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Abstract

Stereo vision between images faces a range of challenges, including occlusions, motion, and camera
distortions, across applications in autonomous driving, robotics, and face analysis. Due to param-
eter sensitivity, further complications arise for stereo matching with sparse features, such as facial
landmarks. To overcome this ill-posedness and enable unsupervised sparse matching, we consider
line constraints of the camera geometry from an optimal transport (OT) viewpoint. Formulating
camera-projected points as (half)lines, we propose the use of the classical epipolar distance as well
as a 3D ray distance to quantify matching quality. Employing these distances as a cost function of
a (partial) OT problem, we arrive at efficiently solvable assignment problems. Moreover, we extend
our approach to unsupervised object matching by formulating it as a hierarchical OT problem. The
resulting algorithms allow for efficient feature and object matching, as demonstrated in our numer-
ical experiments. Here, we focus on applications in facial analysis, where we aim to match distinct
landmarking conventions.

Keywords: Optimal Transport, Hierarchical Optimal Transport, Stereo Matching, Stereo Vision

1 Introduction

Identification of features across views and infer-
ence of depth information via stereo matching
is a core technique in computer vision, allowing
for 3D reconstructions from multiple 2D views
[42]. It enables obstacle detection in robotics and
autonomous driving, surface defect detection in
industrial applications, and head reconstruction

in facial analysis [34, 42, 54, 58]. However, prac-
tical algorithms need to overcome a variety of
real-world challenges.

Even for single-modality camera systems, the
identification of view-invariant features is gener-
ally hindered by radiometrically distorted pixel
brightness, depth changes near object boundaries,
and partial occlusions. These issues become more
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pronounced for cross-modal systems like RGB-
thermal. In particular, traditional stereo match-
ing methods relying on the comparison of pixel
values [12, 16, 24] become inapplicable under
these conditions. Therefore, suitable cross-spectral
approaches are mostly based on pretrained neu-
ral networks [43, 32, 52, 71] and local feature
descriptors [40, 72]. Notably, most modern feature
extractors are dense [26, 38], producing one fea-
ture per pixel. In contrast, we focus on sparse
features located at image keypoints [59].

Beyond the detection of feature descriptors, their
cross-view matching is inherently ill-posed since
it is highly sensitive to detector noise and occlu-
sions [45, 52], especially if only the location and no
additional information, such as color, is available.
Moreover, this instability increases dramatically
for sparse features as considered in this work.
In this setting, key challenges arise from signifi-
cant differences between descriptors across views
in terms of their number and their locations. Such
limitations necessitate the modification of nearest-
neighbor matching to ensure robustness [59].

Optimal transport (OT) provides a robust
relaxation of nearest-neighbor matching [49, 67],
relaxing the optimal assignment problem to a lin-
ear program over probabilistic assignments. Due
to the availability of efficient solvers via Sinkhorn’s
method [15, 20, 33] or slicing [7, 35, 46, 56, 57]
as well as extensions to partial assignments [13,
14, 61], the OT framework has become a popu-
lar tool for comparing and matching point clouds
[37, 39, 55, 62]. This has further led to applications
in stereo vision with dense features by matching
along image rows using OT [25] and by using an
OT-based module in the stereo matching model
H-Net [29], which allows the network to focus on
feature mismatches regarding the so-called epipo-
lar constraints of the camera geometry. Extending
this approach, we derive distances between fea-
ture keypoints from these epipolar constraints to
perform sparse stereo matching using OT assign-
ments. Beyond feature matching via classical
OT, we integrate the resulting cost functions into
hierarchical OT [1, 18, 47, 60] to enable object
matching based on sparse keypoints.

As a particular application, the main motivation
for this study is a cross-modal stereo vision
setting similar to [21]. We are given facial image
pairs captured simultaneously by a conventional

RGB camera and a thermal (long-wave infrared)
camera, whose intrinsic parameters and locations
are known. The main goal is the matching of
facial features obtained by pretrained modality-
dependent feature trackers or landmarkers [10,
31, 66, 68, 69]. These landmarkers discretize the
underlying 3D facial geometry and may yield dis-
tinct sets of points for different modalities [19, 23],
see Figure 1. Therefore, the two sets of 2D points
are subject to modality-specific noise and may
differ in cardinality. Furthermore, for two stereo
images containing faces of many persons, we want
to identify reliably which face in the RGB image
belongs to which face in the thermal image.

1st RGB 2nd RGB Thermal

Fig. 1: RGB (left, middle) and thermal (right)
images with facial landmarks. Landmarks con-
ventions vary in terms of size and locations, as
illustrated by the thermal image. Images were
originally reported in [22].

We model our setup via an unknown 3D point
cloud that is projected onto both camera planes,
yielding two distinct 2D point clouds, which are
considered as our measurements. Our practical
goal is then i) to perform an accurate point-to-
point matching across camera planes and ii) to
establish correspondences between entire objects,
each containing multiple points. In practice, these
2D point clouds are obtained via given feature
tracking algorithms, such as a landmarker. Within
the setup of facial landmarking, we pursue the
goal of cross-modal landmark-to-landmark and
face-to-face matchings.

Our main contributions are as follows:

• We formulate the stereo matching problem
as an instance of an OT problem [49, 67]
with cost functions tailored to the geometric
setting.

• We propose a novel cost function, called 3D
ray distance, based on the distance between
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3D half-lines (rays) originating from the cam-
era centers. Numerical experiments show its
advantage over the classical epipolar distance
[27, 54].

• To handle matching between entire objects
(e.g., faces) represented as unordered sets of
points, we introduce a hierarchical opti-
mal transport (HOT) formulation. Numer-
ical studies demonstrate that HOT yields
stable correspondences.

Our method addresses several of the classical chal-
lenges in stereo vision. The proposed cost function
enhances the robustness of point-level matching
by reducing sensitivity to noise and ambiguity,
and by limiting the set of admissible matches.
This proves to be particularly effective for occlu-
sions and cross-modality scenarios. The use of OT
offers an efficient formulation for the matching
problem. Finally, the HOT framework extends our
algorithm from point-to-point to object-to-object
matching.

The paper is organized as follows. Section 2 cov-
ers the epipolar geometry and introduces our new
matching cost. Section 3 introduces basic concepts
of OT required to understand the framework, and
outlines the specific OT problems we consider.
Section 4 focuses on algorithmic considerations,
including numerical implementation, error compu-
tation, and evaluation metrics to assess the quality
of the matchings. Section 5 presents numeri-
cal results on various simulated and real-world
datasets both for OT and HOT formulations.
Conclusions are drawn in Section 6.

2 Distances of Projected
Points

In this section, we propose two different “dis-
tances” between projected points in the camera
planes which aim to preserve their true, unknown
distances in 3D, namely

• the 3D ray distance and

• the epipolar distance.

For a detailed treatment of the underlying epipo-
lar geometry and camera models, we refer to
[28, 54, 63]. Considering two cameras observing
the same 3D point w ∈ R3, we can express the
points measured by the cameras in homogeneous

coordinates with the third component fixed to one,
i.e., as elements of the projective space

P2 := {(x1, x2, 1) | (x1, x2) ∈ R2}.

We choose the coordinate system such that the
left camera is centered at (0, 0, 0)⊤ and is imaging
along the positive third coordinate. By Kl, Kr ∈
R3×3 we denote the intrinsic matrix of the left
and right camera, respectively. These are upper
triangular matrices with positive diagonal entries,
which encode internal characteristics such as focal
length and principal point of the camera. The
extrinsic parameters describe the relative ori-
entation and position between the two cameras,
modeled by a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R3 \ {0}. Then the projec-
tions x, y ∈ P2 of a point w ∈ R3 onto the left and
right camera plane are given by

λlx = Klw and λry = Kr(Rw + t), (1)

respectively, where x, y ∈ P2 and λl, λr > 0 denote
the third component of Klw and Krw, respec-
tively. We assume that w is located in front of both
cameras, meaning that

⟨w, e3⟩ > 0 and ⟨Rw + t, e3⟩ > 0. (2)

The configuration is shown in Figure 2. Let

W := {w ∈ R3 : ⟨w, e3⟩ > 0, ⟨Rw + t, e3⟩ > 0}.

Remark 2.1. In a more general model, where
each camera has a rotation Rl, Rr ∈ SO(3) and
translation tr, tl ∈ R3 \ {0}, the projections are
given by

λlx = Kl(Rlw̃ + tl), (3)

λry = Kr(Rrw̃ + tr).

Then the substitution w̃ = R⊤
l (w−tl), and setting

R = RrR
⊤
l and t = tr −Rrtl yields (1).

2.1 3D Ray Distance

Setting

x̃ := K−1
l x and ỹ := K−1

l y,
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Left camera

y

y′

Right camera

w

x

w′

0 −R⊤t

Fig. 2: 3D point w observed by two cameras,
specifically at x in the left and y in the right
camera. The epipolar line (solid blue) in the right
camera corresponding to x consists of all points
y′ that originate from 3D points w′ that are pro-
jected to x in the left camera. In teal are the focal
points 0 and −R⊤t.

we obtain by (1) that

w = λlx̃ and w = λrR
⊤ỹ −R⊤t. (4)

The right-hand side of each of the two equations
represents a line in R3 of the form

Lx = {λxrx + sx : λx ∈ R},
Ly = {λyry + sy : λy ∈ R}, (5)

where rx = x̃, sx = 0, ry = R⊤ỹ, and sy =
−R⊤t. The minimal distance between these lines,
d(Lx,Ly), is given by

|⟨rx×ry,sy−sx⟩|
∥rx×ry∥ = |⟨x̃×R⊤ỹ,R⊤t⟩|

∥x̃×R⊤ỹ∥ if rx × ry ̸= 0,

∥rx×(sy−sx)∥
∥rx∥ = ∥x̃×R⊤t∥

∥x̃∥ otherwise

and could serve as a possible distance between x
and y. Note that rx×ry = 0 if and only if Lx ∥ Ly.
However, this distance is computed on the entire
space R3, but we are only interested in inter-
sections or minimal distances for points that are
visible to both cameras. Indeed, the lines (5) may
intersect or attain their minimal distance behind
the cameras. In such cases, although the distance
between the lines is small, the corresponding point
is not observable by the cameras. Therefore, such
matches should be avoided.

To this end, consider the case rx × ry ̸= 0. Then
there exists a unique shortest line segment con-
necting Lx and Ly. It intersects the respective

lines in

bx = sx +
⟨sx − sy, nx⟩

⟨rx, nx⟩
rx, (6)

by = sy −
⟨sx − sy, ny⟩

⟨ry, ny⟩
ry,

where nx := rx×(rx×ry) and ny := ry×(rx×ry).
Both points bx, by should fulfill (2). If bx or by
lies behind one of the cameras, the ray distance
is usually smallest between the focal points of the
two cameras. Hence, we use the distance between
the focal points, namely ∥R⊤t − 0∥ = ∥t∥. Thus,
we define ray distance dray : P2 → R≥0 by

dray(x, y) :=



|⟨x̃×R⊤ỹ,R⊤t⟩|
∥x̃×R⊤ỹ∥ if rx × ry ̸= 0,

and bx, by ∈ W,
∥x̃×R⊤t∥

∥x̃∥ if rx × ry = 0,

∥t∥ otherwise.

(7)

The so-defined ray distance is not a metric,
because, in general (depending on the camera
parameters), dray is not symmetric and dray(x, x)
may be non-zero. However, we have the following
properties.

Proposition 2.2. If w ∈ W and x, y ∈ P2 are
given by (1), then dray(x, y) = 0. Conversely,
if x, y ∈ P2 and dray(x, y) = 0, there exists
w ∈ R3 such that (1) holds for some λl, λr ∈ R.
If additionally rx × ry ̸= 0, then w is uniquely
determined.

Proof Let w satisfy (2) and x, y be the projections of
w via (1). By construction, w is on both lines Lx and
Ly. If the lines are not identical, i.e., if rx×ry ̸= 0, we
have w = bx = by. By (2), we are in the first case of
the definition of dray and hence we have dray(x, y) = 0.
Otherwise, if the lines are identical, i.e., if rx×ry = 0,
their distance is zero and so dray(x, y) = 0.

Conversely, let dray(x, y) = 0. We note that ∥t∥ does
not vanish by assumption. If 0 = r1 × r2 = x̃× R⊤ỹ,
we have x̃×R⊤t = 0. Hence, x̃, R⊤ỹ, and R⊤t are all
located one line through the origin and neither does
vanish. Hence, (4), which is equivalent to (1), is ful-
filled for w = αx̃ with any α ̸= 0 and some λl, λr ∈ R.
Otherwise, the lines intersect in one point bx = by,
and hence (4) is fulfilled with w = bx = by. In this
case, w satisfies (2). □

Remark 2.3 (Depth-regularized Ray Distance).
While Proposition 2.2 justifies the use of the ray
distance theoretically, the computation of the ray
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distance is practically sensitive to perturbations
of the camera parameters. To improve stability,
a common remedy is the use of regularization
to include prior knowledge [5]. In most practical
scenarios, we have prior information about the
possible depth of the objects, e.g., if the camera
is located in a room, the objects cannot be farther
away than the walls. Motivated by this, we con-
sider lower and upper soft thresholds γ1 < γ2 on
the depth and some regularization parameter β ≥
0. Then, we modify our distance (7) to introduce
the depth-regularized ray distance dregβ,γ(x, y)
defined as

dray(x, y) + β


(b− γ1)

2 if b < γ1,

0 if b ∈ [γ1, γ2],

(b− γ2)
2 if b > γ2,

(8)

where b := 1
2 ⟨bx + by, e3⟩ is the third coordinate of

the midpoint of bx, by given in (6).

Remark 2.4 (Invariance to Rotations). The ray
distance is invariant to rotations of the camera
with the same focal point. More specifically, tak-
ing a different right camera with parameters R′ ∈
SO(3) and t′ ∈ R3 and the same focal point
R⊤t = (R′)⊤t′. Then the ray distance dray(x, y)
coincides with the ray distance between x and y′

with respect to the other camera, where y′ is the
normalized projection of w ∈ R3 fulfilling w =
λ′
r(R

′)⊤ỹ′ − (R′)⊤t′, cf. (4).

2.2 Epipolar Distance

The second distance arises from epipolar
(half)lines, which are often used in the literature,
see, e.g. [17, 30, 53]. Substituting w = λlx̃ into
the second equation in (4) gives

λrỹ = λlRx̃+ t.

Taking the cross product of both sides with the
translation vector t = (t1, t2, t3)

⊤ results in

t× (λrỹ) = t× (λlRx̃), (9)

which can be rewritten as

λrT ỹ = λlTRx̃, T :=

 0 −t3 t2
t3 0 −t1

−t2 t1 0

 .

Since the cross product is perpendicular to its
generating vectors, we obtain by taking the inner
product with ỹ the epipolar constraint

y⊤Fx = 0, F := K−⊤
r TRK−1

l ,

where F is called fundamental matrix. The
epipolar line with respect to x ∈ P2 in the
right camera plane is given by

{(s1, s2)⊤ : ⟨Fx, s⟩ = 0}, s := (s1, s2, 1)
⊤. (10)

Geometrically, the epipolar line is the projection
of the line Lx in (5) to the right camera plane, see
Figure 2. Then the distance of a point y ∈ P2 in
the right image to the epipolar line (10) of x ∈ P2

is given by

depir (x, y) :=


|⟨Fx, y⟩|
∥P2Fx∥ if P2Fx ̸= 0,

|(Fx)3| if P2Fx = 0,

where P2(x1, x2, x3) := (x1, x2) and (Fx)3 denotes
the third component of the vector. The second
case is motivated by the fact that if P2Fx = 0,
we have Fx = (0, 0, (Fx)3)

⊤ and hence ⟨Fx, y⟩ =
(Fx)3 for all y ∈ P2. Then the epipolar line (10)
degenerates to either the plane P2 if (Fx)3 = 0, or
the empty set if (Fx)3 ̸= 0. By the next remark,
the case P2Fx = 0 cannot appear for points in
front of the camera and if the cameras do not see
each other.

Remark 2.5. Assume that P2Fx = 0. This
implies Fx = αe3 with α = (Fx)3 and since Kr

is upper triangular further

Fx = K−⊤
r TRK−1

l x = αe3,

TRK−1
l x = α(Kr)3,3e3,

TRw = t×Rw = λlα(Kr)3,3e3.

If α ̸= 0, this means that

⟨Rw, e3⟩ = ⟨t, e3⟩ = ⟨R⊤t, R⊤e3⟩ = 0,

and consequently ⟨Rw + t, e3⟩ = 0 which contra-
dicts (2). Geometrically, all such w are in the
plane with normal direction R⊤e3 through the
focal point −R⊤t of the second camera. If α = 0,
then w is a multiple of −R⊤t and lies there-
fore on the line between the two focal points, see
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Figure 2. Then the epipolar line degenerates to a
single point. In practice, this case does usually not
occur as it would mean that the second camera is
visible in the first camera image.

Similarly, we can consider the distance of a point
x ∈ P2 in the left image to the epipolar line of
y ∈ P2 to obtain the epipolar distance in the
left image

depil (x, y) :=


|⟨x, F⊤y⟩|
∥P2F⊤y∥ if P2F

⊤y ̸= 0,

|(F⊤y)3| if P2F
⊤y = 0.

Averaging over the epipolar distances in the left
and right image, we get the final epipolar dis-
tance

depi(x, y) :=
depil (x, y) + depir (x, y)

2
, (11)

in particular

depi(x, y) =
|⟨Fx, y⟩|

2

(
1

∥P2Fx∥ +
1

∥P2F⊤y∥

)
if P2Fx ̸= 0 and P2F

⊤y ̸= 0.

Remark 2.6 (Epipolar rays). Instead of the
line (5), we could project the ray located in front
of the camera to the image plane, leading to an
epipolar ray, cf. [17, 30, 53]. The condition (2),
which means a point is in front of both cameras,
is equivalent to λ1, λ2 > 0 in (1). By (9), we have

λ2

λ1
t× ỹ = t×Rx̃,

which holds for λ1λ2 > 0 if and only if

⟨t× ỹ, t×Rx̃⟩ > 0 (12)

or t× ỹ = t×Rx̃ = 0. We define for fixed x ∈ P2

the epipolar ray Hx in the right image by

{y ∈ P2 : ⟨y, Fx⟩ = 0, ⟨t×K−1
r y, t×RK−1

l x⟩ > 0}.

We show that in most practical scenarios, where
both cameras depict a similar region of the 3D
space, the epipolar rays and epipolar lines coincide
inside the images. More specifically, we assume
the camera image is a square

Ia := [−a, a]2 × {1} ⊂ P2, a > 0.

The epipole ye ∈ P2 is the projection of the focal
point w = 0 of the left camera to the right image
given by

λlxe = −KlR
⊤t.

We assume that ye is not visible in the right cam-
era, i.e., ye /∈ Ia, and that w ∈ R3 is visible by both
cameras with the projections x ∈ P2 and y ∈ Ia.
Then

Hx ∩ Ia = {y ∈ Ia : ⟨y, Fx⟩ = 0}.

This can be seen as follows. By definition, the left-
hand side is a subset of the right. We show that
(12) is fulfilled for all y ∈ Ia with ⟨Fx, y⟩ = 0.
The function y 7→ ⟨t × ỹ, t × Rx̃⟩ is affine-linear,
hence its zero set is affine-linear in P2 and it con-
tains the epipole ye. Therefore, Hx is either a ray
starting at the epipole ye or empty if (12) vanishes
on the whole epipolar line. Hence, the intersection
Hx ∩ Ia is either Ia,b ∩ {y ∈ P2 : ⟨y, Fx⟩ = 0} or
empty. The latter cannot hold, as the set contains
the projection of w.

3 Optimal Transport

We recall basic notions of discrete OT and its par-
tial version as well as hierarchical OT, cf. [49].
While we formulate the OT problem for discrete
measures on the projective plane P2, the theory in
this section also applies to continuous probability
measures on general manifolds.

3.1 Point Matching via Optimal
Transport

Given two sets

X = {x1, . . . , xN} ∈ (P2)N ,

Y = {y1, . . . , yM} ∈ (P2)M ,

we are interested in the optimal transport costs
between the empirical measures

µ =
1

N

N∑
i=1

δxi and ν =
1

M

M∑
i=1

δyi ,
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where δx is the point measure at x, defined by the
discrete OT distance

OTc(X,Y ) := min
Π≥0

⟨C,Π⟩

subject to Π1M =
1

N
1N , Π⊤1N =

1

M
1M ,

(13)
where c : P2 × P2 → [0,∞[ is a cost or “distance
function” on P2,

C :=
(
c(xi, yj)

)N,M

i,j=1
and Π := (πi,j)

N,M
i,j=1 .

The matrix Π ∈ RN×M
≥0 is called a transport

plan. In our applications, we will deal with the
“distances” dray, dregβ,γ and depi from the previ-
ous section. If N = M , there exists an opti-
mal solution Π such that NΠ is a permuta-
tion matrix associated with a permutation σ ∈
Perm(N) and OTc(X,Y ) =

∑N
i=1 c(x

i, yσ(i)), see
[49, Prop 2.1].

However, in a practical stereo matching appli-
cation, object occlusions or modality-dependent
feature trackers might violate the assumption of
the balanced setup N = M . Clearly, for N ̸= M ,
a transport plan cannot be realized by a permu-
tation matrix. Therefore, we consider the more
general partial optimal transport (POT) prob-
lem [11, 13], which explicitly restricts the total
transported mass and is defined as

POTc(X,Y ) := min
Π≥0

⟨C,Π⟩ (14)

subject to 1⊤
N Π1M = m,

Π1M ≤ 1

N
1N , Π⊤1N ≤ 1

M
1M ,

for a mass constraint m ∈ [0, 1]. While it sim-
plifies to (13) for N = M and m = 1, it
allows excess mass to be discarded for N ̸= M .
Consequently, POT is especially well-suited for
computing a partial correspondence between point
clouds resulting from incompatible landmarkers.
If m = min{N,M}/max{N,M}, there exists an
optimal solution Π/m ∈ {0, 1}N×M such that Π
is associated with a ‘partial’ permutation between
the smaller set and an equal-sized subset of the
larger set, see [3, Thm. 4.1].

Beyond partial matching, one might alternatively
replace POT with the closely related and more

general unbalanced optimal transport formu-
lation [4, 61], where one regularizes the transport
problem with respect to a fixed probability diver-
gence, see [64, Appendix A] for examples. How-
ever, the latter has two regularization parameters
that need to be chosen appropriately.

3.2 Object Matching via
Hierarchical Optimal Transport

Hierarchical optimal transport (HOT) refines
the constraints of the original OT problem by
introducing additional labels. In the following, let
[N ] := {1, . . . , N}. Now the goal is to match full
objects each consisting of many points. Given N
source objectsXi andM target objects Yj , let

X = {X1, . . . , XN} and Y = {Y1, . . . , YM}
with Xi = {x1

i , . . . , x
Ni
i } ∈ (P2)Ni , i ∈ [N ],

Yj = {y1j , . . . , y
Mj

j } ∈ (P2)Mj , j ∈ [M ].

We use a two-step hierarchical strategy, inspired
by hierarchical Wasserstein distance formulations
[1, 18, 70]. In the case N = M and a Euclidean
cost function, our hierarchical OT formulation
computes a discretized version of the so-called
Wasserstein over Wasserstein [6, 51] or the mix-
ture Wasserstein distance [18, 50].

Step 1 (Local pointwise matching between
objects): For each pair (Xi, Yj), i ∈ [N ], j ∈ [M ],
we solve the POT problem (14) to obtain

cobj(Xi, Yj) := POTc(Xi, Yj). (15)

Step 2 (Global matching): Once the object-
to-object cost cobj has been computed, we solve a
second POT problem at the object level:

POTcobj(X,Y ). (16)

The hierarchical matching procedure is summa-
rized in Algorithm 1. In the case of a balanced
matching using (13), we refer to this procedure as
HOT. If we employ the POT formulation (14), we
use the name HOT-POT.

Recovering a global pointwise map

From HOT or HOT-POT, we may again compute
a global point matching. Let Ntot =

∑N
i=1 Ni and

7



Algorithm 1: Hierarchical Object
Matching

Input: Sets of N source objects X and
M target objects Y

Cost function c between points in P2

Output: Binary matching matrix Πobj

1 foreach i ∈ [N ], j ∈ [M ] do
2 Compute pointwise POT cost

cobj(Xi, Yj) = POTc(Xi, Yj)

3 Compute transport plan Πobj minimizing
POTcobj(X,Y )

4 return Πobj

Mtot =
∑M

j=1 Mj , and denote by Πi,j ∈ RNi×Mj

a pointwise POT plan between Xi and Yj , and by
Πobj the object-level plan. The global plan Πglob ∈
RNtot×Mtot

≥0 is obtained by embedding each local

plan Πi,j into its corresponding block and scaling
it by the transported mass Πobj

i,j : We set

Πglob
(i,r),(j,s)

:= Πobj
i,j Πi,j

r,s, (17)

as the mass transported between xi
r and yjs. Our

resulting pointwise plan Πglob becomes binary if
all input plans are binary.

4 Algorithmic Considerations

In this section, we discuss several aspects of the
implementation of our algorithms as well as error
metrics. We will deal both with pointwise and
objectwise matching.

4.1 OT Algorithms

OT. For computing OTc(X,Y ) with
c ∈ {depi, dray, dregβ,γ}, we apply the Earth Mover’s
Distance algorithm [8] implemented in the
PythonOT library [20]. It returns a permutation
matrix, but does not guarantee uniqueness and
can be sensitive to input order.

POT. For partial OT, use the solver
ot.partial.partial wasserstein [11, 13] from
PythonOT, which implements a relaxed optimal
transport formulation, with a partial mass con-
straint m = min{N,M}/max{N,M}.

HOT/HOT-POT. For our hierarchical match-
ing procedure, we utilize Algorithm 1 based on
the aforementioned PythonOT solvers.

Remark 4.1 (Projecting onto Binary Matrices).
While we know that our OT and POT prob-
lems can be solved by scaled (partial) permutation
matrices, see [49, Prop. 2.1] and [3, Thm. 4.1],
practical solvers relying on continuous relaxations
may return soft transport plans. In that case, we
project them to binary matrices by assigning each
point to the maximizing index only if at least half
of the mass is concentrated there, and discarding
it otherwise.

Remark 4.2 (Naive Matching). As baseline for
comparing the performance of the OT and POT
algorithms we use a naive matching procedure
between two sets of points X = {x1, . . . , xN} and
Y = {y1, . . . , yM}. We find the smallest value
within the cost matrix Cij = c(xi, yj), take the
respective indices i∗, j∗ for our matching, and
remove the row i∗ and the column j∗. As the
smallest value might be non-unique, we take the
first occurrence. We repeat this procedure until
there is no row or column is left and obtain in
total min(N,M) matches.

4.2 Evaluation Criteria

Comparing with Ground-Truth Matching

Given a point cloud imaged by two different cam-
eras, we can directly calculate the pointwise
mismatch rate as the number of incorrectly
matched point pairs divided by the total number
of point pairs:

#incorrect point matches

min{N, M} .

For our parameter m = min{N,M}/max{N,M},
the total number of matches is min{N,M}.
If we have multiple objects and each is described
by a point cloud in the left and a point cloud in
the right camera, we can perform object match-
ing via HOT or HOT-POT. We calculate the
objectwise mismatch rate as the number of
incorrectly matched object pairs divided by the
total number of object pairs:

#incorrect object matches

min{N,M} .
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In our multi-modal landmarking system, each
object is a single face that is described by i) the
landmarks of an RGB tracker on the left and ii)
a thermal landmarker on the right camera. For
example, if the RGB tracker detects 5 faces and
the thermal one detects 4, the total number of
object pairs becomes 4. If our algorithm matches
2 face pairs correctly, the object mismatch ratio
becomes 2/4 = 0.5.

Evaluating Matching based on 3D
Reconstruction.

In some applications, we might be more interested
in reconstructing the true 3D point cloud than in
recovering the exact point-to-point matching. In
other scenarios, we might want to evaluate the
pointwise matching quality in the absence of a
ground-truth correspondence, e.g., due to occlu-
sions. In this setting, an object is represented by
two incompatible 3D point clouds, one visible on
the left camera and one on the right.

In both cases, we can evaluate this setup based
on the 3D reconstruction of our 3D point clouds.
Given a pair (x, y) ∈ P2 × P2, we can solve (1)
for w ∈ R3 if we know the ground truth cam-
era parameters and rx × ry ̸= 0, see Prop. 2.2.
Thus, we can reconstruct (triangulate) a 3D point
cloud and compare the (squared) Wasserstein-
2 distance [49] between some ground truth point
cloud and the reconstructed point cloud, i.e., we
compute the minimum in (13) with the squared
Euclidean distance in R3 as our cost function c
(up to rescaling).

5 Numerical Experiments

In our numerical experiments, we first perform
experiments on synthetic data to allow for a
quantitative comparison between the ray and the
epipolar distance. Afterwards, we extend our anal-
ysis to real-world landmarking data.

5.1 Synthetic Faces Dataset

Dataset

We use an artificially created dataset of 3D points
from four human faces, see Figure 3. The full
dataset contains 1872 points corresponding to four
3D faces, each composed of the 468 landmarks
of the MediaPipe canonical face model [44], see

Figure 3a. The subsampled dataset consists of 65
points per face, corresponding to averaged land-
marks of the 3D faces, see Figure 3b. For that
purpose, the 468 landmarks are downsampled to
65 points by partitioning each region’s sorted
vertex indices into fixed numbers of chunks and
taking the 3D centroid of each chunk. We know the
ground truth correspondences, meaning that for
each point in the left camera, the corresponding
point in the right camera is known. Moreover, we
have access to four distinct face labels as employed
in our HOT formulation (15)–(16).

The camera projections x and y computed via
the model (3) are shown in Figure 4. In par-
ticular, note that the projected faces partially
overlap. Indeed, such scenarios may appear in
practice since some trackers predict landmarks for
occluded face regions via interpolating the face
geometry [19] or motion in videos [65].

(a) Full (1872 pts) (b) Subsampled (260 pts)

Fig. 3: 3D landmarks w of four faces.

c Full (N = 1872) Sub (N = 260)
Naive OT HOT Naive OT HOT

depi 662 681 406 66 64 0
35% 36% 22% 25% 25% 0%

dray
809 284 264 96 0 0
43% 15% 14% 37% 0% 0%

Table 1: Point mismatch counts and ratios for
the synthetic faces dataset.

Point Matching via OT and HOT with
Ground Truth

We start by performing pointwise matching
between the landmarks using the OT formulation
(13) without any face labels. Table 1 reports the
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(a) Left camera (points xi) (b) Right camera (points yj)

Fig. 4: 2D camera images of the four faces dataset from Figure 3a.

mismatch rates of the OT matching and the naive
matching in Remark 4.2 for our two distances.
Overall, the results with the epipolar distance (11)
are worse than with the ray distance (7). For
the latter, OT leads to a considerable improve-
ment over naive matching, reducing the number
of errors from 809 to 284 for the full dataset, and
from 96 to 0 for the subsampled data. Geomet-
rically, the poor performance with the epipolar
distance can be explained by the fact that points
from face 3 lie very close to epipolar lines (10)
corresponding to face 1, see Figure 5.

If we include the face labels and employ the
induced point-to-point HOT transport plan (17),
we see a drastic improvement for the epipolar-
based matching in Table 1. Nevertheless, the ray
distance still leads to better results.

Figure 6 shows the cost matrices. For the epipolar
distance, the cost nearly vanishes not only along
the diagonal, but also along two sub-diagonals cor-
responding to the association between face 1 and
face 3. In contrast, the ray distance can distinguish
faces 1 and 3 more effectively.

Point Matching without Ground-Truth via
POT

Next, we investigate the matching of all 1872 on
the left camera and the subsampled 260 points on
the right camera to assess the partial matching
approach. Using the epipolar distance, 27.3% of
all points are matched to the wrong face. For the
ray distance, this percentage goes down to 12.3%.
Following Section 4.2, the squared Wasserstein-
2 distance between the reconstructed 3D point
clouds is reported in Table 2.

Fig. 5: Projection of 20 points from synthetic
faces 1 (red) and 3 (blue) onto the right camera
and epipolar lines of face 1, illustrating the diffi-
culty of distinguishing faces with depi when two
points are on a line.

(a) Cost: depi (b) Cost: dray

Fig. 6: Cost matrices [d(xi, yj)]ij for the two geo-
metric distances on the subsampled synthetic faces
from Figure 3b. The epipolar cost exhibits low off-
diagonal entries linking face 1 and face 3, while the
ray cost suppresses these cross-face connections.

Face Matching via HOT-POT

Lastly, we extend the partial matching compari-
son to object matching via HOT-POT by using
the face labels for all points on one camera and
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c Full → Sub Sub → Full
depi 1.39 1.45
dray 0.75 0.13

Table 2: Squared Wasserstein-2
distance for the synthetic faces
dataset with POT, lower is better.

the subsampled points on the other camera. With
this approach, the object-wise mismatch rates are
0% for both distances, i.e., all faces are correctly
matched. This holds for both setups, i.e., with the
subsampled data on the left and the full data on
the right and vice versa.

5.2 Synthetic Spheres Simulation

(a) 3D Point Cloud

(b) Left Camera (c) Right Camera

Fig. 7: Spheres simulation with σ = 0.005. (a):
Original data visualized as a 3D scatter plot and as
a 2D projection. (b): Projection onto the left cam-
era. (c): Projection onto the right camera. Shared
axes of the camera planes in (b) and (c) highlight
camera translation and rotation.

Simulation

We generate 100 synthetic 3D scenes com-
posed of N = 5 disjoint spherical objects.
For each object k ∈ [5] we sample a center
ck ∈ [−0.5, 0.5]2 × [2.5, 3.5] uniformly at ran-
dom. The radius rk of each sphere is drawn from a

uniform distribution over [0.05, 0.1]. We reject and
resample any proposed center whose sphere would
overlap with an already placed sphere. On each
sphere, we uniformly sample 10 points. This yields
a point cloud of 50 points grouped into 5 spa-
tially separated objects for each synthetic scene.
We project all point clouds onto two cameras
located at (0, 0, 0) and (1, 0, 0), set K as the iden-
tity matrix, and employ random camera rotations
up to ±15 degrees to both. By Remark 2.4, cam-
era rotations do not impact the ray distance. We
repeat all experiments with varying levels of inde-
pendent Gaussian noise N (0, σ2) added to each
point in both projections. An example is visualized
in Figure 7.

Point Matching via OT and HOT

We investigate the point-to-point matching qual-
ity for all combinations of distances and pointwise
matching, i.e., for combinations of (7), the depth-
regularized ray distance (8) (γ1 = 2.5, γ2 = 3.5,
β = 10), and the epipolar distance (11) with
the naive, OT (13), and HOT matching (17). As
described in Section 4.2, we evaluate our matching
for different noise levels based on the mismatch
ratio in Table 3 and the Wasserstein distance
between the ground truth 3D point cloud and the
reconstruction in Table 4.

Overall, we observe a quick deterioration in
matching quality for increasing noise. The ray dis-
tance and the epipolar distance give comparable
results in terms of the mismatch ratio, but we
see an advantage of the ray distance in terms of
the Wasserstein evaluation. The depth-regularized
distance leads to a consistent improvement in the
presence of noise, especially for the resulting 3D
reconstruction. We see a clear advantage of the
OT over the naive matching, with an additional
performance boost via the HOT approach.

Object Matching via HOT

Using the HOT approach, we further investi-
gate the resulting sphere-to-sphere matching in
Table 5. Here, we obtain stable matching even in
the presence of noise. Overall, we get the best
results with the ray distance.
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Method σ = 0.0 0.001 0.005 0.01 0.05

depi Naive 0.0±0 44.1±11 80.6±8 88.5±6 95.9±3
depi OT 0.0±0 35.9±10 78.4±7 87.8±5 95.7±3
depi HOT 0.0±0 29.0±9 71.9±8 83.6±6 91.2±5

dray Naive 0.0±0 44.5±11 80.5±8 88.7±5 95.9±3
dray OT 0.0±0 36.1±11 76.9±8 86.9±5 95.5±3
dray HOT 0.0±0 29.5±9 71.4±8 82.6±6 91.3±5

dreg Naive 0.3±1 37.5±11 75.7±8 85.2±6 94.3±4
dreg OT 0.3±1 27.3±11 68.8±10 82.0±6 93.4±4
dreg HOT 0.2±1 24.9±10 66.4±9 80.2±6 90.8±5

Table 3: Pointwise mismatch ratio for simulated
spheres (in %, lower is better ↓).

Method σ = 0.0 0.001 0.005 0.01 0.05

depi Naive 0.0±0 1.2±5 2.0±8 2.3±6 12.3±29
depi OT 0.0±0 1.1±5 1.6±4 2.1±5 8.5±15
depi HOT 0.0±0 0.1±0 0.1±0 0.4±2 5.5±18

dray Naive 0.0±0 1.2±5 1.4±3 2.1±5 7.8±16
dray OT 0.0±0 0.9±4 1.1±3 1.1±2 4.0±12
dray HOT 0.0±0 0.1±0 0.1±0 0.2±0 0.8±0

dreg Naive 0.0±0 0.1±0 0.2±0 0.3±0 5.8±15
dreg OT 0.0±0 0.1±0 0.1±0 0.1±0 0.6±2
dreg HOT 0.0±0 0.1±0 0.1±0 0.1±0 0.6±1

Table 4: Squared Wasserstein-2 for 3D reconstruc-
tion of simulated spheres, where lower is better (↓).

c σ = 0.0 0.001 0.005 0.01 0.05

depi 0.0±0 0.0±0 0.8±6 3.2±11 19.2±24

dray 0.0±0 0.0±0 0.4±4 2.0±9 10.8±19

dreg 0.0±0 0.0±0 0.8±6 1.2±7 15.2±22

Table 5: Object mismatch using HOT for simu-
lated spheres (in %, ↓).

5.3 Matching RGB and Thermal
Landmarks

Dataset

Our setup consists of two calibrated cameras with
known intrinsic and extrinsic parameters, captur-
ing frontal views of a human subject, see Figure 1.
The calibrated images were obtained during a
study at Saarland University, see [21, 22]. We con-
sider the 468 Mediapipe landmarks [44] based on
the first RGB camera as our left point cloud.
For the right point cloud, we consider either the
Mediapipe landmarks on the second RGB camera
(“RGB-RGB”) or 5/70/478 landmarks from the
thermal camera (“RGB-Thermal”), obtained via
the landmarkers from [23] and [36].

RGB-RGB Point Matching via OT

In the RGB-RGB setup, we aim to match 468
Mediapipe landmarks with known ground-truth
correspondence. Unlike the synthetic faces from
Section 5.1, our calibration parameters and our
landmark projections are subject to real-world
noise. As a result, our OT matching based on the
ray distance (7) leads to points being matched
at practically infinite distance from the cameras.
This highlights the advantage of the regularized

ray distance (8), where we employ the parame-
ters γ1 = 1550, γ2 = 1750 penalizing the depth of
the scene, and the regularization strength param-
eter β = 100. The 3D reconstructions with and
without regularization are shown in Figure 8.
While the unregularized ray distance results in
a poor reconstruction, the regularized distance
reconstructs the shape of the face.

(a) dray (b) dreg (c) GT

Fig. 8: 3D reconstruction of a face using matched
Mediapipe landmarks (a) with the ray distance,
(b) with the depth-regularized ray distance and
(c) the ground truth (GT). While the first one
gives poor results, regularization prevents match-
ing with unreasonable depth.

RGB-Thermal Point Matching via POT

For the matching of RGB and thermal landmarks,
there are no true correspondences, and a one-to-
one matching is not possible for the 478-point
(Fig. 9a), the 70-point (Fig. 9b), or the 5-point
convention (Fig. 9c). We perform a partial match-
ing between the different landmark conventions

using the POT (14) with m = min{N,M}
max{N,M} and the

regularized ray distance (γ1 = 1550, γ2 = 1750,
β = 100). We visualize the results in Figure 9 by
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projecting the thermal landmarks onto the RGB
camera plane using the known calibration parame-
ters and connecting matched points. Qualitatively,
we see good matching with corresponding facial
keypoints paired correctly across modalities.

(a) 478 land-
marks

(b) 70 landmarks (c) 5 landmarks

(d) 478 projected
landmarks

(e) 70 projected
landmarks

(f) 5 projected
landmarks

Fig. 9: Top row: 2D right thermal camera images
for different thermal landmark conventions. Bot-
tom row: projection of matched thermal land-
marks (red) onto the left RGB camera image.
Light blue lines link thermal landmarks to the
matched RGB landmarks (blue).

5.4 Matching RGB and Thermal
Faces

Dataset

Finally, we evaluate our HOT-POT approach for
cross-modal face matching with various real-world
measurements. We use an RGB–thermal video
recorded by the Systems Neuroscience and Neu-
rotechnology Unit (SNNU) at Saarland Univer-
sity, showing three persons moving around a room.
We extract 20 frame pairs from the videos and
detect 468 RGB landmarks per face using Medi-
apipe [44] and 70 thermal landmarks using the
T-FAKE landmaker [23] in combination with the
TFW face tracker [36]. Notably, some faces are
occluded in some frames, and the Mediapipe land-
marker does not always detect every face, leading

to a varying number of faces per frame and per
camera. Here, the frames were chosen such that
the time difference is small (both cameras have
a different frame rate), and to ensure that each
camera detects at least one face and at least one
camera detects more than one face.

The camera calibration parameters are estimated
from 59 calibration frames provided by SNNU,
showing an asymmetric circle-grid target observed
at different positions and orientations. Calibra-
tion is performed using standard routines from
OpenCV [9].

Examples are visualized in Figure 10. There are
various sources of errors resulting from i) the
estimated camera calibration, ii) the inconsistent
number of landmarks and faces between both cam-
eras, iii) temporal delays between the two camera
frames, and iv) landmark detection errors.

Face Matching via HOT-POT

Based on the estimated camera calibration param-
eters, we run our HOT-POT algorithm for face
matching using the ray distance (7), the depth-
regularized ray distance (8) with γ1 = 500,
γ2 = 5000, and β = 1, as well as the epipolar
distance (11).

(a) RGB 1 (b) Thermal 1

(c) RGB 2 (d) Thermal 2

Fig. 10: Two cropped RGB and thermal land-
mark pairs extracted from our video provided by
SNNU. For visualization, RGB images are shown
in grayscale. Between RGB and thermal cam-
era, there are small time lags and the number of
detected faces may differ.

Frames are marked as correct if all landmarked
faces are correctly matched and the mismatch
rate is averaged over 20 frame pairs. As shown
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in Table 6, the epipolar distance depi incorrectly
matches 24% of all available face pairs, result-
ing in errors in 5 out of 20 frames. In contrast,
the ray distance dray achieves a mismatch rate
of 5%, with only a single erroneous frame. The
depth-regularized ray distance dreg performs best,
correctly matching all pairs of faces in all 20
frames.

Method Correct Frames Mismatch rate (%)
dray 19/20 5%
dreg 20/20 0%
depi 15/20 24%

Table 6: Comparison of distance metrics for
the real RGB-thermal data.

6 Conclusions

We proposed a new approach for 3D stereo match-
ing of sparse point clouds using a partial OT
framework, where the matching costs are derived
from epipolar geometry. While our first cost
is based on the 3D distance between the rays
through the camera plane and the focal point,
our second cost relies on enforcing the epipo-
lar constraints. The ray-based cost, combined
with a regularization term, provides more robust
performance than the commonly used epipolar
constraint-based cost, especially in noisy settings.
For matching objects rather than single points,
we developed a hierarchical matching framework,
which first solves the POT between all possi-
ble object pairs and then calculates the matching
among the objects. While we found a large sen-
sitivity to measurement noise for the pointwise
approach, the HOT matches the objects correctly
in the case of large deviations and real-world
measurements.

In the future, we want to extend our method to
perform a three-way matching via multimarginal
OT [2, 41, 48], integrate keypoint features such
as color, and incorporate our methods into dense
stereo matching algorithms such as H-Net [29].
Our application may become useful for pub-
lic health screening, where one is interested in
identifying persons with elevated temperature to
prevent the spreading of infectious diseases.
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Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing
Systems, volume 32. Curran Associates, 2019.

[36] A. Kuzdeuov, D. Aubakirova, D. Koishiga-
rina, and H. A. Varol. TFW: Annotated
thermal faces in the wild dataset. IEEE
Transactions on Information Forensics and
Security, 17:2084–2094, 2022.

[37] R. Leroy, P. Trouvé-Peloux, F. Champagnat,
B. Le Saux, and M. Carvalho. Pix2Point:
Learning outdoor 3d using sparse point
clouds and optimal transport. In Proceedings
of the MVA’21, pages 1–5. IEEE, 2021.

[38] K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou,
and Y. Guo. LoS: Local structure-guided
stereo matching. In Proceedings of the
CVPR’24, pages 19746–19756, 2024.

[39] R. Li, G. Lin, and L. Xie. Self-point-flow: Self-
supervised scene flow estimation from point
clouds with optimal transport and random
walk. In Proceedings of the CVPR’21, pages
15572–15581. IEEE, 2021.

[40] X. Liang and C. Jung. Deep cross spectral
stereo matching using multi-spectral image
fusion. IEEE Robotics and Automation Let-
ters, 7(2):5373–5380, 2022.

[41] T. Lin, N. Ho, M. Cuturi, and M. I. Jor-
dan. On the complexity of approximating
multimarginal optimal transport. Journal of
Machine Learning Research, 23:1–43, 2022.

[42] C.-W. Liu, H. Wang, S. Guo, M. J. Bocus,
Q. Chen, and R. Fan. Stereo Matching:
Fundamentals, State-of-the-Art, and Existing
Challenges, pages 63–100. Springer, Singa-
pore, 2023.

[43] Y. Liu, Y. Liu, S. Yan, C. Chen, J. Zhong,
Y. Peng, and M. Zhang. A multi-
view thermal–visible image dataset for
cross-spectral matching. Remote Sensing,
15(1):174, 2022.

[44] C. Lugaresi, J. Tang, H. Nash, C. McClana-
han, E. Uboweja, M. Hays, F. Zhang, C.-L.
Chang, M. Yong, J. Lee, et al. Mediapipe:
A framework for perceiving and processing
reality. In Proceedings of the Workshop on
Computer Vision for AR/VR at CVPR’19,
2019.

[45] K. Mikolajczyk and C. Schmid. A per-
formance evaluation of local descriptors.

16



IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(10):1615–1630,
2005.

[46] K. Nguyen. An introduction to sliced opti-
mal transport: Foundations, advances, exten-
sions, and applications. Foundations and
Trends in Computer Graphics and Vision,
17(3-4):171–406, 2025.

[47] K. Nguyen, H. Nguyen, T. Pham, and N. Ho.
Lightspeed geometric dataset distance via
sliced optimal transport. In Proceedings of
the ICML’25. OpenReview.net, 2025.

[48] B. Pass. Multi-marginal optimal transport:
Theory and applications. ESAIM: Mathe-
matical Modelling and Numerical Analysis,
49(6):1771–1790, 2015.
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imer, F. d’Alché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Pro-
cessing Systems, volume 32, pages 1599–1609.
Curran Associates, 2019.

[71] S. Zhang, W. Su, F. Liu, and L. Sun. Review
of stereo matching based on deep learning.
Displays, 87:102940, 2025.

[72] T. Zhi, B. R. Pires, M. Hebert, and S. G.
Narasimhan. Deep material-aware cross-
spectral stereo matching. In Proceedings of
the CVPR’18, pages 1916–1925, 2018.

18


	Introduction
	Distances of Projected Points
	3D Ray Distance
	Epipolar Distance

	Optimal Transport
	Point Matching via Optimal Transport
	Object Matching via Hierarchical Optimal Transport

	Algorithmic Considerations
	OT Algorithms
	Evaluation Criteria

	Numerical Experiments
	Synthetic Faces Dataset
	Synthetic Spheres Simulation
	Matching RGB and Thermal Landmarks
	Matching RGB and Thermal Faces

	Conclusions
	Acknowledgements


