
Motion Detection in Diffraction Tomography
by Common Circle Methods

Michael Quellmalz∗ Peter Elbau† Otmar Scherzer†‡§ Gabriele Steidl∗

May 8, 2023

Abstract

The method of common lines is a well-established reconstruction technique in cryogenic
electron microscopy (cryo-EM), which can be used to extract the relative orientations of an
object given tomographic projection images from different directions.

In this paper, we deal with an analogous problem in optical diffraction tomography.
Based on the Fourier diffraction theorem, we show that rigid motions of the object, i.e.,
rotations and translations, can be determined by detecting common circles in the Fourier-
transformed data. We introduce two methods to identify common circles. The first one
is motivated by the common line approach for projection images and detects the relative
orientation by parameterizing the common circles in the two images. The second one assumes
a smooth motion over time and calculates the angular velocity of the rotational motion via
an infinitesimal version of the common circle method. Interestingly, using the stereographic
projection, both methods can be reformulated as common line methods, but these lines are,
in contrast to those used in cryo-EM, not confined to pass through the origin and allow for
a full reconstruction of the relative orientations. Numerical proof-of-the-concept examples
demonstrate the performance of our reconstruction methods.

Keywords. Diffraction tomography, motion detection, Fourier diffraction theorem, common
circle method, optical imaging.

Math Subject Classifications. 92C55, 78A46, 94A08, 42B05.

1 Introduction

A key task in many imaging modalities consists in recovering an object’s inner structure given
images of its illuminations from different directions. The X-ray computed tomography (CT) is
based on a number of assumptions, most prominently that the light travels along straight lines.
If, however, the object is small compared to the wavelength of the illumination, the optical
diffraction cannot be neglected anymore. This occurs for example when examining structures
with a size of a few micrometers such as biological cells with visible light. In the so-called optical
diffraction tomography, we respect the wave character of the light and take optical diffraction
into account.
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As biological samples should be imaged preferably in a natural environment, contact-free ma-
nipulation methods are used for rotating the object during the image acquisition process. Such
rotations can be induced by optical [15] or acoustical tweezers [7, 23, 34].

Therefore, additional effort is necessary if the rigid motion of the object during the image
acquisition process is unknown and has to be reconstructed from the captured images. In this
paper, we propose to tackle this problem by a method of common circles and its infinitesimal
version which is inspired by the well-known method of common lines for projection images as
applied in cryogenic electron microscopy (cryo-EM) [32, 35, 37]. Let us briefly recall this method
first.

Method of common lines. In computed tomography, the aim is the reconstruction of an
object from given (optical) projection images for different directions of the imaging wave or,
equivalently, different rotations of the object. The object’s absorption properties are described
by a function f : R3 → R, which has to be recovered. We assume the object moves in time t
according to rotation matrices Rt, and the illumination is in direction e3 = (0, 0, 1)⊤. Then, the
ray transform of f is given by

XRt [f ](x1, x2) :=
∫ ∞

−∞
f
(
Rt (x1, x2, x3)⊤

)
dx3, (x1, x2)⊤ ∈ R2. (1.1)

The reconstruction of f is based on the Fourier slice theorem, see e.g. [28, Theorem 2.11], which
states that

F (2)[XRt [f ]](k1, k2) =
√

2πF (3)[f ](Rt (k1, k2, 0)⊤), (k1, k2)⊤ ∈ R2, (1.2)

where F (2) and F (3) denote the two- and three-dimensional Fourier transforms, see (2.6). Hence,
given the data XRt [f ] for the rotation Rt, we obtain the Fourier transform of f on the plane
PRt

:= {Rt (k1, k2, 0)⊤ : (k1, k2)⊤ ∈ R2} through the origin. If the rotations Rt are known and
the planes PRt fully cover R3, e.g. when the object makes a full turn around a fixed rotation
axis other than e3, then we can reconstruct f by the inverse 3D Fourier transform. However,
in cryo-EM, the rotations Rt of the object are not known. The method of common lines makes
use of the fact that two planes PRs and PRt intersect for Rse3 ̸= ±Rte3 in a common line
which contains the origin. This common line can be detected from the projection data XRs

and XRt by maximizing the correlation of all possible combinations of lines in the two planes,
which is a minimization problem in two variables. Note that the common line detection is
usually not performed directly in the Fourier space, but by comparing lines of the 2D Radon
transform of XRt [f ], see [36] and also [3] for computational methods. Keeping one plane fixed,
the second plane is not uniquely determined just by their common line, see Figure 1 (left side).
We have to compute the pairwise common lines between three planes to determine the rotation
angles between them, see Figure 1 (right side). Alternatively, the reconstruction can be done by
moment-based methods [20]. Furthermore, Kam’s method considers reconstructing f without
the need of computing the motion parameters first [17, 31].

Diffraction tomography. In optical diffraction tomography, we use a modeling based on
Born’s or Rytov’s approximation of the scattered wave, see e.g. [16, Chapter 6]. The Fourier
diffraction theorem [38] provides a relation between the measured and Fourier-transformed data
and the Fourier transform of the scattering potential, which we want to reconstruct conceptually
similar as for the method of common lines in (1.2). Once we know the motion parameters, the
scattering potential can be reconstructed using a backpropagation formula [6, 27] or inverse
discrete Fourier methods [21], which can deal with arbitrary, irregular motions. Under Born’s
approximation and certain conditions on the moments of the scattering potential, it was shown
[22] that there exists a unique solution to the problem of determining the scattering potential
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Figure 1: Left: A common line pair between two planes PRs and PRt does not determine the
relative angle between them uniquely. Right: Knowing pairwise common lines between three
planes, we can determine their orientations uniquely (except for degenerate cases). Courtesy of
Denise Schmutz from [30, Figure 6.2 and Figure 6.3].

given measurements with unknown object rotations in an experiment where all possible rotations
of the object are performed.

In this paper, we are interested in an experimental setup where the parameters of the rigid
motion need to be determined in parallel to the tomographic reconstruction. We show that the
rotations can be determined by an approach which we call the “method of common circles”. It is
based on computing a common circular arc of intersecting hemispheres. In particular, we show
that only two hemispheres are required to compute the rotation, whereas, in the context the
inversion of the ray transform based on the Fourier slice theorem, one needs to consider the
intersection of three planes. Furthermore, the object’s translation can be completely determined
from the measurement data under some assumptions on the object. This is in contrast to
the ray transform, where the measurements are invariant to every translation of the object in
direction of the incident wave. The diffraction data is sensitive to the third component of the
translations, which allows the full recovery. The concept of common circles or common arcs was
addressed in an empirical way in [13], and its application for recovering rotations in the context
of crystallography was sketched in [4]. In this paper, we give a rigorous mathematical treatment
of the motion reconstruction, which includes also the determination of translations of the object
and an approach based on a time-continuous motion. For instance, time-continuous motions
are appropriate to model tomographic experiments where the object is moved with tweezers. In
these experiments the motion is continuous but not uniform as in medical CT. Such models are
in general simpler than Cyro-tomographic experiments, where in a pre-processing steps X-ray
projection images need to be aligned (numbered) according to their orientations. In this sense
tomographic reconstructions based on a time-continuous movement are simpler than standard
Cryo-tomographic problems. Moreover, when we assume a time-continuous rigid movement, we
can use an infinitesimal calculus for deriving reconstruction methods, leading to the method of
infinitesimal common circle motion estimation (see Section 4).

Outline of this paper. In Section 2, we describe the model of diffraction tomography with
the object undergoing a rigid motion. Then, in Section 3, we derive the common circle method
for reconstructing the object’s rotations. In Section 4, we give an infinitesimal version of the
common circle method, where we assume that the rotations depend smoothly on the time.
Section 5 covers the reconstruction of the translations of the object. In Section 6, we describe
reconstruction methods based on our theoretical findings. We perform numerical proof-of-concept
simulations in Section 7 of the proposed methods with two different phantoms and two different
motion experiments. Moreover, based the infinitesimal approach, we can efficiently compute an
initialization for our optimization algorithm in the direct common circle method. We postpone

3



e1

e2
e3

uinc

B3
rs

f

usca

Figure 2: Experimental setup of transmission imaging in optical diffraction tomography.

technical proofs to Appendix A - C. An interesting relation between common circles and common
lines based on the stereographic projection is outlined in Appendix D.

2 Diffraction Tomography

2.1 Fourier diffraction theorem

Throughout this paper, we consider the following experimental setup of optical diffraction
tomography, which is described in detail in [21, 38]. The unknown object is illuminated by
an incoming plane wave, which propagates in direction e3 with wave number k0 > 0. This is
represented by a function

uinc(x) := eik0x3 , x ∈ R3, (2.1)
where we normalized the amplitude to one. The object shall be contained in an open ball B3

rs of
some radius rs > 0, where we use the notation

Bdr := {x ∈ Rd : ∥x∥ < r} for d ∈ N, r > 0,

with the Euclidean norm ∥·∥. Further, we will need spheres ∂Bdr (z) := {y ∈ Rd : ∥y − z∥ = r}.
Then the incident wave uinc induces a scattered wave usca which is recorded in transmission
imaging in a plane {x ∈ R3 : x3 = rM} at a position rM > rs outside the object, see Figure 2. The
scattered wave usca can be calculated from the incoming wave uinc and the scattering potential
f : R3 → R≥0, which is a piecewise continuous function with support in B3

rs , of the unknown
object as a solution of the partial differential equation

−(∆ + k2
0)usca(x) = f(x)

(
usca(x) + uinc(x)

)
, x ∈ R3, (2.2)

which fulfills the Sommerfeld radiation condition

lim
r→∞

max
∥x∥=r

∥x∥
∣∣∣⟨∇usca(x), x

∥x∥⟩ − ik0u
sca(x)

∣∣∣ = 0.

The condition that f is real-valued means that no absorption occurs in the object. If ∥f∥∞ is
sufficiently small, the solution usca is small in comparison to uinc, so that it can be neglected on
the right-hand side of (2.2) and we obtain the Born approximation u of the scattered field usca,
determined by

−(∆ + k2
0)u = fuinc, (2.3a)

lim
r→∞

max
∥x∥=r

∥x∥
∣∣∣⟨∇u(x), x

∥x∥⟩ − ik0u(x)
∣∣∣ = 0. (2.3b)
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In the following, we assume that the Born approximation of the scattered wave is valid, which
holds true for small objects which mildly scatter, cf. [9, 16].

The advantage of the Born approximation is that the solution u of the Helmholtz equation (2.3a)
fulfilling the radiation condition (2.3b) can be explicitly written in the form

u(x) =
∫
R3

eik0∥x−y∥

4π ∥x − y∥
f(y)uinc(y) dy,

see, for example, [5, Theorem 8.1 and 8.2].

To calculate from the detected field u(x1, x2, rM), (x1, x2) ∈ R2, the scattering potential f , we
use the Fourier diffraction theorem, which relates the two-dimensional Fourier transform of
the measurement (x1, x2) 7→ u(x1, x2, rM) to the three-dimensional Fourier transform of the
scattering potential f , see for instance [16, Section 6.3], [28, Theorem 3.1] or [38]. We use here
the version [21, Theorem 3.1] derived for the more general case f ∈ Lp(R3 → C), p > 1, which
states that

F1,2[u](k, rM) =
√
π

2
ieiκ(k)rM

κ(k) F [f ] (h(k)) for all k = (k1, k2) ∈ B2
k0 , (2.4)

where h : B2
k0

→ R3 is defined by

h(k) :=
(

k
κ(k) − k0

)
, κ(k) :=

√
k2

0 − ∥k∥2. (2.5)

Here the d-dimensional Fourier transform is defined for g : R3 → C by

F [g](y) := (2π)−d/2
∫
Rd
g(x) e−i⟨x,y⟩ dx, y ∈ Rd. (2.6)

Moreover, we define the partial Fourier transform in the first two components as

F1,2[g](k1, k2, x3) := (2π)−1
∫
R2
g(x1, x2, x3) e−i(x1k1+x2k2) d(x1, x2), (k1, k2, x3)⊤ ∈ R3.

We skip the dependence of the Fourier transform on the dimension in the notation, since this
becomes clear from the context. Geometrically, the Fourier diffraction theorem can be interpreted
as follows: The left-hand side of (2.4) is the Fourier transform of the (two-dimensional) measured
images, while the right-hand side evaluates the three-dimensional Fourier transform of f on a
hemisphere whose north pole is the origin 0, see the blue hemisphere in Figure 3.

2.2 Motion of the object

In our setting, we record diffraction images while exposing the object of interest to an unknown
rigid motion Ψ: [0, T ] × R3 → R3,

Ψt(x) := R⊤
t x + dt, (2.7)

which rotates the object by the rotation matrixR⊤
t ∈ SO(3) := {Q ∈ R3×3 : Q⊤Q = I, detQ = 1},

and translates it by the vector dt ∈ R3. Hereby, we consider the object at time t = 0 as the
reference object and set correspondingly Ψ0 to be the identity map, that is, R0 := I and d0 := 0.
The scattering potential of the object that is exposed to this rigid motion Ψ is then described by
the function t 7→ f ◦ Ψ−1

t , where the inverse function Ψ−1
t is explicitly given by

Ψ−1
t (y) = Rt(y − dt).
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The diffraction images are now obtained by continuously illuminating the moving object with
the incident wave uinc given by (2.1), and recording the resulting scattered wave (which we will
approximate by its Born approximation) on the detector surface {x ∈ R3 : x3 = rM}. We denote
by ut, t ∈ [0, T ], the Born approximation of the wave scattered in the presence of the transformed
scattering potential f ◦ Ψ−1

t , which satisfies the system (2.3) with f replaced by f ◦ Ψ−1
t , that is,

the differential equation
∆ut + k2

0ut = −(f ◦ Ψ−1
t )uinc

together with the radiation condition

lim
r→∞

max
∥x∥=r

∥x∥
∣∣∣〈∇ut(x), x

∥x∥

〉
− ik0ut(x)

∣∣∣ = 0.

Then the recorded measurement data is given by the function m : [0, T ] × R2 → R with

mt(x1, x2) := ut(x1, x2, rM). (2.8)

Switching to the Fourier domain with respect to x1 and x2, we find by (2.4) for k ∈ B2
k0

that

F [mt](k) =
√
π

2
ieiκ(k)rM

κ(k) F [f ◦ Ψ−1
t ] (h(k))

=
√
π

2
ieiκ(k)rM

κ(k) (2π)− 3
2

∫
R3
f
(
Rt(y − dt)

)
e−i⟨y,h(k)⟩ dy

=
√
π

2
ieiκ(k)rM

κ(k) (2π)− 3
2

∫
R3
f(ỹ) e−i⟨R⊤ỹ+dt,h(k)⟩ dỹ,

and hence the explicit relation

F [mt](k) =
√
π

2
ieiκ(k)rM

κ(k) F [f ] (Rth(k)) e−i⟨dt,h(k)⟩ (2.9)

between the measured data mt and the unknown scattering potential f .

However, this depends on the unknown parameters Rt and dt describing the motion of the object.
The aim of this paper is to recover both unknown motion parameters. We will first reconstruct
the rotation matrix Rt from the absolute values |F [mt]| by two different approaches, namely
i) the method of common circles, which is in the spirit of the common lines method in ray
transforms, and ii) the infinitesimal method for finding changes in the angular velocity during
the motion which assumes smooth rotations Rt in time. Relying just on absolute values |F [mt]|
removes the dependency on the translations dt, which only enter into the Fourier transform as a
phase factor. Therefore, we will use the full data F [mt] to reconstruct the translation vectors dt
in the second step. Knowing Rt and dt, relation (2.9) can be used to reconstruct the scattering
potential f as described in [21].

At this point, we want to stress that the possible reduction of the data to the absolute values
|F [mt]| for the reconstruction of the rotations is not directly connected to the phaseless optical
diffraction measurements, where only the absolute values |usca(x1, x2, rM)|, x1, x2 ∈ R, of the
scattered wave usca are detected, see (2.9).

3 Common Circle Method

Given measurements mt, t ∈ [0, T ] from (2.8), we can compute their scaled squared energy
νt : B2

k0
→ [0,∞) by

νt(k) := 2
π
κ2(k) |F [mt](k)|2 (3.1)
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Figure 3: Illustration of the common circles. Two hemispheres H0 and Ht intersect in a common
circle arc. The north pole of the hemispheres is at 0.

with κ from (2.5). According to (2.9), this can be expressed in terms of the scattering potential
f as

νt(k) = |F [f ](Rth(k))|2 , k ∈ B2
k0 . (3.2)

Thus we observe for s ̸= t that
νs(ks,t) = νt(kt,s) (3.3)

holds for all pairs (ks,t,kt,s) ∈ B2
k0

× B2
k0

fulfilling

Rsh(ks,t) = Rth(kt,s). (3.4)

The aim of this section is to parameterize the curve consisting of all points σs,t = Rs(h(ks,t)) =
Rt(h(kt,s)) and use this afterwards for describing the associated curves ks,t in their respective
planes. We will see that the first one is a circular arc in the intersection of two hemispheres, while
the second one is an elliptic arc. Having a parameterization with respect to the planes, where
the curves are supported, we can switch to their description via the Euler angles of the rotation
R⊤
s Rt. In Section 6, we will use this description to determine the Euler angles by minimizing a

functional based on the matching condition νs(ks,t) = νt(kt,s).

We start by defining the sets

Ht :=
{
Rth(k) : k ∈ B2

k0

}
, t ∈ [0, T ],

which are by (2.5) the hemispheres with radius k0 and center −k0Rte
3, i.e.,

Ht = {Rty : y ∈ ∂B3
k0(−k0e3), y3 > −k0}

= {x ∈ ∂B3
k0(−k0Rte

3) : ⟨x, Rte3⟩ > −k0}, (3.5)

see Figure 3. The intersection Hs ∩ Ht, s ≠ t is an arc of a circle and the reason why we call this
approach „method of common circles”. The following lemma gives its parameterization.

Lemma 3.1 (Parameterization of the common circular arcs) Let s, t ∈ [0, T ] such that
Rse

3 ̸= ±Rte3. Then it holds Hs ∩ Ht = {σs,t(β) : β ∈ Js,t} with the curve σs,t : Js,t → R3

defined by
σs,t(β) := as,t(cos(β) − 1)v1

s,t + as,t sin(β)v2
s,t, (3.6)

where we used the positively oriented, orthonormal basis

v1
s,t := Rse

3 +Rte
3

∥Rse3 +Rte3∥
, v2

s,t := Rse
3 ×Rte

3

∥Rse3 ×Rte3∥
, v3

s,t := Rse
3 −Rte

3

∥Rse3 −Rte3∥
,
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the radius
as,t := k0

2
∥∥∥Rse3 +Rte

3
∥∥∥ ,

and the interval

Js,t :=
{

(−π, π] if ⟨Rse3, Rte
3⟩ ≤ 0,

(−βs,t, βs,t) if ⟨Rse3, Rte
3⟩ > 0

with βs,t := arccos
(

⟨Rse3, Rte
3⟩ − 1

⟨Rse3, Rte3⟩ + 1

)
. (3.7)

In particular, we have σs,t(β) = σt,s(−β) for all β ∈ Js,t.

Next, according to (3.4), we intend to find the parameterization of γs,t such that σs,t(β) =
Rsh(γs,t(β)), β ∈ Js,t. Indeed, we see in the following lemma that γs,t is an elliptic arc. The
relation between both parameterizations is illustrated in Figure 4, where P (x1, x2, x3)⊤ :=
(x1, x2)⊤. Note that the first case in (3.7) corresponds with when the “lense” in the middle of
Figure 4 is fully closed.

Lemma 3.2 (Parameterization by elliptic arcs) Let s, t ∈ [0, T ] such that Rse3 ̸= ±Rte3

and let σs,t be defined as in (3.6). Then, we have

σs,t(β) = Rsh(γs,t(β)) for all β ∈ Js,t (3.8)

with the elliptic arc γs,t : Js,t → B2
k0

determined by

γs,t(β) := ãs,t(cos(β) − 1)w1
s,t + as,t sin(β)w2

s,t, (3.9)

where the directions of the axes are given by

w1
s,t := P (R⊤

s Rte
3)

∥P (R⊤
s Rte

3)∥ and w2
s,t := P (e3 ×R⊤

s Rte
3)

∥P (e3 ×R⊤
s Rte

3)∥ ,

and ãs,t := k0
2 ∥P (R⊤

s Rte
3)∥. In particular, it holds

Rsh(γs,t(β)) = Rth(γt,s(−β)) for all β ∈ Js,t. (3.10)

Finally, we want to express γs,t in terms of the Euler angles of rotation matrix R⊤
s Rt = (R⊤

t Rs)⊤.
Recall that every rotation matrix in SO(3) can be written (in the z-y-z convention) in the form

Q(3)(φ)Q(2)(θ)Q(3)(ψ)

with the Euler angles φ,ψ ∈ R/(2πZ) and θ ∈ [0, π], where Q(2) and Q(3) denote the rotation
matrices

Q(2)(α) :=

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 and Q(3)(α) :=

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 ,
around the e2 and e3 axis, respectively. The Euler angles are uniquely defined if we set ψ = 0
for θ ∈ {0, π}.

Proposition 3.3 (Representation of γs,t via the Euler angles of R⊤
s Rt) Let s, t ∈ [0, T ]

such that Rse3 ̸= ±Rte3 and let (φ, θ, ψ) ∈ (R/(2πZ)) × [0, π] × (R/(2πZ)) be the Euler angles
of the rotation R⊤

s Rt, i.e,
R⊤
s Rt = Q(3)(φ)Q(2)(θ)Q(3)(ψ). (3.11)

Then the elliptic arc γs,t from (3.9) is given in terms of the Euler angles by γs,t(β) = γφ,θ(β),
where

γφ,θ(β) := k0
2 sin(θ)(cos(β) − 1)

(
cos(φ)
sin(φ)

)
+ k0 cos( θ2) sin(β)

(
− sin(φ)
cos(φ)

)
, β ∈ Js,t. (3.12)
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3

Ht

−k0Rte
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v3
s,t
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v2
s,t
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Rse
3

Rte
3

Ts

w̃2
s,t

w̃1
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ãs,t

Figure 4: Intersection of two hemispheres Hs and Ht in the plane through the centers of
the hemispheres and the origin. The circular arc Hs ∩ Ht lies in the plane Vs,t = {x ∈ R3 :〈
x, (Rs −Rt)e3〉 = 0} perpendicular to the line between the centers. It is spanned by vjs,t,
j = 1, 2 in Lemma 3.1. The basis wj

s,t, j = 1, 2 of R2 in Lemma 3.2 is illustrated by the
orthogonal projection w̃j

s,t of vjs,t to the tangent plane Ts of Hs at 0. They are explicitly related
by wj

s,t = P (R⊤
s w̃j

s,t).

γs,t

γ∗
s,t

0

νs

γ−
t,s

γ∗
t,s

0

νt

0

1

−π π−βs,t βs,t

νs ◦ γs,t νt ◦ γ−
t,s

0

1

−π π

νs ◦ γs,t νt ◦ γ∗
t,s

Figure 5: Scaled squared energies νs (left) and νt (right), see (3.1), for a characteristic function f
of an ellipsoid in R3. For the relative rotation R⊤

s Rt = Q(3)(π6 )Q(2)(π4 )Q(3)(2π
3 ), we show the paths

of the corresponding two elliptic arcs γs,t and γt,s (solid lines), where γ−
t,s denotes the reversed

elliptic arc γ−
t,s(β) := γt,s(−β), and their dual arcs γ∗

s,t and γ∗
t,s (dashed), cf. Proposition 3.4.

The relations (3.10) and (3.18) are verified in the center: The top plot shows that the graphs
of the scaled squared energy νs ◦ γs,t(β) along the elliptic arcs in blue and νt ◦ γ−

t,s(β) in red
coincide for all β. The same can be seen in the bottom for the dual arcs.

Since the scattering potential f is real-valued, its Fourier transform fulfills the symmetry property

F [f ](−y) = F [f ](y) for all y ∈ R3, (3.13)

which is also known as Friedel’s law. Thus we see analogously to (3.3) that νs(k∗
s,t) = νt(k∗

t,s) for
all pairs (k∗

s,t,k
∗
t,s) ∈ B2

k0
× B2

k0
satisfying the “dual” condition to (3.4), i.e.,

Rsh(k∗
s,t) = −Rth(k∗

t,s)

The parameterization can be handled in a similar way. To this end, we define the reflected
hemisphere −Ht = {−x : x ∈ Ht} and summarize the results in the following proposition. A
graphical illustration is given in Figure 5.
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Proposition 3.4 (Parameterization in dual case) Let s, t ∈ [0, T ] such that Rse3 ̸= Rte
3.

(i) It holds Hs ∩ (−Ht) = {σ∗
s,t(β) : β ∈ J∗

s,t} with the curve σ∗
s,t : J∗

s,t → R3 defined by

σ∗
s,t(β) := a∗

s,t(cos(β) − 1)v3
s,t − a∗

s,t sin(β)v2
s,t, (3.14)

where
a∗
s,t := k0

2
∥∥∥Rse3 −Rte

3
∥∥∥

and with the interval

J∗
s,t :=

{
(−π, π] if ⟨Rse3, Rte

3⟩ ≥ 0,
(−β∗

s,t, β
∗
s,t) if ⟨Rse3, Rte

3⟩ < 0
with β∗

s,t := arccos
(

⟨Rse3, Rte
3⟩ + 1

⟨Rse3, Rte3⟩ − 1

)
. (3.15)

(ii) Further, we have
σ∗
s,t(β) = Rsh(γ∗

s,t(β)) for all β ∈ J∗
s,t

with the elliptic arc γ∗
s,t : J∗

s,t → B2
k0

determined by

γ∗
s,t(β) := −ãs,t(cos(β) − 1)w1

s,t − a∗
s,t sin(β)w2

s,t. (3.16)

(iii) Let (φ, θ, ψ) ∈ (R/(2πZ)) × [0, π] × (R/(2πZ)) denote the Euler angles of the rotation R⊤
s Rt,

see (3.11). Then the elliptic arc γ∗
s,t has the form γ∗

s,t(β) = γ∗,φ,θ(β), where

γ∗,φ,θ(β) := −k0
2 sin(θ)(cos(β) − 1)

(
cos(φ)
sin(φ)

)
− k0 sin( θ2) sin(β)

(
− sin(φ)
cos(φ)

)
. (3.17)

In particular, it holds

Rsh(γ∗
s,t(β)) = −Rth(γ∗

t,s(β)) for all β ∈ J∗
s,t. (3.18)

So far, we have excluded the cases Rse3 = ±Rte3. The case Rse3 = ±Rte3 corresponds with a
rotation in x1 x2 plane, while the other contains an additional rotation of 180 °. The following
proposition shows that these constellations can easily be detected. To this end, we define the
matrices

S :=
(

1 0
0 −1

)
and Q(α) :=

(
cos(α) − sin(α)
sin(α) cos(α)

)
, α ∈ R. (3.19)

Proposition 3.5 (Special cases Rse3 = ±Rte
3) (i) Let s, t ∈ [0, T ] such that Rse3 = Rte

3.
Then we have R⊤

s Rt = Q(3)(α) for some α ∈ R/(2πZ) and

νs(Q(α)k) = νt(k) for all k ∈ B2
k0 . (3.20)

(ii) Let s, t ∈ [0, T ] such that Rse3 = −Rte3. Then we have R⊤
s Rt = Q(2)(π)Q(3)(α) for some

α ∈ R/(2πZ) and
νs(SQ(α)k) = νt(k) for all k ∈ B2

k0 . (3.21)

Finally, we can use our findings to formulate our main theorem which says that under certain
conditions the Euler angles of R⊤

s Rt can be determined from the matching condition (3.3).
Theorem 3.6 (Reconstruction of Euler angles) Let s, t ∈ [0, T ] such that neither (3.20)
nor (3.21) hold for any α ∈ R/(2πZ). Furthermore, assume that there exist unique angles
φ,ψ ∈ R/(2πZ) and θ ∈ [0, π] such that

νs(γφ,θ(β)) = νt(γπ−ψ,θ(−β)) for all β ∈ [−π
2 ,

π
2 ] and (3.22)

νs(γ∗,φ,θ(β)) = νt(γ∗,π−ψ,θ(β)) for all β ∈ [−π
2 ,

π
2 ], (3.23)

where γφ,θ and γ∗,φ,θ are defined in (3.12) and (3.17), respectively. Then we have

R⊤
s Rt = Q(3)(φ)Q(2)(θ)Q(3)(ψ). (3.24)
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Since the curves γ∗ in (3.23) are traversed in the same direction and the curves γ in (3.22) in
the opposite direction, they can be distinguished. Hence, under the uniqueness assumptions
in Theorem 3.6, it suffices if only one of the equations (3.22) or (3.23) is fulfilled in order to
obtain the Euler angles of R⊤

s Rt. One could also obtain a slightly stronger result by replacing
the interval [−π

2 ,
π
2 ] in Theorem 3.6 by a larger one depending on θ, cf. (3.7) and (3.15).

Nevertheless, the reconstruction relies on the uniqueness of the elliptic arcs with property (3.22),
which might fail if the function f has too much symmetry. For example, if f is rotationally
invariant, then so is its Fourier transform F [f ], and therefore νs = νt for all s, t ∈ [0, T ], which
clearly makes it impossible to reconstruct any rotation. In the generic case, however, we expect
that this problem does not occur and neither does it in our numerical examples. Our variational
model in Section 6 exploits both the curves and their dual versions.

We finish this section by two different remarks concerning common lines and common circles.

Remark 3.7 (Methods of common circles and common lines) We can obtain the rela-
tive rotation R⊤

s Rt, which the object undergoes at only two different time steps t and s, from
two data sets νs and νt. This is in contrast to the common line method for the ray transform
[8], which requires to detect the intersection of pairwise common lines in images from at least
three different rotations in order to calculate the relative rotations, see Figure 1. This is also
apparent from the fact that our common circle formulation contains the three Euler angles from
the three dimensional manifold SO(3) as parameters, whereas in the common line method for
the ray transform there are only the two parameters parameterizing the lines through the origin.

Remark 3.8 (Stereographic projection) Instead of detecting elliptic arcs in the images
νt, we may use a different parameterization in which the arcs become straight lines. Such a
parameterization is provided by the stereographic projection of the hemisphere Ht \ {0} from
the origin onto its equatorial plane {x ∈ R3 : ⟨x, Rte3⟩ = −k0}. The stereographic projection
maps the common circle (3.6) to a straight line in the equatorial plane. Then we can detect the
rotations R⊤

s Rt by finding common lines in the transformed, two-dimensional data. The details
are provided in Appendix D.

4 Infinitesimal Common Circle Method
In this section, we make the additional assumption that the rotations Rt to which the object
is exposed via the transformation (2.7) depend smoothly on the time t ∈ [0, T ], i.e., we assume
that R ∈ C1([0, T ] → SO(3)), where we consider SO(3) as submanifold of R3×3. Since the fact
that the scattering potential f has compact support implies by the Paley–Wiener theorem that
F [f ] ∈ C∞(R3 → C), we thus have that νt(k) is continuously differentiable both in time t and
space k.

In this setting, we can describe the relative rotation R⊤
s Rt between two time steps s, t ∈ [0, T ]

in the limit s → t by the derivative (R′
t)⊤Rt = (R⊤

t R
′
t)⊤, where R′

t denotes the time derivative
of Rt at t ∈ [0, T ]. The derivative of the defining identity R⊤

t Rt = I with respect to t is given
by R⊤

t R
′
t + (R⊤

t R
′
t)⊤ = 0. Hence the angular velocity matrix Wt := R⊤

t R
′
t is skew-symmetric

and thus can be described by three parameters. The angular velocity ωt : [0, T ] → R3 of the
rotational motion Rt, cf. [25, Chapter VI], is defined by

R⊤
t R

′
ty = ωt × y for all t ∈ [0, T ], y ∈ R3. (4.1)

In particular, we have

Wt =

 0 −ωt,3 ωt,2
ωt,3 0 −ωt,1

−ωt,2 ωt,1 0

 , where ωt := (ωt,1, ωt,2, ωt,3)⊤. (4.2)
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In the following, we want to reconstruct the angular velocity ωt of the rigid motion at a time
t ∈ [0, T ] from the behavior of the data ν in the vicinity of the time t, more precisely from
the first derivatives of ν at the time t. We will utilize a similar approach as done for the ray
transform in [8].

For the reconstruction, it is convenient to express ωt in cylindrical coordinates

ωt =
(
ρtϕt

ζt

)
=

ρtϕt,1ρtϕt,2
ζt

 (4.3)

with the azimuth direction ϕt ∈ S1
+ := {(cos(α), sin(α))⊤ : α ∈ [0, π)}, the cylindrical radius

ρt ∈ R, and the third component ζt ∈ R. Note that, in contrast to conventional cylindrical
coordinates, we allow negative radii ρt, but restrict in exchange ϕt to S1

+.

To obtain the reconstruction formula, we consider for values s, t ∈ [0, T ] with Rse
3 ̸= ±Rte3

again the elliptic arcs γs,t in (3.9) fulfilling the identity

νs(γs,t(β)) = νt(γt,s(−β)), (4.4)

in (3.10). Taking therein for fixed t ∈ [0, T ] the limit s → t, we find that the relation

lim
s→t

νs(γs,t(β)) − νt(γt,s(−β))
s− t

= 0 (4.5)

holds, which gives us a relation between the first order derivatives of the function (t,k) 7→ νt(k)
involving only the angular velocity ωt of the rotations at the time t. As we will see, this first
order part of (4.4) contains enough information to recover the angular velocity and therefore
the whole rotations. This method can thus be seen as an infinitesimal version of Theorem 3.6.
Rewriting the relation (4.5) directly by expanding the functions in Taylor series in the variable s
around the point t would be rather tedious, similar to the calculation in [8] for the ray transform.
Therefore, we will simply verify the following lemma via direct computation.

Lemma 4.1 (Infinitesimal common circle relation) Let the rotations R ∈ C1([0, T ] →
SO(3)) be continuously differentiable and the associated angular velocities ωt ∈ R3 be written in
cylindrical coordinates (4.3). Then we have for every r ∈ (−k0, k0) and t ∈ [0, T ] the relation

∂tνt(rϕt) =
(
ρt

(
k0 −

√
k2

0 − r2
)

+ rζt

)〈
∇νt(rϕt),

(
−ϕt,2
ϕt,1

)〉
, (4.6)

where ∂tνt denotes the partial derivative of νt with respect to t, and ∇νt(k) the gradient with
respect to k.

This gives rise to the following reconstruction method. For the reconstruction to be unique, we
require that (4.6) has a unique solution (ρt,ϕt, ζt) ∈ R×S1

+ ×R, which consists of the components
of the angular velocity we want to reconstruct. If the object (and therefore f) is asymmetric, it
seems reasonable to assume there is indeed a unique solution (ρt,ϕt, ζt) to (4.6), which happens
in all our numerical simulations. Conditions for the unique reconstructability of f are discussed
in [20, 22].

Theorem 4.2 (Reconstruction of the angular velocity ωt) Let the rotations matrices R ∈
C1([0, T ] → SO(3)) be continuously differentiable and t ∈ [0, T ]. Let further ϕ ∈ S1

+ be a unique
direction with the property that there exist parameters ρ, ζ ∈ R such that

∂tνt(rϕ) =
(
ρ

(
k0 −

√
k2

0 − r2
)

+ rζ

)〈
∇νt(rϕ),

(
−ϕ2
ϕ1

)〉
for all r ∈ (−k0, k0).
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Provided that the set

Nt :=
{
r ∈ (−k0, k0) \ {0} :

〈
∇νt(rϕ),

(
−ϕ2
ϕ1

)〉
̸= 0

}
contains at least two elements, then the angular velocity (4.3) is given by ωt = (ρϕ, ζ)⊤.

Proof: From Lemma 4.1, we find that the uniqueness implies that ϕt = ϕ and therefore also

ρ+ r

k0 −
√
k2

0 − r2
ζ = ρt + r

k0 −
√
k2

0 − r2
ζt for all r ∈ Nt.

Since the function (−k0, k0) \ {0} → R \ [−1, 1], r 7→ r/(k0 −
√
k2

0 − r2) is bijective, we have
ρ = ρt and ζ = ζt if the equation is satisfied for two different values r. □

An alternative version of the last theorem via stereographic projection is found in Appendix D.2.
Once we have reconstructed the angular velocity ωt by the above theorem, we can obtain the
rotation matrices Rt as follows.
Theorem 4.3 (Reconstruction of the rotation from the angular velocity) Let the ro-
tations R ∈ C1([0, T ] → SO(3)) be continuously differentiable with associated angular velocity ω,
see (4.1). Then R is the unique solution of the linear initial value problem

R′
t = RtWt, t ∈ (0, T ),

R0 = I,
(4.7)

where the skew-symmetric matrix Wt ∈ R3×3 is defined in (4.2).
Proof: The equation (4.7) follows directly from the definition (4.1) of the angular velocity. As a
linear ordinary differential equation, the initial value problem (4.7) has a unique solution. □

Remark 4.4 (Differences to infinitesimal common line method) In contrast to the in-
finitesimal common line method [8] for the ray transform (1.1), which requires third order
derivatives of the data function, we only need first order derivatives of ν in order to reconstruct
the angular velocity completely. Furthermore, we can uniquely recover the rotation, whereas for
the ray transform there are always two possible solutions corresponding to a reflection in the
direction of the imaging wave.

5 Reconstruction of the Translations

So far, we have only considered the computation of the rotations Rt, t ∈ [0, T ], in the motion (2.7),
which we could obtain from the absolute values of the Fourier transforms of our measurements mt,
t ∈ [0, T ], that is, from the scaled squared energy νt defined in (3.1). To recover the translations
dt ∈ R3, we need to use in addition the phase information in our measurements mt, see (2.8).
Therefore we define the scaled measurement data µt : B2

k0
→ C by

µt(k) := −i
√

2
π
κ(k)e−iκ(k)rMF [mt](k). (5.1)

According to (2.9) this can be expressed in terms of the scattering potential f , the rotation
Rt ∈ SO(3), and the translation dt ∈ R3 by

µt(k) = F [f ] (Rth(k)) e−i⟨dt,h(k)⟩. (5.2)

If we have already reconstructed the rotations Rt, then we know by (3.10) and (3.18) the elliptic
arcs γs,t and the duals γ∗

s,t along which the values of the scaled squared energies νs = |µs|2 and
νt = |µt|2 coincide. Therefore, the corresponding values of µs and µt only differ by a phase factor,
which depends on the translation vectors ds and dt. We compute their relation explicitly in the
following lemma.
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Lemma 5.1 (Complex phase shift along the common circles) Let s, t ∈ [0, T ] such that
Rse

3 ̸= ±Rte3 and let γs,t and γt,s be the elliptic arcs defined in Lemma 3.2 and σs,t = Rs(h◦γs,t)
be the corresponding common circular arc introduced in Lemma 3.1. Moreover, let γ∗

s,t and γ∗
t,s

be the dual elliptic arcs and σ∗
s,t = Rs(h ◦ γ∗

s,t) be the corresponding dual common circular arc as
defined in Proposition 3.4. Then we have

(i) for every β ∈ Js,t with µs(γs,t(β)) ̸= 0 that

ei⟨Rtdt−Rsds,σs,t(β)⟩ =
µs(γs,t(β))
µt(γt,s(−β)) . (5.3)

(ii) for every β ∈ J∗
s,t with µs(γ∗

s,t(β)) ̸= 0 that

ei⟨Rtdt−Rsds,σ∗
s,t(β)⟩ =

µs(γ∗
s,t(β))

µt(γ∗
t,s(β))

. (5.4)

In the degenerate cases Rse3 = ±Rte3, a similar relation holds on the whole hemisphere.

Lemma 5.2 (Special cases Rse3 = ±Rte
3) Let R⊤

s Rt be known for some s, t ∈ [0, T ], and
let Q and S be given in (3.19).

(i) If Rte3 = Rse
3, then we have for all k ∈ B2

k0
with µs(k) ̸= 0 that

ei⟨Rtdt−Rsds,Rsh(k)⟩ = µs(k)
µt(Q(−α)k) (5.5)

with some α ∈ R/(2πZ) fulfilling R⊤
s Rte

3 = Q(3)(α) according to Proposition 3.5 (i).

(ii) If Rte3 = −Rse3, then we have for all k ∈ B2
k0

with µs(k) ̸= 0 that

ei⟨Rtdt−Rsds,Rsh(k)⟩ = µs(k)
µt(Q(−α)Sk)

(5.6)

with some α ∈ R/(2πZ) fulfilling R⊤
s Rte

3 = Q(2)(π)Q(3)(α) according to Proposition 3.5 (ii).

In contrast to data of the ray transform (1.1), where the measurements are invariant to the
object’s position in direction of the incident wave, the diffraction data are not invariant with
respect to the third component of the translations. By the following theorem, we can uniquely
recover the translation vectors dt, t ∈ [0, T ], from the equations (5.3), (5.4), (5.5), and (5.6).

Theorem 5.3 (Reconstruction of the translation) Let the relative rotation R⊤
s Rt be known

for some s, t ∈ [0, T ].

(i) If Rse3 ̸= ±Rte3, then the relative translation R⊤
s Rtdt − ds is uniquely determined from

the scaled measurements µs and µt by the equations (5.3) and (5.4).

(ii) If Rse3 = ±Rte3, then the relative translation R⊤
s Rtdt − ds is uniquely determined from

the scaled measurements µs and µt by the equation (5.5) or (5.6).

Thus, if f is sufficiently asymmetric so that we find for each t ∈ [0, T ] a time s ∈ [0, T ], for which
Rs was already reconstructed (starting from the normalization R0 = I), and such that there either
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exist unique elliptic arcs in νs and νt as described in Theorem 3.6, or we have Rse3 = ±Rte3

and there exists a unique angle α fulfilling either (3.20) or (3.21), then Proposition 3.5 and
Theorem 3.6 determine uniquely the rotation Rt. With this knowledge, we get from Theorem 5.3
with d0 = 0 all the translations dt, t ∈ [0, T ], and therefore the complete motion Ψ of our object,
introduced in (2.7).

The following remark gives an interesting relation to higher order moment methods.

Remark 5.4 (Relation to higher order moment methods) We can also detect the optical
center C ∈ R3 of the object, that is, the ratio

C :=
∫
R3 xf(x) dx∫
R3 f(x) dx = i∇F [f ](0)

F [f ](0)

of the first and the zeroth moment of the function f , from the transformed data µt, see (5.1), by
realizing that

i∂ki
µt(0)

µt(0) = i
〈
∇F [f ](0), Rtei

〉
F [f ](0) + dt,i =

〈
C, Rtei

〉
+ dt,i, i ∈ {1, 2}.

If we have a time t ∈ [0, T ] for which the rotation Rt has a rotation axis different from Re3, this
allows us (other than from data of the ray transform) to fully recover the point C ∈ R3 without
the need of first reconstructing f . Theoretically, this approach also provides a reconstruction of
arbitrary moments of the function f by incorporating higher-order derivatives of µt, which was
used in [22] to prove the unique reconstructability of f .

6 Reconstruction Methods
Based on our previous results we can provide concrete reconstruction methods for the motion
parameters now. We start by considering the rotations and continue with translations afterwards.

6.1 Reconstruction of the rotation

For reconstructing the rotations Rt, we can utilize the common circle method in Section 3 and
its infinitesimal counterpart in Section 4. Here, we assume that νt from (3.1) are given.

6.1.1 Direct common circle method

We utilize Theorem 3.6 to find the common circles and therefore reconstruct the rotation Rt. We
want to find the Euler angles (φ, θ, ψ) ∈ (R/(2πZ)) × [0, π] × (R/(2πZ)) of the rotation R⊤

s Rt by
solving (3.22) and (3.23). When working with measured data, it is unlikely that these equations
hold exactly, therefore we propose a least-squares approach: we aim to minimize the functional

Es,t(φ, θ, ψ) :=
∫ π/2

−π/2

∣∣∣νt(γπ−ψ,θ(−β)) − νs(γφ,θ(β))
∣∣∣2 +

∣∣∣νt(γ∗,π−ψ,θ(β)) − νs(γ∗,φ,θ(β))
∣∣∣2 dβ

(6.1)
over φ,ψ ∈ R/(2πZ) and θ ∈ [0, π], where the elliptic arcs γφ,θ and γ∗,φ,θ are given in (3.12) and
(3.17). If νt is given on a grid, it needs to be interpolated in order to evaluate νt(γπ−ψ,θ(−β)) in
(6.1). Furthermore, the integral in (6.1) can be discretized via quadrature.

We consider the minimizer of Es,t as a good approximation of the Euler angles (3.11) of the
rotation R⊤

s Rt. Using that R0 = I, we compute the minimizer of E0,t to obtain R⊤
0 Rt = Rt for

all t by Algorithm 1.
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Algorithm 1: Reconstruction of the rotation Rt with the direct common circle method
Input: Scaled squared energy νt, discretization parameter N ∈ N, grid of Euler angles

(φℓ, θℓ, ψℓ) ⊂ [0, 2π) × [0, π] × [0, 2π), ℓ = 1, . . . , L.
Set the grid βn := nπ/N, n = −N, . . . , N ;
for ℓ = 1, . . . , L do

Compute E(ℓ) :=∑N
n=−N

∣∣∣νt(γπ−ψℓ,θℓ(−βn)) − ν0(γφℓ,θℓ(βn))
∣∣∣2 +

∣∣∣νt(γ∗,π−ψℓ,θℓ(βn)) − ν0(γ∗,φℓ,θℓ(βn))
∣∣∣2

using an interpolation of νt and ν0;
end
Compute ℓ̂ = arg minℓ E;
Output: Rotation Rt ≈ Q(3)(φℓ̂)Q

(2)(θℓ̂)Q
(3)(ψℓ̂), see (3.11).

The accuracy of Rt may be improved by incorporating reconstructions of R⊤
s Rt for all s, t,

similarly to cryo-EM [37]. The minimization of Es,t is a three-dimensional, non-linear and
non-convex optimization problem, for which we can use a brute force method by searching on
a grid of SO(3). The computation of the minimum of (6.1) becomes much more efficient if we
have good initial values (φ, θ, ψ), which can be obtained by the infinitesimal method in the next
subsection.

6.1.2 Infinitesimal common circle method

The reconstruction is done in two steps. First, we reconstruct the angular velocity, second we
use this to find the rotation.

Angular velocity Let t ∈ (0, T ) be arbitrary but fixed. We reconstruct the angular velocity
ωt = (ρt cos(ϕt), ρt sin(ϕt), ζt)⊤, ρt, ζt ∈ R, ϕt ∈ [0, π) using Theorem 4.2. In particular, we
construct a functional that we minimize over (ρ, ϕ, ζ) in order to find the exact parameters
(ρt, ϕt, ζt). For r ∈ (−k0, k0) and ϕ ∈ [0, π), we set

gϕ(r) := ∂tνt(r cos(ϕ), r sin(ϕ)),

pϕ(r) :=
(
k0 −

√
k2

0 − r2
)〈

∇νt(r cos(ϕ), r sin(ϕ)),
(

− sin(ϕ)
cos(ϕ)

)〉
,

qϕ(r) := r
〈
∇νt(r cos(ϕ), r sin(ϕ)),

(
− sin(ϕ)
cos(ϕ)

)〉
.

(6.2)

Note that these functions are indeed continuous and they are obtained by differentiating the
scaled squared energy νt. Then relation (4.6) of the angular velocity can be written as

gϕt(r) = ρt pϕt(r) + ζt qϕt(r), r ∈ (−k0, k0). (6.3)

As in the direct method, we use a least squares approach to solve (6.3) in order to recover the
quantities ρt, ϕt and ζt. We want to minimize the functional

J (ρ, ϕ, ζ) := ∥gϕ − ρ pϕ − ζ qϕ∥2
L2(−k0,k0) , ρ, ζ ∈ R, ϕ ∈ [0, π),

which vanishes according to (6.3) for (ρ, ϕ, ζ) = (ρt, ϕt, ζt), so that the desired angular velocity
ωt is indeed a minimizer of Jt.

We minimize J by a brute-force method. For every ϕ ∈ [0, π) on a fixed grid, we compute the
minimizer of the functional Jϕ : R2 → R, Jϕ(ρ, ζ) := J (ρ, ϕ, ζ), which we can explicitly get from
the optimality condition

0 = ∇Jϕ(ρ, ζ) =
(

∂
∂ρJϕ(ρ, ζ)
∂
∂ζJϕ(ρ, ζ)

)
= 2

(
ρ ⟨pϕ, pϕ⟩ − ⟨gϕ, pϕ⟩ + ζ ⟨pϕ, qϕ⟩
ζ ⟨qϕ, qϕ⟩ − ⟨gϕ, qϕ⟩ + ρ ⟨pϕ, qϕ⟩

)
,
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where ⟨·, ·⟩ denotes the inner product on L2((−k0, k0) → R) here. Provided that the functions
pϕ and qϕ are linearly independent in L2((−k0, k0) → R), so that by Cauchy-Schwarz’ inequality
∥pϕ∥L2 ∥qϕ∥L2 ̸= |⟨pϕ, qϕ⟩|, the above system has a unique solution. The unique minimizer
(ρ̂(ϕ), ζ̂(ϕ)) is then given by(

ρ̂(ϕ)
ζ̂(ϕ)

)
=
(

⟨pϕ, pϕ⟩ ⟨pϕ, qϕ⟩
⟨pϕ, qϕ⟩ ⟨qϕ, qϕ⟩

)−1(
⟨gϕ, pϕ⟩
⟨gϕ, qϕ⟩

)
. (6.4)

For every ϕ ∈ [0, π) on the grid, we thus first calculate the value

j(ϕ) := min
ρ,ζ∈R

J (ρ, ϕ, ζ) = J (ρ̂(ϕ), ϕ, ζ̂(ϕ)), (6.5)

then we take as approximation of the angle ϕt in the angular velocity ωt the minimizer ϕ̂ ∈ [0, π)
of j(ϕ) on this grid, and pick ρ̂(ϕ̂) and ζ̂(ϕ̂) as approximations for ρt and ζt. The reconstruction
is summarized in Algorithm 2.

Algorithm 2: Reconstruction of the angular velocity ωt with the infinitesimal method
Input: Scaled squared energy νt(rn cosϕℓ, rn sinϕℓ) from (3.1) on a polar grid rn ∈ [0, k0),

n = 1, . . . , N , and ϕℓ ∈ [0, π), ℓ = 1, . . . , L.
for ℓ = 1, . . . , L do

Compute the functions gϕℓ
(rn), pϕℓ

(rn), and qϕℓ
(rn), n = 1, . . . , N by (6.2);

Compute ρ̂(ϕℓ) and ζ̂(ϕℓ) by (6.4);
Compute j(ϕℓ) := ∑N

n=1

∣∣∣gϕℓ
(rn) − ρ̂(ϕ̂ℓ) pϕℓ

(rn) − ζ̂(ϕ̂ℓ) qϕℓ
(rn)

∣∣∣2
end
Set ϕ̂ as minimizer of j(ϕℓ) over ℓ = 1, . . . , L;
Output: Angular velocity ωt ≈

(
ρ̂(ϕ̂) cos ϕ̂, ρ̂(ϕ̂) sin ϕ̂, ζ̂(ϕ̂)

)
.

Remark 6.1 The minimizer of J might not be unique in general, depending on the symmetry
of the scattering potential f . In the described method, there are two steps of possible non-
uniqueness: Firstly, the functions pϕ and qϕ might be linearly dependent, then the minimizer of
Jϕ is not unique. Secondly, the subsequent minimization over ϕ ∈ [0, π) might lead to more than
one minimum point. However, in our numerical tests below with non-symmetric functions f , we
always computed approximately the correct minima.

Remark 6.2 If the object rotates around the origin without any further translation, i.e., dt = 0
for all t, then the function νt in Algorithms 1 and 2 for the common circle and infinitesimal
common circle methods can be replaced by the complex-valued function µt from (5.2), where
then the exponent in the phase factor vanishes.

Rotation matrix We compute rotation matrices Rt given angular velocities ωt for all t ∈ (0, T ).
According to Theorem 4.3, we can obtain Rt from the angular velocity ωt with the corresponding
coefficient matrix Wt by solving the initial value problem (4.7) which has a unique solution
Rt ∈ SO(3) by [11, Section IV.4]. Numerically, we solve (4.7) with the forward Euler method
on R3×3 followed by a so-called retraction PRt , see [1], which maps the tangential vectors from
the tangent space {RtS : S ∈ R3×3 skew-symmetric} at Rt ∈ SO(3) to SO(3), in each iteration
step. More precisely, using discrete time steps tj := j/n of resolution n ∈ N, we compute for
j = 0, . . . , ⌊Tn⌋, the reconstructed rotation matrix Rj by

R0 := I,

Rj+1 := PRj ((tj+1 − tj) RjWtj ).
(6.6)
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Since the manifold SO(3) is smooth and if we further assume the slightly higher regularity
R ∈ C2([0, T ] → SO(3)), it is known that this method converges with the same order as the
classical Euler method, see [11, Section IV.4]. The reconstruction is summarized in Algorithm 3.

Several retractions, that are computations of PRj , are possible in (6.6), see [1, Example 1.4.2],
and we state two popular ones in the following. If a large number of computations is necessary,
e.g., when training neural networks, the chosen method influences the computational time
substantially, see [12].

(i) Polar decomposition: Starting with the singular value decomposition A = UΣV ⊤ of a
matrix A ∈ R3×3 with diagonal matrix Σ and orthogonal matrices U and V , its polar
decomposition is given by A = Polar(A)Σ̃, where Polar(A) := UV ⊤ and Σ̃ := V ΣV ⊤. If
detA > 0, then Polar(A) ∈ SO(3). It is well-known, see, e.g., [26], that Polar(A) is the
orthogonal projection of A onto SO(3) with respect to the Frobenius norm ∥ · ∥F , i.e.,
Polar(A) = argminQ∈SO(3) ∥A−Q∥F . Hence a retraction is given by

PRj (W̃ ) = Polar(Rj + W̃ ). (6.7)

(ii) Cayley transform: Based on the Cayley transform, a retraction is given for a skew-symmetric
matrix W̃ ∈ R3×3 by

PRj (W̃ ) = Rj Cay(W̃ ), where Cay(W̃ ) := (I − 1
2W̃ )−1 (I + 1

2W̃ ). (6.8)

Algorithm 3: Reconstruction of the rotation matrices Rt with the infinitesimal method
Input: Angular velocity ωtj on a grid tj = j/n for j = 1, . . . , ⌊Tn⌋.
Set R0 := I;
for j = 0, . . . , ⌊Tn⌋ do

Compute Wtj by (4.2);
Compute Rj+1 := PRj ((tj+1 − tj) RjWtj ), where PRj is either (6.7) or (6.8);

end
Output: Rotation Rtj ≈ Rj .

6.2 Reconstruction of the translations

The reconstruction of the translations dt is based on Theorem 5.3. We assume that the rotations
Rt are known from the section above. We numerically solve the nonlinear equations (5.3) and
(5.4) for some s, t ∈ [0, T ] with the following approach.

The left-hand side of (5.3) is continuous with respect to β, and the term σs,t(β) in its exponent
vanishes for β = 0. We couple the logarithm of (5.3) with a phase unwrapping [14], which selects
the correct branch of the complex logarithm by imposing the continuity of the desired function.
Note that the branches of the logarithm differ by adding 2πi. We obtain the linear system

⟨Rtdt −Rsds,σs,t(β)⟩ = unwrap
(

1
i log

(
µs(γs,t(β))
µt(γt,s(−β))

))
, β ∈ J, (6.9)

where unwrap denotes a phase unwrapping that vanishes at β = 0 and J ⊂ Js,t is an interval
around 0 on which µs ◦ γs,t is nowhere zero. Discretizing the interval J , we see that (6.9) is a
linear system of equations in dt;s. Analogously, we obtain from (5.4) the equation

〈
Rtdt −Rsds,σ

∗
s,t(β)

〉
= unwrap

(
1
i log

(
µs(γ∗

s,t(β))
µt(γ∗

t,s(β))

))
, β ∈ J. (6.10)

18



If s = 0, we have d0 = 0 so that (6.9) and (6.10) contain as unknown only dt; then we reconstruct
dt as minimum norm solution fulfilling both (6.9) and (6.10). The procedure is summarized in
Algorithm 4. Note that Lemma 5.1 guarantees a unique solution of the continuous problem.
In order to improve the reconstruction for inexact data, we can also consider (6.9) and (6.10)
for many pairs of s and t resulting in a large system of equation and solve for dt for all t
simultaneously, again incorporating d0 = 0.

Algorithm 4: Reconstruction of the translation dt
Input: Scaled squared energy µt from (5.1) and rotations Rt.
Set d0 := 0;
for j = 0, . . . , ⌊Tn⌋ do

Compute dtj as the minimum norm least squares solution of both (6.9) and (6.10) with
s = 0;

end
Output: Translations dtj .

7 Numerical Simulations
We perform numerical tests of the reconstruction algorithms from Section 6. We compare the
approaches of Sections 6.1.1 and 6.1.2 for the case that the motion depends smoothly on time.
We consider two three-dimensional test functions for the scattering potential f , namely a cell
phantom in Figure 6a, which consists of different convex and concave shapes with constant
function values, and the Shepp–Logan phantom in Figure 6b. Both are evaluated on a uniform
N×N×N grid with N = 160 and they are not rotationally symmetric. Otherwise, any symmetry
would cause the motion detection to have multiple solutions.
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(a) Cell phantom
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(b) Shepp–Logan phantom

Figure 6: Slice plots the 3D phantoms f at x3 = 0.

The data νt is computed “in silico” via a numerical approximation of the Fourier transform
F [f ], where f is discretized on a finer grid of (3N)3 ≈ 1.1 · 108 points. This approximation
is done with the nonuniform fast Fourier transform (NFFT) algorithm [33], the same way as
in [21]. We evaluate νt on a polar grid (r cos(ϕ), r sin(ϕ))⊤ on B2

k0
consisting of 2N points in

r ∈ (−k0, k0) and 2N points of ϕ ∈ [0, π). We set the wave number k0 = 2π, which corresponds
to a wavelength of one of the incident wave. Furthermore, we have 4N = 640 equispaced samples
of the time t ∈ [0, 2π). The high number of grid points yields in a good numerical approximation
of the time-derivative. In total, we sample ν on about 65 million data points. We first consider
the case that the object is only rotated, but not translated, then we utilize the complex-valued
µt to reconstruct the rotation, see Remark 6.2.
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Infinitesimal method Let S2 := {x ∈ R2 : ∥x∥ = 1} denote the two-dimensional sphere. We
first consider a constant rotation axis n ∈ S2 and the rotation angle t ∈ [0, 2π], that is, R(t) =
exp(tN) with N ∈ R3×3 defined by Nx = n × x for all x ∈ R3, since we then have, according to
Rodrigues’ rotation formula, R(t)x = ⟨n,x⟩ n + sin(t)n × x + cos(t)(n × x) × n for all x ∈ R3.
The angular velocity is in this case therefore the constant function ωt = n. In Figure 7, we show
the misfit functional j from (6.5) for the rotation axis n = (0.96 cos(π/4), 0.96 sin(π/4), 0.28)⊤

at the time t = π/4. One can clearly spot the expected minimum of j at ϕ̂ = π/4. Furthermore,
we show in Figure 8 the error of the angular velocity reconstructed with Algorithm 2 for all time
steps t corresponding to a full turn of the object. We note that the radius ρt has a higher error
than the other components.
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Figure 7: Plot of the function j for time step t = π/4. Left: cell phantom, right: Shepp–Logan.
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Figure 8: Absolute error of the components (4.3) of the angular velocity ωt and the minimum of
the functional jt, depending on t. The reconstructed value for ϕt takes only values on the grid,
and in this case it is reconstructed exactly; note that the true value is also on the grid. Left: cell
phantom, right: Shepp–Logan phantom.

Inserting the reconstructed angular velocity, we apply Algorithm 3 to obtain the rotation matrices.
The reconstructions are denoted as RPol

t with the polar decomposition (6.7), and RCay
t with the

Cayley transform (6.8) as retraction. The resulting error, measured in the Frobenius norm, is
shown in Figure 9, where we see that both retractions perform almost equally.

Remark 7.1 (Sampling) Here, we assume that νt is given on a polar grid in order to easily
compute the derivatives in (6.2), which we approximate numerically by central differences on
the polar grid. However, the numerical reconstruction of f for known rotations seems to be
a little worse than with a uniform, rectangular grid for νt as considered in [21]. However, the
actual experiment takes measurements of the scattered wave ut. Then νt is related to ut via a 2D
Fourier transform in (3.1). It seems natural that the images of ut are captured on a uniform grid.
A canonical discretization of (3.1) is the fast Fourier transform, which gives an approximation of
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νt on a uniform grid, cf. [2]. Nevertheless, the nonuniform fast Fourier transform [29, Section 7]
can be used to evaluate νt accurately on any set such as a polar grid.

Combination of the infinitesimal with the direct common circle method The error of
the reconstruction in Figure 9 based on the infinitesimal method grows with the time t. This
behavior is quite expected since we make a small error in each time step and the errors accumulate.
In order to get a better reconstruction, we use the direct common circle method in Algorithm 1.
We minimize the functional Es,t, given in (6.1), over SO(3) iteratively with the Nelder–Mead
downhill simplex method [24] implemented in Matlab’s fminsearch routine, which does not
require derivatives. As starting solution, where we insert the Euler angles of RCay

t reconstructed
with the infinitesimal method as above. The evaluation of νt, which is sampled on a polar grid,
at the curves γφ,θ utilizes cubic spline interpolation. The error of the reconstruction with this
combined approach is shown in Figure 9. We see that the reconstruction greatly benefits from
the combined approach.

Furthermore, we have noticed that taking a random starting solution for the optimization of (6.1)
often yields very bad results, since Es,t might have multiple local minima. A possible approach
would consist in evaluating Es,t on a grid in R3 and taking the minimum or by using multiple
random starting solutions. However, this seems unnecessary, since we can rely on the good
starting solution obtained with the infinitesimal method.
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Figure 9: Relative error of the reconstructed rotation matrices RPol
t and RCay

t using Euler’s
method (6.6) with the polar decomposition (6.7) or the Cayley transform (6.8), respectively.
Furthermore, RCC

t refers to the rotation matrix reconstructed with the minimization of (6.1)
to find the common circles, where the starting solution of the optimization was in each step
computed with the infinitesimal method and the Cayley transform as above. Left: cell phantom,
right: Shepp–Logan phantom.

Moving rotation axis In our next simulation, we consider the time-dependent rotation axis
n(t) = (

√
1 − a2 cos(b sin(t/2)),

√
1 − a2 sin(b sin(t/2)), a)⊤ ∈ S2 for a = 0.28 and b = 0.5. The

obtained error is shown in Figure 10. Overall, the results are similar to the ones for the constant
rotation axis. However, there is a larger error around t ≈ 0, which might be explained by the fact
that for a small rotation the respective hemispheres and thus also the data νt and ν0 are very
close together, which makes detecting the common circles harder. This could be circumvented by
applying the common circles method to rotations that are farther apart. A similar observation
was made that the common lines in context of the ray transform also become harder to detect in
case of very small rotations where the infinitesimal method suits better, see [8].
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Figure 10: Relative error of the rotation matrix Rt, reconstructed using the same setup and
methods as in Figure 9, but with a moving rotation axis.

Reconstruction of the translation Now, we consider the case that the object also moves
according to the translation dt = 4(sin t, sin t, sin t)⊤, t ∈ [0, 2π], and the rotation is the same as
in the previous example with the moving axis. We first reconstruct the rotations with the same
methods as above. Afterwards, we recover the translations dt by Algorithm 4. The reconstruction
error is shown in Figure 11, where we see that the translation is reconstructed quite reliably. The
error of the rotation is larger than in the case without translation, but it is still on an acceptable
level. This is because we could only use the real-valued νt for reconstructing the rotations as the
translations do not vanish, cf. Remark 6.2. Especially for large translations, we have noted in
the simulations that the unwrapping in (6.9) does not always yield good results because of the
inexactness of the data. This could be mitigated by combining it with a nonlinear optimization
directly applied to (5.3) and (5.4).
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Figure 11: Error of the reconstructed rotation matrix and reconstructed translation dt, for the
case of a non-zero translation. Note that ∥dt∥ varies between 0 and approximately 6.9, so it does
not make sense to compute relative errors. Left: cell phantom, Right: Shepp–Logan phantom.

Finally, we show in Figure 12 the reconstructed images of the scattering potential f , where
we have first computed the rotations and translations with the above combined common circle
method for the moving rotation axis. In the second part, i.e., the image reconstruction with
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known motion, we use the nonuniform Fourier reconstruction technique from [21]. For the image
reconstruction, we evaluate µt on a uniform grid instead of the polar grid used for the common
circle method, since the reconstruction of the image f for a polar grid shows an inferior quality.
This observation is consistent with numerical evidence in [10], which showed that an approximate
inversion of discrete Fourier transforms on a two-dimensional polar grid often shows large errors
even for a very large number of sampling points.
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(a) Cell phantom (PSNR 32.21, SSIM 0.754)
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Figure 12: Slice plots of the reconstructed scattering potential f , where the rotation and
translation was estimated with the common circle method as in Figure 11. The image quality is
assessed via the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM).

Computational time The numerical simulations were performed with Matlab on a standard
PC with an 8-core Intel i7-10700 processor and 32 GB of memory. We utilized the NFFT software
package [19, 18] for the Fourier transforms. The reconstruction of the motion parameters for all
640 time steps as in Figure 11 took about 40 seconds. The image reconstruction in Figure 12
took about 90 seconds.

8 Conclusions
In this paper, we have considered the reconstruction of the motion of an object in diffraction
tomography. For the reconstruction of the rotation, we have presented a common circle method
and its infinitesimal version. While the former method usually produced more accurate results,
it benefits from using a starting solution with the computationally faster infinitesimal approach.
Furthermore, we have shown that also the translation of the object can be uniquely recovered
from the diffraction data. For this, we have required that the scattering potential is real-valued.
We note that, in contrast to projection images corresponding to the ray transform, also the
position and orientation of the object in direction of the incident wave can be detected here.

Future research will focus on the real-world application related to optical diffraction tomography
with acoustical tweezers. Furthermore, we intend to incorporate phase retrieval methods for the
motion detection since often only the intensities of the field usca + uinc can be measured.
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A Proofs of Section 3

Proof (of Lemma 3.1): By (3.5), a point x ∈ R3 is in the intersection Hs ∩ Ht if and only if it
fulfills the equations ∥∥∥x + k0Rse

3
∥∥∥2

= k2
0 and

∥∥∥x + k0Rte
3
∥∥∥2

= k2
0 (A.1)

and the two inequalities

⟨x, Rse3⟩ > −k0 and ⟨x, Rte3⟩ > −k0. (A.2)

Taking their sum and their difference, the two equations (A.1) are seen to be equivalent to∥∥∥∥x + k0
2 (Rse3 +Rte

3)
∥∥∥∥2

= k2
0
4
∥∥∥Rse3 +Rte

3
∥∥∥2

and ⟨x, Rse3 −Rte
3⟩ = 0,

meaning that x is on a circle with radius as,t around the point −as,tv1
s,t in the subspace Vs,t

spanned by the vectors v1
s,t and v2

s,t, so that we can write

x = as,t(cos(β) − 1)v1
s,t + as,t sin(β)v2

s,t for some β ∈ (−π, π].

For such a point x, the two inequalities (A.2) are equivalent and reduce to the condition

k0
2 (cos(β) − 1)(1 + ⟨Rse3, Rte

3⟩) > −k0, that is, cos(β) > ⟨Rse3, Rte
3⟩ − 1

⟨Rse3, Rte3⟩ + 1

for the variable β. □
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Proof (of Lemma 3.2): Since Rsh is a parameterization of Hs and h restricted to its first two
components is just the identity, we can solve the relation Rsh(k) = x for every x ∈ Hs by
orthogonally projecting R⊤

s x onto its first two components

k = P (R⊤
s x).

Therefore we find directly from the representation (3.6) of Hs ∩ Ht that

γs,t(β) = as,t(cos(β) − 1)P (R⊤
s v1

s,t) + as,t sin(β)P (R⊤
s v2

s,t). (A.3)

Further we get for the projections of the basis vectors

P (R⊤
s v1

s,t) = P (e3 +R⊤
s Rte

3)
∥Rse3 +Rte3∥

= ãs,t
as,t

w1
s,t and

P (R⊤
s v2

s,t) = P (e3 ×R⊤
s Rte

3)
∥Rse3 ×Rte3∥

= w2
s,t,

(A.4)

so that the equation (A.3) for γs,t becomes (3.9). □

Proof (of Proposition 3.3): We have that

R⊤
s Rte

3 = Q(3)(φ)Q(2)(θ)Q(3)(ψ)e3 = Q(3)(φ)Q(2)(θ)e3 =

cos(φ) sin(θ)
sin(φ) sin(θ)

cos(θ)

 .
Plugging this into γs,t from (3.9), we find for the lengths of the semi-axes

ãs,t = k0
2
∥∥∥P (R⊤

s Rte
3)
∥∥∥ = k0

2 sin(θ) and

as,t = k0
2
∥∥∥Rse3 +Rte

3
∥∥∥ = k0

2
∥∥∥e3 +R⊤

s Rte
3
∥∥∥ = k0

2

√
2 + 2 cos(θ) = k0 cos( θ2);

and for the directions of the semi-axes w1
s,t =

(
cos(φ)
sin(φ)

)
and w2

s,t =
(

− sin(φ)
cos(φ)

)
. □

Proof (of Proposition 3.4): The proof goes along the same lines as Lemma 3.1, Lemma 3.2, and
Proposition 3.3.

(i) By replacing Rte3 by −Rte3 in Lemma 3.1, we directly get the parameterization σ∗
s,t of

Hs ∩ (−Ht) in the form of (3.14).

(ii) Proceeding as in Lemma 3.2, we find the curve γ∗
s,t by

γ∗
s,t(β) = P (R⊤

s σ∗
s,t(β)) = a∗

s,t(cos(β) − 1)P (R⊤
s v3

s,t) − a∗
s,t sin(β)P (R⊤

s v2
s,t).

With
P (R⊤

s v3
s,t) = P (e3 −R⊤

s Rte
3)

∥Rse3 −Rte3∥
= −k0

2
P (R⊤

s Rte
3)

a∗
s,t

= − ãs,t
a∗
s,t

w1
s,t, (A.5)

this yields the equation (3.16) for γ∗
s,t.

(iii) Taking finally the expressions of ãs,t, w1
s,t, and w2

s,t in terms of the Euler angles of R⊤
s Rt

from the proof of Proposition 3.3, we obtain with

a∗
s,t := k0

2
∥∥∥e3 −R⊤

s Rte
3
∥∥∥ = k0

2

√
2 − 2 cos(θ) = k0 sin( θ2)

the identity in (3.17). □

27



Proof (of Proposition 3.5): (i) Since R⊤
s Rte

3 = e3, the rotation R⊤
s Rt has the rotation axis e3

and is therefore of the form R⊤
s Rt = Q(3)(α) for some α ∈ R/(2πZ). Then, we see from the

definition (2.5) of h that we have for all k ∈ B2
k0

R⊤
s Rth(k) = Q(3)(α)h(k) = h(Q(α)k) (A.6)

and therefore, according to (3.2),

νs(Q(α)k) = |F [f ](Rsh(Q(α)k))|2 = |F [f ](Rth(k))|2 = νt(k).

(ii) Since Q(2)(π)R⊤
s Rte

3 = −Q(2)(π)e3 = e3, the rotation Q(2)(π)R⊤
s Rt has the rotation axis e3

and we therefore have R⊤
s Rt = Q(2)(π)Q(3)(α) for some α ∈ R/(2πZ). Then, we see from the

definition (2.5) of h that we have for all k ∈ B2
k0

R⊤
s Rth(k) = Q(2)(π)Q(3)(α)h(k) = Q(2)(π)h(Q(α)k) = −h(SQ(α)k) (A.7)

and therefore, according to (3.2) and (3.13),

νs(SQ(α)k) = |F [f ](Rsh(SQ(α)k))|2 = |F [f ](−Rth(k))|2 = |F [f ](Rth(k))|2 = νt(k). □

Proof (of Theorem 3.6): According to Proposition 3.5, the fact that neither νs(Q(α)k) = νt(k)
nor νs(SQ(α)k) = νt(k) holds for all k ∈ B2

k0
for any choice of parameter α ∈ R/(2πZ) excludes

the cases where Rse3 = ±Rte3 and we can find the elliptic arcs γs,t and γt,s and the dual arcs
γ∗
s,t and γ∗

t,s as in Lemma 3.2 and Proposition 3.4.

We parameterize the matrix R⊤
s Rt in Euler angles (φ̃, θ̃, ψ̃) ∈ (R/(2πZ)) × [0, π] × (R/(2πZ)) as

in (3.11). Then, the representation of the transposed matrix R⊤
t Rs in Euler angles is given by

R⊤
t Rs = (R⊤

s Rt)⊤ = Q(3)(−ψ̃)Q(2)(−θ̃)Q(3)(−φ̃) = Q(3)(π − ψ̃)Q(2)(θ̃)Q(3)(π − φ̃), (A.8)

where we used the identity Q(2)(−θ̃) = Q(3)(π)Q(2)(θ̃)Q(3)(π) to shift the angles for R⊤
t Rs into

the chosen area of definition. By (3.12), we see that γφ̃,θ̃ = γs,t and γπ−ψ̃,θ̃ = γt,s, and by (3.17)
that γ∗,φ̃,θ̃ = γ∗

s,t and γ∗,π−ψ̃,θ̃ = γ∗
t,s. Since the curves γs,t and γt,s as well as γ∗

s,t and γ∗
t,s

fulfill by construction the equations (3.10) and (3.18), and γφ,θ, γπ−ψ,θ, γ∗,φ,θ, and γ∗,π−ψ,θ

are by assumption the only elliptic arcs of this form fulfilling (3.22) and (3.23), we have that
φ = φ̃, θ = θ̃, and ψ = ψ̃, which implies (3.24). We note that the two pairs of curves can in
general not be interchanged because in (3.22) the curve γφ,θ(·) is traversed conter-clockwise
while γπ−ψ,θ(−·) is traversed clockwise, whereas in (3.23) both γ∗,φ,θ and γ∗,π−ψ,θ are traversed
counter-clockwise. □

B Proof of Lemma 4.1

Proof: We define the continuously differentiable function H : [0, T ] × B2
k0

→ R3 by H(t,k) :=
Rth(k) with h being the parameterization from (2.5). By the definition (4.1) of the angular
velocity ωt, we have R′

tk = Rt(ωt × k). Then for the partial derivative of H with respect to the
first argument t at the point k = rϕt reads

∂tH(t, rϕt) = R′
t h(rϕt) = Rt

(
ωt × h(rϕt)

)
= Rt

 ωt,2h3(rϕt) − rωt,3ϕt,2
−ωt,1h3(rϕt) + rωt,3ϕt,1
r(ωt,1ϕt,2 − ωt,2ϕt,1)

 .
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Inserting the expression (4.3) of ωt in cylindrical coordinates and using that, according to (2.5),
h3(rϕt) =

√
k2

0 − r2 − k0, this becomes

∂tH(t, rϕt) =
(
ρt

(
k0 −

√
k2

0 − r2
)

+ rζt

)
Rt

−ϕt,2
ϕt,1
0

 . (B.1)

Denoting by DH the Jacobi matrix of H with respect to k, we find with the chain rule

DH(t, rϕt)
(

−ϕt,2
ϕt,1

)
= Rt


1 0
0 1

−rϕt,1√
k2

0−r2
−rϕt,2√
k2

0−r2


(

−ϕt,2
ϕt,1

)
= Rt

−ϕt,2
ϕt,1
0

 . (B.2)

Comparing (B.1) and (B.2), we have that

∂tH(t, rϕt) =
(
ρt

(
k0 −

√
k2

0 − r2
)

+ rζt

)
DH(t, rϕt)

(
−ϕt,2
ϕt,1

)
. (B.3)

Recalling the definition νt(k) = |F [f ](H(t,k))|2, we have again by the chain rule

∂tνt(k) = 2 Re (F [f ](H(t,k))) ⟨∇F [f ](H(t,k)), ∂tH(t,k)⟩ and〈
∇νt(k),

(
−ϕt,2
ϕt,1

)〉
= 2 Re (F [f ](H(t,k)))

〈
∇F [f ](H(t,k)), DH(t,k)

(
−ϕt,2
ϕt,1

)〉
,

where ∇F [f ](y) denotes the gradient of F [f ](y) with respect to y ∈ R3. Inserting k = rΦt and
using (B.3) yields the assertion. □

C Proofs of Section 5

Proof (of Lemma 5.1): (i) Since the elliptic arcs γs,t and γt,s have by construction the sym-
metry (3.10), we obtain for all β ∈ Js,t that

µs(γs,t(β)) = F [f ]
(
Rsh(γs,t(β))

)
e−i⟨Rsds,Rsh(γs,t(β))⟩

= F [f ]
(
Rth(γt,s(−β))

)
e−i⟨Rsds,Rth(γt,s(−β))⟩

= µt(γt,s(−β)) ei⟨Rtdt−Rsds,Rth(γt,s(−β))⟩,

which implies (5.3) provided that µs(γs,t(β)) (or, equivalently, µt(γt,s(−β))) does not
vanish.

(ii) In the same way, the elliptic arcs γ∗
s,t and γ∗

t,s have the symmetry (3.18). With the
symmetry property (3.13) of F [f ], we get for all β ∈ J∗

s,t that

µs(γ∗
s,t(β)) = F [f ]

(
Rsh(γ∗

s,t(β))
)

e−i⟨Rsds,Rsh(γ∗
s,t(β))⟩

= F [f ]
(
−Rth(γ∗

t,s(β))
)

ei⟨Rsds,Rth(γ∗
t,s(β))⟩

= µt(γ∗
t,s(β)) ei⟨Rsds−Rtdt,Rth(γ∗

t,s(β))⟩,

which implies (5.4) provided that µs(γ∗
s,t(β)) (or, equivalently, µt(γ∗

t,s(β))) does not vanish.
□

29



Proof (of Lemma 5.2): (i) If Rte3 = Rse
3, we get for all k ∈ B2

k0
, using that Rsh(k) =

Rth(Q(−α)k) according to (A.6),

µt(Q(−α)k) = F [f ](Rth(Q(−α)k))e−i⟨Rtdt,Rth(Q(−α)k)⟩

= F [f ](Rsh(k))e−i⟨Rtdt,Rsh(k)⟩ = µs(k)e−i⟨Rtdt−Rsds,Rsh(k)⟩.

(ii) Similarly, we get for all k ∈ B2
k0

in the case Rte3 = −Rse3 with the corresponding relation
−Rsh(k) = Rth(Q(−α)Sk) from (A.7) that

µt(Q(−α)Sk) = F [f ](Rth(Q(−α)Sk))e−i⟨Rtdt,Rth(Q(−α)Sk)⟩

= F [f ](−Rsh(k))ei⟨Rtdt,Rsh(k)⟩ = µs(k)ei⟨Rtdt−Rsds,Rsh(k)⟩. □

Proof (of Theorem 5.3): (i) Since we know from our assumption of the scattering potential f
being real-valued that

|µs(0)| = |F [f ](0)| = (2π)− 3
2

∫
R3
f(x) dx > 0,

the equations (5.3) and (5.4) hold for all β in some open interval J around 0. By taking
the logarithm of these equations, we find with the circular arcs σs,t and σ∗

s,t, defined in
(3.6) and (3.14), that

⟨Rtdt −Rsds,σs,t(β)⟩ = M(β) and (C.1)〈
Rtdt −Rsds,σ

∗
s,t(β)

〉
= M∗(β) (C.2)

for all β ∈ J , where the functions M : J → C and M∗ : J → C, given by

M(β) := −i
∫ β

0

F ′(β̃)
F (β̃)

dβ̃, F (β) :=
µs(γs,t(β))
µt(γt,s(−β)) , and

M∗(β) := −i
∫ β

0

(F ∗)′(β̃)
F ∗(β̃)

dβ̃, F ∗(β) :=
µs(γ∗

s,t(β))
µt(γ∗

t,s(β))
,

are explicitly known. Here, we used that the left-hand sides of (C.1) and (C.2) vanish for
β = 0 to choose the correct branch of the logarithm of the continuously differentiable and
nowhere vanishing functions F and F ∗.

Inserting the expressions (3.6) and (3.14) for the circular arcs σs,t and σ∗
s,t, respectively,

we find, using the notation from Lemma 3.1 and Proposition 3.4, that we have for all β ∈ J
the equation system

as,t(cos(β) − 1)
〈
R⊤
s Rtdt − ds, R

⊤
s v1

s,t

〉
+ as,t sin(β)

〈
R⊤
s Rtdt − ds, R

⊤
s v2

s,t

〉
= M(β),

a∗
s,t(cos(β) − 1)

〈
R⊤
s Rtdt − ds, R

⊤
s v3

s,t

〉
+ a∗

s,t sin(β)
〈
R⊤
s Rtdt − ds, R

⊤
s v2

s,t

〉
= M∗(β).

Since the functions β 7→ cos(β) − 1 and β 7→ sin(β) are linearly independent on every
interval with positive length, this implies that the coefficients〈

R⊤
s Rtdt − ds, R

⊤
s vjs,t

〉
, j ∈ {1, 2, 3},

are uniquely determined by this (recalling that we explicitly know the parameters as,t ̸= 0
and a∗

s,t ̸= 0). Since (R⊤
s vjs,t)3

j=1 is an orthonormal basis of R3 (which we also know
explicitly), this uniquely determines the vector R⊤

s Rtdt − ds ∈ R3.
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(ii) Since µs(0) ̸= 0, we find an open disk A ⊂ B2
k0

that contains 0 such that we have µs(k) ̸= 0
for all k ∈ A. If R⊤

s Rte
3 = e3, we have that R⊤

s Rt = Q(3)(α) for some α ∈ R/(2πZ) and
(5.5) implies〈

R⊤
s Rtdt − ds,h(k)

〉
= −i

∫
C0,k

∇G(k̃)
G(k̃)

dk̃ with G(k) := µs(k)
µt(Q(−α)k)

for all k ∈ A, where C0,k denotes an arbitrary curve from 0 to k in A. Since the vectors
h(k) cover for k ∈ A an open subset of the hemisphere H0, they span all of R3, and thus
this equation uniquely determines the vector R⊤

s Rtdt − ds ∈ R3.

Similarly, we have for R⊤
s Rte

3 = −e3 that R⊤
s Rt = Q(2)(π)Q(3)(α) for some α ∈ R/(2πZ)

and according to (5.6)〈
R⊤
s Rtdt − ds,h(k)

〉
= −i

∫
C0,k

∇G∗(k̃)
G∗(k̃)

dk̃ with G∗(k) := µs(k)
µt(Q(−α)Sk)

for all k ∈ A, which again uniquely determines R⊤
s Rtdt − ds. □

D Parameterization via Stereographic Projection
Based on the stereographic projection, we describe in this section a transformation that turns
the elliptic arcs γ, see (3.9), into straight lines in R2. Applying this transformation to the data
νt, see (3.1), then one needs to detect common lines in the two-dimensional plane in order to
reconstruct the rotation parameters. There are existing algorithms for detecting common lines in
the context of motion detection the ray transform, cf. [35]. However, these lines all contain the
origin, which is not the case for the diffraction tomography we consider here where we need an
additional parameter to describe the lines.

D.1 Direct common circle method

We consider the stereographic projection πt : ∂B3
k0

(−k0Rte
3) \ {0} → Pt of the hemisphere

Ht \ {0} of the sphere ∂B3
k0

(−k0Rte
3) from the origin onto the equatorial plane

Pt := {x ∈ R3 : ⟨x, Rte3⟩ = −k0}.

This maps every circle ∂B3
k0

(−k0Rse
3) ∩ ∂B3

k0
(−k0Rte

3) (as it passes through the origin, which
could be defined to be mapped to infinity) to a straight line in Pt.

The stereographic projection πt of a point x ∈ ∂B3
k0

(−k0Rte
3) \ {0} is hereby defined as the

intersection of the line through 0 and x with the plane Pt. In particular, we have for t = 0 where
the rotation is R0 = I that π0 : ∂B3

k0
(−k0e3) \ {0} → P0

π0(x) =
(

−k0
x1
x3
,−k0

x2
x3
,−k0

)⊤
= −k0

x

x3
. (D.1)

The stereographic projection πt for general t ∈ [0, T ] is then obtained by rotating a point
x ∈ ∂B3

k0
(−k0Rte

3) first to ∂B3
k0

(−k0e3) and rotating the projected point in P0 back to Pt, i.e.,

πt(x) := Rtπ0(R⊤
t x).

The following lemma shows that we can write all the projections πt as restrictions of the function
π : R3 \ {0} → R3 \ {0} defined by

π(x) := 2k2
0

x

∥x∥2 ,

whose inverse is given by π−1 = π.
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Lemma D.1 For every t ∈ [0, T ], we have

πt(x) = π(x) for all x ∈ ∂B3
k0(−k0Rte

3) \ {0}.

Proof: Let x ∈ ∂B3
k0

(−k0Rte
3) \ {0}. Then we obtain

0 =
∥∥∥x + k0Rte

3
∥∥∥2

− k2
0 = ∥x∥2 + 2k0⟨R⊤

t x, e3⟩

and therefore

πt(x) = Rtπ0(R⊤
t x) = −k0Rt

R⊤
t x

⟨R⊤
t x, e3⟩

= 2k2
0

x

∥x∥2 = π(x).
□

Next, we consider for arbitrary t ∈ [0, T ] the function τ : B2
k0

\ {0} → R2 \ B2
k0

defined by

τ(k) := P (R⊤
t πt(Rth(k))) = P (π0(h(k))) = k0

k0 − κ(k)k, (D.2)

which describes the change from the parameterization via Rth to the one via stereographic
projection and is conveniently independent of the choice of t ∈ [0, T ]. It maps by definition the
data point k by the parameterization Rth onto the hemisphere Ht, stereographically projects it
to Pt (with image Pt \ B3

k0
(−k0Rte3)), and extracts the two components in the plane by rotating

it to P0 and orthogonally projecting it with P to the first two components. Therefore it maps
every elliptic arc γt,s to a straight line. The codomain of τ is chosen so that τ is bijective, and
its inverse is given by

τ−1(y) = 2k2
0

k2
0 + ∥y∥2 y, y ∈ R2 \ B2

k0
.

Lemma D.2 Let s, t ∈ [0, T ] such that Rse3 ≠ ±Rte3 and (φ, θ, ψ) ∈ (R/(2πZ)) × [0, π] ×
(R/(2πZ)) be the Euler angles of the rotation R⊤

s Rt as in (3.11).

(i) The elliptic arc γs,t defined in (3.9) fulfills

τ(γs,t(β)) = −k0 tan( θ2)
(

cos(φ)
sin(φ)

)
+ k0

cos( θ2)
cot(β2 )

(
− sin(φ)
cos(φ)

)
, β ∈ Js,t \ {0}. (D.3)

(ii) The dual elliptic arc γ∗
s,t given by (3.16) fulfills

τ(γ∗
s,t(β)) = k0 cot( θ2)

(
cos(φ)
sin(φ)

)
− k0

sin( θ2)
cot(β2 )

(
− sin(φ)
cos(φ)

)
, β ∈ J∗

s,t \ {0}. (D.4)

Proof: (i) We use (3.8) to write

τ(γs,t(β)) = P (π0(h(γs,t(β)))) = P (π0(R⊤
s σs,t(β))).

Plugging in the expression (3.6) for the circular arc σs,t and the definition (D.1) of the
function π0, we arrive at

τ(γs,t(β)) = k0
as,t(cos(β) − 1)P (R⊤

s v1
s,t) + as,t sin(β)P (R⊤

s v2
s,t)

k0
2 (1 − cos(β))(1 + ⟨Rse3, Rte3⟩)

.
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As in Lemma 3.2, where we already calculated the projections of the basis vectors v1
s,t

and v2
s,t in (A.4), we can rewrite this in the form

τ(γs,t(β)) = 2
ãs,t(cos(β) − 1)w1

s,t + as,t sin(β)w2
s,t

(1 − cos(β))(1 + ⟨Rse3, Rte3⟩) .

Using 1 + ⟨Rse3, Rte
3⟩ = 1

2
∥∥Rse3 +Rte

3∥∥2 = 2
k2

0
a2
s,t and the trigonometric identity

sin(β)
1−cos(β) = cot(β2 ), this becomes

τ(γs,t(β)) = −k2
0ãs,t
a2
s,t

w1
s,t + k2

0
as,t

cot(β2 )w2
s,t.

Inserting the expressions for the parameters in Euler angles as in Proposition 3.3, we obtain
(D.3).

(ii) In the same way, we find with the results and the notation of Proposition 3.4 that

τ(γ∗
s,t(β)) = P (π0(R⊤

s σ∗
s,t(β))) = −k0

a∗
s,t(cos(β) − 1)P (R⊤

s v3
s,t) − a∗

s,t sin(β)P (R⊤
s v2

s,t)
k0
2 (cos(β) − 1)(1 − ⟨Rse3, Rte3⟩)

.

Using (A.4) and (A.5) to express the projections of the basis vectors v2
s,t and v3

s,t, we get
with 1 − ⟨Rse3, Rte

3⟩ = 1
2
∥∥Rse3 −Rte

3∥∥2 = 2
k2

0
(a∗
s,t)2 that

τ(γ∗
s,t(β)) = k2

0
ãs,t

(a∗
s,t)2 w1

s,t − k2
0

a∗
s,t

cot(β2 )w2
s,t.

Inserting the expressions for the parameters in Euler angles as in Proposition 3.3 and
Proposition 3.4, this becomes (D.4). □

From the definitions of the intervals Js,t and J∗
s,t, the functions τ ◦ γs,t : Js,t \ {0} → R2 \ B2

k0

from (D.3) and τ ◦ γ∗
s,t : J∗

s,t \ {0} → R2 \ B2
k0

from (D.4) parameterize the parts of straight lines
in R2 which are outside the ball B2

k0
, see Figure 13.

τ ◦ γs,t

τ ◦ γ∗
s,t0

ν̃s

τ ◦ γ−
t,s

τ ◦ γ∗
t,s

0

ν̃t

0

1

−π π−βs,t βs,t

ν̃s ◦ τ ◦ γs,t ν̃t ◦ τ ◦ γ−
t,s

0

1

−π π

ν̃s ◦ τ ◦ γ∗
s,t ν̃t ◦ τ ◦ γ∗

t,s

Figure 13: Transformed scaled squared energies ν̃s and ν̃t, see (D.5), for the same situation as in
Figure 5 and the paths of the corresponding two straight lines τ ◦ γs,t and τ ◦ γ−

t,s (the minus
again indicating the reversed direction) and their dual straight lines τ ◦ γ∗

s,t and τ ◦ γ∗
t,s. The

values of ν̃s and ν̃t along the lines are plotted in the center of the figure.

Thus, looking for straight lines in the transformed scaled squared energy ν̃t : R2 \ B2
k0

→ [0,∞),
defined by

ν̃t := νt ◦ τ−1 for all t ∈ [0, T ], (D.5)
we can recover the Euler angles as in Theorem 3.6. This is summarized in the following theorem.
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Theorem D.3 Let s, t ∈ [0, T ] such that Rse3 ̸= ±Rte3 and assume that there uniquely exist
two pairs (Γℓ)2

ℓ=1 and (Γ∗
ℓ )2
ℓ=1 of straight lines of the form

Γℓ : R → R2, Γℓ(ξ) := −bw1
ℓ + ξw2

ℓ , and (D.6)

Γ∗
ℓ : R → R2, Γ∗

ℓ(ξ) := k2
0
b

w1
ℓ − ξw2

ℓ , ℓ ∈ {1, 2}, (D.7)

for some parameter b ∈ (0,∞) and two positively oriented, orthonormal bases (wj
1)2
j=1 and

(wj
2)2
j=1 of R2 such that we have for the transformed scaled squared energy ν̃t that

ν̃s(Γ1(ξ)) = ν̃t(Γ2(−ξ)) for all ξ ∈ R with ξ2 > k2
0 − b2,

ν̃s(Γ∗
1(ξ)) = ν̃t(Γ∗

2(ξ)) for all ξ ∈ R with ξ2 > k2
0 − k4

0b
−2.

Then the relative rotation is given by

R⊤
s Rt = Q(3)(arg(w1

1))Q(2)(2 arctan( b
k0

))Q(3)(π − arg(w1
2)). (D.8)

Proof: We parameterize R⊤
s Rt in Euler angles (φ, θ, ψ) ∈ (R/(2πZ)) × [0, π] × (R/(2πZ)) as

in (3.11) and get for the representation of R⊤
t Rs in Euler angles the formula (A.8). Then, we

consider the straight lines τ ◦ γs,t and τ ◦ γ∗
s,t, given by (D.3) and (D.4), where γs,t and γ∗

s,t

denote the elliptic arcs introduced in (3.9) and (3.16), and reparameterize them via the functions

Ξ: Js,t \ {0} → {ξ ∈ R : ξ2 > k2
0 − k2

0 tan2( θ2)}, Ξ(β) := k0

cos( θ2)
cot(β2 ), and

Ξ∗ : J∗
s,t \ {0} → {ξ ∈ R : ξ2 > k2

0 − k2
0 cot2( θ2)}, Ξ∗(β) := k0

sin( θ2)
cot(β2 ),

which are seen to be bijective by using that β ∈ Js,t is by definition (3.7) for β ∈ (−π, π]
equivalent to cos(β) > cos(θ)−1

cos(θ)+1 , which is equivalent to cot2(β2 ) = 1+cos(β)
1−cos(β) > cos(θ), and therefore

to
(Ξ(β))2 + k2

0 tan2( θ2) > k2
0

cos2( θ2)
(cos2( θ2) − sin2( θ2)) + k2

0 tan2( θ2) = k2
0.

Analogously, we find that β ∈ J∗
s,t is by definition (3.15) for β ∈ (−π, π] equivalent to cos(β) >

cos(θ)+1
cos(θ)−1 , which is equivalent to cot2(β2 ) = 1+cos(β)

1−cos(β) > − cos(θ), and therefore to

(Ξ∗(β))2 + k2
0 cot2( θ2) > k2

0
sin2( θ2)

(sin2( θ2) − cos2( θ2)) + k2
0 cot2( θ2) = k2

0.

Then, according to (D.3), the curves τ ◦ γs,t ◦ Ξ−1 and τ ◦ γt,s ◦ Ξ−1 are with

b = k0 tan( θ2), w1
1 = w1

s,t =
(

cos(φ)
sin(φ)

)
, and w1

2 = w1
t,s =

(
cos(π − ψ)
sin(π − ψ)

)
(D.9)

on the set X := {ξ ∈ R : ξ2 > k2
0 − b2} of the form (D.6); and according to (D.4), the dual curves

τ ◦ γ∗
s,t ◦ (Ξ∗)−1 and τ ◦ γ∗

t,s ◦ (Ξ∗)−1 are with this on the set X∗ := {ξ ∈ R : ξ2 > k2
0 − k4

0b
−2} of

the form (D.7). Moreover, these curves fulfill according to (3.10) and (3.18) the relations

ν̃s(τ(γs,t(Ξ−1(ξ)))) = νs(γs,t(Ξ−1(ξ)))
= νt(γt,s(−Ξ−1(ξ))) = ν̃t(τ(γt,s(Ξ−1(−ξ)))), ξ ∈ X,

ν̃s(τ(γ∗
s,t((Ξ∗)−1(ξ)))) = νs(γ∗

s,t((Ξ∗)−1(ξ)))
= νt(γ∗

t,s((Ξ∗)−1(ξ))) = ν̃t(τ(γ∗
t,s((Ξ∗)−1(ξ)))), ξ ∈ X∗.

The uniqueness of the pairs (Γℓ)2
ℓ=1 and (Γ∗

ℓ)2
ℓ=1 therefore implies Γ1 = τ ◦ γs,t ◦ Ξ−1, Γ2 =

τ ◦ γt,s ◦ Ξ−1, Γ∗
1 = τ ◦ γ∗

s,t ◦ (Ξ∗)−1, and Γ∗
2 = τ ◦ γ∗

t,s ◦ (Ξ∗)−1, so that we can read off the Euler
angles from the correspondencies (D.9), giving us the reconstruction (D.8). □
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D.2 Infinitesimal common circle method

We can also formulate the infinitesimal common circle method from Section 4 via common lines.
We show the following analogue of Lemma 4.1, where the coefficient of the spatial derivative
becomes affine.
Lemma D.4 Let the rotations R ∈ C1([0, T ] → SO(3)) be continuously differentiable and the
associated angular velocities ωt ∈ R3 be written in cylindrical coordinates (4.3). Then, the
transformed scaled squared energy ν̃t, defined in (D.5), satisfies for every r ∈ R \ [−k0, k0] and
t ∈ [0, T ] the relation

∂tν̃t(rϕt) = (k0ρt + rζt)
〈
∇ν̃t(rϕt),

(
−ϕt,2
ϕt,1

)〉
. (D.10)

Proof: The transformed data ν̃t is given by

ν̃t(y) = νt(τ−1(y)) =
∣∣∣F [f ](Rth(τ−1(y)))

∣∣∣2 .
Using now that we have by definition (D.1) of π0 and definition (D.2) of τ that(

τ(τ−1(y))
−k0

)
= π0(h(τ−1(y))) = R⊤

t πt(Rth(τ−1(y))),

we have with Lemma D.1 and π−1 = π the relation

ν̃t(y) =
∣∣∣F [f ](Rth(τ−1(y)))

∣∣∣2 = |F [f ](π((t,y)))|2 (D.11)

with the function K : [0, T ] × R2 \ B2
k0

→ R3 defined by K(t,y) := Rt
(

y
−k0

)
.

Since the partial derivative ∂tK of K with respect to t fulfills

∂tK(t, rϕt) = Rt
(
ωt ×

(
rϕt
−k0

))
= Rt

((
ρtϕt
ζt

)
×
(
rϕt
−k0

))
= (k0ρt + rζt)Rt

(−ϕt,2
ϕt,1

0

)
and the Jacobi matrix DK of K with respect to y satisfies

DK(t, rϕt)
(

−ϕt,2
ϕt,1

)
= Rt

( 1 0
0 1
0 0

)(
−ϕt,2
ϕt,1

)
= Rt

(−ϕt,2
ϕt,1

0

)
,

we have
∂tK(t, rϕt) = (k0ρt + rζt)DK(t, rϕt)

(
−ϕt,2
ϕt,1

)
,

which implies with (D.11) directly (D.10). □

We obtain the following analogue to Theorem 4.2 for reconstructing the angular velocity ωt,
from which we can determine the rotation matrices Rt by Theorem 4.3.
Theorem D.5 Let the rotations R ∈ C1([0, T ] → SO(3)) be continuously differentiable and
t ∈ [0, T ]. Let further ϕ ∈ S1

+ be a unique direction with the property that there exist parameters
ρ, ζ ∈ R with

∂tν̃t(rϕ) = (k0ρ+ rζ)
〈
∇ν̃t(rϕ),

(
−ϕ2
ϕ1

)〉
for all r ∈ R \ [−k0, k0]

for the transformed scaled squared energy ν̃t in (D.5). Provided that the set

Mt :=
{
r ∈ R \ [−k0, k0] :

〈
∇ν̃t(rϕ),

(
−ϕ2
ϕ1

)〉
̸= 0

}
contains at least two elements, then the angular velocity is given by ωt = (ρϕ, ζ)⊤.
Proof: From Lemma D.4, we find that the uniqueness implies that ϕt = ϕ and therefore also

k0ρ+ rζ = k0ρt + rζt for all r ∈ Mt.

Hence we have ρ = ρt and ζ = ζt if the equation is satisfied for two different values r. □
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