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Abstract

This is a correction to the article [BS20]. The proof of the existence of the
invariant measure 7 in [BS20, Theorem 2.4] had an error. We provide a correct
proof here.

In our recent paper [BS20], the existence of the invariant measure 7 in Theorem 2.4
was proved using an incorrect argument. In this note, we correct this error and provide
the correct proof.

Let E be a Polish space equipped with the complete metric p, and let (P;):>o be
a Markov transition function over £. We use the same notation also for the semigroup
corresponding to this transition function. Let W,5; denote the corresponding Wasserstein
(Kantorovich-Rubinstein) metric, see [BS20, Section 2]. We showed in [BS20, p. 1020,
lines 1-8] that under the conditions of [BS20, Theorem 2.4] for any x € F

Woni(Py(z,-), Ps(z,-)) = 0, ass,t— oo,
and hence there exists a measure 7 such that
Woni(Py(z,-),m) =0, ast— oo.

However, since we do not assume that the semigroup (F;);>o is Feller, this does not
necessarily imply that the measure 7 is invariant for (P;);>0, as was claimed in our paper
[BS20, p. 1020, lines 12-13]. Indeed, consider the following simple counterexample.

Example 1. Consider a Polish space F := {0, 1, %, %, ...} equipped with the Euclidean

metric p. Let (P;);>o correspond to a Markov process that jumps to the next state (in
the given order) at rate 1. Then the sequence (Pi(z,-)):>o is Cauchy with respect to
W, = W, for any « € E. Furthermore, the transition probabilities Py(x,-) converge
weakly to dp as t — oo for any x € E. On the other hand, the measure ¢, is not invariant
for this Markov process.
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Nevertheless, we still claim that under the assumptions of [BS20, Theorem 2.4], the
semigroup (F;);>0 has an invariant measure, and thus the statement of [BS20, Theo-
rem 2.4] holds true. The main idea is to show that the sequence of measures (Py(z, -)):>0
is Cauchy with respect to a Kolmogorov metric introduced below.

Let < be a partial order on E and suppose that the set

I''={(z,y) e EXE:x <2y} (1)

is closed (condition (2.1) of [BS20]). A subset A of E is called increasing if x € A and
r <y implies y € A. We denote by J the set of measurable and increasing subsets of
and by ¢ the set of measurable and increasing functions £ — [0, 1]. We assume that the
transition function (P;):>o is order-preserving, that is, it maps ¢ to ¢. Let P(FE) be the
set of all probability measures on (E, B(E)).

Definition 2. The Kolmogorov metric on the space of probability measures on P(F) is
defined as

k(p,v) :=sup [u(A) —v(A)|,  p,vePE).
AeJ

Proposition 3. We have

K(p, v) = sup
ge¥y

[ stwtan) - [ gawian) &)

Proof. Since the function g := 14 is increasing for any set A € J, we see that the left-
hand side of (2) is smaller than the right-hand side. To derive the converse inequality, we
note that for any g € ¢4 we have
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< /01 k(p,v)dy = k(u,v), (3)

where in (3) we used Theorem 2 and the fact that the set {z : g(x) > y} is increasing for
any y € [0, 1]. O

It is known that the Kolmogorov metric x is complete in the case E = R, equipped
with the following partial order: = < y if each coordinate x; < y; [CR98]. However, we
were unable to find any results that establish completeness of the metric for a general
Polish space. The closest result we are aware of is [KS19, Theorem 4.1], which proves
completeness under additional assumptions on E. Nevertheless, the following holds.

Lemma 4. Let (u:)i>0 be a Cauchy sequence of probability measures on E with respect to
k. Let m € P(E). Suppose further that

e — 7, weakly, ast — oo.

Then
k(pe, ™) =0,  ast — oo. (4)



Proof. Fix ¢ > 0. Let t. € N be such that x(u,ps) < & whenever s,t > t.. Fix any
s > t.. Then for any t > t. by [KS19, Theorem 3.1], there exists a pair of random
variables (X, Y; ) taking values in E such that

P(Xt,s j }/;,s) >1 - g, L&W(Xt7s) = ¢, Law(}/;,s) = ls.

Note that for fixed s the sequence of pairs (X;g, Y s)ese. is tight in £ x E because the
sequence (p)i>o is tight. Using Prokhorov’s theorem and passing to a converging subse-
quence, we see that there exists a pair of random variables (X5, Y;) such that

(Xis, Yas) = (X5, Ys), weakly, as t — oco;  Law(X;) =, Law(Y) = pus.
Furthermore since the set I' defined in (1) is closed, the Portmanteau theorem implies

P(X, < ¥;) = P((X,,Y:) € T) > limsup P((X,,Y;is) €T) > 1 — e,
t—00

Thus, using again [KS19, Theorem 3.1], we see

sup(m(A) — us(A4)) < e.
Aeg

Similarly, we get sup ¢ 7(is(A) — m(A)) < e, which yields s(ps, ) < . Since s was an
arbitrary number in (¢, 00), this implies (4). O

Now we have all the ingredients to prove the key step towards establishing the existence
of the invariant measure.

Lemma 5. Suppose that all the assumptions of [BS20, Theorem 2.4] hold. Then, for
every x € E, the sequence of measures (Py(z,-))i>o0 is Cauchy with respect to k.

Proof. The proof is similar to the proof of the Cauchy property of (P;(x, -)):>o with respect
to the Wasserstein metric in [BS20, Section 5.1].

Fixx,y € E. Let {X?(s),s > 0} and {X¥(s),s > 0} be independent Markov processes
with the transition function (P;);>¢ and the initial conditions X*(0) = x and X¥(0) = y.
Introduce stopping times

Tozy =1nf{n € Z; : X*(n) < X¥(n)},
Ty=e = 1nf{n € Z; : X¥(n) <= X*(n)}.
Then, using consecutively [FS24, Theorem 3.5(i)] and [BS20, p. 1019, lines 14-16], we get
sup |Eg(X}) — Eg(X})| < P(7azy > ) VP(1y=e > 1) <C(1+V(2) +V(y))e ™, (5)
geY

for a constant C' > 0. Then for any s,t > 0, x € E we derive

Pat@) = [ Pat)P.(o.d)

K(Pt(xa ')7P15+S($a ) = sup |Ptg(x) - Pt-‘rsg(x” = sup

geY geY

< sup /E Pglx) — Pog(y)|Pu(e. dy)

geY

< /E C(1+ V(@) + V(y))e MPy(x, dy)
K
Y

<CO+2V(z)+—)e ™M =0 ast— oo,

where in the penultimate line we used (5), and the last inequality follows from [BS20,
Formula (2.2)]. Thus the sequence (Py(z,-))i>0 is Cauchy with respect to k. O
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Now we can complete the proof of the existence of the invariant measure.

Corrected proof of ezistence of invariant measure for (P;) in [BS20, Theorem 2.4]. Fix ar-
bitrary x € E. By [BS20, p. 1020, lines 1-8] there exists a measure 7 € P(E) such that

Woni(Pi(z,-),m) =0, ast— oo.

By Theorem 5, the sequence of measures (P;(x, -)):>o is Cauchy with respect to k. There-
fore, Theorem 4 yields
k(Py(z,-),m) — 0, ast— oo. (6)

Take arbitrary f € ¢ and s > 0. We derive

Af@ﬂﬂwﬁié&ﬂ@ﬂw)

= lim [ Pif(2)Pi(x,dz) (7)

n—oo E

= lim [ f(2)Ps(,d2)
E

:ijﬂwy (8)

Here in (7), we used that the semigroup P, maps bounded increasing measurable func-
tions to bounded increasing measurable functions ([BS20, Assumption 1, Theorem 2.3]).
Therefore, Psf € ¢, and thus (7) follows from Theorem 3 and (6). Identity (8) follows
from (6) and the fact that f € 4. Thus, P;m(A) = 7(A) for each A € J. Since two
probability measures which agree on all measurable and increasing sets are equal (see,
e.g., [FFS24, Lemma 2.8] or [KK78, Lemma 1]) and since s > 0 is arbitrary it follows that
7 is invariant for (P;)¢o. O
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