0.50 0.97 0.54 2.11 4.02
d = 10 0.50 0.50 0.50 0.73 0.50 1.12 -
d = 50 0.56 0.57 0.50 0.67 0.63 0.71 -

Matérn kernel with ν = 1 + 1
2 and kernel scaling γ = 2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.50 0.49 0.50 0.96 0.54 2.10 2.24
d = 10 0.51 0.51 0.50 0.69 0.50 0.88 -
d = 50 0.50 0.54 0.50 0.63 0.60 0.65 -

Laplace kernel with kernel scaling γ = 2

RFF-based Slicing-based

Dimension RFF ORF Slicing Sobol Orth Distance spherical design

d = 3 0.51 0.50 0.51 0.90 0.51 1.26 1.28
d = 10 0.51 0.50 0.50 0.62 0.50 0.69 -
d = 50 0.50 0.51 0.50 0.58 0.56 0.60 -
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Figure 7: Loglog plot of the approximation error in (4) versus the number P of projections for
d = 200. The results are averaged over 50 realizations of ξP and 1000 realizations of x. The kernel
parameters are chosen by the median rule with scale factor γ = 1. We fit a regression line in the
loglog plot for each method to estimate the convergence rate, see also Table 6.

Table 6: Estimated convergence rates for the different methods and kernels for d = 200. We estimate
the rate r by fitting a regression line in the loglog plot. Then, we obtain the estimated convergence
rate O(P−r) for some r > 0. Consequently, larger values of r correspond to a faster convergence.
The resulting values of r are given in the below tables, the best values are highlighted in bolt. The
kernel parameters are the same as in Figure 7 (scale factor γ = 1).

Dimension d = 200

RFF-based Slicing-based

Kernel RFF Sobol ORF Slicing Sobol Orth Distance

Negative Distance - - - 0.50 0.68 0.69 0.70
Matérn, ν = 3 + 1

2 0.60 - 0.59 0.50 0.67 0.67 0.68
Gauss 0.50 0.72 0.72 0.50 0.71 0.73 0.76
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Figure 8: Loglog plot of the relative L1 approximation error versus computation time for computing
the kernel summations (1) with the negative distance kernel and different methods and datasets.
MNIST and FashionMNIST are reduced to dimension d = 20 and d = 30 via PCA. We run each
method 10 times. The shaded area indicates the standard deviation of the error. For the slicing
method, we use P = 10 · 2k slices for k = 0, ..., 9.
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Figure 9: Loglog plot of the relative L1 approximation error versus computation time for computing
the kernel summations (1) with different kernels and methods on the MNIST and FashionMNIST
dataset without dimension reduction. We run each method 10 times. The shaded area indicates the
standard deviation of the error. For the slicing method, we use P = 10 · 2k slices for k = 0, ..., 9.
In order to obtain similar computation times, we run RFF and ORF with D = 2P features.
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Figure 10: Loglog plot of the relative L1 approximation error versus GPU computation time for
computing the kernel summations (1) with different kernels on a large dataset (M = N = 960000).
We run each method 10 times. The shaded area indicates the standard deviation of the error. For the
slicing method, we use P = 10 · 2k slices for k = 0, ..., 9. In order to obtain similar computation
times, we run RFF and ORF withD = 4P features. Since PyKeOps computes the exact kernel sum,
the computation time is indicated by a vertical line.
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