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Preface

This book is based on a course on the Differential Geometry of curves and surfaces
at Technische Universität Berlin in the spring term of 2020. The thirteen Chapters
roughly reflect the thirteen weeks of that term.

The pioneers of Differential Calculus like Newton, Bernoulli and Euler immedi-
ately applied their ideas to questions about curves and surfaces. In 1673 Newton
defined the curvature κ of a plane curve and in 1691 Jacob Bernoulli characterized
elastic plane curves (cf. [30], [25], or [3] for an historical overview), i.e. curves
that minimize the bending energy

∫
κ2 ds among all curves held fixed at their end

points. In 1859 Kirchhoff showed that the tangent vector of an elastic curve fol-
lows the motion of the axis of a spinning top [19]. Even today, many applications
of Differential Geometry of curves in other sciences (ranging from the coiling of
DNA strands (cf. [37]) to the modeling of hair for Computer Generated Imagery
(cf. [4])) are centered around elastic curves. Our approach to curve theory em-
phasizes its connections to the Calculus of Variations and we will explore elastic
curves quite thoroughly.

There is also a dynamic aspect of curve theory, where deformations of curves in
time are studied. In 1906 Da Rios, a student of Levi-Civita, derived an evolution
equation [33], the so-called filament flow, for space curves that models the motion
of vortex filaments in a fluid (Section 5.3). In 1932 Levi-Civita wrote the equa-
tions satisfied by filaments that do not change shape under this flow [24]. In 1991
Langer and Perline showed that the possible shapes of such filaments are given by
elastic curves [31], a fact that had escaped Levi Civita. Already in 1972 Hasimoto
had shown that the filament flow is a so-called Soliton equation [15]. Even today
this insight remains a source of ongoing inspiration for curve theory (see [10] for
a survey).

Whereas minimizing the length of a curve results in straight line segments, min-
imizing the area

∫
det of a surface with a given boundary curve leads to a rich

class of surfaces, the so-called minimal surfaces (Section 12.4). Already in 1744
Euler proved that the catenoid minimizes area among all surfaces of revolution
with prescribed boundary circles (cf. [13]). Minimizing area while fixing the en-
closed volume leads to surfaces with constant mean curvature H (Section 12.5).
For a surface, the analog of the bending energy

∫
κ2 ds of a curve is the so-called
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Willmore functional
∫

H2 det (Section 13.1). In the context of surfaces, the analog
of an elastic curve is a so-called Willmore surface, whose equation we derive in
Section 13.2. It was a major milestone in Differential Geometry when in 2012 Mar-
ques and Neves proved the so-called Willmore conjecture (cf. [26]), which states
that for any torus in R3 the Willmore functional has to be at least 2π2.

A pervasive theme in Differential Geometry is the interplay between curvature
and topology. In Section 3.4 we will show that the integral

∫
κ ds of the curvature

of a closed plane curve γ equals 2π times an integer, the so-called tangent wind-
ing number of γ. In Section 3.6 we follow Whitney and Graustein who proved in
1937 that this integer characterizes the connected components of the space of all
closed plane curves [45]. In the context of surfaces, the analog of this result is the
Gauss-Bonnet theorem for closed surfaces [8], which we prove in Section 10.2.

The only prerequisites for this book are the Calculus of Several Variables including
the transformation formula for integrals, the Picard-Lindelöf theorem for ordinary
differential equations and Green’s theorem from Vector Calculus. Neither mani-
folds nor results from Functional Analysis are needed. Variational problems under
constraints are accessible with these prerequisites because our definition of a criti-
cal point under constraints (Definition 2.19) is slightly stronger than the usual one.
Similarly, our ability to discuss the genus of closed surfaces without diving into
Algebraic Topology can be traced back to our definition of a compact domain with
smooth boundary in R2 (Definition 6.1). Our definition is intuitive and equivalent
to the standard one, but proving this equivalence would need serious additional
work.

Berlin, Ulrich Pinkall
January 2021
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1. Curves in Rn

Differential Geometry studies smoothly curved shapes, called manifolds. One-
dimensional shapes are called curves and two-dimensional shapes are called sur-
faces. In this chapter we look at curves in n-dimensional Euclidean space. The
basic properties of curves in Rn (length, tangent, bending energy) were explored
right after the invention of calculus by Newton, Bernoulli and Euler.

1.1. What is a curve in Rn?

Since many interesting curves (for example a figure eight) have self-intersections,
it is not a good idea to define a curve as a special kind of subset in Rn. Intuitively, a
curve is something that can be traced out ("parametrized") as the path of a moving
point (cf. Figure 1.1).

Definition 1.1. A curve in Rn is a smooth map γ : [a, b] → Rn such that its velocity
vector γ′(x) never vanishes, i.e.

γ′(x) 6= 0

for all x ∈ [a, b].

a b

γ

γ(x)

Rn

Figure 1.1. A curve can be described as the trajectory of a particle moving in space. The
particles position at time x is given by γ(x).
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Curves in Rn

Remark 1.2. If M ⊂ Rn is an arbitrary subset, then a map f : M → Rk is called
smooth (or C∞) if there is an open set U ⊂ Rn with M ⊂ U and and an infinitely
often differentiable map f̃ : U → Rk such that f = f̃ |M (cf. Appendix A.1). Instead
of a closed interval [a, b] one could also allow an open or semi-open interval (or
even a finite union of intervals) as the domain of definition for a curve. The only
problem that would arise is that then the integral of a smooth function would not
always be defined. For all of our applications we can stick to closed intervals.

Definition 1.3. A curve γ : [a, b]→ Rn is called closed if γ can be extended to a smooth
map γ̃ : R→ Rn with period b− a, which means

γ̃(x + (b− a)) = γ̃(x)

for all x ∈ R.

Example 1.4.

1. The quarter circle is a curve:

γ :
[
− 1√

2
, 1√

2

]
→ R2, γ(x) =

(
t√

1− x2

)
.

2. Another version of the quarter circle is also a curve:

γ :
[

π
4 , 3π

4

]
→ R2, γ(x) =

(
cos x
sin x

)
.

3. The full circle

γ : [0, 2π]→ R2, γ(x) =
(

cos x
sin x

)
is a closed curve with period 2π. It can be extended to

γ̃ : R→ R2, γ(x) =
(

cos x
sin x

)
.

4. The Helix is a curve:

γ : [a, b]→ R3, γ(x) =

cos x
sin x

x

 .

5. The Cartesian leaf (see Figure 1.2) is a curve:

γ : [a, b]→ R2, γ(t) =
(

x3 − 4x
x2 − 4

)
so that

γ′(t) =
(

3x2 − 4
2x

)
.
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1.1 What is a curve in Rn?

x

γ(x)

γ′(x)

Figure 1.2. A circle (left), the Cartesian leaf (middle) and Neil’s parabola (right).

a

b

c d

Figure 1.3. A reparametrization of a curve is given by a strictly increasing function with
nowhere vanishing derivative which maps [c, d] onto [a, b].

6. Neil’s parabola (see Figure 1.2) is given by

γ : [a, b]→ R2, γ(t) =
(

x3

x2

)
.

It is not a curve if 0 ∈ [a, b], because at t = 0

γ′(0) =
(

0
0

)
.

For the purposes of geometry, the speed with which we run through a curve does
not really matter, nor does the particular time interval [a, b] that we use for the
parametrization. However, we will always assume that our curves are oriented, so
we want to keep track of the direction in which we run through the curve. This
means that we are only interested in properties of a curve that do not change
under orientation-preserving reparametrization (see Figure 1.3):

Definition 1.5. Let γ : [a, b] → Rn and γ̃ : [c, d] → Rn be two curves. Then γ̃ is called
an orientation-preserving reparametrization of γ if there is a bijective smooth map
ϕ : [c, d]→ [a, b] such that ϕ′(x) > 0 for all x ∈ [c, d] and γ̃ = γ ◦ ϕ.
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Curves in Rn

Example 1.6. For the two curves γ from Example 1.4 (i) and γ̃ from Example 1.4
(ii) we have γ̃ = γ ◦ ϕ with

ϕ :
[

π
4 , 3π

4

]
→
[
− 1√

2
, 1√

2

]
, ϕ(x) = cos x.

Remark 1.7. Orientation-preserving reparametrization is an equivalence relation
on the set of curves in Rn. Although we are ultimately only interested in properties
shared by all curves in the same equivalence class, we will always work with a
particular representative curve γ.

1.2. Length and Arclength

The most simple numerical quantity that can be assigned to a curve as a whole is
its length.

Definition 1.8. Let γ : [a, b]→ Rn be a curve. Then the function

v : [a, b]→ R, t 7→ |γ′(t)|

is called the speed of γ and

L(γ) :=
∫ b

a
v

is called the length of γ.

The length of a curve does not change under reparametrization:

Theorem 1.9. Suppose γ : [a, b] → Rn and γ̃ : [c, d] → Rn are two curves such that
γ̃ = γ ◦ ϕ for some diffeomorphism ϕ : [c, d] → [a, b]. Then γ and γ̃ have the same
length.

Proof. By the substitution rule, we have

L(γ̃) =
∫ d

c
|(γ ◦ ϕ)′| =

∫ d

c
|γ′ ◦ ϕ|ϕ′ =

∫ b

a
|γ′| = L(γ).

Example 1.10.

1. For the half circle γ : [0, π]→ R2,

γ(x) =
(

cos x
sin x

)
we have |γ′| = 1 and therefore L(γ) = π.

2. The line segment γ : [a, b]→ R2,

γ(x) =
(

x
0

)
has length L(γ) = b− a.
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1.2 Length and Arclength

Definition 1.11. A rigid motion of Rn is a map g : Rn → Rn of the form

g(y) = Ay + b

where A ∈ O(n) is an orthogonal matrix and b ∈ Rn is a vector.

Rigid motions are those transformations of the ambient space Rn which preserve
distances between points. Two shapes that differ only by a rigid motion are said
to be congruent. Matching the physical intuition for curves as trajectories of a
particle moving in space, the length of a curve is invariant under rigid motions:

Theorem 1.12. Let γ : [c, d]→ Rn be a curve and g : Rn → Rn a rigid motion. Then

L(g ◦ γ) = L(γ).

Proof. For γ̃ = g ◦ γ we have γ̃ = Aγ + b and γ̃′ = Aγ′. Therefore,

L(γ̃) =
∫ d

c
|Aγ′| =

∫ d

c
|γ′| = L(γ).

Definition 1.13. Let γ : [a, b]→ Rn be a curve. Then the function

s : [a, b]→ R, s(t) := L
(

γ|[a,t]

)
=
∫ t

a
|γ′|

is called the arclength function (or arclength coordinate) of γ.

In most situations however, the arclength function s itself is less useful than its
derivative, the speed s′ = v = |γ′|. Using only v, not s, we can define the derivative
with respect to arclength:

Definition 1.14. Let γ : [a, b]→ Rn be a curve and v = |γ′| its speed. Let g : [a, b]→ Rk

be a smooth function. Then we define the derivative with respect to arclength of g as
the function

dg
ds

:=
g′

v
and the integral over arclength of g as∫ b

a
g ds :=

∫ b

a
g v.

Remark 1.15. Once we have learned about 1-forms in Section 7.2, we will be able
to interpret ds as a 1-form on [a, b] and dg

ds as quotient of 1-forms, just as it had
been the dream of Leibniz. For now, they are just Rk-valued functions on [a, b].

Theorem 1.16. The arclength fucnction s : [a, b] → R of a curve γ : [a, b] → Rn is an
orientation-preserving diffeomorphism of the interval [a, b] onto the interval [0, L] where
L = L(γ). The reparametrization

γ̃ : [0, L]→ Rn, γ̃ = γ ◦ s−1

7



Curves in Rn

has unit speed, i.e. |γ̃′| = 1.

Remark 1.17. It is common in the literature on curves to routinely assume that
the curves under consideration have unit speed, usually expressed by saying that
they are "parametrized by arclength". We will not do this here, for the following
reasons:

1. Making use of the derivative with respect to arclength defined in 1.14 gives
us the same elegant formulas as they arise in the context of unit speed curves,
without actually changing the parametrization.

2. When dealing with one-parameter families t 7→ γt of curves of varying
length, one cannot assume that all curves γt are parametrized by unit speed.
Therefore, in this situation one has to resort anyway to formulas that remain
valid for arbitrary curves.

3. In the context of surfaces, there is no obvious analog for the unit speed
parametrization of a curve. Therefore, habitual reliance on unit speed parametriza-
tions makes the theory of surfaces look more different from the theory of
curves than it actually is.

1.3. Unit Tangent and Bending Energy

Definition 1.18. For a curve γ : [a, b]→ Rn, the normalized velocity vector field

T : [a, b]→ Sn−1, T =
dγ

ds
=

γ′

|γ′|

is called the unit tangent field of γ.

Next to the length, the most important numerical quantity that can be assigned to
a curve as a whole is its bending energy:

Definition 1.19. Let T be the unit tangent field of a curve γ : [a, b]→ Rn. Then

B(γ) = 1
2

∫ b

a

〈
dT
ds

,
dT
ds

〉
ds

is called the bending energy of γ.

The bending energy is invariant under orientation-preserving reparametrization.
The name comes from the following physical picture:

Consider a rod manufactured out of some elastic material in the shape of a thin
cylinder of length L and radius ε. Then we bend the cylinder into the shape of
a curve γ of length L. While doing this, we make sure that we do not force any
twisting on the cylinder, for example we place the cylinder in a hollow tube with
shape γ, leaving it free to untwist itself within the tube (see Figure 1.4). Then, in
the limit of ε→ 0, the energy needed to bring the initially straight rod into its new
shape will be proportional to E(γ).

8



1.3 Unit Tangent and Bending Energy

Figure 1.4. A rod is bent into the shape of a curve. Then it is fixed in its position by a
porcelain case within which it can untwist while staying in shape.

In later sections we will find out what curves we obtain if we hold a curve fixed
near its end points but otherwise let it minimize bending energy (cf. Figure 2.3).
We also will find a way to deal with twisting.

9



2. Variations of Curves

Many important special curves γ arise by minimizing a certain variational energy
E(γ). For example, E(γ) could be a linear combination of length and bending
energy, in which case the curve is called an elastic curve. We are not only interested
in minima but also in unstable energetic equilibria, possibly under constraints like
fixing the curve near its end points. In this chapter we develop the basics of
Variational Calculus. In particular, this allows us to explore elastic curves. Beyond
straight lines and circles, these are the most important special curves in Rn.

2.1. One-Parameter Families of Curves

On many occasions we will have to deal not only with individual curves γ : [a, b]→
Rn but with whole one-parameter families t 7→ γt of curves.

Definition 2.1. Let gt : [a, b] → Rk be a smooth map, defined for each t ∈ [t0, t1]. Then
the one-parameter family of maps [t0, t1] 3 t 7→ gt is called smooth if the map

[a, b]× [t0, t1]→ Rk, (x, t) 7→ gt(x)

is smooth (as always, in the sense of Remark 1.2).

Given a smooth one-parameter family

t 7→ (gt : [a, b]→ Rk), t ∈ [t0, t1]

of maps, also
t 7→ g′t

is a smooth one-parameter family of maps g′t : [a, b] → Rk. The same holds for
t 7→ .gt where .gt : [a, b]→ Rk is defined as

.gt(x) :=
d

dτ

∣∣∣∣
τ=t

gτ(x).

The dot and prime derivatives are just partial derivatives, so they commute by
Schwarz’s theorem:

Theorem 2.2. For a smooth one-parameter family of maps t 7→ gt, where gt : [a, b]→ Rk

10



2.1 One-Parameter Families of Curves

t0 t10

C∞([a, b], Rn)
M .

γ

γt0

γt1

γ0 = γ

Figure 2.1. A variation of a curve γ can be interpreted as a map into the space M of all
curves γ : [a, b]→ Rn.

we have (
g′
).

= (
.g)′.

In our context, one-parameter families of maps will mainly arise as variations of a
single map g : [a, b]→ Rk:

Definition 2.3. A smooth one-parameter family t 7→ gt of maps from M to Rk is called a
variation of a smooth map g : M→ Rk if t0 < 0 < t1 and g0 = g. In this context, we
will also use the notation

.g :=
.g0.

Our main interest is in variations of curves γ : [a, b] → Rn (and the associated
variations of derived quantities like the unit tangent or the length):

Definition 2.4. For a variation t 7→ γt of a curve γ : [a, b]→ Rn the map

Y :=
.
γ : [a, b]→ Rn

is called its variational vector field.

Suppose we have a smooth one-parameter-family t 7→ γt of curves γt : [a, b]→ Rn,
meaning that γ′t(x) 6= 0 for all x ∈ [a, b] and all t ∈ [t0, t1]. Then we can think of
this family (just for the purpose of intuition, no need for further formal definitions)
as a smooth map from [a, b] into in the spaceM of all curves γ : [a, b] → Rn. The
vector .

γt ∈ C∞([a, b], Rn) can then be thought of as the “velocity vector” of that
map at time t (see Figure 2.1).

Remark 2.5. Throughout this whole book we will treat C∞ ([a, b], Rk) (and its
analog in the context of surfaces) only as a vector space, based on notions from
Linear Algebra. So, for example, we will indeed use the Euclidean inner product

〈〈g, h〉〉 :=
∫ b

a
〈g, h〉ds

but we will never put any topology on C∞([a, b], Rk). This means that you will
get confused if you try to interpret what we say based on notions from Functional
Analysis. These notions have important applications in Differential Geometry, but
they are not used at all in this book.
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Variations of Curves

2.2. Variation of Length and Bending Energy

Given a variation t 7→ γt of a curve γ : [a, b] → Rn, we want to determine
d
dt

∣∣∣
t=0
L(γt) and d

dt

∣∣∣
t=0
E(γt). We first compute the time derivative of the inte-

grands of these integrals:

Theorem 2.6. Let t 7→ γt be a variation with variational vector field Y : [a, b]→ Rn of a
curve γ : [a, b] → Rn with speed v = ds and unit tangent field T. Then the variation of
ds is given by

.
ds =

〈
dY
ds

, T
〉

ds.

Proof. Differentiating the equation vt = |γ′t| with respect to t at t = 0 we obtain

.v =
〈 .
γ′, γ′〉

v
=

〈
Y′

v
, γ′
〉

=

〈
dY
ds

, T
〉

ds.

Before we proceed to compute the rate of change for the bending energy integrand,
note that (unlike the situation for partial derivatives), for a one-parameter family
t 7→ γt the derivative with respect to t does not commute with the derivative with
respect to arclength:

Theorem 2.7. Let t 7→ γt be a variation with variational vector field Y : [a, b] → Rn of
a curve γ : [a, b] → Rn with speed v = ds. Then for any one-parameter family t 7→ gt of
functions gt : [a, b]→ Rk with g0 =: g we have(

dg
ds

).
=

d .g
ds
−
〈

dY
ds

, T
〉

dg
ds

.

Proof. By Theorem 2.6,

(
dg
ds

).
=

(
g′

v

).
=

(g′).

v
−

〈
dY
ds , T

〉
v

v2 g′ =
d .g
ds
−
〈

dY
ds

, T
〉

dg
ds

.

Theorem 2.8. Given a variation t 7→ γt with variational vector field Y : [a, b] → Rn of
a curve γ : [a, b] → Rn with speed v = ds, the corresponding variation of the bending
energy density is(

1
2

〈
dT
ds

,
dT
ds

〉
ds
).

=

(〈
d2Y
ds2 ,

dT
ds

〉
− 3

2

〈
dY
ds

, T
〉〈

dT
ds

,
dT
ds

〉)
ds.

Proof. Applying Theorem 2.7 to g = γ we obtain

.
T =

dY
ds
−
〈

dY
ds

, T
〉

T.

12



2.2 Variation of Length and Bending Energy

Using this, Theorem 2.6, the fact that 〈T, T〉 = 1 implies
〈

dT
ds , T

〉
= 0 and Theorem

2.7 with g = T we obtain(
1
2

〈
dT
ds

,
dT
ds

〉
ds
).

=

〈(
dT
ds

).
,

dT
ds

〉
ds +

1
2

〈
dT
ds

,
dT
ds

〉〈
dY
ds

, T
〉

ds

=

〈
d

.
T

ds
−
〈

dY
ds

, T
〉

dT
ds

,
dT
ds

〉
ds +

1
2

〈
dT
ds

,
dT
ds

〉〈
dY
ds

, T
〉

ds

=

〈
d

.
T

ds
,

dT
ds

〉
ds− 1

2

〈
dT
ds

,
dT
ds

〉〈
dY
ds

, T
〉

ds

=

〈
d2Y
ds2 −

〈
dY
ds

, T
〉

dT
ds

,
dT
ds

〉
ds− 1

2

〈
dT
ds

,
dT
ds

〉〈
dY
ds

, T
〉

ds

=

〈
d2Y
ds2 ,

dT
ds

〉
ds− 3

2

〈
dT
ds

,
dT
ds

〉〈
dY
ds

, T
〉

ds

The proof of the following theorem is based on applying integration by parts
repeatedly.

Theorem 2.9. Given a variation t 7→ γt with variational vector field Y : [a, b]→ Rn of a
curve γ : [a, b]→ Rn, the corresponding variations of the length and bending energy are

d
dt

∣∣∣∣
t=0
L(γt) = 〈Y, T〉|ba −

∫ b

a

〈
Y,

dT
ds

〉
ds

d
dt

∣∣∣∣
t=0
B(γt) =

(〈
dY
ds

,
dT
ds

〉
−
〈

Y,
d2T
ds2 +

3
2

〈
dT
ds

,
dT
ds

〉
T
〉)∣∣∣∣b

a

+
∫ b

a

(〈
Y,

d3T
ds3 + 3

〈
dT
ds

,
d2T
ds2

〉
T +

3
2

〈
dT
ds

,
dT
ds

〉
dT
ds

〉)
ds.

Proof. By Theorem 2.8,

d
dt

∣∣∣∣
t=0
L(γt) =

∫ b

a

.
ds

=
∫ b

a

〈
dY
ds

, T
〉

ds

=
∫ b

a

(
d
ds
〈Y, T〉 −

〈
Y,

dT
ds

〉)
ds

= 〈Y, T〉|ba −
∫ b

a

〈
Y,

dT
ds

〉
ds

d
dt

∣∣∣∣
t=0
B(γt) =

∫ b

a

(
1
2

〈
dT
ds

,
dT
ds

〉
ds
).

=
∫ b

a

(〈
d2Y
ds2 ,

dT
ds

〉
− 3

2

〈
dY
ds

, T
〉〈

dT
ds

,
dT
ds

〉)
ds

13



Variations of Curves

=
∫ b

a

(
d
ds

〈
dY
ds

,
dT
ds

〉
−
〈

dY
ds

,
d2T
ds2

〉
− 3

2
d
ds

(
〈Y, T〉

〈
dT
ds

,
dT
ds

〉)
+

3
2

〈
Y,

dT
ds

〉〈
dT
ds

,
dT
ds

〉
+ 3〈Y, T〉

〈
dT
ds

,
d2T
ds2

〉)
ds

=
∫ b

a

d
ds

(〈
dY
ds

,
dT
ds

〉
−
〈

Y,
d2T
ds2

〉
− 3

2
〈Y, T〉

〈
dT
ds

,
dT
ds

〉)
ds

+
∫ b

a

(〈
Y,

d3T
ds3 + 3

〈
dT
ds

,
d2T
ds2

〉
T +

3
2

〈
dT
ds

,
dT
ds

〉
dT
ds

〉)
ds

=

(〈
dY
ds

,
dT
ds

〉
−
〈

Y,
d2T
ds2 +

3
2

〈
dT
ds

,
dT
ds

〉
T
〉)∣∣∣∣b

a

+
∫ b

a

(〈
Y,

d3T
ds3 + 3

〈
dT
ds

,
d2T
ds2

〉
T +

3
2

〈
dT
ds

,
dT
ds

〉
dT
ds

〉)
ds.

2.3. Critical Points of Length and Bending Energy

Variations of curves (as defined in Definition 2.3) are needed in order to define
and determine those curves that represent equilibria of geometrically interesting
variational functionals. Functionals are certain real-valued functions on the space
M of all curves γ : [a, b]→ Rn, that was already introduced in Section 2.1.

Definition 2.10. Suppose we have a way to assign to each curve γ : [a, b] → Rn a real
number E(γ). Then E is called a smooth functional if for every smooth one-parameter
family

t 7→ γt, t ∈ [t0, t1]

of curves γt : [a, b]→ Rn the function

[t0, t1]→ R, t 7→ E(γt)

is smooth.

In many circumstances, we want to consider only variations of γ : [a, b]→ Rn that
keep the curve fixed near the boundary of the interval [a, b] (see Figure 2.2).

Definition 2.11. Let γ : [a, b]→ Rn a curve. Then a variation

t 7→ γt, t ∈ [t0, t1]

of γ is said to have support in the interior of [a, b] if there is ε > 0 such that for all
x ∈ [a, a + ε] ∪ [b− ε, b] we have

γt(x) = γ(x) for all t ∈ [t0, t1].

Now we can make precise what we meant by an equilibrium of a variational
energy:

Definition 2.12. Let E be a smooth functional on the space of curves γ : [a, b] → Rn.
Then a curve γ : [a, b]→ Rn is called a critical point of E if for all variations t 7→ γt of

14



2.3 Critical Points of Length and Bending Energy

γ

γt

Figure 2.2. A variation γt of a curve γ with support in the interior.

γ with support in the interior of [a, b] we have

d
dt

∣∣∣∣
t=0
E(γt) = 0.

We denote the space of all functions Y : [a, b]→ Rn with support in the interior of
[a, b] (Definition A.4 ) by

C∞
0 ((a, b), Rn) =

{
Y :[a, b]→ Rn smooth

∣∣ Y|[a,a+δ]∪[b−δ,b] = 0 for some δ > 0
}

.

Theorem 2.13. For every vector field Y : [a, b]→ Rn along a curve γ : [a, b]→ Rn there
is a variation t 7→ γt with variational vector field Y. If Y has support in the interior of
[a, b], then also the variation t 7→ γt can be chosen in such a way that it has support in
the interior of [a, b].

Proof. The proof of Theorem 2.13 is left as an exercise.

Remark 2.14. In the case of the length functional, instead of using variations with
support in the interior we could have used variations that fix both end points. For
other variational problems (that involve higher derivative), additional derivatives
(not only the function value) of γ would have to be clamped to fixed values at the
end points. On the other hand, variations with support in the interior will work
all the time, with equivalent results.

Theorem 2.15 (Fundamental Lemma of the Calculus of Variations). On the vector
space C∞ ([a, b], Rn) equipped with the inner product

〈〈 f , g〉〉 :=
∫ b

a
〈 f , g〉

only the zero vector is in the orthogonal complement of C∞
0 ((a, b), Rn):

C∞
0 ((a, b), Rn)⊥ = {0}.

Proof. Suppose that f ∈ C∞ ([a, b], Rn) would be non-zero but in C∞
0 ((a, b), Rn)⊥.

Then there would be x0 ∈ [a, b] such that f (x0) 6= 0. Choose δ > 0 such that
[x0 − δ, x0 + δ] ⊂ (a, b) and 〈 f (x), f (x0)〉 > 0 for all x ∈ [x0 − δ, x0 + δ]. Construct

15



Variations of Curves

a smooth bump function (cf. Appendix A.2)

g ∈ C∞
0 ((x0 − δ, x0 + δ), Rn) ⊂ C∞

0 ((a, b), Rn)

such that g ≥ 0 and g(x0) = 1. Then 〈 f , g〉 6= 0, which implies f /∈ C∞
0 ((a, b), Rn)⊥,

a contradiction.

Now we are in the position to determine the critical points of the length functional:

Theorem 2.16. A curve γ : [a, b] → Rn is a critical point of the length functional L
if and only if its unit tangent field T : [a, b] → Rn is constant, i.e. if γ parametrizes a
straight line segment.

Proof. By Theorem 2.9 and 2.15, γ is a critical point of L if and only if for all
Y ∈ C∞

0 ((a, b), Rn) we have 〈〈
Y,

dT
ds

〉〉
= 0.

By Theorem 2.15 this is the case if and only if dT
ds = 0.

Definition 2.17. A curve γ : [a, b] → Rn is called a free elastic curve if it is a critical
point of the bending energy functional B.

An almost identical proof as the one of Theorem 2.16 gives us

Theorem 2.18. A curve γ : [a, b] → Rn is a free elastic curve if and only if its unit
tangent field T : [a, b]→ Rn satisfies

d3T
ds3 + 3

〈
dT
ds

,
d2T
ds2

〉
T +

3
2

〈
dT
ds

,
dT
ds

〉
dT
ds

= 0

or equivalently

d4γ

ds3 + 3
〈

d2γ

ds2 ,
d3γ

ds3

〉
dγ

ds
+

3
2

〈
d2γ

ds2 ,
d2γ

ds2

〉
d2γ

ds2 = 0.

Solving the fourth order differential equation for γ that appears in Theorem 2.18
with suitable initial values will give us unit speed parametrizations of free elastic
curves. In the next chapter we will explore in more detail the geometric conse-
quences of this differential equation.

2.4. Constrained Variation

In the context of many variational problems that arise in applications, general
variations might violate some constraints that are imposed by the nature of the
problem at hand. For example, thin elastic wires (for most practical purposes)
have a fixed length. This means that here we should minimize bending energy
only among those curves (held fixed near their boundary) that have a prescribed
length.

16



2.4 Constrained Variation

This kind of problem is known under the name of optimization under constraints.
Here we will work with a definition of a critical point under constraints that is
slightly stronger than the standard one. The usual definition would replace the
condition d

dt

∣∣∣
t=0
Ẽ = 0 by the requirement that Ẽ(γt) is independent of t.

Definition 2.19. Let E , Ẽ be two smooth functionals on the space of all curves γ̃ : [a, b]→
Rn. Then a curve γ : [a, b] → Rn is called a critical point of E under the constraint of
fixed Ẽ , if for all variations t 7→ γt of γ with support in the interior of [a, b]

d
dt

∣∣∣∣
t=0
Ẽ = 0

implies
d
dt

∣∣∣∣
t=0
E = 0.

Both for the length functional E = L and for the bending energy E = B we
know (Theorem 2.8 and 2.9) how to express the infinitesimal variation of E that
corresponds to a variational vector field Y : [a, b]→ Rn with support in the interior
of [a, b] as an integral

d
dt

∣∣∣∣
t=0
E =

∫ b

a
〈Y, Gγ〉

for some smooth map Gγ : [a, b] → Rn. If a formula like the one above holds, Gγ

is called the gradient of the energy E at γ.

Theorem 2.20. Let E , Ẽ be two smooth functionals on the space of all curves γ̃ : [a, b]→
Rn. Suppose we have a way to associate to each curve γ : [a, b]→ Rn smooth maps

Gγ, G̃γ : [a, b]→ Rn

such that for all variations t 7→ γt of γ with support in the interior of [a, b] we have

d
dt

∣∣∣∣
t=0
E =

∫ b

a
〈 .
γ, Gγ〉

d
dt

∣∣∣∣
t=0
Ẽ =

∫ b

a
〈 .
γ, G̃γ〉.

Then γ is a critical point of E under the constraint of fixed Ẽ if and only if there is a
constant λ ∈ R such that

Gγ = λG̃γ.

λ is called a Lagrange multiplier for the constraint of fixed Ẽ .

Proof. We apply Theorem 2.21 below to the case where H = C∞ ([a, b], Rn), V =
C∞

0 ((a, b), Rn) and U = RG̃γ. Then γ is a critical point of E under the constraint
of fixed Ẽ if and only if Gγ is orthogonal to all Y that are simultaneously in V and
orthogonal to U, i.e

Gγ ∈ (V ∩U⊥)⊥ = U = RG̃γ.

17



Variations of Curves

The theorem below is pure linear algebra, no Functional Analysis is involved.
The formulation is such that it can also be applied to a situation where there are
constraint functionals E1, . . . , Ek instead of a single functional Ẽ .

Theorem 2.21. Let H be a (possibly infinite dimensional) vector space with inner product
〈., .〉. Let V ⊂ H be a subspace such that V⊥ = {0} and U ⊂ H finite dimensional. Then

(U⊥ ∩V)⊥ = U.

Proof. As for all x ∈ U⊥ ∩ V it holds that 〈u, x〉 = 0 for all u ∈ U, the inclusion
U ⊂ (U⊥ ∩ V)⊥ is immediate. In order to show that also (U⊥ ∩ V)⊥ ⊂ U we
choose an orthonormal basis {u1, . . . , un} of U and define the map

P : H → U, x 7→
n

∑
i=1
〈x, ui〉ui.

It is not hard to check that P defines an orthogonal projection of H onto U, i.e.
P2 = P, P∗ = P and im P = U. Now for u ∈ U and h ∈ H it holds

〈u, h〉 = 〈P(u), h〉 = 〈u, P(h)〉.

Therefore we have U ∩ P(V)⊥ ⊂ V⊥ = {0}, hence P(V) = U. So there are
v1, . . . , vn ∈ V such that P(vi) = ui. We now define the map

Q : H → V, x 7→
n

∑
i=1
〈x, vi〉vi

which is symmetric (i.e. Q∗ = Q) and satisfies im Q ⊂ V and P ◦ Q
∣∣
U = idU .

Therefore, for x ∈ (U⊥ ∩V)⊥ and v ∈ V:

〈x− P ◦Q(x), v〉 = 〈x, v−Q ◦ P(v)〉 = 0,

since v − Q ◦ P(v) ∈ U⊥ ∩ V. Thus x − P ◦ Q(x) ∈ V⊥ = {0} and therefore
x = P ◦Q(x) ∈ U.

Definition 2.22. A curve γ : [a, b]→ Rn is called a torsion-free elastic curve if it is a
critical point of bending energy under the constraint of fixed length.

Theorems 2.8, 2.9 and 2.20 together allow us to characterize torsion-free elastic
curves by a differential equation:

Theorem 2.23. A curve γ : [a, b] → Rn is a torsion-free elastic curve if and only if there
is a constant λ ∈ R such that its unit tangent field satisfies

d3T
ds3 + 3

〈
dT
ds

,
d2T
ds2

〉
T +

3
2

〈
dT
ds

,
dT
ds

〉
dT
ds
− λ

dT
ds

= 0

or, equivalently,

d4γ

ds4 + 3
〈

d2γ

ds2 ,
d3γ

ds3

〉
dγ

ds
+

3
2

〈
d2γ

ds2 ,
d2γ

ds2

〉
d2γ

ds2 − λ
d2γ

ds2 = 0.
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2.5 Torsion-Free Elastic Curves and the Pendulum Equation

Figure 2.3. Elastic curves are everywhere.

The constant λ is called the tension of γ.

2.5. Torsion-Free Elastic Curves and the Pendulum Equation

By Theorem 1.16 every curve in Rn admits a reparametrization γ : [0, L] → Rn

with unit speed. Then for any function g : [0, L] → Rk the derivative with respect
to arclength is just the ordinary derivative:

Theorem 2.24. A curve γ : [0, L] → Rn with unit speed is torsion-free elastic with
tension λ if and only if its unit tangent field T : [a, b] → Sn−1 solves the equation of
motion

T′′ − 〈T′′, T〉T = a− 〈a, T〉T

of a spherical pendulum with unit mass and some gravity vector a ∈ Rn and λ equals
the total energy of the pendulum:

λ =
1
2
〈T′, T′〉 − 〈a, T〉.

Proof. Let γ : [0, L] → Rn be a torsion-free elastic curve with tension λ and with
unit speed. Then, by Theorem 2.23

0 = T′′′ + 3〈T′, T′′〉T +
3
2
〈T′, T′〉T′ − λT′ =

(
T′′ +

3
2
〈T′, T′〉T − λT

)′
,

i.e. if there is a constant vector a ∈ Rn such that

T′′ +
3
2
〈T′, T′〉T − λT = a.

Looking at the component orthogonal to T on both sides of this equation gives
us the first of the two equations that we want to prove. Taking the scalar product
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Variations of Curves

Figure 2.4. Trajectories of a pendulum (drawn in blue color). Below each of these trajecto-
ries the corresponding torsion-free elastic curve is shown.
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2.5 Torsion-Free Elastic Curves and the Pendulum Equation

Figure 2.5. Trajectory of a pendulum on S2 (drawn in blue color), together with the corre-
sponding torsion-free elastic curve in R3.

with T and using

0 =
1
2
〈T, T〉′′ = 〈T′′, T〉+ 〈T′, T′〉

we obtain the second equation. Conversely, if T : [0, L] → Sn−1 solves the pendu-
lum equation

T′′ − 〈T′′, T〉T = a− 〈a, T〉T,

then it is easy to verify that the total energy λ defined by

λ =
1
2
〈T′, T′〉 − 〈a, T〉

is constant and
T′′ +

3
2
〈T′, T′〉T − λT = a.

Figure 2.4 shows planar torsion-free elastic curves that lie in a plane. They arise
from pendulum motion on a circle, whereas a pendulum motion on S2 gives a
torsion-free elastic curve in R3 as seen in Figure 2.5.
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3. Curves in R2

Curves in the plane R2 are special in several respects: For a closed plane curve γ
an enclosed area A(γ) can be defined, providing another geometric functional in
addition to length and bending energy. Unlike the situation in higher dimensions,
the geometry of an arbitrary unit speed plane curve γ : [a, b] → R2 is captured in
a smooth real-valued curvature function κ : [a, b]→ R. We prove our first theorem
in Global Differential Geometry: The integral of the curvature of a closed plane
curve is 2πn where n is an integer, called the tangent winding number of γ. Two
closed plane curves can be smoothly deformed into each other if and only if they
have the same tangent winding number.

3.1. Plane Curves

The case of curves γ : [a, b]→ R2 is special because R2 comes with a distinguished
linear map J : R2 → R2, the 90◦-rotation in the counterclockwise (positive) direc-
tion:

J : R2 → R2, J
(

x
y

)
=

(
0 −1
1 0

)(
x
y

)
Here are some properties of J that are easy to check: We have J2 = −I and J is
orthogonal as well as skew-adjoint, i.e. for all vectors X, Y ∈ R2 we have

〈JX, JY〉 = 〈X, Y〉
〈JX, Y〉 = −〈X, JY〉.

Furthermore, the determinant function det on R2 can be expressed in terms of J
and the scalar product:

〈JX, Y〉 = det(X, Y).

If γ : [a, b] → R2 is a curve and T : [a, b] → R2 is its unit tangent, then dT
ds is

orthogonal to T and therefore proportional to JT:

Definition 3.1. Let γ : [a, b]→ R2 be a curve and T : [a, b]→ R2 its unit tangent. Then
the unique function κ : [a, b]→ R such that

dT
ds

= κ JT
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3.1 Plane Curves

is called the curvature of γ.

More explicitly,

κ =

〈
JT,

dT
ds

〉
=

〈
1
v

Jγ′,
1
v

(
1
v

γ′
)′〉

=
det(γ′, γ′′)

|γ′|3 .

The curvature κ of a straight line segment vanishes and a circular arc

γ : [a, b]→ R2, x 7→
(

r cos x
r sin x

)
of radius r has constant curvature κ = 1

r . If we restrict attention to unit speed
curves γ : [0, L] → R2, the curvature function κ : [0, L] → R determines γ up to
orientation-preserving congruence:

Theorem 3.2 (Fundamental Theorem of Plane Curves).

1. For every smooth function κ : [0, L]→ R there is a unit speed curve γ : [0, L]→ R2

with curvature κ.

2. If γ, γ̃ : [0, L]→ R2 are unit speed curves with the same curvature function κ, then
there is an orthogonal (2× 2)-matrix A with det A = 1 and a vector b ∈ R2 such
that

γ̃ = Aγ + b.

Proof. For (ii), denote by T, T̃ the unit tangent fields of γ and γ̃ and take for A the
orthogonal (2× 2)-matrix A with determinant one for which AT(0) = T̃(0). Then
both T̃ and

T̂ := AT

solve the linear initial value problem

Y(0) = T̃(0)
Y′ = κ JY

and therefore, by the uniqueness part of the Picard-Lindelöf theorem, we must
have T̂ = T̃. Then

(γ̃− Aγ)′ = κ J(T̃ − T̂) = 0,

which proves (ii). For (i), define α : [0, L]→ R and T, γ : [0, L]→ R2 by

α(x) :=
∫ x

0
κ

T :=
(

cos α
sin α

)
γ(x) :=

∫ x

0
T.

Then |T| = 1 and γ′ = T, so γ is a curve and T is its unit tangent field. Further-
more, T′ = κ JT and therefore γ has curvature κ.

23



Curves in R2

0 0

S 1 0
1

γ
a b

Figure 3.1. For the curve on the right, the position vector from the origin to γ(x) covers
some areas multiple times.

3.2. Area of a Plane Curve

Let γ : [a, b]→ R2 be a curve such that det(γ, γ′) > 0 and the map

f : (0, 1]× [a, b]→ R2, f (t, x) = tγ(x)

is a bijective map onto a subset S ⊂ R2. Then the derivative f ′(t, x) at the point
(t, x) ∈ (0, 1)× [a, b] satisfies

det f ′(t, x) = t det
(
γ(x), γ′(x)

)
> 0

and using the transformation formula of integrals it is not difficult to show that
the area of S is given by

area(S) =
∫

S
1 =

∫
f ((0,1]×[a,b])

=
∫ b

a

∫ 1

0
det f ′ =

1
2

∫ b

a
det
(
γ, γ′

)
.

For the curve γ shown on the left of Figure 3.1, the above formula correctly yields
the area enclosed by γ and the line segments from the origin to γ(a) and γ(b).
It therefore seems reasonable to use this formula in order to define an area for
arbitrary curves γ : [a, b]→ R2:

Definition 3.3. The sector area of a curve γ : [a, b]→ R2 is defined as

A(γ) = 1
2

∫ b

a
det
(
γ, γ′

)
.

The curve on the right of Figure 3.1 illustrates the consequences of this definition.
There the position vector from the origin to γ(x) covers some areas multiple times.
However, for some of these times (where γ, as seen from the origin, moves clock-
wise) the contribution to the covered area, as it is computed by the above formula,
is negative.

The sector area A(γ) depends on the origin in R2, which means that it changes if
we apply a translation p 7→ p− v to γ. Therefore, at first sight the sector area does
not look like a good geometric invariant for curves. However, this dependence dis-
appears as soon as we restrict attention to closed curves, or consider differences
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3.2 Area of a Plane Curve

γ2

γ1

Figure 3.2. Independent of the choice of origin in R2, the sector area of the curve on the
left of the above picture equals the area of the blue region minus the area of
the orange region. Similarly, the difference of the sector areas of the two curves
on the right equals the area of the blue region between them.

between the sector areas of curves that share the same endpoints (see Figure 3.2):

Let v ∈ R2 be a vector and γ : [a, b] → R2 a curve. Then we define a modified
sector area Av(γ) as the sector area of γ translated by the vector v:

Av(γ) := A(γ + v).

Theorem 3.4. Let γ : [a, b] → R2 be a closed curve and γ1, γ2 : [a, b] → R2 two curves
with γ1(a) = γ2(a) and γ1(b) = γ2(b). Then, for any vector v ∈ R2 we have

Av(γ) = A(γ)

Av(γ2)−Av(γ1) = A(γ2)−A(γ1).

Proof. Because γ is closed, we have

Av(γ)−A(γ) =
1
2

∫ b

a
det
(
γ + v, γ′

)
− 1

2

∫ b

a
det
(
γ, γ′

)
=

1
2

∫ b

a
det
(
v, γ′

)
=

1
2

∫ b

a
det(v, γ)′

=
1
2

det(v, γ)|ba
= 0.

By the same arguments we obtain

(Av(γ2)−Av(γ1))− (A(γ2)−A(γ1)) =
1
2

∫ b

a
det(v, γ2)

′ − 1
2

∫ b

a
det(v, γ1)

′

= det(v, γ2 − γ1)|ba
= 0.
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Curves in R2

In particular, we expect that for variations with support in the interior of [a, b] of
a curve γ : [a, b] → R2, the corresponding variation of sector area is independent
of the choice of origin:

Theorem 3.5. Let t 7→ γt be a variation with support in the interior of [a, b] of a curve
γ : [a, b]→ R2. Then

d
dt

∣∣∣∣
t=0
A(γt) = −

∫ b

a
〈Y, Jγ′〉.

Proof. Since Y vanishes at the endpoints, we have

d
dt

∣∣∣∣
t=0
A(γt) =

1
2

∫ b

a
det
(
Y, γ′

)
+

1
2

∫ b

a
det
(
γ,
(
γ′
).)

=
1
2

∫ b

a
det
(
Y, γ′

)
+

1
2

∫ b

a
det
(
γ, Y′

)
=

1
2

∫ b

a
det
(
Y, γ′

)
− 1

2

∫ b

a
det
(
γ′, Y

)
=
∫ b

a
det
(
Y, γ′

)
= −

∫ b

a
〈Y, Jγ′〉.

As a consequence, the sector area functional by itself does not have any critical
points. On the other hand, minimizing length among all curves with the same
endpoints and the same sector area is possible:

Theorem 3.6. A curve γ : [a, b]→ R2 is a critical point of length under the constraint of
fixed sector area if and only if its curvature κ is constant, i.e. if and only if its image lies
on a circle or a straight line.

Proof. By Theorems 2.9 and 2.20 γ is a critical point of length under the constraint
of fixed sector area if and only if there is a constant λ ∈ R such that

λ(−Jγ′) = −T′ = −κ Jγ′.

3.3. Planar Elastic Curves

For a unit speed curve γ : [0, L]→ R2 with unit tangent T and curvature κ we have

T′ = κ JT

T′′ = −κ2T + κ′ JT

T′′′ = −3κκ′T + (κ′′ − κ3)JT
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3.3 Planar Elastic Curves

V − E V − E V − E

κ κ κ

Figure 3.3. The potential wells for various values of λ. For a solution κ of the equation
of motion, V(κ) − E is always non-positive. The values of κ that satisfy this
condition are indicated in blue.

The bending energy of a plane curve is also called its total squared curvature.
This is because for a unit speed plane curve γ as above we have

B(γ) = 1
2

∫ b

a
〈T′, T′〉 ds =

1
2

∫ b

a
κ2 ds.

By Theorem 2.23, γ is an elastic curve with tension λ if and only if

0 = T′′′ + 3〈T′, T′′〉T +
3
2
〈T′, T′〉T′ − λT′

= (κ′′ +
κ3

2
+ λκ)JT

which means

κ′′ +
κ3

2
+ λκ = 0.

This differential equation can be interpreted as the equation of motion

κ′′ +
∂V
∂κ

(κ) = 0

for a particle with unit mass moving on the real line subject to the potential energy

V(κ) = 1
8 κ4 + λ

2 κ2.

As expected (and as is easy to verify by taking the derivative) the total energy

E :=
1
2
(κ′)2 + V(κ)

is constant. In particular, we see that along for each solution the potential energy
is bounded from above by E. In Figure 3.3 we see examples that should be com-
pared to the shapes of the corresponding curves that were shown in Section 2.5.

If we look for critical points of the total squared curvature while constraining not
only the length but also the sector area, by Theorem 3.6 we arrive at the differential
equation for κ:
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Figure 3.4. A curve which is a critical points of the total squared curvature with con-
strained length and the sector area.

κ′′ +
κ3

2
+ λκ + µκ = 0.

The closed curve in Figure 3.4 is such a critical point:

3.4. Tangent Winding Number

Definition 3.7. For a curve γ : [a, b]→ R2 with curvature κ the integral∫ b

a
κ ds

is called the total curvature of γ.

In this section we will prove that for a closed curve in R2 the total curvature is an
integer multiple of 2π:

Theorem 3.8. If γ : [a, b] → R2 is a closed curve with curvature κ, then there is an
integer n ∈ Z such that ∫ b

a
κ ds = 2πn.

n is called the tangent winding number of γ.

Proof. Define α : [a, b]→ R by

α(x) := α0 +
∫ x

a
κ ds

where α0 is chosen in such a way that

T(a) = (cos α0, sin α0).

As in the proof of Theorem 3.2, we conclude

T = (cos α, sin α).
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3.5 Regular Homotopy

Since γ is closed, we have T(b) = T(a), which means

(cos α(b), sin α(b)) = (cos α(a), sin α(a)).

Therefore, there is an integer n ∈ Z such that∫ b

a
κ ds = α(b)− α(a) = 2πn.

As is clear from the above proof, the tangent winding number counts how often
the unit tangent T(x) turns around the unit circle S1 as x runs from a to b (see
Figure 3.5). Figure 3.7 shows that all integers n ∈ Z arise as the tangent winding
number of some curve in R2.

Figure 3.5. The path on S1 of the unit tangent can be visualized more clearly if it is drawn
slightly outside of the unit circle.

3.5. Regular Homotopy

The following two sections will deal with the question: “Given two curves γ, γ̃
in Rn, is it always possible to smoothly deform γ into γ̃ through intermediate
curves?” For convenience, we assume that γ and γ̃ have the same parameter
interval.

Definition 3.9. A regular homotopy between two curves γ, γ̃ : [a, b] → Rn is a one-
parameter family t 7→ γt of curves γt : [a, b] → Rn, defined for t ∈ [0, 1], such that
γ0 = γ and γ1 = γ̃. If there exists such a regular homotopy, γ and γ̃ are called regularly
homotopic.

Regular homotopy is an equivalence relation on the set of curves γ : [a, b] → Rn:
Reflexivity and symmetry are easy and for transitivity we make use (see Appendix
A.2) of a smooth function h : [0, 1]→ [0, 1] such that

h(x) =

{
0, for x ∈ [0, ε]

1, for x ∈ [1− ε, 1].

If now t 7→ γt is a regular homotopy between γ and γ̂ and t 7→ γ̃t a regular
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homotopy between γ̂ and γ̃ then

t 7→
{

γh(2t), for t ∈
[
0, 1

2

]
γ̃h(2t−1), for t ∈

( 1
2 , 1
]

is a regular homotopy from γ to γ̃. One can think of regular homotopies as smooth
paths in the space of all curves γ : [a, b] → Rn, the equivalence classes under
regular homotopy are the path-connected components of this space. Indeed, this
space is connected, as we will prove below for the case n = 2. Using the curvature
function for curves in Rn that will be introduced in Section 4.2, it would not be
difficult to modify the proof and show that any two curves γ : [a, b] → Rn are
regularly homotopic.

Theorem 3.10. Any two curves γ, γ̃ : [a, b]→ R2 are regularly homotopic.

Proof. By transitivity, we can construct the desired regular homotopy in steps. As
a first step we use a regular homotopy to achieve that γ has length b− a:

γt =

(
1− t + t

b− a
L(γ)

)
γ

Therefore, without loss of generality we may assume that the original curve γ
already has length b-a. Then we can use a regular homotopy to achieve that γ has
unit speed: using the arclength function s : [a, b]→ [0, L] of γ (Definition 1.13), we
define a regular homotopy

γt(x) = γ((1− t)x + t(a + s(x))).

So we can assume without loss of generality that γ has unit speed. Now we use
a regular homotopy in order to translate the starting point of γ to the origin and
achieve γ(a) = 0:

γt = (1− t)γ(a) + γ

Similarly, we can rotate γ to achieve that the unit tangent

T(a) =
(

cos β
sin β

)
of γ at the starting point becomes the first standard basis vector e1 of R2:

γt =

(
cos((1− t)β) sin((1− t)β)
− sin((1− t)β) cos((1− t)β)

)
γ

We apply the same normalizations to γ̃. Now we consider the linear interpolation

κt = (1− t)κ + tκ̃

between the curvature functions κ of γ and κ̃ of γ̃ and define the desired regular
homotopy from γ to γ̃ by

αt(x) :=
∫ x

0
κt
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3.6 Whitney-Graustein Theorem

Tt :=
(

cos αt
sin αt

)

γt(x) :=
∫ x

0
Tt.

3.6. Whitney-Graustein Theorem

Definition 3.11. A regular homotopy through closed curves between two closed
curves γ, γ̃ : [a, b] → R2 is a regular homotopy t 7→ γt between γ and γ̃ such that
for all t ∈ [0, 1] the curve γt is closed. If there exists such a regular homotopy, γ and γ̃
are called regularly homotopic through closed curves.

Let us start with an example that will be needed below. Recall that γ : [a, b]→ Rn

is called closed if γ = γ̂|[a,b] for some periodic smooth map γ̂ : R → Rn with
period b − a. A simple way to make a new closed curve γ̃ : [a, b] :→ Rn out of
such a curve γ is by a so-called parameter shift, which depends on a number
τ ∈ R:

γ̃(x) := γ̂(x− τ).

This closed curve γ̃ is regularly homotopic through closed curves to γ, a suitable
regular homotopy being t 7→ γt with

γt(x) = γ̂(x− tτ).

Like regular homotopy in Section 3.5, regular homotopy as closed curves is an
equivalence relation on the set of closed curves in R2 and the equivalence classes
can be thought of as the connected components of this space. This time however,
the whole space is not connected:

Theorem 3.12 (Whitney and Graustein, 1932). Two closed curves γ, γ̃ : [a, b] → R2

are regularly homotopic through closed curves if and only if they have the same tangent
winding number.

In Figure 3.9 we see an example of a regular homotopy through closed curves.

Proof. Suppose there is a regular homotopy as closed curves t 7→ γt between γ
and γ̃. Denote by dst = |γ′t| and κt the speed and the curvature of γt. Then the
tangent winding number

nt =
1

2π

∫ b

a
κt dst

is an integer for all t ∈ [0, 1] and it depends continuously on t. Therefore it is
constant and n0 = n1 means that γ and γ̃ they have the same tangent winding
number.
Conversely, suppose that γ and γ̃ they have the same tangent winding number.

As in the proof of Theorem 3.10 we can assume without loss of generality that γ
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Figure 3.6. The initial regular homotopy that brings the curve into a standard position and
size.

and γ̃ both have unit speed. By Lemma 3.13 below and the fact that parameter
shifts can be accomplished by regular homotopy as closed curves, we may also
assume that the curvature functions κ and κ̃ are either constant or linearly inde-
pendent. As in the proof of Theorem 3.10, we can apply another regular homotopy
through closed curves to achieve γ(a) = 0 and γ′(a) = e1 (see Figure 3.6). The
same can be assumed for γ̃.

Let then t 7→ γt be the regular homotopy between γ and γ̃ constructed at the end
of the proof of Theorem 3.10. The only problem is that for the intermediate curves
γt might not be closed. We are going to repair this by modifying γt to a closed
curve γ̃t as follows:

γ̃t(x) = γt(x)− x− a
b− a

∫ b

a
Tt.

The only fact that needs to be checked is that γ̃′t(x) 6= 0 for all x ∈ [a, b].

Suppose we would have

0 = γ̃′t(x) = T(x)− 1
b− a

∫ b

a
Tt,

and therefore

1 = |T(x)| = 1
b− a

∣∣∣∣∫ b

a
Tt

∣∣∣∣ ≤ 1
b− a

∫ b

a
|Tt| = 1.

The inequality sign in the above formula must be an equality, and this implies that
Tt is constant, i.e.

0 = κt = (1− t)κ + tκ̃.

This would imply that κ and κ̃ are linearly dependent as functions, which by
our assumptions means that κ and κ̃ are constant. Since both coefficients in the
previous equation are positive, this would imply κ = κ̃ = 0, which is impossible
for closed curves.

As a consequence of Theorem 3.12, every closed curve in R2 is regularly homo-
topic through closed curves to one of the curves in the following list in Figure 3.7:
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3.6 Whitney-Graustein Theorem

n = −2 n = −1 n = 0 n = 1 n = 2

Figure 3.7. A list of representatives for every homotopy class of plane curves.

We conclude this chapter with the Lemma that was needed in the proof of the
Whitney-Graustein theorem:

Lemma 3.13. Let κ : R→ R be a non-zero periodic function such that for all τ ∈ R the
functions κ and x 7→ κ(x− τ) are linearly dependent. Then κ is constant.

Proof. Given our assumptions, there is a smooth function λ : R→ R such that for
all x ∈ R we have

κ(x− τ) = λ(τ)κ(x).

Differentiation with respect to τ at τ = 0 yields

κ′(x) = λ′(0)κ(x)

The only non-zero periodic functions that satisfy such a differential equations are
the constant functions.

Suppose we have a diffeomorphism g : M→ R2 where

M := {x ∈ R2 | |x| ≤ 1}

is the unit disk in R2. Then we can define a closed curve γ : [a, b] → R2 in such a
way that the Figure 3.8 becomes a commutative diagram.
If a closed curve bounds a region in R2 that can be mapped onto the unit disk by
a diffeomorphism, its tangent winding number is one or minus one:

Theorem 3.14. In the setup of Figure 3.8, the tangent winding number of γ is ±1, where
the plus sign applies if and only if g preserves orientation, i.e. if det g′(x) > 0 for all
x ∈ M.

Proof. Already in the proof of Theorem 3.12 we saw that applying a scale or a
rotation to γ does not change the regular homotopy class of γ. Therefore, without
loss of generality we may assume

g′(0)e1 = e1.

For t ∈ [0, 1] let At be the 2× 2-matrix such that

Ate1 = e1

At g′(e2) = (1− t)g′(e2)± te2
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R2
γ

g

R

x 7→
(

cos x
sin x

)

M

∂M

Figure 3.8. A diffeomorphism g from the unit disk M into R2 and the corresponding
boundary loop γ.

where the plus sign is chosen if and only if det g′(0) > 0. Then the matrix At is
invertible for all t and the one-parameter family t 7→ γt = Atγ of closed curves is
a regular homotopy, so after replacing g with A1 ◦ g we can assume without loss
of generality that

g′(0) = I.

Now define for r ∈ (0, 1] closed curves γr : [0, 2π]→ R2 by

γr(x) = g
((

cos(rx)
sin(rx)

))
.

For small ε > 0 the curve γε is close the parametrization

x 7→
(

cos(x)
± sin(x)

)
of to the unit circle, so the tangent winding number of γε is ±1. On the other
hand, γ = γ1 is regularly homotopic to γε, and therefore also the tangent winding
number of γ is ±1.
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3.6 Whitney-Graustein Theorem

Figure 3.9. A sequence of curves from a regular homotopy between the elastic figure eight
curve traversed twice (top left) and the elastic figure eight curve traversed only
once (bottom right).
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4. Parallel Normal Fields

For curves γ : [a, b] → Rn there is an analog κ : [a, b] → Rn−1 of the curvature
function of a plane curve. In the context of unit speed curves, this function κ
determines γ up to an orientation-preserving rigid motion of Rn. Before we can
define κ, we have to study parallel normal vector fields along a curve in Rn.

4.1. Parallel Transport

Definition 4.1. Let γ : [a, b] → Rn be an immersion with unit tangent field T : [a, b] →
Rn. Then a smooth map Z : [a, b]→ Rn is called a normal field for γ if

〈Z(x), T(x)〉 = 0

for all x ∈ [a, b]. The (n− 1)-dimensional linear subspace T(x)⊥ is called the normal
space of γ at x.

If Z : [a, b] → Rn is a normal field for γ, then we can split its derivative Z′ into its
tangential part and its normal part:

Z′ = λT + W

where λ : [a, b] → R is a smooth function and W is another normal field. It turns
out that λ(x) can be computed from Z(x) alone, without taking the derivative of
Z: differentiating the expression 〈Z, T〉 = 0 we obtain

λ = 〈Z′, T〉 = −〈Z, T′〉.

The scalar product 〈Z′, Z〉 = 1
2 〈Z, Z〉′ measures how the length of Z changes along

γ. A component of Z′ orthogonal to Z and T indicates a rotation of Z around the
tangent T. If Z has constant length and there is no such twisting, Z is called
parallel:

Definition 4.2. A normal field Z : [a, b]→ Rn along a curve γ : [a, b]→ Rn with unit
tangent field T : [a, b] → Rn is called parallel if there is a function λ : [a, b] → R such
that

Z′ = λT.

There is a parallel normal field Z for every immersion γ and all such fields come
in an (n− 1)-parameter family:
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4.1 Parallel Transport

Theorem 4.3. Given a vector W ∈ T(a)⊥ in the normal space of a curve γ : [a, b]→ Rn

at a, there is a unique parallel normal field Z : [a, b]→ Rn of γ such that

Z(a) = W.

If Z, Y are two parallel normal fields along γ, their scalar product 〈Z, Y〉 is constant.

Proof. If Z is a parallel normal vector field along γ with Z(a) = W, then differ-
entiating the equation 〈Z, T〉 = 0 yields 〈Z′, T〉 + 〈Z, T′〉 = 0 and, using Z′ =
−〈Z, T′〉T, we see that Z solves the linear initial value problem

Z(a) = W
Z′ = 〈Z, T〉T′ − 〈Z, T′〉T.

By the Picard-Lindelöf theorem, such a solution is unique, which proves the
uniqueness part of our claim. For the existence part, let Z be the solution of the
above initial value problem. For any further solution Y of the above differential
equation we have

〈Z, Y〉′ = 〈Z′, Y〉+ 〈Z, Y′〉
= 〈〈Z, T〉T′ − 〈Z, T′〉T, Y〉+ 〈Z, 〈Y, T〉T′ − 〈Y, T′〉T〉
= 0.

and therefore the scalar product 〈Z, Y〉 is constant. In particular, Y = T is such a
solution, so 〈Z(a), T(a)〉 = 0 implies 〈Z, T〉 = 0. Therefore Z is a normal field, in
fact a parallel one.

If γ : [a, b] → Rn is a curve and W is a vector in T(a)⊥, for every x ∈ [a, b] we
can use the parallel normal field Z with Z(a) = W to “transport” W to a normal
vector Z(x) ∈ T(x)⊥. This parallel transport map

P(x) : T(a)⊥ → T(x)⊥

is obviously linear, and by Theorem 4.3 it is in fact orthogonal, i.e. it preserves
scalar products. Moreover, each normal space T(x)⊥ carries an orientation in the
sense that a basis W1, . . . , Wn−1 of T(x)⊥ is called positively oriented if

det(W1, . . . , Wn−1, T(x)) > 0.

If W1, . . . , Wn−1 is a positively oriented basis of T(a)⊥ and Z1, . . . , Zn−1 are parallel
normal fields with Zj(a) = Yj then x 7→ det(Z1(x), . . . , Zn−1(x), T(x)) is continu-
ous and never zero. Therefore, for all x ∈ [a, b] we have

det(Z1(x), . . . , Zn−1(x), T(x)) > 0

and the map P(x) is orientation-preserving. We summarize this as follows:

Definition 4.4. Given a curve γ : [a, b] → Rn and x ∈ [a, b], the orientation-preserving
orthogonal map P(x) : T(a)⊥ → T(x)⊥ defined above is called the parallel transport
from the normal space T(a)⊥ to the normal space T(x)⊥.
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Parallel Normal Fields

Figure 4.1. A closed curve in the normal space T(a)⊥ is used to build a thickened version
of γ by parallel transport.

By Theorem 4.3, each vector Z(x) of a parallel normal field has the same length.
Therefore, we can use parallel normal fields Z in order to displace a curve γ by a
fixed distance ε = |Z|, without introducing unnecessary twisting:

Definition 4.5. If Z is a parallel normal field along a curve γ : [a, b] → Rn and the
derivative of

γ̃ = γ + Z

vanishes nowhere, then the γ̃ is called a parallel curve of γ.

For a curve γ : [a, b]→ Rn the continuous (but not necessarily smooth) function∣∣∣∣dT
ds

∣∣∣∣ : [a, b]→ R

is called the absolute curvature of γ. If ε > 0 is such that

1
ε
> max

{ ∣∣∣∣dT
ds

(x)
∣∣∣∣ ∣∣∣∣ x ∈ [a, b]

}
and Z is a parallel normal field with |Z| = ε then by the Cauchy-Schwarz inequal-
ity we have

d(γ + Z)
ds

=

(
1 +

〈
Z,

dT
ds

〉)
T 6= 0.

Therefore, if we pick a vector W ∈ T(a)⊥ with sufficiently small norm and define
Z as the parallel normal field Z with Z(a) = W, then γ+ Z will be a parallel curve
for γ.

As an application, we always visualize a curve in R3 by thickening it, which means
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4.2 Curvature Function of a Curve in Rn

T(a)⊥

Ψ

γ

Figure 4.2. The Hasimoto curvature Ψ of a curve γ indicated as a blue curve in T(a)⊥.

that we chose a suitable collection of W ∈ T(a)⊥ with small length and draw the
union of the corresponding parallel normal fields. Most of the time we use a small
circle centered at the origin in T(a)⊥, but different choices (as in Figure 4.1) are
also possible.

4.2. Curvature Function of a Curve in Rn

We saw in Section 3.1 that, up to rigid motions of R2, the geometry of a unit
speed curve γ : [a, b] → R2 is completely determined by its curvature function
κ : [a, b]→ R. Here we will define a similar curvature function κ : [a, b]→ Rn−1 for
any unit speed curve γ : [a, b] → Rn. To define κ(x), we use parallel transport to
transfer the normal vector T′(x) ∈ T(x)⊥ to the normal space T(a)⊥. Afterwards
we use an orthonormal basis of T(a)⊥ in order to identify T(a)⊥ with Rn−1.

Theorem 4.6. Let γ : [a, b] → Rn be a curve with unit tangent T and parallel transport
maps P(x) : T(a)⊥ → T(x)⊥. Then there is a unique smooth map Ψ : [a, b] → T(a)⊥

such that for all x ∈ [a, b] we have

P(x)(Ψ(x)) = −dT
ds

(x).

Ψ is called the Hasimoto curvature of γ.

See Section 5.3 for the details on Hasimoto’s contribution. The Hasimoto curvature
determines γ uniquely:

Theorem 4.7. Given a point p ∈ Rn, a unit vector S ∈ Rn and a smooth map Ψ : [a, b]→
T(a)⊥, there is a unique unit speed curve γ : [a, b]→ Rn such that γ(a) = p, γ′(a) = S
and Ψ is the Hasimoto curvature of γ (see Figure 4.2).

Proof. First we prove uniquess of γ. Let γ : [a, b]→ Rn be a curve with the desired
properties. Choose an orthonormal basis W1, . . . , Wn−1 of T(a)⊥ such that

det(W1, . . . , Wn−1, T(a)) = 1
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and define κ1, . . . κn−1 by

Ψ = κ1W1 + . . . + κn−1Wn−1.

Let Z1, . . . , Zn−1 be the parallel normal fields along γ such that Zj(a) = Wj for all
j ∈ {1, . . . , n− 1}. Then

(Z1, . . . , Zn−1, T) : [a, b]→ Rn×n

solves the initial value problem

(Z1, . . . , Zn−1, T)(a) = (W1, . . . , Wn−1, S)

(Z1, . . . , Zn−1, T)′ =

(
κ1T, . . . , κn−1T,−

n−1

∑
j=1

κjZj

)

and is therefore uniquely determined by p, S and Ψ. In particular, T is uniquely
determined and so is

x 7→ γ(x) =
∫ x

a
T.

For existence, we can use the above initial value problem to define (Z1, . . . , Zn−1, T).
At x = a these vectors are orthonormal and their pairwise scalar products solve
the system of linear differential equations

〈T, T〉′ = −2
n−1

∑
j=1

κj〈T, Zj〉

〈T, Zj〉′ = κj〈T, T〉 −
n−1

∑
i=1

κi〈Zi, Zj〉

〈Zi, Zj〉′ = κi〈T, Zj〉+ κj〈Zi, T〉.

We can interpret this as an initial value problem for the functions 〈T, Zj〉, 〈T, T〉,
〈Zi, Zj〉. The functions 〈T, Zj〉 = 0, 〈T, T〉 = 1, 〈Zi, Zj〉 = δij solve this initial
value problem, and by Picard and Lindelöf such a solution is unique. Therefore,
(Z1, . . . , Zn−1, T) stay orthonormal. So by integration of T we obtain a unit speed
curve γ : [a, b]→ Rn with γ(a) = p and γ′(a) = S. Z1, . . . Zn−1 are parallel normal
fields along γ with Zj(a) = Wj. Because we already know that T′ = −∑n−1

j=1 κjZj,
this implies that Ψ is indeed the Hasimoto curvature of γ.

In the above proof we used a basis of T(a)⊥ in order to turn Ψ into an Rn−1-
valued function κ. This function is the promised analog of the curvature function
of a plane curve:

Definition 4.8. Let γ : [a, b] → Rn be a unit speed curve with unit tangent T and
Hasimoto curvature Ψ. Let W1, . . . , Wn−1 be a positively oriented orthonormal basis of
T(a)⊥. Then the function

κ : [a, b]→ Rn−1, κ =

 κ1
...

κn−1


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defined by
Ψ = κ1W1 + . . . + κn−1Wn−1

is called a curvature function of γ.

In the case n = 2 the positively oriented orthonormal basis of T(a)⊥ mentioned
in the above definition is unique, and therefore each plane curve has a unique
curvature function κ : [a, b] → R1 = R, which is the one we already encountered
in Section 3.1. It is clear from its definition that for any n the function κ is at least
unique up to a rotation of Rn−1:

Theorem 4.9. If κ, κ̃ : [a, b]→ Rn−1 are curvature functions of the same curve γ : [a, b]→
Rn, then there is an orthogonal ((n− 1)× (n− 1))-matrix A with det A = 1 such that

κ̃ = Aκ.

On the other hand, as in the case of curves in R2, for every curvature function
κ : [a, b]→ Rn−1 there is a corresponding curve γ : [a, b]→ Rn and γ is unique up
to post-composition with an orientation preserving rigid motion of Rn. Also the
following theorem is a direct consequence of Theorem 4.7:

Theorem 4.10. Given a smooth function κ : [a, b] → Rn−1, there is a unit speed curve
γ : [a, b] → Rn for which κ is a curvature function. The curve γ is unique up to an
orientation preserving rigid motion of Rn, which means that if γ̃ is another curve having
κ as a curvature function, then there is an orthogonal (n× n)-matrix A with det A = 1
and a vector b ∈ Rn such that

γ̃ = Aγ + b.

4.3. Geometry in Terms of the Curvature Function

Let γ : [a, b]→ Rn be a unit speed curve with unit tangent field T and W1, . . . , Wn−1
a positively oriented orthonormal basis of T(a)⊥. Let Z1, . . . , Zn−1 be the corre-
sponding parallel normal fields along γ with Zj(a) = Wj. Then we can describe
every normal field Y along γ in terms of a function y : [a, b]→ Rn as

Y = y1Z1 + . . . yn−1Zn−1

=

 | |
Z1 . . . Zn−1
| |


 y1

...
yn−1


=: Ny

where for x ∈ [a, b] the matrix N(x) has the vectors Z1(x), . . . , Zn−1(x) ∈ Rn as its
column vectors. In terms of the curvature function κ introduced in Definition 4.8
the derivative of Y can be expressed as

Y′ = 〈κ, y〉T + Ny′.

In particular, for Y = T′ we obtain

T′ = −Nκ
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T′′ = −〈κ, κ〉T − Nκ′

T′′′ = −3〈κ, κ′〉T + N
(
〈κ, κ〉κ − κ′′

)
.

Now we are able to generalize the results we obtained in Section 3.3 for plane
curves:

Theorem 4.11. A unit speed curve γ : [a, b] → Rn is torsion-free elastic if and only if
there is a constant λ ∈ R such that its curvature function κ satisfies

κ′′ +
|κ|2

2
κ + λκ = 0.

Proof. By Theorem 2.23, γ is torsion-free elastic if and only if there is a constant
λ ∈ R such that

0 = T′′′ + 3〈T′, T′′〉T +
3
2
〈T′, T′〉T′ − λT′

= −N
(

κ′′ +
|κ|2

2
κ + λκ

)
.

Here are further examples of how the geometry of γ is reflected in the properties
of κ:

Theorem 4.12. Let κ : [a, b] → Rn−1 be a curvature function of a unit speed curve
γ : [a, b]→ Rn. Then:

1. κ = 0 if and only if the image of γ lies on a straight line.

2. κ is a non-zero constant if and only if the image of γ lies on a circle.

3. The image of κ lies in a hyperplane through the origin of Rn−1 if and only if the
image of γ lies in a hyperplane of Rn.

4. The image of κ lies in a hyperplane of Rn−1 that does not pass through the origin if
and only if the image of γ lies in a hypersphere of Rn (see Figure 4.3).

Proof. Claim (i) is obvious, since the image of a curve lies on a straight line if and
only if its unit tangent T is constant. If the image of κ lies in a hyperplane through
the origin of Rn−1, there is a unit vector a ∈ Rn−1 such that 〈a, κ〉 = 0. Then

(Na)′ = −〈κ, a〉 = 0

so there is a fixed vector n ∈ Rn such that Na = n. We have

〈n, γ〉′ = 〈Na, T〉 = 0

and therefore the image of γ is contained in a hyperplane with normal vector
n. The proof of the converse is left to the reader. This establishes (iii). For (iv),
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R2

κ

γ

S2

Figure 4.3. The curvature function κ of a curve on S2 lies on a straight line which does not
pass through the origin.

suppose that there is a unit vector a ∈ Rn−1 and a number r > 0 such that

〈a, κ〉 = 1
r

.

Then
(γ− rNa)′ = T − r〈κ, a〉T = 0

so there is a fixed point m ∈ Rn such that

γ− rNa = m

and we have
|γ−m| = r.

Therefore, the image of γ lies on the hypersphere with center m and radius r.
Again, the proof of the converse is left to the reader and we have established (iv).
For (ii) we use induction on n based on (iii), starting at n = 2 where we use
(iv).
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5. Curves in R3

For a closed curve γ : [a, b] → R3 with unit tangent field T, we can use a parallel
normal vector field to transport a normal vector Wa ∈ T(a)⊥ at the starting point
of γ to a normal vector Wb ∈ T(b)⊥ at the end point. If γ is closed, the angle
T (γ) between Wb and Wa is called the total torsion of γ. A notion of total torsion
can also be defined for curves in R3 that are not necessarily closed. Therefore, for
curves in R3, total torsion provides another geometric functional besides length
or bending energy. Critical points of a linear combination of length, total torsion
and bending energy are needed for modelling the physical equilibrium shapes of
elastic wires in R3.

5.1. Total Torsion of Curves in R3

Let us focus now on curves γ : [a, b] → R3. In this case we can visualize the
parallel transport of normal directions introduced in Section 4.1 as approximately
implemented by a chain of so-called “constant velocity joints” (cf. [35]). Such joints
are able to transport normal directions in an angle-preserving manner. Rotating
the initial vector Z(a) of a parallel normal field by an angle α will make the final
vector Z(b) rotate by the same angle α (see Figures 5.1 and 5.2).

Definition 5.1. For a curve γ : [a, b]→ R3 the orthogonal linear map

P : T(a)⊥ → T(b)⊥, X 7→ Z(b)

where Z : [a, b] → R3 is the parallel normal field along γ with Z(a) = X is called the
normal transport of γ.

After having chosen a pair W = (Wa, Wb) of unit vectors Wa ∈ T(a)⊥ and Wb in
T(b)⊥ we can describe the normal transport P by an angle:

Definition 5.2. Let γ : [a, b] → R3 be curve with unit tangent T and normal transport
P . Then, given a pair W = (Wa, Wb) of unit vectors Wa ∈ T(a)⊥ and Wb in T(b)⊥, the
unique angle

TW ∈ R/2πZ

with
P(Wa) = (cos TW) Wb + (sin TW) T(b)×Wb.

is called the total torsion of the curve γ with respect to Wa and Wb.
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5.1 Total Torsion of Curves in R3

Figure 5.1. Two curves built from constant-velocity joints. The total torsion is zero for the
curve on the left, but not for the one on the right. The red line indicates a
parallel normal field.

For a closed curve we have T(a) = T(b) and we can always choose W(b) = W(a).
The total torsion TW then becomes independent of the choice of Wa, so in this case
we can drop the subscript W and denote the total torsion of a closed curve γ by
T (γ). Let us determine the infinitesimal variation of the total torsion TW if we
vary the curve γ as well as the unit vectors Wa and Wb:

Theorem 5.3. Let t 7→ γt be a variation with variational vector field .
γ = Y of a curve

γ : [a, b] → R3. Let t 7→ Wa(t) ∈ Tt(a)⊥ and t 7→ Wb(t) ∈ Tt(b)⊥ be two smooth
families of unit vectors. Then the total torsion TW(t) of γt with respect to

W(t) = (Wa(t), Wb(t))

satisfies

d
dt

∣∣∣∣
t=0
TW(t) = 〈

.
Wa, T(a)×Wa〉 − 〈

.
Wb, T(b)×Wb〉+

∫ b

a
det
(

T, T′,
.
T
)

.

In terms of Y, the above integral can be expressed as

∫ b

a
det
(

T, T′,
.
T
)
=

〈
Y, T × dT

ds

〉∣∣∣∣b
a
−
∫ b

a

〈
Y, T ×

(
dT
ds

)′〉
.

Proof. Let Zt be the parallel normal field along γt with Zt(a) = Wa(t). In particu-
lar, Z0 =: Z is a parallel normal field and we have

Z′ = −〈Z, T′〉T.

Taking the time derivative of the equation

Zt(b) = cos TW(t)Wb(t) + sin TW(t) T(b)×Wb(t)
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Figure 5.2. A trefoil knot cannot be built from constant-velocity joints. Because of the
angle-defect due to the total torsion, the joints would not close up.

at t = 0 yields

〈
.

Z(b), T(b)× Z(b)〉 =
.
TW + 〈

.
Wb, T(b)× Z(b)〉.

From Theorem 5.4∫ b

a
det
(

T, T′,
.
T
)
= −

∫ b

a
〈

.
Z, T × Z〉′

= 〈
.

Z(b), T(b)× Z(b)〉 − 〈
.

Z(a), T(a)× Z(a)〉
=

.
TW + 〈

.
Wb, T(b)× Z(b)〉 − 〈

.
Wa, T(a)× Z(a)〉.

The second claim is a consequence of

det
(

T, T′,
.
T
)
= det

(
T, T′,

dY
ds

)
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= det
(

T,
dT
ds

, Y′
)

= det
(

T,
dT
ds

, Y
)′
− det

(
T,
(

dT
ds

)′
, Y

)
,

where we used that
.
T = dY

ds − 〈
dY
ds , T〉T (cf. proof of Theorem 2.8).

The following Theorem was used in the above proof and will be needed also in
Section 5.3:

Theorem 5.4. Let t 7→ γt be a variation of a curve γ : [a, b] → R3 with unit tangent
field T. Let t 7→ Zt be a smooth one-parameter family of maps such that Zt is a parallel
unit normal field along γt. Then

〈
.

Z, T × Z〉′ = 〈T,
.
T × T′〉.

Proof. The prime derivative commutes with the dot derivative, hence

〈
.

Z, T × Z〉′ = 〈
(
Z′
)., T × Z〉+ 〈

.
Z, T′ × Z〉

=
〈
−〈Z, T′〉

.
T, T × Z

〉
+ 〈

.
Z, T′ × Z〉.

Because 〈Zt, Zt〉 = 1 and 〈Zt, Tt〉 = 0, for all t, we have
.

Z = 〈
.

Z, T〉T + 〈
.

Z, T × Z〉T × Z

= −〈Z,
.
T〉T + 〈

.
Z, T × Z〉T × Z

and therefore we can continue the previous calculation of 〈
.

Z, T × Z〉′ as follows:

〈
.

Z, T × Z〉′ = 〈Z,
.
T〉〈T × Z, T′〉 − 〈Z, T′〉〈T × Z,

.
T〉

= 〈Z× (T × Z),
.
T × T′〉

= 〈T,
.
T × T′〉.

In Section 4.3 we described normal vector fields Y along a curve γ : [a, b] → Rn

in terms of functions y : [a, b] → Rn−1. Given a parallel unit normal field Z along
a curve γ : [a, b] → R3 with unit tangent T, in terms of this correspondence, any
normal field Y can be written as

Y = Ny = y1Z + y2T × Z.

The function 〈
.

Z, T× Z〉 featuring in Theorem 5.3 also appears if, given a variation
of γ and Z, we want to know the time derivative of the above formula:

Theorem 5.5. Let t 7→ γt be a variation of a curve γ : [a, b] → R3 with unit tangent
field T. Let t 7→ Zt be a smooth one-parameter family of maps such that Zt is a parallel
unit normal field along γt and t 7→ yt a smooth family of maps yt : [a, b]→ R2. Then

(Ny). = −〈Ny,
.
T〉T + N

( .y + 〈
.

Z, T × Z〉Jy
)

.
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Proof. Taking into account the time derivatives of the equations that tell us T, Z, T×
Z are orthonormal, we obtain

(Ny). = N .y + y1(〈
.

Z, T〉T + 〈
.

Z, T × Z〉T × Z) + y2(〈(T × Z)., T〉T + 〈(T × Z)., Z〉Z)

= −〈Ny,
.
T〉T + N

( .y + 〈
.

Z, T × Z〉Jy
)

.

5.2. Elastic Curves in R3

The torsion-free elastic curves studied in the Sections 2.4 and 2.5 were critical
points of bending energy under the constraint of fixed length. For general elastic
curves in R3 also the total torsion is constrained (see Figure 5.3). Note that for a
variation t 7→ γt with support in the interior of [a, b] of a curve γ : [a, b]→ R3 with
unit tangent T all parallel transport maps Pt are defined on the same vector space
T(a)⊥. Therefore it makes sense to consider the derivative d

dt

∣∣∣
t=0
Pt.

Definition 5.6. A curve γ : [a, b]→ R3 is called an elastic curve if it is a critical point
of the bending energy B under the constraint of fixed length L and fixed normal transport
P .

Figure 5.3. Elastic curves obtained by minimizing bending energy under the constraint
of fixed length and fixed total torsion, for various values of the total torsion
constraint: 0, 2

5 π, 6
5 π, 14

10 π, 9
5 π, 2π.

During a variation t 7→ γt of a curve γ : [a, b] → R3 with constant support in
the interior of [a, b], after choosing unit vectors Wa ∈ T(a)⊥ and Wb ∈ T(b)⊥

(independent of t), we can measure the normal transport along γt as the total
torsion angle TW(γt). Theorem 5.3 then will tell us the infinitesimal variation of
the normal transport, in a way that does not depend on the choice of Wa and Wb.
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Theorem 5.7. Let γ : [a, b] → R3 be a unit speed curve with unit tangent T. Then the
following are equivalent:

1. γ is an elastic curve.

2. There are constants λ, µ ∈ R such that

T′′′ − 〈T′′′, T〉T +
3
2
〈T′, T′〉T′ − µT × T′′ − λT′ = 0.

3. There are constants λ, µ ∈ R and a constant vector a ∈ R3 such that

T′′ +
3
2
〈T′, T′〉T − µT × T′ − λT + a = 0.

4. There is a constant µ ∈ R and a constant vector a ∈ R3 such that

T′′ − 〈T′′, T〉T + a− 〈a, T〉T − µT × T′ = 0.

5. There is a constant µ ∈ R and constant vectors a, b ∈ R3 such that

γ′ × γ′′ = µγ′ + a× γ + b.

6. There are constant vectors a, b ∈ R3 such that

γ′′ = (a× γ + b)× γ′.

Proof. Theorem 2.21 was formulated in such a way that it is capable of dealing
with several constraints, so that it is possible to prove Theorem 2.20 with more
than just a single constraint. So more constraints than just the length are possible
in Theorem 2.23. Therefore, the equivalence of (i) and (ii) can be shown following
the same arguments that lead to Theorem 2.23. Here, taking derivatives of the
equation 〈T, T〉 = 1 gives

〈T′′′, T〉 = −3〈T, T′′〉.

The equivalence of (ii) and (iii) follows from the equality(
T′′ +

3
2
〈T′, T′〉T − µT × T′ − λT

)′
= T′′′−〈T′′′, T〉T+

3
2
〈T′, T′〉T′−µT×T′′−λT′

which can again be verified by taking derivatives of the equation 〈T, T〉 = 1. (iv) is
just the component of (iii) orthogonal to T, so it follows from (iii). In order to show
that (iv) implies (iii), we have to show that (iv) implies that there is a constant λ
such that also the equation obtained by taking the component of (iii) parallel to T
is satisfied if (iv) holds, which is indeed the case:(

〈T′′, T〉+ 3
2
〈T′, T′〉+ 〈a, T〉

)′
=

(
1
2
〈T′, T′〉〉+ 〈a, T〉T

)′
= 〈T′′ + a, T′〉
= 〈µT × T′, T′〉
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= 0.

To prove that (iv) is equivalent to (v), note first that, the left-hand side of (iv) being
orthogonal to T, (v) is equivalent to the equation obtained from (iv) by taking the
cross product with T:

T × T′′ + T × a + µT′ = 0

or
0 = (T × T′ + γ′ × a + µT)′.

Therefore, (iv) is equivalent to (v). Taking the cross product of the equation in (v)
with T yields

−γ′′ = −(a× γ)× γ′ = b× γ′

which is equivalent to (vi). To show that (vi) implies (v), note that the component
orthogonal to T of the equation in (v) is equivalent to (vi). This means that we
have only to show based on (vi) that the scalar product with T of the sum of the
terms without the µT term is constant. This is indeed the case:

−〈T, γ× a + b〉 = 〈T, T′〉 = 0.

Figure 5.4. Kirchhoff showed that, as an elastic curve is traversed with unit speed, its
tangent vector T follows the motion of the axis of a gyroscope. The photograph
with long-time exposure: [41].

In 1858 Gustav Kirchhoff realized (cf. [19]) that in the form 2. or 3. the equations
for T describe the motion of the axis of a heavy symmetric top (or gyroscope). The
vector a describes the direction of gravity and µ is related to the spinning speed
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of the gyroscope (see Figure 5.4). Figure 5.5 illustrates an interesting special case

Figure 5.5. A unit speed elastic curve γ can be described as the orbit of a charged particle
moving in a linear magnetic field p 7→ B(p) = a× p + b. If the initial velocity
T(a) is orthogonal to B(γ(a)), the elastic curve lies in a plane.

of the characterization given in part 6. of Theorem 5.7: Assume b = 0, a 6= 0 and

〈e3, a〉 = 〈e3, γ(a)〉 = 〈e3, γ′(a)〉 = 0.

The equation in 6. can be written as

γ′′ = 〈γ′, a〉γ− 〈γ′, γ〉a

and therefore the function

g : [a, b]→ R, g = 〈e3, γ〉

satisfies the linear second order equation

g′′ = 〈γ′, a〉g

with the initial condition g(a) = g′(a) = 0. It follows that g vanishes identically
and the image of γ is contained in the plane R2 ⊂ R3 given by E = {(x, y, z) ∈
R3 | z = 0}. Assuming that γ has unit speed, T is the unit tangent of γ and κ its
curvature, we can rewrite the equation in 6. further as

κ JT = 〈T, a〉γ− 〈T, γ〉a

=
〈γ, Ja〉
〈a, a〉 (〈T, a〉Ja− 〈T, Ja〉a)

= 〈γ, Ja〉JT.
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The second of the above equalities can be verified by expanding γ as

γ =

〈
γ,

a
|a|

〉
a
|a| +

〈
γ, J

a
|a|

〉
J

a
|a|

while the third equality follows by a simillar expansion of T. This means that κ(x)
is proportional to the distance of γ(x) to the line in R2 through the origin with
direction a

|a| :
κ = 〈γ, Ja〉.

Amazingly, this is exactly the description of planar elastic curves that had been
given by Jakob Bernoulli in 1691 (see [25] for a historical survey, or [14]).

5.3. Vortex Filament Flow

Vortex filaments are curves of singularly concentrated vorticity in a moving fluid.
Familiar examples are tornados and smoke rings. The mathematical theory of

Figure 5.6. A curve evolving according to the da Rios equation (cf. [20]).

vortex filament motion started with Lord Kelvin, who in 1880 investigated the
evolution of small pertubations of a straight vortex filament (cf. [39]). Later, these
perturbations were called Kelvin waves. The full evolution equation for thin vortex
filaments was found in 1906 by Tullio Levi-Civita and his student Luigi Sante da
Rios. For a detailed history see [34]). Mathematically, the motion of a vortex
filament can be described by a one-parameter family γt of curves and the da Rios
equation says that this one-parameter family satisfies

.
γt =

dγt

ds
× d2γt

ds2 .

Another breakthrough occurred in 1972 (cf. [15]) when Hidenori Hasimoto showed
that the da Rios equation is equivalent to the non-linear Schrödinger equation:

Theorem 5.8. Let t 7→ γt with t ∈ [t1, t2] be a smooth one-parameter family of unit speed
curves γt : [a, b]→ R3 which solves the da Rios equation. Let Tt be the unit tangent field
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of γt. Then there is a smooth family t 7→ Wt of unit vectors Wt ∈ Tt(a)⊥ such that the
corresponding family t 7→ κt of curvature functions for the curves γt satisfy

J .
κt + κ′′t +

|κt|2
2

κt = 0.

Proof. We choose an arbitrary unit vector Ŵ ∈ Tt1(a)⊥ and define for t ∈ [t1, t2]
a family of unit vectors Wt ∈ Tt(a)⊥ as the solution of the linear initial value
problems

Wt1 = Ŵ
.

Wt = −〈Wt,
.
Tt(a)〉Tt(a)− 1

2
〈T′t (a), t′t(a)〉Tt(a)×Wt.

Let Zt be the parallel normal field along γt with Zt(a) = Wt. By Theorem 5.4(
〈

.
Zt, Tt × Zt〉+

1
2
〈T′t , T′t 〉

)′
= 〈Tt,

.
Tt × T′t 〉+ 〈T′t , T′′t 〉

= 〈Tt,
(
Tt × T′′t

)
× T′t 〉+ 〈T′t , T′′t 〉

= 0,

where we used that the assumption that γt solves the da Rios equation for all t
implies .

T = T × T′′.

By construction we have Wt = Zt(a), hence(
〈

.
Zt, Tt × Zt〉+

1
2
〈T′t , T′t 〉

)
(a) = 0

and therefore
〈

.
Zt, Tt × Zt〉 = −

1
2
〈T′t , T′t 〉.

Using the formulas for T′′ and T′′′ from Section 4.3 and Theorem 5.5, it then
follows that

N
(

.
κt −

|κt|2
2

Jκt

)
≡ (Nκt)

.

= −
(
T′
).

= −
(
γ′′t
).

= − .
γ′′t

= −T′ × T′′ − T × T′′′

≡ |κt|2T′ × T − T × N(|κt|2κt − κ′′t )

= T × (Nκ′′t )

= N(Jκ′′t ) mod T,

where N is again the matrix of parallel normal fields which is used for the defini-
tion of κ. This implies that t 7→ κt satisfies the nonlinear Schrödinger equation.
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The nonlinear Schrödinger equation was known to be a so-called Soliton equation,
and as a consequence also the da Rios equation admits infinitely many constants
of the motion. Finally, in 1983 Marsden and Weinstein established (cf. [28]) vortex
filament motion as a Hamiltonian mechanical system in its own right (see [10]
for a survey article). The closed curve in Figure 3.4 is a critical point of bending

Figure 5.7. From left to right: Lord Kelvin, Tullio Levi-Civita, Luigi Sante da Rios and
Jerrold Marsden.

energy under the constraint of fixed length and fixed enclosed area (cf. [2, Figure
8]) . It can be shown that this curve is the initial curve γ0 of a solution t 7→ γt
of the da Rios equation that is defined for all times t ∈ R. In fact, it can also
be proved that this solution is periodic in t. This solution (shown in Figure 5.8)
matches quite well the qualitative behavior of the vortex filament shown in Figure
5.6.

Figure 5.8. An initial curve which evolves according to the da Rios equation matches the
qualitative behavior of a vortex filament (cf. Figure 5.6). This is why the
resulting flow is also referred to as “vortex filament flow”, or “smoke ring
flow”.

Definition 5.9. A vector field X : R3 → R3 is called an infinitesimal rigid motion if
there are vectors a, b ∈ R3 such that for all p ∈ R3 we have

X(p) = a× p + b.

The following is a reformulation of part 5. of Theorem 5.7:

Theorem 5.10. A curve γ : [a, b] → R3 is elastic if and only if there is an infinitesimal
rigid motion X such that for every point of the curve the velocity .

γ prescribed by the da
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Rios equation is given by evaluating X at that point:

.
γ = X ◦ γ.

Figure 5.9 shows closed elastic curves and their evolution under the da Rios equa-
tion.

Figure 5.9. By Theorem 5.7, an elastic curve that evolves according to the da Rios equation
will just undergo rigid motions. These rigid motions can be pure translations
(left), pure rotations (right) or screw motions (middle).

5.4. Total Squared Torsion

For pioneers of Differential Geometry like Jakob Bernoulli and Leonard Euler (cf.
[25] for a historical survey), the motivation for studying elastic curves was to deter-
mine the shape γ of a perfectly elastic thin wire (originally shaped as a straight line
segment of fixed length when it came out of the factory). In a stable equilibrium
position of such a wire the elastic energy stored in its deformation is minimized.
Since Bernoulli (1691) and Euler (1744) focused on plane curves, bending energy
as introduced in Section 1.3 was sufficient for modeling elastic energy. Later, La-

Figure 5.10. From left to right: Jakob Bernoulli, Leonard Euler, Joseph-Louis Lagrange and
Jacques Binet.

grange (1788, cf. [22]) and Binet (1844, cf. [5]) realized that for wires in space
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bending energy alone does not account for all relevant contributions to elastic en-
ergy. See also [40] and [4]. In R3 one has to take account of the internal twisting of
the wire: imagine a parallel normal field marked as a colored line on the surface
on the wire in its original straight shape. If we bend the wire into space and want
to know the elastic energy stored in the deformation, it is not enough to know
the resulting shape γ of the wire. We also have to know where the colored line
goes on the deformed curve. The twisting of the wire made visible by the colored
line contributes to the elastic energy, even if the curve is not changed at all (cf.
Figure 5.11). This means that elastic wires in R3 are more adequately modelled as

Figure 5.11. Top: An elastic wire with no twist, as indicated by the red line. Bottom: The
same wire in the same shape, only twisted.

a framed curve:

Definition 5.11. A framed curve in R3 is a curve γ : [a, b] → R3 together with a unit
normal field N along γ.

Instead of drawing many arrows, we will usually indicate the unit normal field N
of a framed curve by marking a colored line on a slightly thickened version of the
curve.

Definition 5.12. For a unit normal field N along a curve γ : [a, b] → R3, the function
τ : [a, b]→ R given by

τ =

〈
dN
ds

, T × N
〉

is called the torsion of N.

The torsion τ measures the deviation of N from being a parallel normal field.
After choosing unit vectors Wa ∈ T(a)⊥ and Wb ∈ T(b)⊥, we can assign a total
torsion angle also to a framed curve:

TW(γ, N) := β− α
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5.4 Total Squared Torsion

where the angles α, β ∈ R/2πZ are defined by

N(a) = cos α Wa + sin α T(a)×Wa

N(b) = cos β Wb + sin β T(b)×Wb.

TW(γ, N) is related to the total torsion TW(γ) of the curve γ itself as follows:

Theorem 5.13. Let N be a unit normal field with torsion τ along a curve γ : [a, b]→ R3

with unit tangent field T. Then, for any choice of unit vectors Wa ∈ T(a)⊥ and Wb ∈
T(b)⊥ we have

TW(γ, N) ≡ TW(γ) +
∫ b

a
τ ds mod 2πZ.

Proof. Let Z be the parallel normal field along γ with Z(a) = Wa. Then there is a
unique function η : [a, b]→ R with η(a) = α such that

N = cos η Z + sin η T × Z.

We have

τ =

〈
dN
ds

, T × N
〉

=

〈
−dη

ds
sin η Z +

dη

ds
cos η T × Z,− sin η Z + cos η T × Z

〉
=

dη

ds
.

Furthermore,
Z(b) = cos TW(γ) Wb + sin TW(γ) T(b)×Wb

and therefore

cos β Wb + sin β T(b)×Wb = N(b)
= cos η(b) Z(b) + sin η(b) T(b)× Z(b)
= cos (TW(γ) + η(b)) Wb + sin (TW(γ) + η(b)) T(b)×Wb.

This means that

TW(γ, N) + α ≡ β

≡ TW(γ) + η(b)

≡ TW(γ) + η(a) +
∫ b

a

dη

ds

≡ TW(γ) + α +
∫ b

a
τ.

Theorem 5.13 also explains why we use the terminology “total torsion”.
Figure 5.11 (taken from [14]) shows on the bottom a configuration where the end

57



Curves in R3

Figure 5.12. The same wire as in Figure 5.11. The wire is still twisted by the same amount,
but the endpoints are moved closer together.

points of the wire are still the same as in the relaxed configuration and therefore,
in view of the fixed length, the curve γ is still a straight line segment. However,
additional energy has been stored in the twisting of the frame. In Figure 5.12,
moving the end points closer together has made it possible to for the wire to move
away from the shape that would minimize bending energy in order to reduce its
internal twisting.

One can show that in the limit of thin wires (where the thickness tends to zero)
this additional energy is of the form c S(γ, N), where c is a positive constant and
S(γ, N) is defined as follows:

Definition 5.14. Let N be a unit normal field with torsion τ along a curve γ : [a, b] →
R3. Then the total squared torsion of the framed curve (γ, N) is defined as

S(γ, N) =
1
2

∫ b

a
τ2 ds.

The constant c depends on material properties and on the thickness r of the wire.
Following [37], we call c the twisting modulus. We work in units where the
bending energy is given as in Definition 1.19. Starting from the formulas for the
restoring torque and the bending stiffness, one finds that

c =
G
E

=
1

2(1 + ν)

58



5.5 Elastic Framed Curves

Figure 5.13. Due to the different twisting moduli, different amounts of torsion are needed
to form the same curve shape from a copper wire (top, c = 3

8 ), or a DNA-
strand (bottom, c = 9

5 ).

where G is the shear modulus of the wire material, E is the Young modulus and
ν is the Poisson ratio. According to a table (cf. [9]) of Poisson ratios for common
materials, the dimensionless constant c lies between 1

3 and 1
2 . For example, copper

wires have c = 3
8 . Also the twisting and bending of DNA strands (where there

is no real “material”) can be modeled in the same way, see equation 4.1 of [37].
Depending on the ambient conditions, here we have 1

2 ≤ c ≤ 2 (see Figure 5.13).

Fortunately, as we will see in Section 5.5, the specific value of c is irrelevant for
the possible shapes of elastic curves, i.e. of those curves γ of a given length that
are critical points of the total elastic energy B + S . The value of c only effects the
normal field N that goes together with such a curve γ, not the shape of γ itself.

5.5. Elastic Framed Curves

In Section 5.4 we looked at the elastic energy (including the part that is due to
internal twisting) stored in a perfectly elastic wire (modeled as a framed curve
(γ, N)) that came out of the factory as a straight line segment. Here we will show
that the for an energetic equilibrium configuration of such a wire the curve γ is
an elastic curve (Definition 5.6) and the torsion τ of the unit normal field N is
constant.

Definition 5.15. Let γ : [a, b]→ R3 be a curve and N a unit normal field along γ. Then
a smooth one-parameter family t 7→ (γt, Nt) of framed curves is called a variation with
support in the interior of [a, b] if γt(x) = γ(x) and Nt(x) = N(x) for all x near the end
points of the interval [a, b].

Definition 5.16. A framed curve (γ, N) is called an elastic framed curve with twisting
modulus c > 0 if

d
dt

∣∣∣∣
t=0

(B(γt) + c S(γt, Nt)) = 0
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for all variations t 7→ (γt, Nt) of (γ, N) with support in the interior of [a, b] which fix the
length, i.e. for which

d
dt

∣∣∣∣
t=0
L(γt) = 0.

Which curves γ in R3 can be supplemented by a unit normal field N in such a way
that (γ, N) is an elastic framed curve? It turns out that those curves are precisely
the elastic curves:

Theorem 5.17. A framed curve (γ, N) in R3 is elastic with twisting modulus c if and
only if its torsion τ is constant and γ is a critical point of

B + cτ T

under the constraint of fixed length L.

Proof. Let (γ, N) be an elastic framed curve elastic with twisting modulus c. Let us
first consider special variations t 7→ (γt, Nt) of (γ, N) with support in the interior
of [a, b] for which the curve itself does not move at all, i.e. for all t we have γt = γ,
so that for those variations we have

d
dt

∣∣∣∣
t=0
B(γt) = 0.

The normals that we consider are of the form

Nt = cos(tα)N + sin(tα)T × N.

where α : [a, b] → R is a function with support in the interior of [a, b]. Then.
N = αT × N,

.
T = 0,

.
ds = 0 and

.
τ =

〈
dN
ds

, T × N
〉.

=

〈
d

.
N

ds
, T × N

〉
+

〈
dN
ds

, T ×
.

N
〉

=
dα

ds
〈T × N, T × N〉+ α

〈
dN
ds

, T × (T × N)

〉
=

dα

ds
.

Therefore, for all such functions α we have

0 =
d
dt

∣∣∣∣
t=0

(B(γt) + c S(γt, Nt))

= c
d
dt

∣∣∣∣
t=0

∫ b

a

τ2

2
ds

= c
∫ b

a
τ

.
τ ds

= c
∫ b

a
τ

dα

ds
ds
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= c
∫ b

a
τα′

= −c
∫ b

a
τ′α

and therefore we must have τ′ = 0. Let now t 7→ γt be an arbitrary variation of γ
with support in the interior of [a, b] for which

d
dt

∣∣∣∣
t=0
L(γt) = 0.

Then, for small t, we can define unit normal fields Nt along γt (equal to N near
the end points of the interval [a, b]) by projecting N(x) to Tt(x)⊥ where Tt is the
unit tangent field of γt:

Nt :=
N − 〈N, Tt〉Tt

|N − 〈N, Tt〉Tt|
.

Then, by Theorem 5.13 and with d
dt

∣∣
t=0L(γt) = 0, we have

d
dt

∣∣∣∣
t=0

(B + cτ T ) (γt, Nt) =
d
dt

∣∣∣∣
t=0
B(γt) + cτ

∫ b

a

.
τ ds

=
d
dt

∣∣∣∣
t=0
B(γt) + c

∫ b

a
τ

.
τ ds + c

τ2

2
.
L

=
d
dt

∣∣∣∣
t=0

(B(γt) + c S(γt, Nt))

= 0.

This proves the “only if” direction of our claim. We leave the “if” direction to the
reader.

5.6. Frenet Normals

Definition 5.18. A unit normal field N : [a, b]→ Rn along a curve γ : [a, b]→ Rn with
unit tangent T is called a Frenet normal field if there is a function κ f : [a, b] → R such
that

dT
ds

= −κ f N.

If we ignore the effects of gravity, the unit vector pointing upward in the reference
frame of an airplane like the one in Figure 5.14 (which is lacking a rudder) will
be a Frenet normal for its flight path (see Figure 5.15). A curve γ : [a, b] → R2

has exactly two unit normal fields, and both of them are Frenet. The one with
N = −JT has κ f = κ where κ is the curvature function of γ.

Not every curve in R3 has a Frenet normal field. For example, any Frenet normal
field N for the curve (cf. [36, Chapter 1])
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Figure 5.14. The vertical vector in the reference frame of an airplane with no rudder is a
Frenet normal along its flight path.

γ : [−1, 1]→ R3, γ(x) =


(x, e

1
x , 0), x < 0

(0, 0, 0), x = 0
(x, 0, e−

1
x ), x > 0

would have to satisfy (see Figure 5.16)

N(x) =

{
±e3 x < 0
±e2 x > 0,

which is impossible for a smooth map. Figure 5.16 shows a curve where four
planar curves are stitched together in a smooth fashion, together with an attempt
to define a Frenet normal field for this curve. Even if a Frenet normal field exists
on an open dense set of [a, b] (which in general is not guaranteed), it can exhibit
singularities that can be worse than the jump discontinuities from the previous
example. For example, any Frenet normal field for the curve

γ : [−1, 1]→ R3, γ(x) =

{
(x, e

1
x cos

( 1
x

)
, e

1
x sin

( 1
x

)
), x < 0

(t, 0, 0), x ≥ 0.

will have unbounded rotation speed, as is visible in Figure 5.17. After Frenet nor-
mals were introduced in the middle of the 19th century, they quickly became a
popular tool for studying curves. The second half of the 19th century saw the
powerful appearance of Complex Analysis and Algebraic Geometry in the land-
scape of Mathematics, while Topology (and certainly Differential Topology) were
still in their infancy. In those days it seemed natural to assume that the curves
γ under consideration were real analytic (locally representable as a power series).
And every real analytic curve does indeed have a Frenet normal field:
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Figure 5.15. A Frenet normal along a space curve.

Figure 5.16. Even when a Frenet normal field exists on an open dense set, on the whole
curve there might be no such field.

Theorem 5.19. If γ : [a, b]→ Rn is real analytic, then γ has a Frenet frame.

Proof. Without loss of generality we may assume that γ has unit speed. If γ
parametrizes a piece of a straight line, then every unit normal field along γ is
Frenet and we are done. Otherwise, because of the real analyticity of γ, there are
only finitely many parameter values x1, . . . xm ∈ [a, b] where γ′′ vanishes. On each
subinterval of [a, b] bounded by two of the points a, x1, . . . , xm, b there is a Frenet
normal field, unique up to sign, which is obtained by setting N = γ′′

|γ′′| . It is there-
fore sufficient to show that also in the neigborhood of each xj there is a Frenet
normal field, unique up to sign. In the end, the signs can then easily be adjusted
to yield a Frenet normal field on the whole interval [a, b]. By real analyticity, there
is a neighborhood of xj where γ can be expressed as

γ(x) =
∞

∑
k=0

ak(x− xj)
k
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Figure 5.17. Away from a single point, this curve has a Frenet normal. However, its rota-
tion speed τ is unbounded.

with ak ∈ Rn. Then

γ′′(x) =
∞

∑
k=2

k(k− 1)ak(x− xj)
k−2

and there is an index ` ∈N such that ak = 0 for k = 2, . . . , `− 1 but a` 6= 0. Then

γ′′ = (x− xj)
`−2

∞

∑
k=0

(`+ k)(`+ k− 1)a`+k(x− xj)
k =: (x− xj)

`−2η(x)

with η(x) 6= 0 for all x in some neighborhood of xj. In this neighborhood

N(s) :=
η

|η| .

is the desired Frenet normal field.

Nowadays, the standard assumption for curves is that they are smooth, i.e. in-
finitely often differentiable. Because for n ≥ 3 not every C∞ curve in Rn has a
Frenet normal field, for n ≥ 3 these fields cannot be used for studying global
questions about smooth curves in Rn. When used in the context of numerical
algorithms that operate on space curves, Frenet normals can cause unexpected
behavior near curves that do not have a Frenet normal.
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Surfaces

66





6. Surfaces and Riemannian Geom-
etry

The most simple invariant of a one-dimensional curve γ : [a, b] → Rn is its speed
|γ′| : [a, b]→ R. The goal of this chapter is to arrive at the analogous statement for
a two-dimensional surface in Rn. Our first task will be to replace the interval [a, b]
by a suitable domain of definition M ⊂ R2. For a surface f : M → Rn the analog
for the speed of a curve will be a Riemannian metric induced on M by f .

6.1. Surfaces in Rn

Our investigations of curves in Rn will be the guideline when we now start to
study surfaces. For the most part we will focus on surfaces in R3. We will study
the curvature of surfaces and the analog of the length of a curve (obviously the
area of a surface) as well as the analog of the total squared curvature (called the
Willmore functional). We will study the critical points of the area under variations
with support in the interior (these surfaces are called minimal surfaces) and of the
Willmore functional. We will prove a famous result that concerns the surface ana-
log of

∫ b
a κ ds, the so-called Gauss-Bonnet theorem. We will investigate the analog

(called the Euler characteristic) for the tangent winding number of a curve in R2.

In our discussion of (non-closed) curves γ in R, γ was always defined on a closed
interval [a, b]. It would have made little difference if γ would have been defined
on the finite union of pairwise disjoint intervals. In the case of surfaces, it will be
useful to allow for such disconnected domains.

Definition 6.1. A subset M ⊂ R2 is called a connected compact domain with smooth
boundary if

M = M0 \ {M̊1 ∪ . . . ∪ M̊k}

where for each j ∈ {0, . . . , k}
Mj = ϕj(D)

is the image of the unit disk

D := {p ∈ R2 | |p| ≤ 1}

68



6.1 Surfaces in Rn

M

Figure 6.1. A compact domain with smooth boundary.

under a diffeomorphism
ϕj : D → R2

and the Mj are pairwise disjoint and contained in the interior of M0. A finite disjoint
union of connected compact domains with smooth boundary is called a compact domain
with smooth boundary (see Figure 6.1).

Notation: Throughout the rest of the book, M will denote a compact domain with
smooth boundary in R2.

R2
f

M

R3

Figure 6.2. A surface f : M→ R3.

In order to avoid having to mention regularity constantly, we include regularity in
the definition of a surface (see Figure 6.2):

Definition 6.2. A surface in Rn is a smooth map f : M→ Rn whose derivative f ′(p) is
an (n× 2)-matrix of rank 2 for all p ∈ M.

We will denote the coordinates in R2 by u and v. Partial derivatives with respect
to u or v will be denoted by subscripts, so for a surface f in Rn the matrix-valued
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function f ′ : M→ Rn×2 is of the form

f ′ =

 | |
fu fv
| |


with fu(p), fv(p) ∈ Rn linearly independent for all p ∈ M. The following two
definitions are special cases of the ones in Appendix A.1.

Definition 6.3. A map f : M→ Rn is called smooth if it is of the form f = f̃ |M for some
smooth map f̃ : U → Rn where U ⊂ R2 is an open set that contains M.

It is easy to check that even at boundary points p ∈ M the Jacobian matrix f̃ ′(p)
only depends on f , not on the specific way in which f̃ extends f . We therefore can
safely define f ′(p) := f̃ ′(p).

Definition 6.4. If M, M̃ ⊂ R2 are two compact domains with smooth boundary, a bi-
jective map ϕ : M → M̃ is called a diffeomorphism if both ϕ and ϕ−1 are smooth. A
diffeomorphism ϕ is called orientation-preserving if det ϕ′(p) > 0 for all p ∈ M.

R2

f f̃

ϕM
M̃

R3

Figure 6.3. A reparametrization f̃ of a surface f .

Definition 6.5. If f : M → Rn and f̃ : M̃ → Rn are two surfaces, then f̃ is called
an (orientation-preserving) reparametrization of f if there is an (orientation-preserving)
diffeomorphism ϕ : M̃→ M such that

f̃ = f ◦ ϕ,

(see Figure 6.3).

As in the case of curves in the plane, it is not difficult to check that reparametriza-
tion (as well as orientation-preserving reparametrization) defines an equivalence
relation on the set of surfaces in Rn.
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Although we will not formalize this, we are only interested in properties of sur-
faces that are invariant under orientation-preserving reparametrization, so the real
objects of our study are the equivalence classes of surfaces under reparametriza-
tion.

6.2. Tangent Spaces and Derivatives

Let M ⊂ R2 be a compact domain with smooth boundary and f : M → Rk a
smooth map. Then the directional derivative of f at a point p ∈ M in the direction
of a vector X̂ ∈ R2 is given by

d f (p, X̂) := f ′(p)X̂.

This means that all these directional derivatives are encoded in a map d f : M ×
R2 → Rk:

Definition 6.6. For a point p ∈ M, a tangent vector to M at p is a pair X = (p, X̂)
where X̂ ∈ R2. The set

Tp M = {p} ×R2

of all these tangent vectors is called the tangent space to M at p. We make each Tp M into
a two-dimensional real vector space by defining for X = (p, X̂), Y = (p, Ŷ) and λ ∈ R

X + Y = (p, X̂ + Ŷ)

λX = (p, λX̂).

R2

f

M

R3

p

Y
X

Tp M
d f (X)

d f (Y)

Figure 6.4. Two tangent vectors X, Y ∈ Tp M and their image under d f .

The union TM = M×R2 of all these tangent spaces is called the tangent bundle of M.
The map

π : TM→ M, (p, X̂) 7→ p

is called the projection map of the tangent bundle.

One immediate benefit of this definition is a more concise notation for derivatives:
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Definition 6.7. For a smooth map f : M→ Rn we define the derivative d f : TM→ Rn

of f by setting for X ∈ TM, X = (p, X̂)

d f (X) = f ′(p)X̂,

(see Figure 6.4)

The restriction of d f to each tangent space Tp M is a linear map from Tp M to Rn.

Definition 6.8. A smooth map X : M → TM is called a vector field if π ◦ X = idM,
which means that X(p) ∈ Tp M for all p ∈ M.

If X̂ : M→ R2 is a smooth map, then the assignment

X : M→ TM, X(p) = (p, X̂(p))

is a smooth vector field on M and all smooth vector fields are obtained in this way.
Here is some convenient notation:

Definition 6.9.

1. The vector space of all smooth functions f : M→ R is denoted by C∞(M).

2. The vector space of all smooth functions f : M→ Rn is denoted by C∞(M, Rn).

3. The vector space of all smooth vector fields on M is denoted by Γ(TM).

As is known from calculus class, for a smooth map f : M → Rn the vector
f ′(p)X̂ ∈ Rn can also be interpreted as the directional derivative of f at p in
the direction of the vector X̂ ∈ R2. With this in mind we define the directional
derivative of f ∈ C∞(M, Rn) in the direction of a vector field X ∈ Γ(TM) by

(dX f )(p) := dX(p) f = d f (X(p)).

Definition 6.10. The coordinate vector fields U, V ∈ Γ(TM) are defined as

U(p) =
(

p,
(

1
0

))
, V(p) =

(
p,
(

0
1

))
.

The directional derivatives in the direction of U or V are just partial derivatives:

dU f = fu, dV f = fv.

Definition 6.11. Let M, M̃ ⊂ R2 be two compact domains with smooth boundary and
ϕ : M̃→ M a diffeomorphism. Then we define

dϕ : TM̃→ TM, dϕ(X) =
(

ϕ(p), ϕ′(p)X̂
)

for X =
(

p, X̂
)

.

Remark 6.12. Note that for X ∈ Tp M̃ the vector dϕ(X) is an element of Tϕ(p)M,
while for a surface f : M → Rn the vector d f (X) is just an element of Rn, not an
element of something like Tf (p)R

n. We are relying here on the fact that in our
situation we can naturally identify all such tangent spaces TqRn with Rn itself.
This mild context-dependency of notation should lead to no confusion. It is very
useful and common in Differential Geometry.
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With this notation in place, the chain rule now emerges in its most elegant form:

Theorem 6.13.

1. Suppose f̃ : M̃ → Rn is a reparametrization of the surface f : M → Rn, i.e. f̃ =
f ◦ ϕ for some diffeomorphism ϕ : M̃→ M. Then

d f̃ = d f ◦ dϕ.

2. If M, M̃, M̂ ⊂ R2 are compact domains with smooth boundary and ϕ : M̃ → M
and ϕ̃ : M̂→ M̃ are diffeomorphisms, then

d(ϕ ◦ ϕ̃) = dϕ ◦ dϕ̃.

Proof. The proof just involves spelling out our definitions and applying the ordi-
nary chain rule.

6.3. Riemannian Domains

When it comes to investigating the geometry of a surface f : M → Rn, the ge-
ometry of M as it sits in R2 is completely irrelevant. Things like the length of a
vector or the angle between vectors should be computed in the target space Rn of
f , not in R2. Accordingly, we endow each tangent space Tp M with its own private
Euclidean scalar product by defining

〈 , 〉 f :
⋃

p∈M

(Tp M× Tp M)→ R, 〈X, Y〉 f = 〈d f (X), d f (Y)〉.

It is easy to check that for each p ∈ M the restriction of 〈 , 〉 f to Tp M × Tp M
is indeed a positive definite scalar product on Tp M. With respect to this scalar
product, X ∈ Tp M is a unit vector if and only if d f (X) ∈ Rn is a unit vector.

Definition 6.14. 〈 , 〉 f as defined above is called the metric on M induced by f .

Remark 6.15. In older texts the induced metric is often called the first fundamental
form. We will not use this terminology.

In general, objects like 〈 , 〉 f are interesting even when they are not induced by a
map f : M→ Rn. That is, 〈 , 〉 f has the properties of a scalar product between two
vectors, which allows us to measure lengths an angles. However, one can freely
choose other ways to define such a metric, without explicit reference to a surface
f , as long as the scalar product properties are satisfied.

Definition 6.16. Let M be a compact domain with smooth boundary in R2. Then:

1. A map
〈 , 〉 :

⋃
p∈M

(Tp M× Tp M)→ R

is called a Riemannian metric on M if for each p ∈ M the restriction of 〈 , 〉 to
Tp M × Tp M is a positive definite scalar product and for any two smooth vector
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fields X, Y ∈ Γ(TM) the function

〈X, Y〉 : M→ R

is smooth.

2. M together with a Riemannian metric 〈 , 〉 on M is called a Riemannian domain.

Remark 6.17. For brevity of the notation we will usually omit the index (·) f even
for Riemannian metrics which are induced by some f : M → R3. The inserted
vectors should provide enough context to avoid confusion.

A Riemannian metric 〈 , 〉 gives rise to a function

| · | : TM→ R, |X| =
√
〈X, X〉.

The restriction of | · | to each tangent space is indeed a norm on Tp M. One should
note that the coordinate vector fields U and V are not necessarily orthonormal
with respect to this induced metric. In fact, this is only true for special surfaces.
We will elaborate more on this in Section 6.5.

Example 6.18. The norm corresponding to the metric 〈 , 〉ι induced by the inclusion
map

ι : M→ R2, (u, v) 7→
(

u
v

)
satisfies

| · |2ι = du2 + dv2.

The above equation should be read as a literal equality of two functions on TM.

6.4. Linear Algebra on Riemannian Domains

Even in the absence of a Riemannian metric, each single tangent space Tp M is a
playing field for Linear Algebra.

Definition 6.19. A smooth map

A : TM→ TM

is called an endomorphism field if its restriction to each tangent space Tp M is a linear
map

Ap : Tp M→ Tp M.

Remember that TM = M × R2, so it is clear what we mean by a smooth map
from TM to TM. In particular, it is clear what we mean by a smooth endomor-
phism field. For every smooth endomorphism field A there are smooth functions
a, b, c, d : M→ R such that

AU = a ·U + c ·V
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6.4 Linear Algebra on Riemannian Domains

AV = b ·U + d ·V.

This means that a smooth endomorphism field basically is the same thing as a
smooth map

p 7→
(

a b
c d

)
∈ R2×2.

We always have the identity map as a canonical endomorphism field:

I : TM→ TM, IX = X for all X ∈ TM.

If A is an arbitrary smooth endomorphism field on M, for each p ∈ M we can
take the determinant or trace of the restriction of A to Tp M and obtain smooth
functions

det A, tr A : M→ R.

In the presence of a Riemannian metric we can define the adjoint of an endomor-
phism field:

Theorem 6.20. Let 〈 , 〉 be a Riemannian metric on M and A a smooth endomorphism
field on M. Then there is a unique smooth endomorphism field A∗ on M such that for all
vector fields X, Y ∈ Γ(TM) we have

〈AX, Y〉 = 〈X, A∗Y〉.

Proof. By definition of a Riemannian metric, the map

G : M→ R2×2, G =

(
〈U, U〉 〈U, V〉
〈V, U〉 〈V, V〉

)
is smooth and the matrix G(p) is invertible for all p ∈ M. Now one can check that,
given an endormorphism field A such that

AU = aU + cV
AV = bU + dV

the endomorphism field A∗ defined by

A∗U = ã ·U + c̃ ·V
A∗V = b̃ ·U + d̃ ·V

with (
ã c̃
b̃ d̃

)
= G−1

(
a b
c d

)T

G

is smooth and satisfies the desired identity. The uniqueness part of the claim is
straightforward.

The endomorphism field I defined above is self-adjoint, which means I∗ = I. The
only structure on M we want to inherit from R2 is the notion of orientation:
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Definition 6.21. Two vectors

X = (p, X̂) , Y = (p, Ŷ) ∈ Tp M

are said to form a positively oriented basis of Tp M if X̂, Ŷ ∈ R2 are a positively oriented
basis of R2, i.e. detR2(X̂, Ŷ) > 0.

Each tangent space Tp M of a Riemannian domain comes with its own determinant
form:

Theorem 6.22. Let 〈 , 〉 be a Riemannian metric on M. Then there is a unique map

det :
⋃

p∈M

(Tp M× Tp M)→ R

such that for every p ∈ M the restriction

det |Tp M×Tp M

is a skew-symmetric bilinear form such that

det(X, Y) = 1

for every positively oriented orthonormal basis of Tp M. The map det is called the area
form of the Riemannian domain (M, 〈 , 〉).

Proof. The vector fields

X :=
U√
〈U, U〉

Y :=
〈U, U〉V − 〈V, U〉U√

〈U, U〉
√
〈U, U〉〈V, V〉 − 〈U, V〉2

are orthonormal at each point p ∈ M. Therefore, the function det we are looking
for has to satisfy

1 = det(X, Y) =
det(U, V)√

〈U, U, 〉〈V, V〉 − 〈U, V〉2
.

The skew-symmetric bilinear forms on Tp M form a 1-dimensional vector space, so
there is a unique such form det for which

det(U, V) =
√
〈U, U〉〈V, V〉 − 〈U, V〉2 ,

where the equality has to be read point-wise. This form already satisfies det(X, Y) =
1. On the other hand, every positively oriented orthonormal basis of Tp M is of the
form

X̃ = cos α X(p)− sin α Y(p)

Ỹ = sin α X(p) + cos α Y(p)
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6.5 Isometric surfaces

for some α ∈ R. Therefore, we also have det
(
X̃, Ỹ

)
= 1.

Theorem 6.23. Let 〈 , 〉 be a Riemannian metric on M and det the area form defined in
Theorem 6.22. Then there is a unique endomorphism field J on M such that for all p ∈ M
and all X, Y ∈ Tp M we have

〈JX, Y〉 = det(X, Y).

In terms of the coordinate vector fields, J is given by

JZ =
〈U, Z〉V − 〈V, Z〉U√
〈U, U〉〈V, V〉 − 〈U, V〉2

.

Hence J is smooth. For every positively oriented orthonormal basis of Tp M we
have

JX = Y
JY = −X.

So, J operates in each tangent space Tp M as the 90◦-rotation in the positive sense.
The proof is straightforward and left to the reader. The theorem will be useful in
several instances:

Theorem 6.24. For vectors X, Y, Z ∈ Tp M the following identity holds:

〈X, Z〉Y− 〈Y, Z〉X = det(X, Y)JZ.

Proof. Both sides of the claimed identity are linear in X and Y and by Theorem
6.23 the formula that we want to prove is true whenever X, Y ∈ {U(p), V(p)}.
Since U(p) and V(p) form a basis of Tp M, the claimed identity then is true for all
X, Y ∈ Tp M.

6.5. Isometric surfaces

Definition 6.25. Two surfaces f , f̃ : M → Rn are called isometric if they induce the
same Riemannian metric 〈 , 〉 on M.

Note that f and f̃ are isometric if and only if

〈 fu, fu〉 = 〈 f̃u, f̃u〉
〈 fu, fv〉 = 〈 f̃u, f̃v〉
〈 fv, fv〉 = 〈 f̃v, f̃v〉.

The physical intuition concerning isometries is as follows: The deformation of the
surface f to the surface f̃ involves only bending, without any intrinsic deforma-
tion such as stretching within the surface. In the 19th century, geometers liked to
demonstrate this using leather patches. By methods known for example to shoe-
makers, a leather patch can be brought into any initial shape. After the initial
preparation, the leather can still be bent easily, but it will not allow stretching. In

77



Surfaces and Riemannian Geometry

M

f

f̃

Figure 6.5. The maps f and f̃ are isometric, as the flat leather patch f can be placed onto
a cone without tearing or stretching. It can even slide freely on the cone.

Figure 6.5, the initial shape f of the patch is a planar ring. This ring can easily be
fitted to a cone, assuming a shape f̃ .
It is clear that one can slide the ring freely around on the cone, in all directions.
Few surfaces have the property that one can take a piece of the surface and slide
it without distortion or stretching around on the surface. For example, the leather
patch on the surface in Figure 6.6 is clearly stuck in place. One famous surface

Figure 6.6. The leather patch on this dodecahedron is stuck in place.

on which such a patch can freely slide, already known in the 19th century and
a popular tool for the leather demonstration, is the pseudosphere, that can be
parametrized as follows:
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6.5 Isometric surfaces

Suppose that M ⊂ {(u, v) ∈ R2 | v > 1} and define

f : M→ R3, f (u, v) =


cos(u)

v
sin(u)

v

log
(√

v2 − 1 + v
)
−
√

v2−1
v

 .

Choose λ > 1 and µ ∈ R and define f̃ : M→ R3 by f̃ (u, v) = f (λu + µ, λv).

M

f

f̃

Figure 6.7. A leather patch fitted to the pseudosphere (at first in one place) is able to slide
around freely and even rotate freely.

We leave it to the reader to verify

〈 fu, fv〉 = 〈 f̃u, f̃v〉 = 0

〈 fu, fu〉 = 〈 fv, fv〉 = 〈 f̃u, f̃u〉 = 〈 f̃v, f̃v〉 =
1
v2

and that therefore f and f̃ are isometric (see Figure 6.7).

Here is another example, which will also be of interest later when we study min-
imal surfaces: Suppose that M ⊂ {(u, v) ∈ R2 | u > 0}. Let k, ` ∈ Z be two
integers with k + ` 6= −1. Then define the Enneper surface f : M→ R3 by

f (u, v) =

 u2k+1 cos((2k+1)v)
2k+1 − u2`+1 cos((2`+1)v)

2`+1

u2k+1 sin((2k+1)v)
2k+1 + u2`+1 sin((2`+1)v)

2`+1

2uk+`+1 cos((k+`+1)v)
k+`+1

 .

Again, we leave it to the reader to verify that

〈 fu, fv〉 = 0

| fu(u, v)| = u2k + u2`

| fv(u, v)| = u2k+1 + u2`+1
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and that for arbitrary λ ∈ R the analogous formulas also hold for

f̃ : M→ R3

f̃ (u, v) = f (u, v + λ).

Mf
f̃

Figure 6.8. A leather patch fitted to the Enneper surface is able to slide around, but only
in one direction. It cannot rotate.

This means that also here f and f̃ are isometric, so a leather patch has at least one
degree of freedom to slide on the surface without stretching (see Figure 6.8).
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7. Integration and Stokes’ Theorem

For a curve γ : [a, b]→ Rn, global quantities like the length or the bending energy
were defined as integrals over arclength of certain functions on [a, b]. Before we
can define similar quantities for a surface f : M → Rn, for example, the area of
f , we have to find a way to integrate functions g : M → R in a geometrically
meaningful fashion. We will do this in terms of the area two-form det of the metric
induced by f . This means that first we have to develop the theory of differential
forms on two-dimensional domains M, including the theorem of Stokes.

7.1. Integration on Surfaces

Let M, M̃ ⊂ R2 be two compact domains with smooth boundary, ϕ : M̃ → M an
orientation-preserving diffeomorphism and g : M → R a smooth function. By the
transformation formula for integrals, we have∫

M̃
g ◦ ϕ det ϕ′ =

∫
M

g.

Therefore, if one were to just use
∫

M g as the definition for an integral of a function
g over the surface f , this integral would not be invariant under reparametrization
of f . On the other hand, we are now going to convince ourselves that it is per-
fectly possible to define the integral of an object like the area form det, as it was
introduced in Theorem 6.22:

Definition 7.1. Let M be a compact domain with smooth boundary in R2. Then a map

σ :
⋃

p∈M

(Tp M× Tp M)→ R

is called a 2-form on M if for each p ∈ M the restriction of σ to Tp M × Tp M is a
skew-symmetric bilinear form and the function

σ(U, V) : M→ R

is smooth.

We denote the set of all 2-forms on M by Ω2(M). As a linear subspace of the vector
space of all real-valued functions on some set, also Ω2(M) is a real vector space. It
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is also clear how to define the product of a 2-form σ with a function g ∈ C∞(M).
One can say that 2-forms are similar to Riemannian metrics, only skew symmetric
instead of symmetric and without any non-degeneracy assumptions.

Remark 7.2. A “model example” of a 2-form which we have already encountered
is the well-known det ∈ Ω2(M).

2-forms are transported under diffeomorphisms by demanding that the trans-
ported form applied to the transported tangent vectors yields the same value as
before:

Definition 7.3. Let M, M̃ ⊂ R2 be two compact domains with smooth boundary, ϕ : M̃→
M a smooth map and σ a 2-form on M. Then we define the pull-back of σ under ϕ as the
2-form ϕ∗σ on M̃ that for p ∈ M̃ and X, Y ∈ Tp M̃ is given by

(ϕ∗σ)(X, Y) := σ(dϕ(X), dϕ(Y)).

Theorem 7.4. In the situation of Definition 7.3, the map

Ω2(M)→ Ω2(M̃), σ 7→ ϕ∗σ

is linear and for g ∈ C∞(M) satisfies

ϕ∗(gσ) = (g ◦ ϕ)(ϕ∗σ).

The integral over M of a 2-form σ ∈ Ω2(M) is defined as follows:

Definition 7.5. The integral of a 2-form σ on a compact domain M with smooth bound-
ary in R2 is defined as ∫

M
σ =

∫
M

σ(U, V)

where U and V are the two vector fields on M introduced in Definition 6.10.

The above definition is useful because
∫

M σ is invariant under pull-back of σ by
an orientation-preserving diffeomorphism ϕ : M̃→ M.

Theorem 7.6. Let M, M̃ ⊂ R2 be two compact domains with smooth boundary, ϕ : M̃→
M an orientation-preserving diffeomorphism and σ ∈ Ω2(M) a 2-form. Then∫

M̃
ϕ∗σ =

∫
M

σ.

Proof. Let us write

ϕ′ =

(
a b
c d

)
,

which means

dϕ(Ũ) = a U ◦ ϕ + c V ◦ ϕ

dϕ(Ṽ) = b U ◦ ϕ + d V ◦ ϕ.
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Therefore, by the skew symmetry of σ and the transformation formula,∫
M̃

ϕ∗σ =
∫

M̃
(ϕ∗σ)(Ũ, Ṽ)

=
∫

M̃
σ(dϕ(Ũ), dϕ(Ṽ))

=
∫

M̃
(ad− bc) σ(U, V) ◦ ϕ

=
∫

M
σ(U, V)

=
∫

M
σ.

In the context of surfaces f : M → Rn, we will never integrate functions g ∈
C∞(M) directly, but instead we will first make g into a 2-form by multiplying it
with the area form det of the induced metric. Then we can be sure that∫

M
g det

is a quantity that will stay the same if we reparametrize f as f̃ = f ◦ ϕ (and, of
course, simultaneously change g to g ◦ ϕ). Theorem 7.6 above makes it possible
to define the area of a Riemannian domain in such a way that it does not change
under isometries:

Definition 7.7. The area of a Riemannian domain (M, 〈 , 〉) is defined as∫
M

det

where det is the area form of 〈 , 〉.

7.2. Integration over Curves

In order to adequately deal with surfaces, we have found it necessary to add
tangent spaces, Riemannian metrics and 2-forms to our toolbox. Let us investigate
whether some of these notions might be useful already in the context of curves.
For a curve γ : [a, b] → R, the analog of the domain M of a surface f : M → Rn is
the interval [a, b]. The tangent bundle of [a, b] is

T[a, b] = [a, b]×R

and the tangent space at p ∈ [a, b] is {p} ×R. The analog of the vector fields U, V
on M is the single vector field X ∈ Γ([a, b]) defined as

X(p) = (p, 1).

The objects that can naturally be integrated over curves are the so-called 1-forms.
We will need 1-forms also on planar domains, so we take the opportunity to define
also those.
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Definition 7.8. Let [a, b] be a closed interval and M ⊂ R2 a planar domain with smooth
boundary. Smoothness of maps defined on T[a, b] or TM is to be understood in the sense
of Definition A.1. Then

1. A smooth map ω : T[a, b] → R is called a 1-form if its restriction to each tangent
space Tp[a, b] is linear. The space of all 1-forms on [a, b] is denoted by Ω1([a, b]).

2. A smooth map ω : TM→ R is called a 1-form if its restriction to each tangent space
Tp M is linear. The space of all 1-forms on M is denoted by Ω1(M).

M

ωp
Xp

Figure 7.1. A 1-form ω ∈ Ω1(M) can be thought of as a smoothly varying ruler which
“measures” a vector field X ∈ Γ(M). The spacing of the ruler-lines indicates
the “strength” of ω – the closer the spacing, the stronger is ω.

A general theory of m-forms on domains in Rk is beyond the scope of this book,
so we just collect some special cases that we need:

Definition 7.9. Let [a, b] ⊂ R be a closed interval and M ⊂ R2 a planar domain with
smooth boundary.

1. If ω is a 1-form on [a, b] and ϕ : [ã, b̃] → [a, b] is a smooth map, then we define
the pull-back of ω under ϕ as the 1-form ϕ∗ω ∈ Ω1([ã, b̃]) which is for all Y ∈
Γ([ã, b̃]) given by

(ϕ∗ω)(Y) = ω(dϕ(Y)).

2. If ω is a 1-form on M and ϕ : M̃→ M is a smooth map, then we define the pull-back
of ω under ϕ as the 1-form ϕ∗ω ∈ Ω1(M̃) which is for all Y ∈ Γ(M̃) given by

(ϕ∗ω)(Y) = ω(dϕ(Y)).

3. If ω is a 1-form on M and γ : [a, b]→ M is a smooth map, then we define the pull-
back of ω under γ as the 1-form γ∗ω ∈ Ω1([a, b]) which is for all Y ∈ Γ([a, b])
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given by
(γ∗ω)(Y) = ω(dγ(Y)).

Definition 7.10. For ω ∈ Ω1([a, b]) we define the integral of a 1-form ω over [a, b] as∫
[a,b]

ω :=
∫ b

a
ω(X).

Theorem 7.11. Let ϕ : [ã, b̃] → [a, b] be an orientation-preserving diffeomorphism, i.e. a
bijective smooth map with ϕ′ > 0. Then∫

[ã,b̃]
ϕ∗ω =

∫
[a,b]

ω.

Proof. By the substitution rule and dϕ(X̃) = ϕ′ · X ◦ ϕ we have

∫
[ã,b̃]

ϕ∗ω =
∫ b̃

ã
(ϕ∗ω)(X̃)

=
∫ b̃

ã
ω(dϕ(X̃))

=
∫ b̃

ã
ω(ϕ′ · X ◦ ϕ)

=
∫ b̃

ã
ϕ′ ·ω(X) ◦ ϕ

=
∫ b

a
ω(X)

=
∫
[a,b]

ω.

Theorem 7.12. Let M ⊂ R2 be a compact domain with smooth boundary and ω ∈
Ω1(M) a 1-form. Let γ̃ : [ã, b̃] → M be a reparametrization of a smooth map γ : [a, b] →
M, so γ̃ = γ ◦ ϕ for an orientation-preserving diffeomorphism ϕ : [ã, b̃]→ [a, b]. Then∫

[ã,b̃]
γ̃∗ω =

∫
[a,b]

γ∗ω.

Proof. By the chain rule, we have dγ̃ = dγ ◦ dϕ and therefore

γ̃∗ω = ϕ∗(γ∗ω).

Therefore, Theorem 7.11 gives us∫
[ã,b̃]

γ̃∗ω =
∫
[ã,b̃]

ϕ∗(γ∗ω) =
∫
[a,b]

γ∗ω.

As a consequence, we can define the integral of a 1-form ω on M over a curve in
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M in a way that is invariant under reparametrization:

Definition 7.13. Let Let M ⊂ R2 be a compact domain with smooth boundary and
ω ∈ Ω1(M). Let γ : [a, b]→ M be a curve. Then we define∫

γ
ω :=

∫
[a,b]

γ∗ω.

In the context of a regular curve γ : [a, b] → Rn, what is the analog of the area
form det of a surface f : M→ Rn?

Definition 7.14. The arclength 1-form ds ∈ Ω1([a, b]) of a curve γ : [a, b] → Rn is
defined as

ds(X) = |dγ(X)| = |γ′|.

If we define the arclength function s as in Definition 1.13, the arclength 1-form ds
is indeed the derivative of s, which explains the notation. Moreover, if we interpret
the left-hand side according to Definition 7.13 and the right-hand side according
to Definition 1.14, for a function g : [a, b]→ R we have∫

[a,b]
g ds =

∫ b

a
g ds.

7.3. Stokes’ Theorem

When dealing with curves, we frequently used the fundamental theorem of cal-
culus, for example in the form of integration by parts. Also in surface theory we
would no get very far without the surface analog of this theorem, which is the
so-called Stokes theorem.

Let M ⊂ R2 be a compact connected domain with smooth boundary. The bound-
ary ∂M of M can be parametrized by a finite collection of n closed curves

γj : [aj, bj]→ R2

where j ∈ {1, . . . n}. We assume that each γj is oriented in such a way that for any
vector Y ∈ R2 which at γj(x) points out of M, we have

det
(

Y, γ′j(x)
)
> 0.

Given a 1-form ω ∈ Ω1(M), we make use of Definition 7.13 in order to define the
integral of ω over ∂M: ∫

∂M
ω =

n

∑
j=1

∫
γj

ω.

Theorem 7.15 (Stokes Theorem). Let M ⊂ R2 be a compact domain with smooth
boundary and ω ∈ Ω1(M). Then there is a unique 2-form dω ∈ Ω2(M) such that for all
subdomains M̃ ⊂ M we have ∫

M̃
dω =

∫
∂M̃

ω.
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In fact, dω is the unique 2-form on M that satisfies

dω(U, V) = ω(V)u −ω(U)v.

Proof. M̃ could be an arbitrarily small disk around an arbitrary point p in the
interior of M, so there can be at most one 2-form σ with the property that for all
subdomains M̃ ∫

M̃
σ =

∫
∂M̃

ω.

This proves the uniqueness part of the claim. If we write

γ′j =

(
αj
β j

)
we have

dγj(X) = αj U ◦ γj + β j V ◦ γj

and therefore
ω(dγj(X)) = αj ω(U) ◦ γj + β j ω(V) ◦ γj.

Let us define σ ∈ Ω2(M) as the unique 2-form for which

σ(U, V) = ω(V)u −ω(U)v.

Now we apply Green’s theorem from vector calculus to the map

Y : M→ R2, Y =

(
ω(U)
ω(V)

)
,

and obtain ∫
M

σ =
∫

M
σ(U, V)

=
∫

M
(ω(V)u −ω(U)v)

=
n

∑
j=1

∫ bj

aj

(αj ω(U) ◦ γj + β j ω(V) ◦ γj)

=
n

∑
j=1

∫ bj

aj

ω(dγj(X))

=
n

∑
j=1

∫ bj

aj

γ∗j ω

=
∫

∂M
ω.

We can apply this argument also to any subdomain M̃ ⊂ M, which proves the
existence part of the claim.

Theorem 7.16. If ϕ : M̃→ M is a smooth map and ω ∈ Ω1(M), then

ϕ∗(dω) = d(ϕ∗ω).
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Integration and Stokes’ Theorem

Proof. The proof is easy if ϕ is an orientation-preserving diffeomorphism: If M̂ ⊂
M̃ is any subdomain, then by Theorems 7.6, 7.11 and 7.15 we have∫

M̂
ϕ∗(dω) =

∫
ϕ(M̂)

dω

=
∫

∂ϕ(M̂)
ω

=
∫

∂M̂
ϕ∗ω

By the uniqueness part of Theorem 7.15 we then must have ϕ∗(dω) = d(ϕ∗ω).

Unfortunately, here we only assume that ϕ is a smooth map, so we have to rely on
the coordinate formula provided in Theorem 7.15. We use the notation from the
proof of Theorem 7.6 together with the equalities aṽ = bũ and cṽ = dũ that follow
from the commutativity of partial derivatives of the component functions of ϕ to
compute:

d(ϕ∗ω)(Ũ, Ṽ) = ω(dϕ(Ṽ))ũ −ω(dϕ(Ũ))ṽ

= (b ·ω(U) ◦ ϕ + d ·ω(V) ◦ ϕ)ũ − (a ·ω(U) ◦ ϕ + c ·ω(V) ◦ ϕ)ṽ

= b(aω(U)u ◦ ϕ + cω(U)v ◦ ϕ) + d(a ·ω(V)u ◦ ϕ + c ·ω(V)v ◦ ϕ

− a(b ·ω(U)u ◦ ϕ + d ·ω(U)v ◦ ϕ)− c(b ·ω(V)u ◦ ϕ + d ·ω(V)v ◦ ϕ)

= (ad− bc)(ω(V)u −ω(U)v) ◦ ϕ

= (ad− bc) dω(U, V) ◦ ϕ

= dω(a ·U ◦ ϕ + c ·V ◦ ϕ, b ·U ◦ ϕ + d ·V ◦ ϕ)

= dω(dϕ(Ũ), dϕ(Ṽ))

= (ϕ∗dω)(Ũ, Ṽ),

which proves the claim.

88



8. Curvature

From this chapter on we will focus attention on surfaces f : M → R3. The most
fundamental tool for analysing such a surface is its unit normal field N : M → S2

which is a map to the unit sphere S2 ⊂ R3. The derivative of N reveals information
about the curvature of f . In particular, the area covered by N on S2 provides us
with a geometric interpretation of the so-called Gaussian curvature of f .

8.1. Unit Normal of a Surface in R3

Most of the material in the chapters 6 and 7 was concerned with the intrinsic
geometry of Riemannian domains or with surfaces in Rn. From now on we will
focus on surfaces f : M→ R3.

Mf

Y X
p

N(p)

d f (X)
d f (Y)

Figure 8.1. The normal vector N(p) of a surface f at a point p.

Definition 8.1. Let M ⊂ R2 be a domain with smooth boundary and f : M → R3 a
surface. Then there is a unique smooth map N : M→ R3 with 〈N, N〉 = 1 such that

1. For all p ∈ M and all X ∈ Tp M we have

〈N(p), d f (X)〉 = 0.
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Curvature

2. For all p ∈ M and every positively oriented basis X, Y of Tp M we have

det(N(p), d f (X), d f (Y)) > 0.

N is called the unit normal of f (see Figure 8.1).

In terms of the coordinate vector fields U and V we can express N as

N =
fu × fv

| fu × fv|
.

Theorem 8.2. For all p ∈ M and all X, Y ∈ Tp M we have

d f (JX) = N(p)× d f (X)

det f (X, Y) = det(N(p), d f (X), d f (Y)).

For the area of f we get

A( f ) =
∫

M
det f =

∫
M

det f (U, V) =
∫

M
det(N, fu, fv) =

∫
M
| fu × fv|.

Similar as for a surface f : M→ R3, we can consider the derivative dN of the unit
normal N : M → R3. In the case of plane curves the derivative of the normal N
gave us the curvature κ via the equation

N′ = κγ′.

In order to find the analogous equation for surfaces, let us consider a vector field
X ∈ Γ(TM) and take the derivative in the direction of X of the equation 1 =
〈N, N〉:

0 = dX〈N, N〉 = 2〈dX N, N〉.

This means that for all X ∈ Tp M the vector dN(X) lies in the image of the re-
striction of d f to Tp M. Therefore, there is a vector Y ∈ Tp M such that dN(X) =
d f (Y). Obviously, the dependence of Y on X is linear, so there is a linear map
Ap : Tp M→ Tp M such that for all X ∈ Tp M we have

dN(X) = d f (AX).

We leave it to the reader to check that A is a smooth endomorphism field on M.

Definition 8.3. The smooth endomorphism field A is called the shape operator of f .

Theorem 8.4. The shape operator A is a self-adjoint endomorphism field with respect to
the induced metric, i.e. for all X, Y ∈ Γ(TM) we have

〈AX, Y〉 = 〈X, AY〉.

Proof. Since at each point p ∈ M the two vectors U(p), V(p) form a basis of Tp M,
it is sufficient to prove the theorem in the special case X = U, Y = V. Using the
fact that

〈N, d f (U)〉 = 〈N, d f (V)〉 = 0
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8.2 Curvature of a Surface

we obtain

〈AU, V〉 = 〈d f (AU), d f (V)〉
= 〈dN(U), d f (V)〉
= dU〈N, d f (V)〉 − 〈N, dUd f (V)〉
= −〈N, fvu〉
= −〈N, fuv〉
= dV〈N, d f (U)〉 − 〈N, dVd f (U)〉
= 〈dN(V), d f (U)〉
= 〈d f (AV), d f (U)〉
= 〈AV, U〉,

where we used that the partial derivatives commute, i.e. fuv = fvu.

8.2. Curvature of a Surface

The shape operator A of a surface f : M → R3 captures all the information about
how the surface is curved. In fact it measures deviation from being planar:

Theorem 8.5. Let M ⊂ R2 be a connected compact domain with smooth boundary and
f : M → R3 a surface with shape operator A. Then A vanishes identically if and only if
there is a plane E ⊂ R3 with f (M) ⊂ E.

Proof. If f (M) ⊂ E with

E = {p ∈ R3 | 〈N̂, p〉 = c}

for some unit vector N̂ ∈ R3 and c ∈ R, then

〈N̂, d f (X)〉 = dX〈N̂, f 〉 = 0

for all X ∈ TM, so the unit normal of f satisfies N(p) = ±N̂ for all p ∈ M. In
particular, dN = 0 and therefore A = 0.
Conversely, by the connectedness of M, A = 0 implies that N is constant, i.e.
N(p) = N̂ for some N̂ ∈ R3 and all p ∈ M. Then d〈N̂, f 〉 = 0 and (by the
connectedness of M) there is c ∈ R such that 〈N̂, f (p)〉 = c for all p ∈ M.

At a given point, a surface can be curved by a different amount in different direc-
tions. We call a vector X ∈ TM a direction if 〈X, X〉 = 1.

Definition 8.6. For a direction X ∈ TM we define the directional curvature κ(X) of f
in the direction of X as

κ(X) := 〈AX, X〉.

If X1, X2 is an orthonormal basis of Tp M then we can parametrize all unit vectors
in Tp M as

X(θ) = cos θ X1 + sin θ X2.

Figure 8.2 contains a plot of the function θ 7→ κ(X(θ)).
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M

κ(θ)

2

1
2

p

N

X

f (p)

d f (X)

Figure 8.2. For every unit vector X ∈ Tp M a surface f : M→ R3 has a different directional
curvature.

By Theorem 8.4, for all p ∈ M the linear map

Ap := A|Tp M : Tp M→ Tp M

is self-adjoint, so there is an orthonormal basis X1, X2 in Tp M such that X1 and X2
are eigenvectors of Ap:

AX1 = κ1(p)X1

AX2 = κ2(p)X2.

If we assume κ1 ≥ κ2 the eigenvalue functions κ1, κ2 : M→ R are well-defined and
continuous. They arise from solving the characteristic equation of Ap, in which a
square root is involved. This means that in general (if there are points where κ1(p)
and κ2(p) coincide) they are not smooth functions.

Definition 8.7. For p ∈ M the numbers κ1(p) and κ2(p) are called the principal cur-
vatures of f at p. A vector X ∈ Tp M with 〈X, X〉 = 1 is called a principal direction
corresponding to the principal curvature κj if

AX = κj(p)X.

If we parametrize directions X(θ) at p based on principal directions X1, X2 as
above we obtain

κ(θ) = 〈A(cos θ X1 + sin θ X2), cos θ X1 + sin θ X2〉
= κ1(p) cos2 θ + κ2(p) sin2 θ

=
κ1(p) + κ2(p)

2
+

κ1(p)− κ2(p)
2

cos(2θ).

Definition 8.8. The mean value

H(p) :=
1

2π

∫ 2π

0
κ(θ)dθ
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8.2 Curvature of a Surface

is called the mean curvature of f at the point p.

We have

H(p) =
κ1(p) + κ2(p)

2
=

1
2

tr(Ap),

so the function H : M→ R is smooth.

Definition 8.9. The smooth function

K : M→ R, K(p) = det Ap = κ1(p)κ2(p)

is called the Gaussian curvature of f .

If K(p) > 0 then the directional curvatures at p are either all positive or all neg-
ative. In the first case, the surface looks convex when viewed from “outside”
(when we think of N as pointing “outward”). Otherwise it looks concave. Figure
8.3 shows surfaces whose Gaussian curvature is positive everywhere on M.

Figure 8.3. Three surfaces with positive Gaussian curvature.

If K(p) < 0 Then the surface bends towards N(p) is some directions and away
from N in other directions. Figure 8.4 shows surfaces whose Gaussian curvature
is negative everywhere on M.
Points where the principal curvatures coincide (and therefore all directions are
principal directions) are special and we give them a name:

Definition 8.10. A point p ∈ M is called an umbilic point of the surface f if at p the
surface has the same curvature in all directions, i.e. for all directions X ∈ Tp M we have

κ(X) = H(p).

The most interesting theorems in Differential Geometry lead from local assump-
tions (curvature properties at each given point) to conclusions about global shape.
Here is our first theorem of this kind in the context of surfaces:

Definition 8.11. A subset S ⊂ R3 of the form

S = {p ∈ R3 | 〈p−m, p−m〉 = r2}
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Figure 8.4. Three surfaces with negative Gaussian curvature.

with m ∈ R3 and r > 0 is called a round sphere.

Theorem 8.12 (Umbilic Point Theorem). Let M ⊂ R2 be a connected compact domain
with smooth boundary and f : M→ R3 a surface. Then the following are equivalent:

1. All points p ∈ M are umbilic points.

2. Either f (M) ⊂ E for some plane E ⊂ R3 or f (M) ⊂ S for some round sphere

S =
{

p ∈ R3 | 〈p−m, p−m〉 = r2} .

with center m and radius r > 0.

Proof. If f (M) is contained in a plane, we already know that A = 0 and therefore
all points are umbilic points. If f (M) is contained in a round sphere, then there is
a point m ∈ R3 and a radius r > 0 such that

〈 f −m, f −m〉 = r2.

Clearly then, f −m 6= 0 for all p ∈ M. Differentiating the above equation reveals
that for all p ∈ M and all X ∈ Tp M we have

〈d f (X), f −m〉 = 0.

Therefore, at each p ∈ M the unit normal of f must be given by

N(p) = ±1
r
( f (p)−m).

By the connectedness of M this implies

N = ±1
r
( f −m)
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8.3 Area of Maps into the Plane or the Sphere

and therefore all points are umbilic points:

dN = ±1
r

d f .

Conversely, assume that all points p ∈ M are umbilic points of f . Then

Hv fu + H fuv = Nuv = Nvu = Hu fv + H fvu

and therefore Hv fu − Hu fv = 0. By the connectedness of M, this means that H is
constant. In the case H = 0 we have A = 0 and by Theorem 8.5 we know that
f (M) is contained in a plane. Otherwise, there is a constant r > 0 such that

H = ±1
r

.

The function

m : M→ R3, m(p) = f (p)± rN(p)

then satifies dm = 0 and, by the connectedness of M, must be constant. This
means that f (M) lies on a sphere around m with radius r.

8.3. Area of Maps into the Plane or the Sphere

Recall the second formula from Theorem 8.2: The area form det of a surface
f : M→ R3 with unit normal N is given on X, Y ∈ Tp M by

det f (X, Y) = det(N(p), d f (X), d f (Y)).

There are situations where we know what N should be, even if f is not a surface
but just a smooth map whose derivative dp f : Tp M → R3 might fail to have a
two-dimensional image for some p ∈ M: Define the Euclidean plane E2 as the
subset of R3 where the third component is zero. Then at any point p ∈ E2 we
consider the third basis vector e3 as the unit normal vector of E2 at p. Define the
unit two-sphere S2 as the set of all p ∈ R3 with |p| = 1. Then at any point p ∈ S2

we consider p itself as the unit normal vector of S2 at p.

Definition 8.13. Let M ⊂ R2 be a compact domain with smooth boundary and g a
smooth map defined on M with values in either E2 or S2. Then we define the covered
area form σg ∈ Ω2(M) on X, Y ∈ Tp M as follows:

1. For a smooth map g : M→ E2 we define

σg(X, Y) = det (e3, dg(X), dg(Y)) .

2. For a smooth map g : M→ S2 we define

σg(X, Y) = det (g(p), dg(X), dg(Y)) .

If we identify E2 with R2 in the obvious way and use the standard determinant
det on R2, the first part of the above definition becomes:
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R2

γ

g

0 2π

x 7→
(

cos x
sin x

)

M

∂M

Figure 8.5. By Theorem 8.17, the area covered by the map g equals the sector area of the
boundary loop γ, i.e. the blue region is counted positively, the orange region
is counted negatively and the region with mixed color is not counted at all.

Definition 8.14. Let M ⊂ R2 be a compact domain with smooth boundary and g : M→
R2 a smooth map. Then we define the covered area form σg ∈ Ω2(M) on X, Y ∈ Tp M as

σg(X, Y) = det(dg(X), dg(Y)).

Definition 8.15. Let M ⊂ R2 be a compact domain with smooth boundary and g a
smooth map defined on M with values in either E2, S2 or R2. Then we define the area
covered by a map g as ∫

M
σg.

Given a smooth map g : M → R2 from the unit disk M into R2, we obtain a loop
γ : [0, 2π]→ R2 defined by

γ(x) = g
((

cos x
sin x

))
.

Conversely, every loop γ : [0, 2π]→ R2 arises in this way:

Theorem 8.16. Let γ : R → R2 be a loop and M ⊂ R2 the unit disk. Then there is a
smooth map g : M → R2 such that the Figure 8.5 becomes a commutative diagram, i.e.
γ = g ◦ s.

Proof. Let ϕ : R→ R be a smooth function such that

ϕ(x) = 1 for x >
2
3

ϕ(x) = 0 for x <
1
3

.

Then we can define g : M → R2 as the unique map such that for all r ∈ [0, 1] and
all t ∈ R we have

g
(

r
(

cos t
sin t

))
= ϕ(r)γ(t).
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8.3 Area of Maps into the Plane or the Sphere

Theorem 8.17. Let γ : [0, 2π] → R2 be a loop, M ⊂ R2 the unit disk and g : M → R2

any smooth map such that Figure 8.5 is a commutative diagram. Then the area covered by
g equals the sector area of γ.

Proof. Define a 1-form ω ∈ Ω1(M) by setting for X ∈ Tp M

ω(X) =
1
2

det(g(p), dg(X)).

Then

2dω(U, V) = dU det(g, dg(V))− dV det(g, dg(U))

= det(dU g, dV g) + det(g, dUdV g)− det(dV g, dU g)− det(g, dVdU g)
= 2σg(U, V).

Our claim now follows from Stokes Theorem. With

γ̃(t) :=
(

cos t
sin t

)
we obtain

1
2

∫ 2π

0
det
(
γ, γ′

)
=

1
2

∫ 2π

0
det
(

g ◦ γ̃, (g′ ◦ γ̃)γ̃′
)

=
∫
[0,2π]

γ̃∗ω

=
∫

∂M
ω

=
∫

M
dω

=
∫

M
σg.

By Definition 8.13, we obtain a similar interpretation for the area covered by a map
g : M → S2. For us, the most important case is g = N where N is the unit normal
of a surface f : M→ R3 (see Figure 8.6):

Theorem 8.18. Let f : M→ R3 be a surface with unit normal N and Gaussian curvature
K. Then the covered area form of N is

σN = K det f .

Proof. For vector fields X, Y ∈ Γ(TM) we have

σN(X, Y) = det(N, dN(X), dN(Y))
= det(N, d f (AX), d f (AY))
= det f (AX, AX)

= det A det f (X, Y) = K det f (X, Y).
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Figure 8.6. If the Gaussian curvature K is positive in some subregion M̃ ⊂ M, the normal
map N will be orientation-preserving in M̃ (left). If K is negative, N will be
orientation-reversing (middle). On the right we see a situation where K changes
sign in M̃.
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9. Levi-Civita Connection

The Levi-Civita connection of a surface f : M→ R3 provides a geometrically mean-
ingful way to take directional derivatives of a vector field Y on M. Based on the
Levi-Civita connection we derive two important equations that are satisfied by the
curvature of a surface in R3: the Gauss equation and the Codazzi equation.

9.1. Derivatives of Vector Fields

Let f : M → R3 be a regular surface in R3 with unit normal N : M → R3. Let Y ∈
Γ(TM) be a smooth vector field on M, p ∈ M and X ∈ Tp M. Then, differentiating
0 = 〈N, d f (Y)〉 in the direction of X, we obtain

0 = dX〈N, d f (Y)〉 = 〈d f (AX), d f (Y)〉+ 〈N, dXd f (Y)〉

Fixing a point p ∈ M, we can decompose every vector v ∈ Rn uniquely as

v = λN + d f (Z)

for some λ ∈ R and some Z ∈ Tp M. The vector λN is called the normal part
of v and d f (Z) is called the tangential part of v. In our case, the normal part of
dXd f (Y) equals −〈AX, Y〉N. The tangential part is of the form d f (Z) for some
vector Z ∈ Tp M that we denote by (∇Y)(X) or also by ∇XY. This gives us

dXd f (Y) = −〈AX, Y〉N + d f (∇XY).

We leave it to the reader to show that the map Y 7→ ∇Y is linear.

Definition 9.1. The linear map ∇ : Γ(TM)→ Γ(End TM) that assigns to a vector field
Y the endomorphism field ∇Y is called the Levi-Civita connection of f .

∇XY can be interpreted as the directional derivative of the vector field Y in the
direction of X. Here is a list of useful properties of the Levi-Civita connection:

Theorem 9.2. Let X, Y, Z be vector fields on M and λ : M→ R a smooth function. Then

1. ∇X(λY) = (dXλ)Y + λ∇XY

2. dX〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
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3. ∇X(JY) = J∇XY

4. dX det(Y, Z) = det(∇XY, Z) + det(Y,∇XZ).

Proof. Equation (i) is left as an exercise. Here is the proof of equation (ii):

dX〈Y, Z〉 = dX〈d f (Y), d f (Z)〉
= 〈dXd f (Y), d f (Z)〉+ 〈d f (Y), dXd f (Z)〉
= 〈d f (∇XY), d f (Z)〉+ 〈d f (Y), d f (∇XZ)〉
= 〈∇XY, Z〉+ 〈Y,∇XZ〉.

Equation (iii) follows from the first two together with the formula for J in Theorem
6.23. Now the last equation follows:

dX det(Y, Z) = dX〈JY, Z〉
= 〈∇X(JY), Z〉+ 〈JY,∇XZ〉
= 〈J(∇XY), Z〉+ 〈JY,∇XZ〉
= det(∇XY, Z) + det(Y,∇XZ).

Remark 9.3. Note that the first, second and fourth equation proved in the above
Theorem have the flavor of a Leibniz rule.

Theorem 9.4. For the coordinate vector fields we have

∇UV = ∇VU.

Proof. This can be seen by looking at the tangential component of

−〈AU, V〉N + d f (∇UV) = fvu = fuv = −〈AV, U〉N + d f (∇VU).

We can also use ∇ to define directional derivatives of endomorphism fields (as
defined in Definition 6.19):

Theorem 9.5. If B is a smooth endomorphism field on M and X ∈ Γ(TM) is a vector
field, then there is a unique smooth endomorphism field (∇XB) on M such that for all
Y ∈ Γ(TM) the following Leibniz rule holds:

∇X(BY) = (∇XB)Y + B(∇XY).

Proof. Define C as the unique endomorphism field on M for which

CU = ∇X(BU)− B∇XU
CV = ∇X(BV)− B∇XV.

Clearly, if the endomorphism field ∇XB exists, it has to be equal to C. This proves
the uniqueness part of the theorem. To prove existence, we show that C has the
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property we claim for ∇XB. Let us write Y as a linear combination of U and V:

Y = aU + bV.

Then, by part (ii) of Theorem 9.2,

∇X(BY) = ∇X(aBU + bBV)

= (dXa)BU + a∇X(BU) + (dXb)BV + b∇X(BV)

= (dXa)BU + a(CU + B∇XU) + (dXb)BV + b(CV + B∇XV)

= CY + B∇XY.

In the light of Theorem 9.5, we can reformulate the equation (iii) of Theorem 9.2
as

∇J = 0,

which usually is expressed by saying that the endomorphism field J is parallel.

9.2. Equations of Gauss and Codazzi

The derivative ∇A (defined in Theorem 9.5) of the shape operator A of a surface
f : M→ R has an important symmetry property:

Theorem 9.6. For all vector fields X, Y ∈ Γ(TM) the Codazzi equation holds:

(∇X A)Y = (∇Y A)X.

Proof. We can write X and Y as linear combinations (with functions as coefficients)
of U and V. If we expand both sides of the equation in question accordingly, we
see that it is sufficient to consider the special case X = U and Y = V. In this case,
our claim follows from the fact that partial derivatives of N commute: Equality
for the normal part of

−〈AU, AV〉N + d f (∇U(AV)) = dUd f (AV)

= dUdV(N)

= dVdU(N)

= dVd f (AU)

= −〈AV, AU〉N + d f (∇V(AU))

is automatically satisfied, while the tangential part gives us what we want to prove.

There is another important relation between the shape operator A and the Levi-
Civita connection ∇, the so-called Gauss equation:
If h : M→ Rk is a smooth function, then the partial derivatives of h commute, i.e.

dUdVh− dVdUh = 0.
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For vector fields this is not true, and the failure of “partial derivatives” of vector
fields to commute is determined by the Gaussian curvature of f :

Theorem 9.7. For any vector field Z ∈ Γ(TM) the Gauss equation holds:

∇U∇V Z−∇V∇UZ = −K det(U, V)JZ

where K = det A is the Gaussian curvature of f .

Proof. Collecting only the terms that are orthogonal to N in

dU(−〈AV, Z〉N + d f (∇V Z)) = dUdVd f (Z)
= dVdUd f (Z)
= dV(−〈AU, Z〉N + d f (∇UZ))

we obtain
−〈AV, Z〉AU +∇U∇V Z = −〈AU, Z〉AV +∇V∇UZ.

Substituting in Theorem 6.24 AU for X, AV for Y and using

det(AU, AV) = det A det(U, V).

we arrive at the equality this we wanted to prove.

9.3. Theorema Egregium

The following theorem is due to Gauss. He called it the “Theorema Egregium”,
which means “most excellent theorem”.

Theorem 9.8 (Theorema Egregium). Suppose that the surfaces f , f̃ : M → R3 induce
the same Riemannian metric on M. Then f and f̃ have the same Gaussian curvature
K : M→ R.

Proof. By the Gauss equation (Theorem 9.7), it is sufficient to prove that if f and f̃
induce the same Riemannian metric on M, they also induce the same Levi-Civita
connection. This in turn follows from Theorem 9.9.

Theorem 9.9. Suppose that the surfaces f , f̃ : M → R3 induce the same Riemannian
metric on M. Then the Levi-Civita connections of f and f̃ are identical.

Proof. We show that the Levi-Civita connection ∇ induced on M by f is already
completely determined by the induced metric 〈 , 〉f . By Theorem 9.4 and the second
equation of Theorem 9.2

〈∇UU, U〉 = 1
2

dU〈U, U〉

〈∇UU, V〉 = dU〈U, V〉 − 〈U,∇UV〉
= dU〈U, V〉 − 〈U,∇VU〉

= dU〈U, V〉 − 1
2

dV〈U, U〉
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9.3 Theorema Egregium

〈∇UV, U〉 = 〈∇VU, U〉

=
1
2

dV〈U, U〉

〈∇UV, V〉 = 1
2

dU〈V, V〉.

Hence ∇UU and ∇UV = ∇VU are completely determined, as well as (by a sim-
ilar calculation) ∇VV. Therefore, ∇U and ∇V are completely determined by the
knowledge of 〈 , 〉f alone. By the first equation of Theorem 9.2, then also ∇Y is
determined for an arbitrary vector field Y = b1U + b2V.

Figure 9.1 reveals the reason why the leather patch on the smoothed dodecahedron
in Figure 6.6 was stuck.

Figure 9.1. By the Theorema Egregium, any isometric motion of the patch has to preserve
Gaussian curvature (indicated by color), so the patch cannot slide.
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10. Total Gaussian Curvature

If we know a plane curve γ : [a, b] → R2 near its end points, we know its total
curvature

∫ b
a κ ds up to an integer multiple of 2π. This follows from the results in

Chapter 3. Here we prove a similar result for surfaces f : M → R3 in three-space:
If we know f near the boundary of M, we know its total Gaussian curvature∫

M K det up to an integer multiple of 2π. However, unlike the situation for plane
curves, the integer in question is already completely determined by the topology
of M.

10.1. Curves on Surfaces

Definition 10.1. Let f : M→ R3 be a surface with unit normal field N and γ : [a, b]→
M a curve in M. Then the pair (γ, f ) is called a curve on the surface f . The space curve

γ̃ = f ◦ γ

is called the trace of (γ, f ). The velocity of (γ, f ) is defined as |γ̃′| and accordingly the
derivative with respect to arclength of a function g : [a, b]→ Rk is to be interpreted as

dg
ds

:=
g′

|γ̃′| .

The unit tangent T̃ of γ̃ is called the unit tangent of (γ, f ) and the unit normal field

Ñ = N ◦ γ

along γ̃ is called the surface normal of (γ, f ). The unit normal field

B̃ = T̃ × Ñ

along γ̃ is called the binormal of (γ, f ).

If (γ, f ) is a curve on the surface f , then (γ̃, Ñ) defined as above will be a framed
curve according to Definition 5.11.

Definition 10.2. If (γ, f ) is a curve on the surface f and T̃, Ñ, B̃ are defined as in Defi-
nition 10.1, then
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10.1 Curves on Surfaces

1. The normal curvature of (γ, f ) is defined as

κn = 〈Ñ′, T̃〉.

2. The geodesic curvature of (γ, f ) is defined as

κg = 〈B̃′, T̃〉.

3. The geodesic torsion of (γ, f ) is defined as

τ = 〈Ñ′, B̃〉.

105



Total Gaussian Curvature

M
f

γ γ̃

a b

M
f

γ γ̃

a b

M
f

γ γ̃

a b

Figure 10.1. An asymptotic line (top), a geodesic (middle) and a curvature line (bottom) on
a torus.

Traditionally, curves on a surface f for which one of these quantities vanishes are
designated by special names (see Figure 10.1):

Definition 10.3. Let (γ, f ) be a curve on the surface f : M→ R3. Then

1. (γ, f ) is called an asymptotic line if its normal curvature κn vanishes.
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10.2 Theorem of Gauss and Bonnet

2. (γ, f ) is called a geodesic if its geodesic curvature κg vanishes.

3. (γ, f ) is called a curvature line if its geodesic torsion τ vanishes.

Remark 10.4. The geodesic in Figure 10.1 illustrates nicely that geodesics are lo-
cally length minimizing, but globally they are not necessarily the shortest path
between two points.

10.2. Theorem of Gauss and Bonnet

Let M ⊂ R2 be a compact domain with smooth boundary. By Definition 6.1 and
the arguments surrounding Figure 8.5, each of the n components of the bound-
ary ∂M can be parametrized by a closed curve γj : [0, 2π] → M. Given a surface
f : M → R3, we define the total geodesic curvature of the boundary ∂M by sum-
ming up the integrals of the geodesic curvature κg over the corresponding curves
(γj, f ) on the surface f (Definitions 10.1 and 10.2):∫

∂M
κg :=

n

∑
j=1

∫
γj

κg ds.

Theorem 10.5 (Gauss-Bonnet Theorem). Let M ⊂ R2 be a compact domain with
smooth boundary having k connected components. Assume that the boundary ∂M has n
components. Let f : M → R3 be a surface, K : M → R its Gaussian curvature and det
its area form. Then ∫

M
K det = 2π(2k− n)−

∫
∂M

κg ds.

Proof. Choose a vector field Z ∈ Γ(TM) with 〈Z, Z〉 = 1. Such a Z always exists,
for example one could take Z = 1

|U|U. Define a 1-form η ∈ Ω1(M) by

η(X) = 〈∇XZ, JZ〉.

Think of η(X) as the rotation speed of Z in the direction of X. Because of
〈∇XZ, Z〉 = 0 (which follows from differentiating 〈Z, Z〉 = 1) and the 2-dimensionality
of Tp M (i.e. Z, JZ is a positively oriented basis) we then must have

∇XZ = η(X)JZ.

Using this, (ii) and (iii) of Theorem 9.2 and the Gauss equation (Theorem 9.7) we
find

dη(U, V) = dUη(V)− dVη(U)

= 〈∇U∇V Z, JZ〉+ 〈∇V Z, J∇UZ〉 − 〈∇V∇UZ, JZ〉 − 〈∇UZ, J∇V Z〉
= 〈∇U∇V Z, JZ〉 − 〈∇V∇UZ, JZ〉
= −K det(U, V)

and therefore
dη = −K det .
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In particular, this means that dη does not depend on our choice of Z. We intend
to apply Stokes theorem to η. To simplify the notation, let us focus on one of
the boundary curves and denote γj by γ. Let T̃ be the unit tangent of the curve
(γ, f ) on the surface f and let B̃ be its binormal field. By arguments familiar
from our discussion of tangent winding numbers in Section 3.4, there is a function
αj : R→ R and an integer ` ∈ Z such that for all x ∈ R

α(x + `) = α(x) + 2π`

B̃(x) = cos α d f (Z(γ(x))) + sin α d f (JZ(γ(x))).

Then we have

(d f (Z ◦ γ))′ (x) = −〈AT(x), Z(γ(x))〉Ñ(x) + d f (∇T(x)Z)

and therefore

κg = 〈d f (B)′, d f (JB)〉
= 〈(cos α d f (Z ◦ γ) + sin α d f (JZ ◦ γ))′,− sin α d f (Z ◦ γ) + cos α d f (JZ ◦ γ)〉
= α′ + 〈d f (∇TZ), d f (JZ)〉
= α′ + η(T).

Using Definition 7.13, integration from 0 to 2π now gives us∫ 2π

0
κg = 2π`+

∫
γ

η.

Each boundary component comes with its own integer `j. Summing over all
boundary curves and using Stokes theorem we obtain

(∗)
∫

M
K det+

∫
∂M

κg ds = 2π
n

∑
j=1

`j.

We now show that the integers `j do not depend on the surface f : Let f̃ : M→ R3

be another surface with induced metric 〈 , 〉∼. For t ∈ [0, 1] define a metric

〈 , 〉t := t〈 , 〉+ (1− t)〈 , 〉∼.

Define vector fields Zt ∈ Γ(TM) by

Zt =
1√
〈Z, Z〉t

Z

and as above represent them on ∂M as linear combinations of Bt (defined as the
binormal (cf. Definition 10.1) with respect to the metric 〈 , 〉t ) and JtBt. Then the
turning numbers `j(t) computed in this way depend continuously on t. Therefore,
being integers, they do not depend on t at all. We have established that the `j do
not depend on f . Note also that the left-hand side of equation (∗) does not depend
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10.3 Parallel Transport on Surfaces

on the vector field Z. Therefore, the integer

χ(M) :=
n

∑
i=1

`j

depends neither on f nor on Z. So, without loss of generality, we might as well
assume that

f =

 u
v
0


and Z = U. Then, as a consequence of Theorem 3.14, the turning number `j
equals +1 for the outer boundary component (there are k of them) and −1 for the
remaining n− k inner boundary curves. Therefore, we have

n

∑
j=1

`j = k− (n− k) = 2k− n,

which proves the theorem.

It is quite striking that the total amount of Gaussian curvature (in the sense of∫
M K det) is completely determined by the geometry of f near the boundary of M

(see Figure 10.2).

Figure 10.2. Even if we do not know the shape of a rounded cone near its tip (only revealed
under a microscope), the integral of the Gaussian curvature can be deduced
from the opening angle of the cone.

10.3. Parallel Transport on Surfaces

In Section 5.1 we studied the normal transport P : T(a)⊥ → T(b)⊥ of a curve
γ : [a, b]→ R3 with unit tangent T. A closer look reveals that in order to define P
only the smooth map T : [a, b]→ S2 is needed. Therefore, given a surface f : M→

109



Total Gaussian Curvature

R3 and a smooth map γ : [a, b]→ M, we can we can use the same strategy in order
to transport tangent vectors W ∈ Tγ(a)M to tangent vectors P(W) ∈ Tγ(b)M:

Definition 10.6. Let f : M→ R3 be a surface with unit normal field N and γ : [a, b]→
M a smooth map. Define Ñ : [a, b]→ S2 by

Ñ := N ◦ γ

and for W ∈ Tγ(a)M define the parallel transport map Pγ(W) ∈ Tγ(b)M in such a
way that

d f (P(W)) := Z(b)

where Z : [a, b]→ R3 solves the initial value problem

Z(a) = d f (W)

Z′ = −〈Z, Ñ′〉Ñ.

Ñ plays exactly the same role here as T did in Section 5.1. Hence, for the same
reasons as in Section 5.1, we have 〈Z, Ñ〉 = 0 and indeed for all x ∈ [a, b] the
vector Z(x) is an element of d f (Tγ(x)M). Furthermore,

Pγ : Tγ(a)M→ Tγ(a)M

is an orientation-preserving orthogonal map with respect to the metrics induced
by f on Tγ(a)M and Tγ(b)M.

The derivative Z′(x) is a multiple of N(γ(x)), so it has no component in d f (Tγ(x)M).
In the spirit of the Section 9.1 (Levi-Civita connection), where a derivative ∇XY of
a vector field Y was defined in terms of the tangential component of dX(d f (Y)),
this means that P can be viewed as parallel transport along γ.

Imagine a pendulum swinging at a point of a surface f : M→ R3 subject to gravity
pointing away form the unit normal of the surface. Suppose we transport the
swinging pendulum along a path f ◦ γ where γ : [a, b]→ M is a smooth map and
that the plane in which the pendulum swings initially is given as d f (W) where
W ∈ Tγ(a)M is a unit vector with respect to the induced metric. Then Physics tells
us that the plane in which the pendulum swings once it arrives at f (γ(b)) will be
given by the unit vector d f (P(W)).
In the special case where f parametrizes the surface of the earth and the movement
γ corresponds to the rotation of the earth, this effect can be experimentally verified
and is known under the name of Foucault’s pendulum (see Figure 10.3).
As in Section 5.1, if we choose unit vectors (with respect to the induced metric)
Wa ∈ Tγ(a)M and Wa ∈ Tγ(b)M, we can measure the parallel transport along γ
by an angle PW ∈ R/2πZ. For closed curves γ this angle does not depend on
the choice of Wa and Wb as long as we make sure that Wa = Wb. In the special
case where γ parametrizes the boundary ∂M of M, this angle can be expressed in
terms of the total Gaussian curvature of f (see Figure 10.4).

Theorem 10.7. Suppose that f : M → R3 is a surface and that M has only a single
boundary component parametrized by a curve γ : [a, b] → M. Then the monodromy
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Figure 10.3. An excerpt from the illustrated supplement of the magazine Le Petit Parisien
dated November 2, 1902, on the 50th anniversary of the experiment of Léon
Foucault demonstrating the rotation of the earth (left) and the parallel trans-
port of a tangent vector along a latitude circle (right).

angle of γ satisfies

M(γ) ≡
∫

M
K det mod 2πZ

where K is the Gaussian curvature of f .

Proof. Let us assume that γ has unit speed with respect to the induced metric and
therefore T̃ := γ̃′ is the unit tangent field of γ̃ := f ◦ γ. Define Ñ := N ◦ γ where
N is the unit normal field of f . Let W and Z be defined as in Definition 10.6. Then
there is a smooth function α : [a, b]→ R such that

Z = cos α T̃ + sin α Ñ × T̃.

We denote by κg = 〈T̃′, Ñ× T̃〉 the binormal curvature of the framed curve (γ̃, Ñ).
Because Z′ is normal, we have

0 = 〈Z′, Ñ × Z〉 = α′ + κg.

Finally, by the Gauss-Bonnet Theorem 10.5 we have

M(γ) ≡ α(b)− α(a) =
∫ b

a
α′ = −

∫ b

a
κg ≡

∫
M

K det mod 2πZ.
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Figure 10.4. Parallel transport of a tangent vector along a closed curve on a surface with
positive Gaussian curvature (left) and along the boundary of a surface with
negative Gaussian curvature (right).
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11. Closed Surfaces

We define a closed surface as a surface f : M → R3 whose boundary components
have been matched in pairs in such a way that f as well as its unit normal N
are continuous across the boundary. This allows us to prove an analog of the
fact that the tangent winding number of a closed plane curve is an integer: The
total Gaussian curvature

∫
M K det of a closed surface f : M → R3 is equal to

2πχ(M) where the Euler characteristic χ(M) is an integer that depends only on
the topology of M.

11.1. History of Closed Surfaces

Our goal here is to define “closed surfaces” in such a way that we are able to prove
an analog of Theorem 3.8, which says that the turning number of a plane curve is
an integer. Furthermore, in Section 13.1 we want to discuss for closed surfaces the
analog of the total squared curvature of a curve.

Our approach will be based on the very idea that was already at the heart of the
1845 paper by Möbius where closed surfaces were studied for the first time: By
cutting them into horizontal slices, Möbius decomposed closed surfaces into pieces
each of which can be parametrized by a compact domain with smooth boundary
in R2. Figure 11.1 is from the paper by Möbius. This very idea was already the
motivation for us to allow for disconnected domains in the case of surfaces and
will be formalized in Section 11.2.
More details on the early history of surface theory can be found in an article by
Peter Dombrowski [11].

A more advanced way to define closed surfaces in Rn (that would not need to cut
the surface into pieces that can be parametrized by planar domains) would be to
define them in terms of smooth maps f : M→ Rn defined on 2-dimensional com-
pact manifolds M. Such manifolds were first defined in 1910 by Hermann Weyl in
a famous book with the title “Die Idee der Riemannschen Fläche” [44].
On the other hand, the fully developed version of the Gauss-Bonnet theorem
(which we will prove in the next chapter) is already contained in the 1903 the-
sis of Werner Boy [8], that he did under the supervision of David Hilbert.
Modern treatments of Differential Topology (like the books by Andrew Wallace
[42] and Morris Hirsch [16]) often discuss surface topology in their last chapters.

113



Closed Surfaces

Figure 11.1. Möbius decomposed closed surfaces into pieces that can be parametrized by
compact domains in R2 with smooth boundary (cf. [29]).

The main work there goes into proving (with the help of Morse theory) that in-
deed every compact 2-dimensional manifold can be decomposed into pieces each
of which can be parametrized by a compact domain with smooth boundary in R2.
Therefore, the work that will be done in the next two chapters would not become
obsolete even if we had manifolds at our disposal.

11.2. Defining Closed Surfaces

Suppose that for a surface f : M → R3 the boundary components of M match
up in pairs in such a way that, given suitable parametrizations of the boundary
curves, corresponding points of ∂M are mapped to the same points in R3. If in
addition also the unit normals of f fit together up to sign on ∂M, we consider f
(together with a specification of the boundary matching) as a closed surface:

f

Figure 11.2. A closed surface f .

114



11.2 Defining Closed Surfaces

Definition 11.1. Let M ⊂ R2 be a compact domain with smooth boundary and f : M→
R3 a surface with unit normal N. We parametrize the boundary curves of M by closed
curves

γ1, . . . , γn : [−π, π]→ R2

and define curves γ̃1, . . . , γ̃n : [−π, π]→ R3 by

γ̃j := f ◦ γj.

As in Definition 10.1, we equip the closed space curves γ̃j with unit normal fields Ñj :=
N ◦ γj. Let

ρ : {1, . . . , n} → {1, . . . , n}

a bijective map such that
(ρ ◦ ρ)(j) = j

for all j. Then the pair ( f , ρ) is called a closed surface if there are signs ε1, . . . , εn ∈
{−1, 1} such that for all j ∈ {1, . . . , n} we have:

1. If ρ(j) 6= j then

γ̃ρ(j)(x) = γ̃j(εjx)

Ñρ(j)(x) = −εjÑj(εjx).

2. If ρ(j) = j then εj = 1 and

γ̃j(x) =

{
γ̃j(x + π) for x ∈ [−π, 0)
γ̃j(x− π) for x ∈ [0, π]

Ñj(x) =

{
−Ñj(x + π) for x ∈ [−π, 0)
−Ñj(x− π) for x ∈ [0, π].

It is easy to see that such ε1, . . . , εn are uniquely determined by f and ρ. We say that a
closed surface is oriented if εj = −1 for all j ∈ {1, . . . , n}.

Figure 11.3 shows the shape of the individual pieces that are being glued in Figure
11.2. It has k = 6 components and n = 18 boundary curves.

Here is another example: M now consists of a disk with boundary γ1 and an
annulus with boundary curves γ2 and γ3. First, we tentatively define f on the disk
bounded by γ1 and obtain the cap on the upper right of Figure 11.4. Postponing
for the moment the task (indicated by the double-arrow on the right) of gluing γ1
to γ2, we first glue γ3 to itself and obtain a Möbius band (on the bottom of the
lower right of Figure 11.4):
By growing the Möbius band (see Figure 11.5) we finally obtain the closed surface
we wanted to construct:

This surface (fully closed in Figure 11.6) was found by Werner Boy in 1903 and is
called the Boy surface.
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f

Figure 11.3. The surface in Figure 11.2 made into a non-closed surface by applying a small
translation to each piece.

Figure 11.7 shows two surfaces which are obtained by gluing the boundary curve
of an annulus to itself appropriately. Even though both compact domains have
k = 1 components and n = 2 boundary loops, the distinct maps f , f̃ lead to
distinct closed surfaces. In particular, although the map ρ is the same, they have
opposite sign ε.

11.3. Boy’s Theorem

Definition 11.2. We say that a surface f : M→ R3 closes up if there is ρ such that ( f , ρ)
is a closed surface in the sense of Definition 11.1.

Recall that for every closed plane curve γ : [a, b]→ R2 there was an integer n ∈ Z

such that ∫ b

a
κ ds = 2πn.

Surprisingly, the analog of this fact in the context of surfaces (cf. Theorem 11.4)
does not involve any information about the specific way in which f closes up. It
only depends on properties of the domain M:

Definition 11.3. Let M ⊂ R2 be a domain with smooth boundary having k components
and n boundary curves. Then

χ(M) := 2k− n

is called the Euler characteristic of M.

The theorem below is a variant of the Gauss-Bonnet Theorem 10.5. Usually, it
would be called by the same name. However, historically this is not quite correct.
This theorem was in fact the main result of the thesis of Werner Boy [8], written
in 1903 under the supervision of David Hilbert. For this reason, we name it after
Boy:
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γ1 γ2γ3

γ1

γ2

γ2

γ3
γ3

k = 2
n = 3
ρ(1) = 2
ρ(3) = 3
ε1 = −1
ε3 = 1

Figure 11.4. The annulus part of the domain on the left has its red boundary component
glued to itself. After growing the resulting Möbius strip, the other boundary
component can be glued to the image of the disk part of the domain. The
result is the so-called Boy surface.

Theorem 11.4 (Boy’s Theorem). Let f : M → R3 be a surface that closes up. Then the
Gaussian curvature K of f satisfies∫

M
K det = 2π χ(M).

Before we give the proof, we introduce the notion of an orientation cover of a
closed surface. Given a closed surface ( f , ρ) with f : M → R3, we can define an
oriented closed surface ( f̃ , ρ̃) in the following way:

Let us use M−1 as another name for M and, using an orientation-reversing isom-
etry g : R2 → R2, we place a second copy M1 = g(M) into R2 in such a way that
M−1 and M1 are disjoint. Then we define

M̃ := M−1 ∪M1

and

f̃ : M̃→ R3, f̃ (p) =

{
f (p) if p ∈ M−1

( f ◦ g−1)(p) if p ∈ M1.

We can label the boundary curves of M̃ by the elements of {−1, 1} × {1, . . . , n}
and parametrize them by maps

γ(i,j) : R→ ∂M̃, γ(i,j) =

{
γj if i = −1
x 7→ g ◦ γj(−x) if i = 1.

Finally, we define

ρ̃ : {−1, 1} × {1, . . . , n} → {−1, 1} × {1, . . . , n}, ρ̃(i, j) = (−εj i, ρ(j)).
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Figure 11.5. A growing Möbius strip can be capped off to form a Boy surface.

We now leave it to the reader to check that ( f̃ , ρ̃) is an oriented closed surface, i.e.
we obtain a closed surface by setting ε̃(i,j) = −1 for all (i, j) ∈ {−1, 1}× {1, . . . , n}.

Definition 11.5. The closed surface ( f̃ , ρ̃) constructed above is called an orientation
cover of f .

of Theorem 11.4 – Boy’s Theorem. If ρ has no fixed points (no boundary component
is glued to itself), one just has to note that the existence of ρ (making ( f , ρ) into
a closed surface) implies that in Theorem 10.5 the total geodesic curvatures of the
individual boundary curves cancel in pairs. If ρ has fixed points, we note that the
ρ̃ of the orientation cover has no fixed points and therefore our theorem holds for
f̃ . Dividing both sides of the resulting equation by two, we see that our theorem
also holds for f .

118
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Figure 11.6. The Boy surface is a closed, non-oriented surface.

11.4. The Genus of a Closed Surface

The Euler characteristic of a closed surface was solely a property of its domain M,
the specific way the various boundary curves are glued is irrelevant for the Euler
characteristic. There is another number associated with a closed surface ( f , ρ), the
so-called genus, that depends on the gluing correspondence ρ:

Suppose M ⊂ R2 is a domain with k components and n boundary curves. Con-
sider the map that assigns to each j ∈ {1, . . . , n} the index c(j) ∈ {1, . . . , k} of
the component of M to which the jth boundary component belongs. Let us con-
sider the graph G whose vertex set is {1, . . . , k} and in which two vertices `, ˜̀ with
` 6= ˜̀ are connected by an edge if and only if there is an index j ∈ {1, . . . , n}
for which c(j) = ` and c(ρ(j)) = ˜̀, which means that the components of M with
indices j and j̃ are glued via one (or more) of their respective boundary curves.
We say that two vertices ` and ˜̀ of G are connectable in G if it is possible to travel
from ` to ˜̀ by following edges. Connectability is an equivalence relation and the
corresponding equivalence classes are called the connected components of G.

Definition 11.6. If {`1, . . . , `k̃} is a component of the graph G, then

f̃ = f |M`1
∪...∪M`k̃

closes up with boundary gluing ρ̃ read off from ( f , ρ). We call the resulting closed surface
( f̃ , ρ̃) a component of ( f , ρ). We call ( f , ρ) connected if it has only one component.

So the components of a closed surface are in one-to-one correspondence with the
components of its associated graph G.

Definition 11.7. Let M be a compact domain with k components and n boundary curves.
Let ( f , ρ) be a closed surface with f : M→ R3. If ( f , ρ) has m connected components, we
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γ1 γ2 γ1

γ2

k = 1
n = 2

ρ(1) = 2

f f̃

Figure 11.7. After pushing the two boundary curves together, we obtain a closed surface
which is oriented – a torus (left), or a closed surface that is not oriented – a
so-called Klein bottle (right).

define the genus of ( f , ρ) as
g :=

n
2
− k + m.

In terms of the genus, the Gauss-Bonnet formula takes the form∫
M

K det = 4π(m− g).

The first surface featured in Section 11.2 has genus g = 4, the Klein bottle has
genus g = 1 und the Boy surface has genus g = 1

2 . The two surfaces in Figure 11.8
have genus g = 5

2 and genus g = 2 respectively.

Figure 11.8. Non-oriented surfaces of genus g = 5
2 (left) and g = 2 (right). They are

obtained by smoothly gluing handles onto a Boy surface or respectively a
Klein bottle.
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12. Variations of Surfaces

We derive the basics of Vector Calculus on surfaces and explore variations of sur-
faces. In particular, we compute the variational derivative of the area form det and
of the shape operator A. We show that the critical points of the area functional are
the surfaces with mean curvature H = 0. If we constrain the enclosed volume, the
critical points of area are the surface with constant mean curvature. These results
mirror the situation for plane curves, where the analogous variational problems
lead to straight lines (κ = 0) or circles (κ = const).

12.1. Vector Calculus on Surfaces

Throughout this section, M ⊂ R2 is a Riemannian domain, f : M → R3 a surface
and 〈 , 〉 its induced metric. We will only use the area form det, the 90◦-rotation
J and the Levi-Civita-connection ∇, which by Theorems 6.22, 6.23 and 9.9 are al-
ready determined by the induced metric. This means that this section is dealing
only with intrinsic geometry.

If g ∈ C∞(M) is a smooth function, then for each p ∈ M the restriction (dg)|Tp M is
a linear map on Tp M and the restriction 〈 , 〉|Tp M×Tp M is a Euclidean scalar product.
Therefore, there is a unique vector Y(p) ∈ Tp M such that dg(X) = 〈Y(p), X〉 for
all X ∈ Tp M. The smoothness of the vector field Y defined in this way follows
in the usual way, see for example the proof of Theorem 6.20 This leads us to the
following.

Definition 12.1. For g ∈ C∞(M) there is a unique vector field

grad g ∈ Γ(TM)

characterized by the fact that for all vector fields X ∈ Γ(TM) we have

dg(X) = 〈grad g, X〉.

The vector field grad g ∈ γ(TM) is called the gradient of g.

So a function g ∈ C∞(M) gives us a vector field grad g ∈ Γ(TM) (see Figure 12.1).
On the other hand, by taking the trace of the endomorphism field ∇Y, a vector
field Y ∈ Γ(TM) gives us a function div Y ∈ C∞(M).
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grad(z ◦ f ) f

z

Figure 12.1. The gradient vector field of the function z ◦ f (z being the third coordinate
function on R3) for a surface f : M → R3. On the left, the value of z ◦ f is
indicated by color-coding.

Definition 12.2. For a vector field Y ∈ Γ(TM) the function

div Y : M→ R, div Y = tr(∇Y)

is called the divergence of Y.

The following theorem from Linear Algebra is useful for calculating the trace of
an endomorphism field.

Theorem 12.3. Let W be a 2-dimensional vector space with a determinant function det
and A : W →W a linear map. Then for any two vectors X, Y ∈W we have

det(AX, Y)− det(AY, X) = tr A det(X, Y).

Proof. If X and Y are linearly dependent, both sides of the equation vanish. Oth-
erwise, X and Y form a basis of W and we can write

AX = aX + cY
AY = bX + dY.

Our claim now follows from
tr A = a + d.

For the divergence of the product of a function and a vector field we have a Leibniz
formula:

Theorem 12.4. For g ∈ C∞(M) and Z ∈ Γ(TM) we have

div(gZ) = 〈grad g, Z〉+ g div Z.

Proof. With the notation G := grad g and with the help of Theorems 6.24 and 12.3,
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12.1 Vector Calculus on Surfaces

for X, Y ∈ Γ(TM) we have

div(gZ)det(X, Y) = det(∇X(gZ), Y)− det(∇Y(gZ), X)

= det(〈X, G〉Z + g∇XZ, Y)− det(〈Y, G〉Z + g∇YZ, X)

= −det(〈Y, G〉X− 〈X, G〉Y, Z) + g div Z det(X, Y)
= (det(−JG, Z) + g div Z)det(X, Y)
= (〈G, Z〉+ g div Z)det(X, Y).

Definition 12.5. The divergence of the gradient of a function g ∈ C∞(M)

∆g := div grad g

is called the Laplacian of g.

The divergence of a 90◦-rotated gradient vanishes:

Theorem 12.6. For every g ∈ C∞(M) we have

div(Jgrad g) = 0.

Proof. Using again the notation G := grad g, by Theorems 9.4 and 12.3 we obtain

div(Jgrad g)det(U, V) = det(∇U(JG), V)− det(∇V(JG), U)

= 〈∇VG, U〉 − 〈∇UG, V〉
= dV〈G, U〉 − dU〈G, V〉
= dVdU g− dUdV g
= 0.

The theorem below is a reformulation of Stokes Theorem in terms of vector fields
instead of 1-forms. The integral ∫

∂M
g ds

of a function g : ∂M→ R is defined in the same way as for total geodesic curvature
– as the sum of integrals over the boundary loops.

Theorem 12.7 (Divergence Theorem). Let Y ∈ Γ(TM) be a vector field and B the
outward-pointing unit normal field on the boundary ∂M. Then∫

M
div Y det =

∫
∂M
〈Y, B〉 ds.

Proof. Define a 1-form ω ∈ Ω1(M) by setting for X ∈ Tp M

ω(X) = 〈JY(p), X〉.
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Then, by Theorem 9.2, Theorem 9.4 and Lemma 12.3,

dω(U, V) = dUω(V)− dVω(U)

= 〈J∇UY, V〉+ 〈JY,∇UV〉 − 〈J∇VY, U〉 − 〈JY,∇VU〉
= det(∇UY, V)− det(∇VY, U)

= tr(∇Y)det(U, V).

Therefore dω = div Y det . Using again the notation of the proof of Theorem 10.5
and applying Stokes Theorem 7.15 we obtain∫

M
div Y det =

∫
M

dω

=
∫

∂M
ω

=
∫

∂M
〈JY, T〉ds

=
∫

∂M
〈Y, B〉ds.

12.2. One-Parameter Families of Surfaces

Throughout this chapter M ⊂ R2 will be a compact domain with smooth bound-
ary and [t0, t1] ⊂ R a closed interval.

Definition 12.8. Let gt : M → Rn a smooth map, defined for each t ∈ [t0, t1]. Then the
one-parameter family of maps [t0, t1] 3 t 7→ gt is called smooth if the map

M× [t0, t1]→ Rn, (p, t) 7→ gt(p)

is smooth (as always, in the sense of Remark 1.2).

Remark 12.9. The variable t is also referred to as the time.

Given a smooth one-parameter family

t 7→ (gt : M→ Rn), t ∈ [t0, t1]

of maps and a vector field X ∈ Γ(TM), also

t 7→ dXgt

is a smooth one-parameter family of maps dXgt : M → Rn. The same holds for
t 7→ .gt where .gt : M→ Rn is defined as

.gt(p) :=
d

dτ

∣∣∣∣
τ=t

gτ(p).

The following fact will be used many times in upcoming chapters:
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12.2 One-Parameter Families of Surfaces

Theorem 12.10. For a smooth one-parameter family of maps t 7→ gt from M to Rn, the
directional derivative in the direction of a vector field X ∈ Γ(TM) commutes with the
time derivative:

(dXgt)
. = dX

.gt.

Proof. In the special case where X is one of the coordinate vector fields U and
V, this is just the fact that partial derivatives of the smooth map (p, t) 7→ gt(p)
commute. In the general case, we can write

X = a U + b V

where a, b ∈ C∞(M) are independent of t. Then

(dXgt)
. = (a dU gt + b dV gt)

.

= a dU
.gt + b dV

.gt

= dX
.gt.

Definition 12.11. A smooth one-parameter family t 7→ gt of maps from M to Rn is called
a variation of a smooth map g : M→ Rn if

t0 < 0 < t1

and
g0 = g.

In this context, we will also use the notation

.g :=
.g0.

One should compare the arguments below with our reasoning in Section 2.4.

Definition 12.12. A variation of a surface f : M→ Rn is a smooth one-parameter family
of surfaces

ft : M→ Rn, t ∈ [−ε, ε]

such that
f0 = f .

The map
.
f : M→ Rn defined as .

f :=
.
f0

is called the variational vector field of the variation t 7→ ft.

Definition 12.13. Let M ⊂ R2 be a compact domain with smooth boundary. Suppose we
have a way to assign to each surface f : M → Rn a real number E( f ). Then E is called a
smooth functional if for every smooth one-parameter family

t 7→ ft, t ∈ [t0, t1]
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of surfaces f : M→ Rn the function

[t0, t1]→ R, t 7→ E( ft)

is smooth.

In many circumstances, we want to consider only variations of f : M → Rn that
keep the surface fixed near the boundary ∂M:

Definition 12.14. Let M ⊂ R2 be a compact domain with smooth boundary and f : M→
Rn a surface. Then a variation

t 7→ ft, t ∈ [−ε, ε]

of f is said to have support in the interior of M if there is a compact set M0 ⊂ M̊ such
that for all p ∈ M, p /∈ M0 we have

ft(p) = f (p) for all t ∈ [−ε, ε].

Definition 12.15. Let M ⊂ R2 be a compact domain with smooth boundary and E
be a smooth functional defined on the space of surfaces f : M → Rn. Then a surface
f : M → Rn is called a critical point of E if for all variations t 7→ ft of f with support
in the interior of M we have

d
dt

∣∣∣∣
t=0
E( ft) = 0.

Definition 12.15 spells out the notion of an equilibrium of a variational energy E ,
to which we will refer to in later sections. Moreover, one should note that, as
already explained in the beginning of Section 2.4, we will work with a definition
of a critical point under constraints that is slightly stronger than the standard one.

Definition 12.16. Let M ⊂ R2 be a compact domain with smooth boundary, f : M→ Rn

a surface and E , Ẽ two smooth functionals on the space of all surfaces f̃ : M → Rn. Then
f is called a critical point of E under the constraint of fixed Ẽ if for all variations t 7→ ft
of f with support in the interior of M

d
dt

∣∣∣∣
t=0
Ẽ = 0

implies
d
dt

∣∣∣∣
t=0
E = 0.

Using the Linear Algebra Therorem 2.21 in the same way as we used it in Section
2.4, we obtain

Theorem 12.17. Let M ⊂ R2 be a compact domain with smooth boundary and E , Ẽ two
smooth functionals on the space of all surfaces f : M → Rn. Suppose we have a way to
associate to each surface f : M→ Rn smooth maps

G f , G̃ f : M→ Rn
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12.3 Variation of Curvature

such that for all variations t 7→ ft of f with support in the interior of M we have

d
dt

∣∣∣∣
t=0
E =

∫
M
〈

.
f , G f 〉det

d
dt

∣∣∣∣
t=0
Ẽ =

∫
M
〈

.
f , G̃ f 〉det .

Then f is a critical point of E under the constraint of fixed Ẽ if and only if there is a
constant λ ∈ R such that

G f = λG̃ f .

For reasons already explained in Section 2.4, we call λ a Lagrange multiplier for
the constraint of fixed Ẽ .

12.3. Variation of Curvature

Given a smooth variation t 7→ ft of a surface f , we are mainly interested in the time
derivative at time zero of quantities like the area form dett or the shape operator
At associated with the surfaces ft. In situations where it clear with which variation
t 7→ ft we are dealing, we will usually drop the index zero when we mean the time
derivative at time zero. So, for example, we will write

.
A =

.
A0.

Theorem 12.18. Let f : M→ R3 be a surface with unit normal N, shape operator A and
Levi-Civita connection ∇. Let t 7→ ft be a variation of f whose variational vector field

.
f = φN + d f (Z)

is described in terms of a function φ ∈ C∞(M) and a vector field Z ∈ Γ(TM). Denote by
Nt and At the unit normals and the shape operators of the surfaces ft. Define vector fields
G, W ∈ Γ(TM) as

G := grad φ

W := AZ− G.

Then

d
.
f (X) = −〈W, X〉N + d f (φAX +∇XZ)

.
N = d f (W)
.

det = (2φH + div Z)det
.

A = ∇Z A−∇G− φA2 + A(∇Z)− (∇Z)A
.

H = dZ H − 1
2

div G− φ(2H2 − K).

Proof. The proof of the first equation is straightforward:

d
.
f (X) = dφ(X)N + φ d f (AX)− 〈AX, Z〉N + d f (∇XZ)
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= 〈G− AZ, X〉N + d f (φAX +∇XZ)

Differentiating 〈N, d f (X)〉 = 0 with respect to time we obtain

〈
.

N, d f (X)〉 = −〈N, d
.
f (X)〉

= 〈W, X〉
= 〈d f (W), d f (X)〉.

This holds for all X ∈ TM and this implies the second equation. For X, Y ∈
Tp M we know that

.
N (which is orthogonal to N), d f (X) and d f (Y) are linearly

dependent. Using this and Theorem 12.3 we obtain
.

det(X, Y) = det(N, d f (X), d f (Y)).

= det
( .

N, d f (X), d f (Y)
)
+ det(N, d f (φAX +∇XZ), d f (Y))

+ det(N, d f (X), d f (φAY +∇YZ))
= det(φAX +∇XZ, Y) + det(X, φAY +∇YZ)
= tr(φA +∇Z)det(X, Y)
= (2φH + div Z)det(X, Y).

This proves the third equation. For the fourth equation, consider the directional
derivative of the second equation in the direction of X and make use of the first:

−〈AX, W〉N + d f (∇XW) = d
.

N(X)

= (dN(X)).

= (d f (AX)).

= d
.
f (AX) + d f (

.
AX)

= −〈W, AX〉N + d f (φA2X +∇AXZ) + d f (
.

AX)

The normal part of this equation is satisfied automatically. The tangential part,
together with the Codazzi equation (Theorem 9.6) gives us

.
AX = ∇XW − φA2X−∇AXZ

= ∇X(AZ)−∇XG− φA2X−∇AXZ

= (∇X A)Z + A∇XZ−∇XG− φA2X−∇AXZ

= (∇Z A)X + A(∇Z)(X)− (∇G)(X)− φA2X− (∇Z)(AX).

This proves the fourth equation. For the fifth we take the trace of the fourth and
multiply by 1

2 . The last two terms in the fourth equation do not contribute because
we see here the commutator of two endomorphisms A and ∇Z, which always has
zero trace. Regarding the first term, one can verify (for example by taking the
directional derivative of the equation in Theorem 12.3 in the direction of Z) that
indeed for any endomorphism field Ã

tr(∇Z Ã) = dZ(tr Ã).
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Finally, by diagonalizing A one can easily check the equality

1
2

tr A2 = 2H2 − K.

12.4. Variation of Area

Variations of surfaces (as defined in definition 12.12) are needed in order to define
and determine those surfaces that represent equilibria of geometrically interesting
variational functionals.

Examples of smooth functionals of surfaces are the Willmore functional (to be
introduced in Section 13.1) and the cone volume that will be defined in Section
12.5. In this chapter we will focus on the area functional

A( f ) =
∫

M
det f .

Theorem 12.19 (First Variation Formula of Area). As in Theorem 12.18, suppose the
variational vector field of a variation t 7→ ft of a surface f : M→ R3 is written as

.
f = φN + d f (Z)

with φ ∈ C∞(M) and Z ∈ Γ(TM). Then

d
dt

∣∣∣∣
t=0
A( ft) = 2

∫
M

φH det+
∫

∂M
〈Z, B〉 ds

where B is the outward pointing unit normal on ∂M.

Proof. By Theorem 12.18 and the Divergence Theorem 12.7,

d
dt

∣∣∣∣
t=0
A( ft) =

∫
M

.
det

= 2
∫

M
φH det+

∫
M

div Z det

= 2
∫

M
φH det+

∫
∂M
〈Z, B〉 ds.

Definition 12.20. A surface f : M → R3 is called a minimal surface if it is a critical
point of the area functional A.

Figure 12.2 shows a minimal surface whose six boundary curves are all mapped
onto prescribed circles. In fact, it is here a solution of the so-called Plateau prob-
lem, which means that it minimizes area among all surfaces whose boundary is
mapped onto a prescribed set of curves.
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Figure 12.2. The Schwarz-P minimal surface.

Remark 12.21. The Plateau problem was first solved by Jesse Douglas [12] and
Tibor Rado [32] independently.

Theorem 12.22. A surface f : M → R3 is a minimal surface if and only if is mean
curvature H vanishes.

Proof. If H = 0 and t 7→ ft is a variation of f with support in the interior of M,
then Z vanishes near the boundary of M and by Theorem 12.19 the variation of
area is zero. Conversely, suppose that f is a minimal surface but there is a point
p ∈ M for which H(p) 6= 0. Then there is such a p also in the interior of M, so we
assume p ∈ M̊. Let us treat the case H(p) > 0, the case H(p) < 0 being similar.
Then we can construct a bump function g ∈ C∞(M) such that g vanishes outside
of a compact set contained in the interior of M and

g(p) = 1
H(q) ≤ 0 =⇒ g(q) = 0.

Then, for small enough ε > 0,

t 7→ ft, t ∈ [−ε, ε]

ft = f + t · g · N

(N being the unit normal of f ) will be a smooth variation of f with support in the
interior of M and

d
dt

∣∣∣∣
t=0
A( ft) =

∫
M

gH > 0,

which contradicts our assumption that f is minimal.
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12.5 Variation of Volume

As the reader may verify, the Enneper surfaces defined in Section 6.5 have mean
curvature H = 0, so by Theorem 12.22 they are minimal surfaces. Figure 12.3
shows one of these Enneper surfaces:

Figure 12.3. An Enneper surface is a minimal surface.

12.5. Variation of Volume

Definition 12.23. Let M ⊂ R2 be a compact domain with smooth boundary and f : M→
R3 a surface. Then the cone volume of f is defined as

V( f ) =
1
3

∫
M

det( f , fu, fv).

V( f ) can be interpreted as the volume covered by the map

F : [0, 1]×M→ R3, F(s, p) = s · f (p).

Here the “volume covered” should not be understood as the volume of the image
F([0, 1] × M), but rather in the spirit of Theorem 8.17. At first sight, the cone
volume does not look like an honorable geometric functional. For example, the
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version f̃ = f + a of f that has been translated by a vector a ∈ R3 in general does
not have the same cone volume as f . On the other hand, for closed surfaces the
cone volume is invariant under translations:

Theorem 12.24. If ( f , ρ) is an oriented closed surface (Definition 11.1) and a ∈ R3, then

V( f + a) = V( f ).

Proof. Define a 1-form ω ∈ Ω1(M) by

ω(X) =
1
6

det(a, f , d f (X)).

Then

dω(U, V) =
1
6
(det(a, f , fv)u − det(a, f , fu)v

=
1
3

det(a, fu, fv)

and therefore, by Stokes Theorem 7.15,

V( f + a)− V( f ) =
∫

M
dω

=
∫

∂M
ω

= 0.

The last equality follows from the fact that ( f , ρ) is oriented, and therefore the
integrals of ω over the various boundary curves of M cancel in pairs.

Moreover, by almost the same reasoning as in the above proof one can show:

Theorem 12.25. Let M ⊂ R2 be a compact domain with smooth boundary,

t 7→ ft, t ∈ [−ε, ε]

a variation with support in the interior of M of a surface f : M→ R3 and a ∈ R3. Then

d
dt

∣∣∣∣
t=0
V( ft + a) =

d
dt

∣∣∣∣
t=0
V( ft).

Theorem 12.25 implies that for the purposes of variational calculus the cone vol-
ume V behaves in the same way as a translationally invariant functional (see Figure
12.4).
We can view d f as an R3-valued 1-form on M. Given smooth maps f ,

.
f : M→ R3

we then obtain a scalar valued 1-form

ω =
1
3

det
(

f ,
.
f , d f

)
∈ Ω1(M).
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f ft

Figure 12.4. The cone volume of f (left) and of a variation ft of f (right).

Theorem 12.26 (First Variation of Cone Volume). Let f : M→ R3 be a surface. Then
for every variation t 7→ ft of f we have

d
dt

∣∣∣∣
t=0
V( ft) =

∫
M
〈

.
f , N〉 det+

∫
∂M

1
3

det
(

f ,
.
f , d f

)
.

Proof. We have

d
dt

∣∣∣∣
t=0
V( ft) =

1
3

∫
M

(
det
( .

f , fu, fv

)
+ det

(
f ,

.
fu, fv

)
+ det

(
f , fu,

.
fv

))
=

1
3

∫
M

(
det
( .

f , fu, fv

)
+ det

(
f ,

.
f , fv

)
u
− det

(
fu,

.
f , fv

)
− det

(
f ,

.
f , fvu

)
+det

(
f , fu,

.
f
)

v
− det

(
fv, fu,

.
f
)
− det

(
f , fuv,

.
f
))

=
∫

M
〈

.
f , det(U, V)N〉+

∫
M

dω

=
∫

M
〈

.
f , N〉det+

∫
∂M

ω.

It is easy to see that, on its own, the cone volume functional does not have any
critical points. However, we can use it in the context of variational problems under
a volume constraint. Here is our first application of Theorem 12.17:

Theorem 12.27. Let M ⊂ R2 be a compact domain with smooth boundary. Then a
surface f : M → R3 is a critical point of the area A under the constraint of fixed cone
volume V if and only if the mean curvature H of f is constant.

Proof. By Theorems 12.19, 12.26 and 12.17, f is a critical point of area under fixed
cone volume if and only if there is a constant λ ∈ R such that

HN = λN.
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The surface in Figure 12.5 minimizes area among all surfaces that are bounded by
the same six circles as the first surface shown in Section 12.4 and have a certain
prescribed volume:

Figure 12.5. A surface with the same boundary as the surface in Figure 12.2. It is a critical
point of the area functional under the constraint of having a prescribed cone
volume.

Remark 12.28. In 1984 Henry Wente found a counterexample to a conjecture by
Heinz Hopf which stated that every closed surface in R3 with constant mean
curvature is round sphere [43]. In Figure 12.6 it is shown how the Wente torus
can be build from a fundamental piece.
Nevertheless, the conjecture is true if one demands that the surface is embedded
in R3, or has genus g = 0. These results are due to Alexandrov [1] and Hopf [17].

Figure 12.6. A Wente torus – a closed surface of genus g = 1 with constant mean curvature
H 6= 0.
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13. Willmore Surfaces

The analog for a surface f : M→ R3 of the bending energy
∫ b

a κ2 ds is the Willmore
functional W( f ) =

∫
M H2 det. There are several versions of the Willmore func-

tional, all of which are equivalent for the purposes of Variational Calculus. One of
these versions is unchanged if we transform the surface by inversion in a sphere.
The analogs of elastic curves are called Willmore Surfaces.

13.1. The Willmore Functional

In the context of curves γ : [a, b] → R2 we studied in detail the total squared cur-
vature

∫
κ2ds (notation from the end of Section 7.2). What is the analog of this

energy in the context of surfaces?

One might say that κ = 0 characterizes straight lines, which minimize length
among all curves with the same end points. So

∫
[a,b] κ2 ds measures the deviation

from being length-minimizing. The analog of length-minimizing curves are area-
minimizing surfaces, i.e. minimal surfaces, surfaces with mean curvature H = 0.
So a natural analog of

∫
[a,b] κ2 ds can be defined as follows:

Definition 13.1. If f : M→ R3 is a surface, then

W( f ) :=
∫

M
H2 det

is called the Willmore functional of f .

Surfaces f that are critical points of the Willmore functional are characterized by
the property that they are “as minimal as possible”, given that they are held fixed
near the boundary of M.

Alternatively, one might say that κ = 0 only happens for straight line segments, so
for surfaces we want to measure the deviation of being planar. Parametrizations of
pieces of the plane are characterized by the fact that both principal curvatures van-
ish, so we want to measure the deviation of both κ1 and κ2 (not just their average
H) from being zero. This reasoning leads to a different analog for

∫
[a,b] κ2 ds:
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Definition 13.2. If f : M→ R3 is a surface, then

E( f ) :=
1
4

∫
M
(κ2

1 + κ2
2)det =

∫
M

(
H2 − K

2

)
det

is called the bending energy of f .

Surfaces f that are critical points of the bending energy are characterized by the
property that they are "as planar as possible", given that they are held fixed near
the boundary.

Finally, one might formulate a different wish and ask for surfaces that are “as
round as possible” which means they are “as spherical as possible”. In view of
the Umbillic Point Theorem 8.12 this motivates the following definition:

Definition 13.3. If f : M→ R3 is a surface, then

W̃( f ) :=
1
4

∫
M
(κ1 − κ2)

2 det =
∫

M
(H2 − K)det

is called the conformally invariant Willmore functional of f .

Note that the integrands in all three of the above energies differ only by a term
proportional to K det, so the Gauss-Bonnet Theorem 10.5 tells us that for the pur-
poses of Variational Calculus, (cf. Definition A.4) all three energies are equivalent
to a large extent:

Theorem 13.4. Let f , f̃ : M → R3 be two surfaces such that f̃ (p) = f (p) for p outside
of some compact set contained in the interior of M. Then

W( f̃ )−W( f ) = E( f̃ )− E( f ) = W̃( f̃ )− W̃( f ).

For surfaces that close up we see that the difference between the three functionals
only depends on the genus:

Theorem 13.5. Let f : M→ R3 be a surface that closes up with genus g. Then

E( f ) = W( f ) + 2π(g− 1)

W̃( f ) = W( f ) + 4π(g− 1).

Theorem 13.6. The estimates below are sharp, i.e. in each case there is a surface that
closes up with the prescribed genus and which realizes the lower bound:

1. If M is connected and a surface f : M→ R3 closes up with genus 0, then

W( f ) ≥ 4π.

2. If M is connected and a surface f : M→ R3 closes up with genus 1
2 , then

W( f ) ≥ 12π.

136



13.1 The Willmore Functional

3. If M is connected and a surface f : M→ R3 closes up with genus 1, then

W( f ) ≥ 2π2.

Figure 13.1. A Boy surface with the minimal possible Willmore functional 12π.

We will not prove this theorem. Part (i) of Theorem 13.6 was proved by Tom
Willmore in [46] in 1965. The minimum is attained for a round sphere. Part (ii)
was proved by Rob Kusner in [21] where he also proved that the Boy surface
shown on the right of Figure 13.1 realizes the minimum 12π. The two surfaces on
the right of Figure 13.2 are Lawson surfaces which were found by Blaine Lawson
[23] and are possible candidates for minimizing the Willmore functional among
all surfaces with genus g = 2 and g = 3 respectively [18].

Figure 13.2. The Torus on the left has Willmore functional 2π2, which is optimal among
surfaces with genus g = 1. The two surfaces on the right are possible candi-
dates for minimizing the Willmore functional among all surfaces with genus
g = 2 and g = 3 respectively.

137



Willmore Surfaces

In the paper already mentioned above, Willmore also formulated (iii) as a con-
jecture and demonstrated that the value 2π2 is realized by the torus obtained by
rotating a circle of radius one around an axis in such a way that its center has
distance

√
2 from the axis (Figure 13.2, left). This Willmore conjecture remained

a famous open problem in Differential Geometry for a long time, until in 2012
Fernando Marques and André Neves proved the conjecture [26].

Remark 13.7. The question of critical points of the Willmore functional acquired
greater importance starting from the 1960’s, initiated by T. Willmore and his paper
[46]. It was later found that parts of the theory were already known to Wilhelm
Blaschke [6] and his student Gerhard Thomsen in the 1920’s [38]. For an historic
overview of contributions which were made to the problem see the last chapter of
[47], or [27] for a more recent survey.

13.2. Variation of the Willmore Functional

According to the discussion in Section 13.1, the Willmore functional W has alter-
native versions which measure how “non-flat” or how “not round” a surface is.
It was also explained that for the purposes of Variational Calculus all these dif-
ferent versions of the Willmore functional are equivalent. Being a critical point of
the Willmore functional (which version we take does not matter) means that the
surface (at least locally) is “optimally round”. It also means that the total amount
of curvature of the surface cannot be decreased by modifying f only in a small
neighborhood of a given point, while leaving the rest of the surface unchanged.

Definition 13.8. A surface f : M → R3 is called a Willmore surface if it is a critical
point of the Willmore functionalW .

Let us first compute for W the rate of change under a general variation, not nec-
essarily with support in the interior:

Theorem 13.9 (First Variation Formula for the Willmore Functional). Let f : M →
R3 be a surface with unit normal N and with binormal field B along the boundary ∂M.
Let t 7→ ft be a variation of f with variational vector field

.
f = φN + d f (Z)

where φ ∈ C∞(M) and Z ∈ Γ(TM). Then

d
dt

∣∣∣∣
t=0
W( ft) =

∫
M

φ
(
∆H + 2H(H2 − K)

)
det

+
∫

∂M

〈
B, H2Z− H grad φ + φ grad H

〉
ds.

Proof. Using Theorem 12.18 as well as the notation G := grad φ borrowed from
there we obtain(

H2 det
).

=

(
2H
(

dZ H − 1
2

div G− φ(2H2 − K)
)
+ H2(2Hφ + div Z)

)
det

=
(
2H〈grad H, Z〉 − H div G − 2φH(H2 − K) + H2div Z

)
det
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13.2 Variation of the Willmore Functional

=
(
div(H2Z)− H div G− 2φH(H2 − K)

)
det

=
(
div(H2Z− HG) + 〈grad H, grad φ〉 − 2φH(H2 − K)

)
det

=
(
div(H2Z− HG) + div(φ grad H)− φ∆H − 2φH(H2 − K)

)
det

=
(
div

(
H2Z− HG + φ grad H

)
− φ

(
∆H + 2H(H2 − K)

))
det .

Together with the Divergence Theorem 12.7, this proves our claim.

As an immediate consequence, we obtain [38]

Theorem 13.10. A surface f : M→ R3 is a Willmore surface if and only if

∆H + 2H(H2 − K) = 0.

Round spheres are Willmore, because for them all points are umbilic points (so
H2 − K = 0) and H is constant (so ∆H = 0). Moreover, all surfaces with H = 0
(minimal surfaces) are Willmore. Here is another example:

Figure 13.3. The cylinder over a free elastic plane curve is a Willmore surface.

Example 13.11. Take a unit speed curve γ : [0, L]→ R2 ⊂ R3, where R2 is realized
as those points in R3 where the last coordinate is zero. Now for a compact domain
with smooth boundary M ⊂ [0, L]×R define the cylinder f : M→ R3 over γ by

f (u, v) = γ(u) + v e3.

It is easy to check that the Levi-Civita connection of f is given by ∇U = ∇V = 0,
the Gaussian curvature K of f vanishes and the mean curvature H of f satisfies

H(u, v) =
κ(u)

2

(grad H)(u, v) =
κ′(u)

2
U(u, v)
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(∆H)(u, v) =
κ′′(u)

2
.

This means that the cylinder f over γ is Willmore if and only if γ is freely elastic,
i.e.

κ′′ +
κ3

2
= 0.

The cylinder over a freely elastic curve is seen in Figure 13.3.

There are many other ways to construct Willmore surfaces, most of which are
beyond the scope of this book. The surface in Figure 13.4 is from the 2019 paper
[7].

Figure 13.4. Another Willmore surface.

13.3. Willmore Functional under Inversions

For a surface f : M→ R3, the Willmore functional

W( f ) =
∫

M
H2 det

is clearly unchanged if we postcompose f by an isometry g : R3 → R3. It is also
invariant under scaling: For λ 6= 0 the surface f̃ = λ f has the same Willmore
functional. This is because, under such a scaling, det acquires a factor of λ2 while
H gets a factor of 1

λ . As its name indicates, if we consider the Möbius-invariant
Willmore functional

W̃( f ) =
∫

M
(H2 − K)det

a similar statement is true for a more general class of transformations, that can
be written as compositions of isometries, scalings and inversions in spheres, the
so-called Möbius transformations.

Let f : M → R3 be a surface such that the origin o of R3 is not in the image of f .
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13.3 Willmore Functional under Inversions

Then we can postcompose f with the so-called inversion in the unit sphere

g : R3 \ {o} → R3, g(p) =
p
〈p, p〉

and obtain a new surface

f̃ : M→ R3, f̃ =
f

〈 f , f 〉 .

Computing the derivative of f̃ is straightforward and yields

d f̃ =
d f
〈 f , f 〉 − 2

〈d f , f 〉 f
〈 f , f 〉2

=
1
〈 f , f 〉R d f

where for each p ∈ M the orthogonal (3× 3)-matrix R(p) ∈ O(3) acts on v ∈ R3

as

R(p)v = v− 2
〈 f (p), v〉
〈 f (p), f (p)〉 f (p).

For each p ∈ M the matrix R(p) is a reflection and hence orientation-reversing.
The sign of the unit normal depends on orientation, which is why the unit normal
field of f̃ is given by

Ñ = −RN =
2〈N, f 〉
〈 f , f 〉 f − N.

Theorem 13.12. In the situation above, the induced metric 〈 , 〉∼, the area form d̃et and
the shape operator Ã of f̃ are given by

〈 , 〉∼ =
1

〈 f , f 〉2 〈 , 〉

d̃et =
1

〈 f , f 〉2 det

Ã = −〈 f , f 〉A + 2〈N, f 〉I.

Proof. The first two formulas follow directly from our calculations above. The
third follows from

dÑ =

(
2〈dN, f 〉
〈 f , f 〉 −

4〈N, f 〉〈d f , f 〉
〈 f , f 〉2

)
f +

2〈N, f 〉
〈 f , f 〉 d f − dN

= 2〈N, f 〉d f̃ − 〈 f , f 〉d f̃ ◦ A.

Theorem 13.13. If f̃ arises from f by inversion in the unit sphere, then

W̃( f̃ ) = W̃( f ).
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Proof. By Theorem 13.12, the principal curvatures κ̃1, κ̃2 of f̃ satisfy

κ̃2 − κ̃1 = −〈 f , f 〉(κ2 − κ1).

As a consequence,

(H̃2 − K̃)d̃et =
1
4
(κ̃2 − κ̃1)

2 d̃et =
1
4
(κ2 − κ1)

2 det = (H2 − K)det .

Theorem 13.14. If f is a Willmore surface, then so is its image f̃ under inversion in the
unit sphere.

Proof. By Theorem 13.4, W̃ has the same critical points as W and by Theorem
13.13 inversion in the unit sphere maps critical points of W̃ to critical points of
W̃ .

Figure 13.5. A catenoid (left) and its image under a sphere inversion (right).

The surface on the right of Figure 13.5 shows the image under an inversion of a
minimal surface already known to Euler (shown on the left), the so-called catenoid
f : M→ R3 given by

f (u, v) =

 1+u2+v2

u2+v2 u
1+u2+v2

u2+v2 v
log
(
u2 + v2)

 .

So, even more Willmore surfaces can be obtained by inverting surfaces which we
have already encountered (see Figure 13.6).
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13.3 Willmore Functional under Inversions

Figure 13.6. The images under an inversion of the surfaces in Figure 13.3 and Figure 6.8
respectively are also Willmore surfaces.
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A. Some Technicalities

A.1. Smooth Maps

The standard definition of a differentiable map f : U → Rn requires U to be an
open subset of Rk. Such an f is called smooth if all higher order partial derivatives

∂m fi

∂xj1 . . . ∂xjm

of all its component functions exist.

On the other hand, we want to define curves in Rn as certain smooth maps
γ : [a, b] → Rn defined on a closed interval [a, b] ⊂ R. Similarly, we want to
use a certain kind of compact subsets M ⊂ R2 as the domain of definition for
surfaces f : M→ Rn. We therefore have to work with more general domains:

Definition A.1. Let U ⊂ Rk be an open set and M := U its closure. Then a function
f : M → Rn is called smooth if there is an open set Ũ ⊂ Rn with M ⊂ Ũ and a smooth
function f̃ : Ũ → Rn such that

f̃ |M = f .

For x ∈ M we define
∂m fi

∂xj1 . . . ∂xjm
:=

∂m f̃i

∂xj1 . . . ∂xjm

In order for this definition to make sense, we have to verify that the higher partial
derivatives of f are well-defined:

Theorem A.2. The higher partial derivatives of f defined in Definition A.1 are indepen-
dent of the choice Ũ and the extension f̃ of f to Ũ.

Proof. Because every point x ∈ M is a limit point of points y ∈ U and the partial
derivatives of f̃ are continuous, we have

∂m f̃i

∂xj1 . . . ∂xjm
(x) = lim

y→x
y∈U

∂m f̃
∂xj1 . . . ∂xjm

(y)

= lim
y→x
y∈U

∂m f
∂xj1 . . . ∂xjm

(y).
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A.2 Function toolbox

When we discuss reparametrizations of curves or surfaces, we make use of the
following notion:

Definition A.3. Let M, M̃ ⊂ Rk be two subsets which are closures of open subsets
U, Ũ ⊂ Rn respectively. Then a smooth map f : M → M̃ is called a diffeomorphism if
it is bijective and its inverse f−1 : M̃→ M is also smooth.

A.2. Function toolbox

On several occasions in this book the need arises to construct a so-called bump
function, i.e. a non-negative smooth function on Rk that vanishes outside of a
small neighborhood of a given point, but not at this point.

Definition A.4. Let f : A → R be a function defined on some subset A ⊂ Rk of Rk.
Then the support of f is defined as

supp f := {x ∈ Rn | for every ε > 0 there is y ∈ A with |y− x| < ε and f (y) 6= 0}.

The following theorem is easy to prove.

Theorem A.5. If f : U → R is a smooth function on an open set U ⊂ Rk and supp f ⊂
U, then f can be extended to a smooth function f̃ : Rk → R by setting

f̃ (x) :=

{
f (x) for x ∈ U
0 for x /∈ U.

The basic ingredient for constructing functions with support in a given open set
U ⊂ Rk is the function f : R→ R given by

f (x) =

{
0 for x ≤ 0
e−

1
x for x > 0.

Clearly, f is smooth at all points x 6= 0. It is not hard to check that it is smooth
also at x = 0. Figure A.1 shows the graph of f .

Figure A.1. A smooth fuction f : R→ R with f (x) = 0 for x < 0.

The second function in our toolbox is the so-called bump function g : R → R

given by

g(x) = f (1− x2) =

{
0 for |x| ≥ 1

e−
1

1−x2 for |x| < 1.
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As a composition of smooth functions, g is also smooth (see Figure A.2).

Figure A.2. The bump function g : R→ R.

Other versions of g like
g̃(x) = g(ε(x− x0))

can be adapted to be non-zero only within an arbitrarily prescribed interval. An-
other tool in our toolbox is the function h : R→ R given by

h(x) =
∫ x

−1
g

and variants of it that are shifted and scaled in a similar way as the function g̃
above.

Finally, we need bump functions of several variables (see Figure A.3), like the
function ĝ : Rk → R given by

ĝ(x) = f (1− ||x||2).

Figure A.3. A bump function ĝ on R2.
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B. Timeline

This table is not meant as a comprehensive view of the history of the whole field
that deals with the Differential Geometry of curves and surfaces. Only those
milestones are listed that are explicitly mentioned in the preceeding chapters.

Year Milestone Section
1673 Newton defines the curvature of curves in R2 3.1

1691 Jacob Bernoulli defines elastic curves in R2 2.4

1744 Euler classifies elastic curves in R2 2.5

1744 Euler shows that the catenoid minimizes area 13.3

1760 Euler defines the principal curvatures of a surface 8.2

1827 Gauss proves the Theorema Egregium 9.3

1844 Binet derives the equation of elastic curves in R3 5.4

1845 Möbius investigates the topology of closed surfaces 11.1

1848 Bonnet proves the Gauss-Bonnet theorem 10.2

1859 Kirchhoff proves that the tangent of an elastic curve
follows the motion of the axis of a spinning top

5.2

1903 Boy proves the Gauss-Bonnet theorem for closed sur-
faces

11.3

1906 Da Rios defines the filament equation 5.3

1923 Thomsen defines Willmore surfaces, then called Kon-
formminimalflächen

13.1

1931 Douglas and Rado independently prove the existence
of a minimal surface with prescribed boundary curve

12.4

1937 Whitney and Graustein proof their theorem 3.6

1956 Hopf proves that round spheres are the only constant
mean curvature surfaces in R3 of genus zero

12.5

1965 Willmore states his conjecture 13.1

1970 Lawson finds closed minimal surfaces in S3 with any
genus

13.1

1972 Hasimoto shows that the filament equation is a soli-
ton equation

5.3

1984 Wente finds the first constant mean curvature torus 12.5

2012 Marques and Neves prove the Willmore conjecture 13.1
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90◦-rotation, 22
1-form, 84
2-form, 81

absolute curvature, 38
arclength, 7
arclength 1-form, 86
arclength coordinate, 7
arclentgh parametrization, 8
area covered by a map, 96
area form, 76
area of a Riemannian domain, 83
asymptotic line, 106

bending energy, 8, 136
binormal, 104
Boy surface, 115, 117
Boy’s Theorem, 117
bump function, 145

Cartesian leaf, 4
catenoid, 142
Cauchy-Schwarz inequality, 38
Codazzi equation, 101
compact domain with smooth

boundary, 69
component, 119
cone volume, 131
congruent, 7
connectable, 119
connected, 119
connected compact domain with

smooth boundary, 68
covered area form, 95
critical point, 14, 126

constraint, 17
under constraints, 126

curvature, 23
total curvature, 28

curvature function, 41
curvature line, 107
curve, 3

closed, 4
framed, 56
on a surface, 104
oriented, 5
parallel curve, 38

cylinder, 139
cylinder over a free elastic plane

curve, 139

derivative, 72
derivative with respect to arclength,

7
determinant, 75
diffeomorphism, 70, 145

orientation-preserving, 70
direction, 91
directional curvature, 91
directional derivative, 72
divergence, 122
Divergence Theorem, 123

elastic curve, 48
free elastic curve, 16
torsion-free elastic curve, 18

elastic framed curve with twisting
modulus, 59

endomorphism field, 74
Enneper surface, 79, 131
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Euclidean plane, 95
Euler characteristic, 116

First Variation Formula of Area, 129
First Variation Formula of the

Willmore Functional, 138
First Variation of Cone Volume, 132
Foucault’s pendulum, 110
framed curve, 56
Frenet normal, 61
Fundamental Lemma of the Calculus

of Variations, 15
Fundamental Theorem of Plane

Curves, 23

Gauss equation, 102
Gauss-Bonnet Theorem, 107
Gaussian curvature, 93
genus, 119, 120
geodesic, 107
geodesic curvature, 105
geodesic torsion, 105
gradient, 17, 121
gravity vector, 19

Hasimoto curvature, 39
Helix, 4
homotopic, 29

through closed curves, 31

infinitesimal rigid motion, 54
integral, 82

of a 1-form, 85
of a 2-form, 82

integral over arclength, 7
isometric, 77

Klein bottle, 120

Lagrange multiplier, 17, 127
Laplacian, 123
Lawson surfaces, 137
length, 6
Levi-Civita connection, 99

mean curvature, 93
metric, 73
minimal, 129
minimal surface, 129

monodromy angle, 110
Möbius transformations, 140

Neil’s parabola, 5
norm, 74
normal curvature, 105
normal field, 36
normal part, 99
normal space, 36
normal transport, 44

optimization under constraints, 17
orientation cover, 117, 118
orientation-preserving, 5

parallel, 36
normal field, 36

parallel transport, 37
parallel transport map, 110
parametrized by arclength, 8
pendulum equation, 21
Plateau problem, 129
Poisson ratio, 59
positively oriented basis, 76
principal curvatures, 92
projection map, 71
pseudosphere, 78
pull-back, 82, 84

regular homotopy, 29
regular homotopy through closed

curves, 31
reparametrization, 5, 70
Riemannian domain, 74
Riemannian metric, 73
rigid motion, 7
round sphere, 94

Schwarz-P, 130
sector area, 24
shape operator, 90
shear modulus, 59
smoke ring flow, 54
smooth, 4, 144

functional, 14, 125
map, 4
one-parameter family of maps,

10
speed, 6
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spherical pendulum, 19
support, 145
support in the interior, 14
surface, 69

closes up, 116
closed surface, 115
oriented closed surface, 115

surface normal, 104

tangent bundle, 71
tangent space, 71
tangent vector, 71
tangent winding number, 28
tangential part, 99
tension, 19
Theorema Egregium, 102
time, 124
torsion, 56
total geodesic curvature, 107
total squared curvature, 27
total squared torsion, 58
total torsion, 44
total torsion angle, 56
trace, 75, 104

twisting modulus, 58

umbilic point, 93
unit normal, 90
unit tangent field, 8

variation, 11
of a smooth map, 11, 125
of a surface, 125
support, 59
support in the interior, 126

variational vector field, 11, 125
vector field, 72

coordinate vector fields, 72
vortex filament, 52
vortex filament flow, 54
vorticity, 52

Wente torus, 134
Willmore conjecture, 138
Willmore functional, 135

conformally invariant, 136
Willmore surface, 138

Young modulus, 59
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