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A B S T R A C T

Cycles in graphs play an important role in many applications, e.g., analysis of electrical

networks, analysis of chemical and biological pathways, periodic scheduling, and graph

drawing. From a mathematical point of view, cycles in graphs have a rich structure. Cycle

bases are a compact description of the set of all cycles of a graph. In this paper, we survey

the state of knowledge on cycle bases and also derive some new results. We introduce

different kinds of cycle bases, characterize them in terms of their cycle matrix, and prove

structural results and a priori length bounds. We provide polynomial algorithms for the

minimum cycle basis problem for some of the classes and prove APX-hardness for others.

We also discuss three applications and show that they require different kinds of cycle bases.
c© 2009 Elsevier Inc. All rights reserved.
d

1. Introduction

Cycles in graphs play an important role in many applications,
e.g., analysis of electrical networks, analysis of chemical and
biological pathways, periodic scheduling, and graph drawing.
From a mathematical point of view, cycles in graphs have
a rich structure. Cycle bases are a compact description of
the set of all cycles of a graph and cycle bases consisting of
short cycles or, in weighted graphs, of small weight cycles
are interesting both mathematically and from an application
viewpoint. In the applications above, sparse descriptions are
to be preferred.
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The study of cycle bases dates back to the early days of
graph theory; MacLane [1] gave a characterization of planar
graphs in terms of cycle bases. Within the last ten years,
many new results on cycle bases have been published, most
notably a classification of different kinds of cycle bases,
structural results, a priori bounds on the length and weight
of minimum cycle bases, polynomial time algorithms for
constructing exact or approximate minimum cycle bases for
some kinds, and hardness results for other kinds of minimum
cycle bases.

In this paper, we survey these results and also provide
some new ones. Fig. 1 shows the landscape of cycle bases. We
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Fig. 1 – The inclusion diagram of cycle bases and the complexity status of their minimum weight cycle basis problems.
will review the different kinds of cycle bases in Sections 2 and
3: directed, undirected, integral, weakly fundamental, totally
unimodular, and strictly fundamental bases, and 2-bases. In
Section 3, we characterize the different kinds in terms of
properties of their cycle matrices. For example, undirected
cycle bases are characterized by the fact that the determinant
of their cycle matrix is odd and integral cycle bases are
characterized by the fact that their determinant is ±1. We will
establish the inclusion map and show that different classes
lead to different minimum cycle basis problems. We will also
establish many structural results.

Section 4 deals with a priori length and weight bounds on
minimum cycle bases. We will prove results of the following
kind: every graph of n nodes and m edges has a weakly
fundamental cycle basis of length O(m logm/ log(m/n)). We
will also show that there are graphs for which every basis has
length Ω(m logm/ log(m/n)).

In Section 5, we will give polynomial time algorithms
for constructing minimum weight directed, undirected and
planar cycle bases. We will also discuss approximation
algorithms.

Section 6 treats hardness results; in particular, APX-
hardness of the minimum cycle basis problem for weakly
fundamental and strictly fundamental bases. Fig. 1 summa-
rizes the complexity results. For two classes the complexity is
open:

Open Problem 1. Resolve the complexity status of computing
minimum weight integral and minimum weight totally
unimodular bases.

Finally, Section 7 discusses three applications of cycle
bases; we will see that they require different kinds of cycle
bases. The analysis of electrical circuits does not require any
particular kind of cycle basis, whereas periodic scheduling
requires integral cycle bases, and graph drawing needs strictly
fundamental bases.

The paper mostly surveys known results, but it also
contains several new ones. In particular, we give additional
structural and characterization results, we obtain tight length
bounds for weakly fundamental cycle bases for the full
spectrum of graph densities, we give a simplified algorithmic
treatment of directed cycle bases, and we present the first
algorithms for minimum cycle bases in the presence of
negative edges. In each section, we also state open problems.

This survey is targeted at mathematicians and computer
scientists. We give complete proofs for most results to make
the survey self-contained. We wrote the survey because this
area has developed quickly in the past decade and is still a
rich source of open problems.

2. Definitions

An (undirected) graph is a pair G = (V,E), where V is a finite
set, and E is a family of unordered pairs of elements of V. The
elements of V are called vertices or nodes and the elements of
E are called edges. An edge e = {v,w} is incident to the vertices
v and w; v and w are the endpoints of e. The same pair {v,w}
may occur several times in E; we refer to a pair occurringmore
than once as a multiple edge. Graphs without multiple edges
are called simple. An edge of the form {v,v} is called a loop. The
degree deg(v) of a vertex v is the number of times v occurs as
an endpoint of an edge. Observe that a loop {v,v} contributes
two to the degree of v. We use δ(v) to denote the set of edges
incident to v; a loop {v,v} appears twice in δ(v).

A (directed) graph is a pair D = G = (V,A), where V is a finite
set, and A is a family of ordered pairs of elements of V. The
elements of V are called the vertices or nodes of G, and the
elements of A are called the (directed) edges or arcs of G. We
use G = (V,E) to denote directed and undirected graphs and
D = (V,A) to denote directed graphs. The vertices v and w
are called the tail and head of the arc e = (v,w), respectively;
e is said to leave v and to enter w; it is incident to v and w.
The notions multiple edge, simple graph, and loop are defined
analogously as for undirected graphs. The outdegree outdeg(v)
and indegree indeg(v) of a vertex v are the number of times v
occurs as the tail and head, respectively, of an edge. Observe
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that a loop (v,v) contributes one to both the indegree and the
outdegree of v. We use δ+(v) and δ−(v) for the edges leaving
and entering v, respectively.

We use n and m to denote the number of nodes and edges
or arcs, respectively, i.e., n = |V| and m = |E| or m = |A|. We use
the notation e = vw to denote both directed and undirected
edges, i.e., the notation stands for the directed edge (v,w)
and the undirected edge {v,w}. Every directed graph D can
be turned into an undirected graph G(D) by ignoring the
orientation of the edges and every undirected graph G can be
turned into a directed graph by orienting the edges arbitrarily;
we call D an orientation of G. In this way, we can view every
graph as directed.

A subgraph G′ = (V′,E′) of G is a graph with V′ ⊆ V and
E′ ⊆ E. If V′ is a subset of V, G−V′ denotes the graph obtained
by removing all vertices in V′ and their incident edges from G.
A path P from v to w in G is a subgraph of G with V′ = {v0 =
v,v1, . . . ,vk = w} with vi 6= vj and E′ = {x0x1, x1x2, . . . , xk−1xk}.
We write P(v,w) if we want to emphasize that P is a path from
v to w. The length of a path is the number of its edges. An undi-
rected graph is connected if there exists a path from any ver-
tex to every other vertex. A vertex v in a connected graph G is
called an articulation point, or cut vertex, if G−v is disconnected.
An undirected graph is biconnected if it has no articulation
point. A directed graph is connected if the underlying undi-
rected graph is connected. Any maximal connected subgraph
of G is called a connected component. A graph T is a tree if it is
connected and has n− 1 edges. A subgraph G′ of a connected
graph G is called a spanning tree if it constitutes a tree on all
vertices in G. If G is not connected, any union of spanning
trees for each connected component is called a spanning forest.

A cycle in an undirected graph is a subgraph in which every
vertex has even degree. A cycle is a circuit if it is connected
and every one of its vertices has degree two. If C1, . . . ,Ck are
cycles, C1 + · · · + Ck consists of all edges that are contained in
an odd number of Ci’s; the sum is again a cycle. An undirected
cycle basis is a minimal set of circuits such that any cycle can
be written as a sum of the circuits in the basis.

We next generalize the notion of an undirected cycle basis.
Let κ be a field. A κ-cycle C in a directed graph D is a vector in
κA such that for any vertex v we have∑
e∈δ+(v)

Ce =
∑

e∈δ−(v)

Ce;

here Ce denotes the component of C indexed by e. Instead of
Ce, we will also sometimes write C(e). We prefer the latter no-
tation when C = Ci belongs to an indexed family of cycles.
In other contexts, cycles are sometimes referred to as circu-
lations and the constraint

∑
e∈δ+(v) Ce =

∑
e∈δ−(v) Ce is called

flow conservation. The set

Cκ(D) = {C | C is a κ-cycle of G}

forms a vector space over κ, the κ-cycle space of G; if C1 and C2
are cycles and λ ∈ κ is a constant, we have

(C1 + C2)(e) = C1(e)+ C2(e) and (λC)(e) = λC(e)

for all edges e. The support of a cycle is the set of edges e with
Ce 6= 0. A cycle is simple if Ce ∈ {−1,0,+1} for all e, and a sim-
ple cycle is a circuit if its support is connected and for any v
there are at most two edges in the support incident to v. A κ-
cycle basis is a set of circuits forming a basis of the cycle space.
Any cycle basis consists of ν := m − n + 1 circuits (see Theo-
rem 2.3). If D and D′ are orientations of the same undirected
graph G, their cycle spaces Cκ(D) and Cκ(D′) are isomorphic.
Indeed, if C ∈ κA is a cycle in D, the corresponding cycle in
D′ is obtained by reversing the sign of those components Ce,
where e is oriented differently in D and D′. We conclude that
the vector space Cκ(D) does not depend on the orientation D;
it is uniquely defined by the underlying undirected graph G.
Hence, we may also write Cκ(G).

Particularly interesting are the cases κ = Z2 = GF(2), the
field of two elements, and κ = Q, the field of rationals. In
these cases, the cycle space and cycle basis are referred to
as undirected or directed cycle space and basis, respectively.

In Z2, −1 = +1 and +1 is the only non-zero element in the
field. Thus a Z2-cycle or simply, a cycle, is a vector C ∈ ZE

2 such
that

∑
e∈δ(v) Ce = 0 for any vertex v. A cycle may alternatively

be viewed as a set of edges; e belongs to C iff Ce = 1. We use
C to denote the vector in ZE

2, the corresponding subset of E,
and also the subgraph (V′,C), where V′ is the set of vertices
having at least one edge in E incident to it. A cycle is an even
or Eulerian subgraph, i.e., every vertex has even degree in C.
Conversely, any even subgraph is a cycle.

AQ-cycle C has components inQ; we call it a directed cycle if
all components of C are integral. Directed cycles may use arcs
in forward (Ce > 0) or backward (Ce < 0) direction. If any arc is
replaced by Ce copies of itself and, in addition, the direction
of all arcs e with Ce < 0 is reversed, then we end up with a
digraph in which the indegree of every vertex is equal to its
outdegree.

Let D be a directed graph and let G = G(D) be the un-
derlying undirected graph. For any directed cycle C of D, let
π(C) := (Ce mod 2)e∈E. Then π(C) is an undirected cycle in G.
We call π(C) the projection of C.

Fig. 2 illustrates these definitions. In addition, it provides
a first example showing that directed cycle bases do not
necessarily project into undirected cycle bases. However, a set
of dependent cycles projects into a set of dependent cycles.
Indeed, let Ci, i ∈ I, be a family of dependent directed cycles.
Then

∑
i∈I λiCi = 0, with λi ∈ Q not all zero. Here 0 denotes the

zero-vector in QE. We may assume λi ∈ Z not all even. Then∑
i∈I(λi mod 2) π(Ci) = 0 mod 2 and at least one coefficient

λi mod 2 is non-zero. Thus the π(Ci), i ∈ I, are dependent.
We use + and Σ to denote addition in Q and in GF(2) (and

also in GF(p) for prime p). The distinction will usually be clear
from the context. If both fields occur in the same argument,
as in the paragraph above, we will emphasize the difference
by the additional operator “ mod 2”.

We may also lift undirected cycles from an undirected
graph G to an orientation D of G. Let C′ be any undirected cycle
in G. We call C ∈ {−1,0,+1}A a lifting of C′ if C projects to C′.
For a circuit C′ the lifting is unique up to the sign. Clearly, if
C′ lifts to C then C projects to C′. Algorithmically, we may lift
as follows: assume C′ to be connected (components are lifted
independently) and consisting of k edges. Since an undirected
cycle is a Eulerian subgraph of G, there is a closed traversal
(e0, . . . , ek−1) of the edges of C′, i.e., ei = {vi,vi+1} for 0 ≤ i < k
and v0 = vk. This traversal defines a simple cycle C in D; we
have Ce = 0 if C′ does not contain e and Ce = +1 (−1) if the
traversal uses e in forward (backward) direction.
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Fig. 2 – An orientation D of the undirected wheel graph W5, and four circuits C1 to C4 in D. The edges of D are numbered
from e1 to e8. The circuit C1 uses the edges e1, e2, e3, and e5 in forward direction and the edge e8 in backward direction.
Thus C1 = (1,1,1,0,1,0,0,−1). The cycles C1 to C4 form a directed cycle basis of D. The cycle C consisting of edges 1 to 4 is
represented as: C = (1,1,1,1,0,0,0,0) = (C1 + C2 + C3 + C4)/3. Let G be the underlying undirected graph, let π(Ci) be the
undirected cycle corresponding to Ci, and let π(C) be the undirected cycle corresponding to C. Then
π(C1) = (1,1,1,0,1,0,0,1) and π(C) = π(C1)⊕ π(C2)⊕ π(C3)⊕ π(C4). The circuits π(C1) to π(C4) form an undirected cycle basis
of G. The set {C1,C2,C3,2C4} is also a directed cycle basis of D. However, π(2C4) = 0 and hence {π(C1), π(C2), π(C3), π(2C4)} is
not an undirected cycle basis of G. There are less trivial reasons for a directed cycle basis not projecting into an undirected
cycle basis.
Fig. 3 – An orientation D of the undirected wheel graph W5 and four circuits C1 to C4 in D. The edges are numbered from e1
to e8. The edges {e5, e6, e7, e8} form a spanning tree T of D. Circuit C1 is induced by non-tree edge e2 and uses edges e2 and
e6 in forward direction and edge e7 in backward direction. Thus C1 = (0,1,0,0,0,1,−1,0). Cycles C2, C3, and C4 are
obtained in an analogous way. The set {C1,C2,C3,C4} is a strictly fundamental cycle basis of D.
Aweighted graph is a graph together with a weight function
w : E→ R. If the graph is unweighted, we set w : E→ 1 and call
w the uniform weight function. The weight of a set of edges is
the sum of the weights of its members. The weight and length
of a simple cycle C are

w(C) :=
∑

e
|Ce|w(e) and |C| :=

∑
e
|Ce|, respectively.

In an unweighted graph, weight and length are identical. The
weight of a cycle basis B is the sum of the weights of its cycles,
i.e.,

w(B) =
∑
C∈B

w(C).

A minimal κ-cycle basis, or MCB, of G is a κ-cycle basis with
minimal weight. We assume that there are no simple cycles of
negative weight; such weight functions are called conservative.
For most of our algorithms, we need to assume that weights
are non-negative, i.e., w : E→ R+.

We close this section with a first theorem. Every graph has
a κ-cycle basis and the dimension of the κ-cycle space is given
by the graph’s cyclomatic number ν := m − n + CC, where CC
denotes the number of connected components of G. On the
way, we get to know a particularly simple set of cycles, the
fundamental cycles with respect to a spanning forest. Let G
be an (undirected or directed) graph and let T be a spanning
forest of G. For any non-tree edge e, let Ce

T be the circuit
consisting of e and the tree path connecting the endpoints of
e. In the case of a directed graph, we use e in forward direction
and traverse the tree path from the head of e to the tail of e;
Fig. 3. We call Ce

T the fundamental circuit defined by T and e.
Lemma 2.1. Let G be a graph and let T be any spanning forest of
G. Let C be a cycle that uses only edges in T, i.e., Ce = 0 for e 6∈ T.
Then C = 0.

If C and C′ are cycles with Ce = C′e for all e 6∈ T, then C = C′.

Proof. The support of C is contained in T. If the support were
non-empty, there would have to be a vertex v having exactly
one incident edge with Ce 6= 0. This is clearly impossible and
hence the support must be empty.

Assume next that C and C′ are cycles with Ce = C′e for all
e 6∈ T. Then C−C′ is a cycle with (C−C′)e = 0 for all e 6∈ T. Thus
C− C′ = 0. �

Lemma 2.2. Let B be a set of cycles in G and let T be any spanning
forest of G. For any cycle C ∈ B, let C′ be its restriction to N := E \ T.
The cycles are linearly independent if and only if their restrictions to
N are linearly independent.

Proof. Clearly, linear dependence of the cycles implies linear
dependence of their restrictions. Conversely, assume that
there is a non-trivial linear combination of the restrictions
that yields the zero vector, i.e.,

∑
C∈B λCC′ = 0N. Here 0N

denotes the zero vector over index set N. Then
∑

C∈B λCC is
a cycle that uses only tree edges and hence is equal to 0. �

Thus, we may restrict attention to the restricted incidence
vectors when discussing questions of linear independence.

Theorem 2.3 (Dimension of the Cycle Space of a Graph). The
dimension of the κ-cycle space of a graph G is given by
its cyclomatic number

ν = m− n+ CC,
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Fig. 4 – The Venn diagram of directed cycle bases: Ex. 3. X refers to examples that are discussed in detail later in this
section, K3,3 refers to a weighted version of the complete bipartite graph on 3× 3 vertices, P7,2 is a weighted version of a
generalized Petersen graph, V8 is Wagner’s graph (see Section 6), F3,2 is a fan graph on five vertices, and G1 is a simple
graph on eight vertices; see [2].
where CC denotes the number of connected components of G.
Moreover, if T is any spanning forest of G, the set of fundamental
circuits with respect to T forms a basis.

Proof. The number of fundamental circuits is equal to ν,
because a connected component with m′ edges and n′ vertices
contributes m′ − (n′ − 1) fundamental cycles. Let N be the
set of non-tree edges. The fundamental cycles are clearly
independent since any edge e ∈ N is contained in Ce

T and in no
other circuit. It remains to prove that the set of fundamental
circuits spans all cycles. Let C be an arbitrary cycle. Consider
the cycle

C̃ :=
∑
e∈N

CeCe
T.

We claim that C = C̃. Indeed, for any e ∈ N, we have C̃e = Ce

and hence C − C̃ is a cycle using only edges of T. Thus C − C̃
= 0. �

The following lemma is a first step towards clarifying the
relation between directed and undirected cycle bases.

Lemma 2.4. Let D be a directed graph, let B = {C1, . . . ,Cν} be a
set of circuits in D, let G be the underlying undirected graph, and let
π(B) = {π(C1), . . . , π(Cν)}. If π(B) is an undirected cycle basis of G
then B is a directed cycle basis of D.

Proof. We have already shown that a set of dependent cycles
projects into a set of dependent cycles. Hence π(B), being
an undirected cycle basis, implies that the cycles in B are
independent. Also, νmust be equal to the cyclomatic number
of D since π(B) is a basis. �

3. Classification of cycle bases

We present seven classes of cycle bases and provide
characterizations for them.Wewill show that each class gives
rise to its own minimum cycle basis problem. The complexity
of the minimum cycle basis problem differs widely. For three
classes the problem is polynomial time, for two classes the
problem is NP-complete, and for two classes the status is
unknown. This section is mainly based on [2]; the missing
proofs can be found there.

Definition 3.1 (Classes of Cycle Bases). A directed cycle basis (D-
basis) B = {C1, . . . ,Cν} of a graph D is called a(n):

1. undirected or U-basis, if the projections π(Ci) of the basic
circuits Ci onto the underlying undirected graph G(D)
constitute a cycle basis of G(D);

2. integral or I-basis, if each cycle C of D can be written as an
integer linear combination of circuits in B, i.e.

∃λi ∈ Z : C = λ1C1 + · · · + λνCν;

3. zero-one or1 TUM-basis, if each cycle C′ of G(D) has an
orientation C that can be written as a linear combination
with coefficients in {−1,0,+1} of circuits in B, i.e.

∃λi ∈ {−1,0,+1} : γC = λ1C1 + · · · + λνCν;

4. weakly fundamental or W-basis, if there exists some
permutation σ such that

Cσ(i) \ (Cσ(1) ∪ · · · ∪ Cσ(i−1)) 6= ∅, ∀i = 2, . . . , ν;

5. strictly fundamental or F-basis, if there exists some spanning
forest T ⊆ E such that B = {CT(e) | e ∈ E \ T}, where CT(e)
denotes the unique circuit in T ∪ {e}; and

6. planar, or 2-basis, if each arc is contained in at most two
basic circuits and the basis is undirected.

Fig. 4 depicts the relationship between these classes: The
inclusions are established in Theorem 3.4, and examples
for the non-emptiness of the regions will be provided in
Section 3.4.

1 It will become clear in Theorem 3.4 why zero-one bases are
called totally unimodular (TUM).
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3.1. Existence

Except for 2-bases, every graph has a basis of each type.
This follows from the fact that every graph has a strictly
fundamental cycle basis and that all other classes generalize
fundamental cycle bases. In contrast, MacLane [1] established
that a graph has a 2-basis if and only if it is planar.

3.2. Characterizations

We define the cycle matrix corresponding to a basis and show
that the different classes of cycle bases can be characterized
in terms of simple properties of this matrix. An important
property is the determinant of the cycle basis. The cycle matrix
corresponding to a D-basis B of D is an m × ν matrix whose
columns are the incidence vectors of the basic circuits. The
cycle matrix is determined up to a permutation of the rows
and columns.

The cycle matrix Φ of a fundamental basis has a particu-
larly simple form. Let T be a spanning forest and let N be the
set of non-tree arcs. Then, for a suitable permutation of the
columns, the ν × ν submatrix Φ′ selected by the rows corre-
sponding to non-tree arcs is the identity matrix.

Lemma 3.1 ([3]). Let B be a directed cycle basis of a directed graph
G and let Γ be the corresponding cycle matrix. A ν× ν submatrix Γ ′

of Γ is nonsingular if and only if the rows of Γ ′ correspond to the
non-tree arcs of some spanning forest of G.

Proof. To prove sufficiency, consider a spanning forest T of
D, and let Φ be the cycle matrix of the fundamental basis
with respect to T. BecauseB is a directed cycle basis, any
fundamental cycle is a linear combination of cycles in B. Thus
there is a matrix R ∈ Qν×ν with Φ = ΓR. The restriction of Φ

to the non-tree arcs of T is the identity matrix. Hence, R is the
inverse of Γ ′.

Conversely, assume that the rows which are not in Γ ′ do
not form a spanning forest. Then there is a circuit C consisting
only of such arcs. As B is a D-basis, we have C = ΓxC for some
xC and clearly xC 6= 0. Restriction to the rows indexing Γ ′

yields 0 = Γ ′xC, and hence Γ ′ is singular. �

Lemma 3.2 ([3]). Let B be a D-basis, let Γ be its cycle matrix, and
let A1 and A2 be two nonsingular ν × ν submatrices of Γ . Then
detA1 = ±detA2.

Proof. By Lemma 3.1, the rows of Ai correspond to the non-
tree arcs of some spanning forest Ti. It suffices to prove the
claim for the case where T2 = T1 + e − f , for some edges e
and f . Let Φ be the cycle matrix of the fundamental basis
with respect to T1. Then Γ = ΦN for some matrix N. Let Φi
be the submatrix of Φ selected by the non-tree arcs of Ti.
Then detAi = detΦi · detN and therefore it suffices to prove
detΦ2 = ±detΦ1. We have Φ1 = I and hence detΦ1 = 1. Also,
since e must lie on the path in T1 connecting the endpoints of
f (otherwise, T2 would not be a spanning tree), the entry of Φ

in row e and column Cf is either +1 or −1. Developing detΦ2
according to column Cf shows detΦ2 = ±1. �

The above lemma allows us to define the determinant of a
directed cycle basis.
Definition 3.2 (Determinant of a Set of ν Oriented Circuits). Let B
denote a set of ν circuits in a directed graph D. Consider the
matrix Γ with the incidence vectors of B as columns. Let Γ ′

be the ν× ν submatrix of Γ that arises when deleting the arcs
of some spanning forest of D. We define

detB := |detΓ ′|.

Determinants of directed cycle bases are positive integers.
The value of the determinant is invariant under reorienting
arcs of D or reorienting circuits of B, because this simply
translates to multiplying a row or column by minus one.
Thus, starting with a cycle basis of an undirected graph G,
orienting the edges of G arbitrarily, and choosing one of the
two orientations for each circuit, always results in the same
determinant.

How large can the determinant of a cycle basis be?
Hadamard’s bound gives an upper bound of

√
nν, since we are

dealing with the determinant of a ν × ν matrix with entries
in {−1,0,+1} in which every column has at most n non-zero
entries.

Lemma 3.3 ([4]). Consider the generalized Petersen graph2 Pn,2
with n ≥ 5 and n odd. Let C denote the set of circuits, each of which
contains exactly one inner edge, n − 2 outer edges and two spokes.
C, together with the inner circuit CI, forms a cycle basis of Pn,2 and
its determinant equals n− 2.

Proof. Pn,2 consists of 2n vertices and 3n edges. Therefore
every cycle basis has to consist of n+1 cycles, which is indeed
the number of considered circuits. Additionally, it should be
mentioned that the inner circuit CI is indeed a simple cycle
since n is odd.

Now let T be a spanning tree of Pn,2 made up of all but
one inner edge and all spokes. Consider the square submatrix
Γ ′ of the cycle matrix Γ obtained by deleting the rows
corresponding to T. The non-tree edges and the circuits in
C ∪ {CI} can be oriented and permuted such that

Γ ′ =



1 · · · · · · 1 0 0 0

0 1
. . .

. . . 1 0

0 0 1
. . .

. . . 1
.
.
.

1 0 0 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

1 · · · 1 0 0 1 0
∗ · · · ∗ 1


where the last column and the last row correspond to the in-
ner circuit and the inner edge, respectively. The determinant
of Γ ′ equals the determinant of its n × n submatrix obtained
by deleting the last row and column. The resulting matrix is
a circulant matrix whose first row has n − 2 consecutive ones

2 The generalized Petersen graph Pk,` consists of 2k vertices
{Ii,Oi | 0 ≤ i ≤ k − 1} and edges {OiOi+1,OiIi, IiIi+` | 0 ≤ i ≤ k − 1}.
All indices are modulo k. The edges OiOi+1 are called outer edges,
the edges IiIi+` are called inner edges, and the edges OiIi are called
spokes.
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followed by two zeros. The entries of every other row result
from the row above by a circular shift to the right. We have

detΓ ′ = n− 2;

see [4] for the calculation of the determinant. �

Open Problem 2. Provide better upper and/or lower bounds
on the maximal determinant of cycle bases.

Theorem 3.4 ([2]). Let B be a directed cycle basis with cycle matrix
Γ . Then:

1. B is undirected, if and only if detB is odd.
2. B is integral, if and only if detB is one.
3. B is zero-one if and only if Γ is totally unimodular.3

4. B is weakly fundamental, if and only if Γ can be permuted so as
to have a regular upper triangular ν× νmatrix in its last ν rows.

5. B is strictly fundamental, if and only if Γ can be permuted so as
to have the ν× ν unit matrix in its last ν rows.

6. B is a 2-basis, if and only if B is an undirected cycle basis and Γ

has at most two non-zero entries per row.

Proof. Case 1. The projections π(Ci) of the basic circuits are
linearly independent if π(Γ ) has full rank, i.e., if there is
a square submatrix π(Γ ′) with non-zero determinant over
GF(2). The value of the determinant is (detΓ ′) mod 2. We
conclude that B is undirected if and only if detB is odd.

Case 2. Let T be some spanning forest, and let Γ ′ be the square
submatrix of Γ indexed by the non-tree arcs of T.

Let Φ be the cycle matrix of the fundamental basis with
respect to T. Since B is integral, there is an integral ν×νmatrix
R such that Φ = ΓR. Restriction to the non-tree arcs of T
yields I = Γ ′R. We have detΓ ′ ∈ Z and detR ∈ Z, because
both matrices are integral. Thus (detΓ ′) · (detR) = 1 implies
detΓ ′ = ±1.

Let C be an arbitrary circuit. The representation xC of C in
terms of B satisfies C = ΓxC. Restriction to the non-tree arcs
of T yields C′ = Γ ′xC or xC = (Γ ′)−1C. The inverse of Γ ′ is
integral, by Cramer’s rule, and since detΓ ′ = ±detB = ±1.
Thus xC ∈ Zν.

Case 3. A matrix is totally unimodular if and only if for any
subset I of its columns there are coefficients λi ∈ {−1,+1}
such that

∑
i∈I λiCi is a vector with entries in {−1,0,+1}, see [5,

Theorem 19.3].
Assume first that B is a zero-one basis. Since zero-one

bases are integral, B is an integral cycle basis and hence
π(B) = {π(Ci) | Ci ∈ B} is an undirected basis of G(D). Let I be an
arbitrary subset of the columns of Γ and consider the Z2-sum
of the projections of the circuits in I, and call the resulting
cycle C′,∑
i∈I

π(Ci) = C′.

Since B is a zero-one basis, C′ has an orientation C that can
be written as a linear combination with coefficients λi ∈

{−1,0,+1} of the circuits in B, i.e.,

ν∑
i=1

λiCi = C.

3 This item is a new result.
Projecting this equation into Z2, we obtain

ν∑
i=1

|λi|π(Ci) = C′.

Since the representation of C′ with respect to π(B) is unique,
λi is non-zero if and only if i ∈ I. Thus, in the TUM
characterization, C is the desired linear combination of the
columns selected by I.

Assume conversely that Γ is totally unimodular. Then
detB = 1 and hence {π(Ci) | Ci ∈ B} is a basis of G(D). Let C′

be any cycle in G(D). Then C′ =
∑

i∈I π(Ci) mod 2 for some
index set I ⊆ {1, . . . , ν}. Since Γ is totally unimodular, there are
coefficients λi ∈ {−1,+1} such that

∑
i∈I λiCi is a vector C with

components in {−1,0,+1}. Clearly, π(C) = C′ and hence C is
the desired orientation of C′.

Case 4. Order the columns of Γ such that Cσ(i) is in the i-th
column for 1 ≤ i ≤ ν. Order the rows of Γ such that an arc a
with a ∈ Cσ(i) \ (Cσ(1) ∪ · · ·∪Cσ(i−1)) corresponds to row ν−1+ i.

Case 5. This is nothing but a reformulation of Sysło’s charac-
terization [6] of a strictly fundamental cycle basis B, namely
that every circuit in the basis contains an arc that is contained
in no other circuit of the basis.

Case 6. This is but a reformulation of the definition of 2-
bases. �

The determinant of a set of ν circuits can be computed
over any field κ. For directed bases the determinant is non-
zero in Q, for undirected bases the determinant is non-zero
in GF(2). We therefore also call directed bases Q-bases and
undirected bases GF(2)-bases. We call a directed basis a GF(p)-
basis, where p is a prime, if its determinant is non-zero
modulo p.

Theorem 3.4 establishes most of the inclusions shown
in Fig. 4: Every fundamental basis is both weakly funda-
mental and totally unimodular, every weakly fundamental or
totally unimodular basis is integral, every integral basis is
undirected, and every undirected basis is directed. We shall
next relate 2-bases to the other classes.

Lemma 3.5. Every 2-basis is totally unimodular and weakly
fundamental.

Proof. Let B = {C1, . . . ,Cν} be a 2-basis of G. MacLane [1]
showed that a graph having a 2-basis is planar and that,
moreover, the basic circuits correspond to the bounded face
cycles of some planar embedding of G. Orient the edges of
G arbitrarily and let the Ci’s correspond to counterclockwise
traversals of the face cycles. Then every row of Γ has at most
two non-zero entries; if there are two non-zero entries, one is
+1 and one is −1. Thus Γ is totally unimodular [5, page 274].

We next show that B is weakly fundamental. Let C =
{e1, . . . , ek} be the boundary of the infinite face of G. For i =
1,2, . . . , k, denote by Cei the unique circuit in B that contains
ei ∈ C. In the first iteration, we define

Cσ(v) = Ce1 , Cσ(v−1) = Ce2 , . . . ,Cσ(v−k+1) = Cek .

Then, we remove the edges of C from G and proceed in the
same way for the 2-connected components of the remaining
graph. �
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Fig. 5 – A graph and a directed cycle basis. For each of the four circuits, the arcs belonging to the circuit are shown in bold.
Arcs used in reversed direction are shown dotted. Every arc is used in exactly two circuits. The determinant of this basis is
two. Thus the basis is not totally unimodular. Also, since each arc is used in exactly two circuits, the basis is not weakly
fundamental.
Fig. 6 – Examples of a strictly fundamental cycle basis that is also a 2-basis, a weakly fundamental cycle basis, and a
non-integral cycle basis in the wheel graph W5. The last of these originates from [7].
We required a 2-basis to use every arc at most twice
and to be undirected. Fig. 5 shows a graph and a directed
basis that uses every arc exactly twice and is neither totally
unimodular nor weakly fundamental (Tomasz Jurkiewicz,
personal communication).

Open Problem 3. The definition of zero-one bases may seem
strange. It would be equally natural to require that every
circuit (every simple cycle) is a linear combination of the
basic circuits with coefficients in {−1,0,+1}. How do these
definitions relate?

3.3. Simple examples

Fig. 6 presents three cycle bases for the wheel graph W5:
the strictly fundamental cycle basis B1 = {C11,C12,C13,C14},
which is also a 2-basis, the weakly fundamental cycle basis
B2 = {C21,C22,C23,C24}, and the undirected basis B3 =
{C31,C32,C33,C34}; the lattermost is not integral. The strictly
fundamental cycle basis B1 corresponds to the spanning tree
T = {e1, e2, e3, e4}. The corresponding cycle matrices are as

follows:

Γ1 =



−1 1 0 0
1 0 0 −1
0 0 −1 1
0 −1 1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, Γ2 =



−1 0 0 0
1 1 1 0
0 0 −1 0
0 −1 0 0

1 1 1 −1
0 1 1 1
0 0 1 1
0 0 0 1


,

Γ3 =



0 0 1 −1
0 1 −1 0
1 −1 0 0
−1 0 0 1

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


.
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Fig. 7 – The sunflower graph SF(3) has a unique minimum
cycle basis that is a 2-basis.

The first four rows correspond to the arcs of T and the
last four rows correspond to the non-tree arcs. In Γ1, every
row has at most two non-zero entries and the last four rows
constitute a 4 × 4 unit matrix. Thus B1 is a 2-basis and
is strictly fundamental. In Γ2, the last four rows constitute
a regular upper triangular matrix and so B2 is weakly
fundamental. Finally, in Γ3 the determinant of the submatrix
formed by the last four rows has determinant three. Hence, B3
is undirected but not integral. As a consequence, it can neither
be weakly fundamental, and thus its rows and columns
cannot be permuted so as to provide a triangular matrix. A
direct demonstration that B3 is not integral is provided by the
representation of the circuit C24 as a linear combination of
the basis B3, namely

C24 =
1
3

C31 +
1
3

C32 +
1
3

C33 +
1
3

C34.

3.4. Variants of the MCB problem

Each of our classes of cycle bases induces its own variant of
the MCB problem. Let D be a directed graph and let B be a
class of cycle bases of D. A minimum (weight) cycle basis of
class B is a basis B′ ∈ B such that

w(B′) =min{w(B) | B ∈ B}.

For instance, in theminimum strictly fundamental cycle basis
(MFCB) problem we aim at finding a spanning forest in D
such that the sum of the weights of its induced fundamental
circuits is as small as possible.

Our seven classes define seven different minimum cycle
basis problems, i.e., for any two distinct classes B1 and B2
there is a directed graph D and a weight function w such that

min{w(B) | B ∈ B1} 6=min{w(B) | B ∈ B2}.

In the sequel, we show some of these differences; for the oth-
ers, we refer our readers to Liebchen and Rizzi [2] and to Fig. 4.
In each case, we will exhibit a graph, a weight function, and
a basis B, argue that the basis belongs to class B1, and finally
show that every basis of class B2 must have a larger weight.
The graphs that we present next differentiate between the
following pairs of the MCB problem:

1. strictly fundamental cycle bases vs. 2-bases and weakly
fundamental cycle bases;

2. weakly fundamental cycle bases vs. integral cycle bases;

3. integral cycle bases vs. undirected cycle bases; and

4. undirected vs. directed cycle bases.
Fig. 8 – The minimum integral cycle basis of Champetier’s
graph [9] is unique and not weakly fundamental. Nodes
with the same label are to be identified.

A graph that distinguishes between the MCB problems for
weakly fundamental and totally unimodular cycle bases is
given in Fig. 33 of Section 6. For planar graphs, most variants
of the minimum cycle basis problem are the same. We
will see in Theorem 5.34 that every planar graph has a
minimum directed cycle basis that is weakly fundamental,
totally unimodular, and integral.

Example 3.1 (F-bases vs. 2-bases and W-bases). The sunflower
graph SF(3) in Fig. 7 contains precisely four circuits with three
edges. These are independent and hence constitute its unique
minimum cycle basis B. Obviously, B is a 2-basis. And, by
Lemma 3.5, B is also weakly fundamental.

However, B is not strictly fundamental, since every edge of
the center triangle is contained in two circuits of the basis;
cf. case 5 of Theorem 3.4. This example was inspired by
Hubicka and Syslo [8].

Example 3.2 (W-bases vs. I-bases). Champetier [9] introduced
the graph shown in Fig. 8. The graph is specified as a node-
labelled planar graph. The nodes sharing a label are to be
identified. The resulting simple GCh has 17 vertices and
52 edges. There are precisely 36 triangles in GCh and they
correspond to the finite faces of the underlying planar graph.

Claim 3.1 ([10]). The 36 triangles in GCh constitute the unique
minimum cycle basis B of GCh. B is integral but not weakly
fundamental.

Proof. Consider some orientation D of GCh and orient the
circuits in B clockwise, with respect to Fig. 8. Consider the
sum C′ over Q of all the triangles, C′ =

∑
C∈B C. In GCh, all

edges except for the ones shown bold in Fig. 8, are part of two
triangles. The bold edges belong to three triangles. Thus, C′

is the 4-circuit that links the labeled vertices. In Fig. 8, this
corresponds to following the outer bold circuit clockwise, or
following its representation as a path from left to right.

We now construct a new basis B′ by replacing an arbitrarily
chosen circuit of B by C′. Let Γ and Γ ′ be the corresponding
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Fig. 9 – A weighted version of the generalized Petersen
graph P11,4 has a unique minimum cycle basis that is not
integral.

cycle matrices. Consider the transformation matrix R such
that Γ ′ = ΓR. With R = [r1, . . . , rν], we have ri = 1 for some
i ∈ {1, . . . , ν}, and rj = ej for all j 6= i. Hence, R constitutes a
unimodular transformation and thus B and B′ have the same
determinant.

The cycle basis B′ is weakly fundamental. As in the
proof of Lemma 3.5, one can construct a suitable ordering
of its circuits. Thus detB′ = 1 and hence also detB = 1.
We conclude that B is an integral basis. However B is not
weakly fundamental because every arc is part of two or three
triangles. �

We mention that the minimum cycle basis B of
Champetier’s graph is not totally unimodular; cf. [2].

Example 3.3 (U-bases vs I-bases). Consider the generalized
Petersen graph P11,4 (Fig. 9) with the following weight
function

wij =


4, if i and j are outer vertices,
5, if i and j are inner vertices, and
12, otherwise.

Claim 3.2. (P11,4,w) has precisely 12 circuits of weight 44 or less.
These constitute the unique minimum cycle basis.

Proof. Any cycle basis consists of ν = 33− 22+ 1 = 12 circuits.
We call the edges e with we = 12 spokes and observe that every
circuit contains an even number of spokes. There are only
two circuits with no spokes; the outer circuit has weight 44
whereas the inner circuit has weight 55. Any circuit with at
least four spokes has a weight of at least 48.

We classify the circuits that contain two spokes according
to the number of their outer edges. Since there are always two
possible choices for the path through the inner edges, we only
consider the shorter one in Table 1. Similarly, we may restrict
attention to circuits that use at most 5 =

⌊
11
2

⌋
outer edges.

Let B consist of the outer circuit plus the 11 circuits that
use precisely one outer edge. We claim that B is an undirected
cycle basis. Assume otherwise. Then, there exists a non-
trivial linear combination yielding the zero vector over GF(2).
If such a combination made use of any of the 11 circuits that
use precisely one outer edge, then it would have to use each
of these circuits in order to cancel out the spokes. The sum
of these 11 circuits is the outer circuit plus the inner circuit.
Thus there is no non-trivial linear combination yielding the
zero vector. �
Table 1 – Weights of the circuits in (P11,4,w) that use
two spokes.

Number of outer edges 1 2 3 4 5
Number of inner edges 3 5 2 1 4
Weight of the shorter circuit 43 57 46 45 64

It remains to show that B is not an integral cycle basis.
Indeed, its determinant is three, as a simple calculation
shows. Alternatively, we observe that the sum of all circuits
in B is three times the inner circuit.

The basis B has cost 11 × 43 + 44 = 517. The minimum
integral cycle basis has cost 518. It consists of the 11 circuits
that use exactly one outer edge plus one circuit that uses four
consecutive outer edges, two spokes and one inner edge. We
leave it to the reader to verify that this basis is integral. It is
easy to see that the inner and outer circuits can be obtained
as integer linear combinations. For example, subtracting from
the circuit that uses four consecutive outer edges the four
circuits that use one of these edges each yields a circuit with
no outer edge, no spoke, 12 clockwise uses of inner edges
and one anti-clockwise use of an inner edge, i.e., the inner
circuit results. Adding the 11 circuits using one outer edge
each yields the outer circuit plus three copies of the inner
circuit.

Example 3.4 (D-bases vs U-bases). Consider the generalized
Petersen graph P7,2. A circuit C`,k using ` consecutive outer
edges uses k inner edges where ` ± 2k = 0 mod 7. Summing
over all circuits Cl,k yields ` copies of the outer circuit and k
copies of the inner circuit. Thus, over GF(2), the inner circuit
CI is a linear combination of the circuits C2,1, however, over Q
it is not. In other words, over Q, the circuits C2,1 plus CI form
a basis, and over GF(2) they do not. The weight function

wij =


3, if i and j are outer vertices,
2, if i and j are inner vertices, and
3, otherwise

ensures that the circuits C2,1 are cheaper than all circuits C`,k
with (2,1) 6= (`, k), than all circuits with at least four spokes,
and than the outer circuit CO. Also, CI is cheaper than CO. We
conclude that the circuits C2,1 plus CI form aQ-basis of weight
8 · 14 = 112 and that any GF(2)-basis is more costly.

The minimumweight integral (and hence GF(2)-) basis has
weight 113. It consists of the seven circuits of type C2,1 plus
one circuit of type C1,3.

3.5. Directed and GF(p)-bases

We show that the computation of minimum directed cycle
bases can be reduced to the computation of minimum GF(p)-
bases for suitable primes p.

Lemma 3.6. Let B be a minimum weight directed cycle basis and
let p be a prime. The weight of a minimum weight GF(p)-basis is no
smaller than the weight of B. If p does not divide the determinant of
B, B is also a minimum weight GF(p)-basis.

Proof. Linear dependence over Q implies linear dependence
over GF(p) for any p. Therefore, any GF(p)-basis is a directed
basis. If the determinant of B is not divided by p, detB mod p 6=
0 and B is a GF(p)-basis. �
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Fig. 10 – A graph and a totally unimodular cycle basis. For each of the four circuits, the edges belonging to the circuit are
shown in bold.
To apply the preceding lemma, we need a bound on the
determinant of a directed cycle basis. Consider any directed
cycle basis B. Its determinant is the determinant of a ν × ν
matrix with entries in {−1,0,+1}. Moreover, each column of
this matrix contains at most n non-zero entries.

Lemma 3.7. The determinant of a directed cycle basis is an integer
bounded by nm/2.

Proof. The determinant is a sum of ν! terms; each term has an
absolute value of at most one. This gives a bound of ν! ≤ νν.
Hadamard’s inequality yields a slightly better bound. The
absolute value of the determinant is bounded by the product
of the `2-norms of the column vectors. The norm of each
column vector is at most

√
n and hence we have the bound

√
nν. �

Combining the two preceding lemmas, we obtain a
characterization of minimum directed bases in terms of
minimum GF(p)-bases.

Theorem 3.8. Let P be a set of m primes each of a value of at least
n. For each p ∈ P, let Bp be a minimum GF(p)-basis, and let p0 be
such that Bp0 has minimum weight among the bases Bp. Then:

1. Bp0 is a minimum weight directed basis.
2. Let p ∈ P be chosen uniformly at random. Then Bp is a minimum

weight directed basis with probability at least 1/2.

We can choose P such that p ∈ O(m logm) for all p ∈ P.

Proof. Let B be any minimum directed basis. No more than
m/2 primes in P can divide the determinant of B.

For an integer s, let π(s) be the number of primes less than
or equal to s. Then s/(6 log s) ≤ π(s) ≤ 8s/ log s [11]. Then
there are at most 8n/ logn primes less than n. If t is such that
t/(6 log t) ≥ 8n/ logn+m, then there are at least m primes of a
value of at least n less than t; t = O(m logm) suffices. �

If p = O(m logm) and hence log p = O(logm), the arithmetic
in GF(p) takes O(1) time.

3.6. Circuits versus cycles

We defined cycle bases as sets of circuits. Alternatively, we
could have defined them as sets of cycles. Is there always a
minimum weight basis that consists only of circuits? Is the
minimum weight basis of a disconnected graph the union of
minimum weight bases of the components? For some of our
classes, the answer is yes. For some, the answers to these and
related questions are not known.

Theorem 3.9 (Exchange Theorem, [12]). If B is a D or U-basis of
G, C ∈ B and C = C1 +C2, then either B \ {C} ∪ {C1} or B \ {C} ∪ {C2}

is also a cycle basis of G.
Proof. Let Γ be the cycle matrix for B and let Γi be the cycle
matrix for B−C+Ci, i = 1,2. Let T be a spanning forest of G and
let A and Ai be the respective square submatrices indexed by
the arcs not in T. Then, using the linearity of the determinant
function for the column which corresponds to C, we find that
0 6= detA = detA1 + detA2. �

The family of linearly independent cycles forms a matroid.

Theorem 3.10. The set of (directed) cycles of a graph G forms a
matroid. The bases of the matroid clearly coincide with the (directed)
cycle bases of G.

Proof. Let I denote the system of all linear independent sets
of cycles in G. It suffices to show the following:

• ∅ ∈ I;
• A ∈ I and B ⊂ A implies B ∈ I;
• For all sets A,B ∈ I with |A| > |B| there exists an element

a ∈ A \ B such that B ∪ {a} ∈ I.

The listed properties hold since the (directed) cycle space of G
forms a vector space. �

We will show that Theorem 3.10 does not hold for integral
cycle bases, i.e., the system of all subsets of all integral
bases in G does not form a matroid. This will cause the
computational approaches suitable for U-bases and D-bases
to fail for I-bases. In Section 5.8 will we discuss these issues.
Now we will examine the validity of Theorem 3.9 for K-bases
with K neither D nor U. We first show that Theorem 3.9 does
not hold for totally unimodular bases.

Lemma 3.11 (T. Jurkiewicz, Personal Communication). There is a
graph G and a totally unimodular basis B of G containing a circuit C
and a decomposition C = C1+C2 of C such that neither B\{C}∪{C1}

nor B \ {C} ∪ {C2} is a totally unimodular basis.

Proof. Fig. 10 shows a graph and a TUM-basis of this graph.
We invite the reader to verify that this basis is TUM. Fig. 11
shows a decomposition of the first circuit into two circuits.
Replacing the first circuit by either one of the two circuits
shown in Fig. 11 results in a collection of circuits that is not
TUM. In both cases, the cyclematrix of the resulting collection
contains a 2 by 2 submatrix of the form(
1 1
1 −1

)
.

This matrix has determinant −2; in a TUM-basis, the deter-
minants of all square submatrices must be in {−1,0,+1}. �

For weakly fundamental bases, we can show Theorem 3.9
under the additional assumption that C1 and C2 use only
edges that are also used by C.
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Fig. 11 – Decomposition of the first element of the basis
shown in Fig. 10. Edges that are used in reverse direction
are shown dotted.

Lemma 3.12. Let B be a W-basis of G, let C ∈ B and C = C1 + C2,

where |Ci(e)| ≤ |C(e)| for all e and Ci 6= C for i = 1,2. Then at least

one of B− C+ C1 or B− C+ C2 is a W-basis of G.

Proof. If B is a weakly fundamental basis, there is an ordering
of the cycles in B such that every cycle introduces a non-
tree edge not used in any preceding cycle. Let e be the edge
introduced by C. Then C(e) 6= 0 and hence at least one of
C1(e) or C2(e) is non-zero, say the former. We replace C by C1.
Since for any non-zero coefficient of C1, the corresponding
coefficient of C is non-zero, the non-tree part of the new cycle
matrix is still lower triangular. �

Observe that Lemma 3.12 is not true for strictly fundamen-
tal bases. To see this, consider the sunflower graph SF(3) in
Fig. 7, and some minimum strictly fundamental cycle basis B

of SF(3). If we decompose the 4-circuit C ∈ B into C = C1 + C2,
where both C1 and C2 are triangles, then neither of the B−C+

Ci is a strictly fundamental cycle basis. In the next lemma we
show that Lemma 3.12 does not hold for integral bases either.

Lemma 3.13. There is a graph G and an integral basis B of G

containing a non-circuit C such that for any decomposition C =

C1 + C2 of C with |Ci(e)| ≤ |C(e)| for all e and Ci 6= C for i = 1,2,
neither B− C+ C1 nor B− C+ C2 is an integral basis.

Proof. The graph is P7,3 as shown in Fig. 12. It consists of
two disjoint cycles of length 7, called the outer and the inner
cycle, respectively. We use Oi and Ii, 0 ≤ i < 7, to denote the
nodes on the outer and inner cycle, respectively. The outer
and inner cycles have edges (Ii, Ii+1) and (Oi,Oi+4), 0 ≤ i < 7,
respectively. All indices are modulo 7. Furthermore, we have
the edges (Oi, Ii), 0 ≤ i < 7, called spokes. To summarize,
n = 14, m = 21, and the cyclomatic number ν is thus eight.

The basis B consists of the following cycles. For 0 ≤ i <

7, we have the cycle Ci consisting of the edges (Oi,Oi+1),
(Oi+1,Oi+2), (Oi+2, Ii+2), (Ii+2, Ii+6), (Ii+6, Ii+10), (Ii+10, Ii+14),
and (Ii+14,Oi). Observe that the sum of the Ci’s is the
nonsimple cycle consisting of two copies of the outer circuit
and three copies of the inner circuit. We also have the cycle
Da,b which consists of a copies of the outer circuit and b

copies of the inner circuit, where a,b ∈ Z. We will fix a and
b later.

We next determine the determinant of the above set of
cycles as a function of a and b. We fix a spanning tree
T consisting of the spokes and all inner edges except for
edge (I2, I6). We obtain the following square part of the cycle
Fig. 12 – The generalized Petersen graph P7,3. We provide
an integral cycle basis of P7,3 which features a nonsimple
cycle, but cannot be decomposed into a basis which only
consists of circuits.

matrix:

C0 C1 C2 C3 C4 C5 C6 Da,b
(O0,O1) 1 1 a
(O1,O2) 1 1 a
(O2,O3) 1 1 a
(O3,O4) 1 1 a
(O4,O5) 1 1 a
(O5,O6) 1 1 a
(O6,O1) 1 1 a
(I2, I6) 1 1 1 b.

Observe that the edge (Ij, Ij+4) is used by the cycles Cj−2, Cj−6,
and Cj−10. The determinant of the matrix above is 2b − 3a,
as a little calculation, e.g., Gaussian elimination, shows. For
a = b = 1, the determinant is −1 and hence the basis is
integral. The cycle D1,1 is not a circuit and uses the outer
O and the inner circuit I in the forward direction. The only
decomposition of D is O + I. The determinant of the basis
B − D + O is −3 (use a = 1 and b = 0 in the formula for the
determinant) and the determinant of the basis B − D + I is 2
(use a = 0 and b = 1 in the formula for the determinant). Thus
neither basis is integral. �

The next two lemmas provide us with properties of
minimum cycle bases which are extremely valuable in
practice. These properties are an immediate consequence of
Lemma 3.12 and turn out to be true for strictly fundamental
cycle bases, too.

Theorem 3.14. For K ∈ {D,U,W,F}, any graph G has a minimum
K-basis consisting only of circuits.

Proof. The cycles in fundamental bases are circuits by
definition. For any of the other K’s, consider a basis B
containing a cycle C that is not a circuit. We may decompose
C into a sum of circuits Ci, 1 ≤ i ≤ k. By the preceding
lemmas, one of the sets B − C + Ci is a K-basis of G. Also,
w(Ci) ≤ w(C). �

Theorem 3.15. For K ∈ {D,U,W,F}, the union of minimumweight
K-bases of its maximal 2-connected components are a minimum
weight K-basis.

Proof. By the preceding theorem, there is a minimum weight
K-basis consisting only of circuits. A circuit uses edges only
from one 2-connected component. �
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Open Problem 4. Does Theorem 3.14 or Theorem 3.15 hold for
integral bases or totally unimodular bases? Does Lemma 3.12
hold for totally unimodular bases?

3.7. Reductions

We study some simplification rules. At first sight, all might
appear quite natural. However, for certain classes of cycle
bases, we do not know whether these rules are valid.

For example, is there a simple way to deal with parallel
edges? Is there a simple way of handling edges of weight zero?

Let g = (u,v) be a zero weight edge without parallel edges.
Let G′ be obtained from G by removing g and identifying u
and v, i.e., replacing in all edges incident to u or v, u and v by
a new vertex uv. The edges of G′ correspond to the edges in
E − g. Let B′ be a K-basis of G′, where K ∈ {D,U, I,W,TUM,F}.
Consider the following set B of cycles in G: for any C′ ∈ B′

we add a cycle C to B that is obtained from C′ by adding
g with appropriate multiplicity; the appropriate multiplicity
guarantees flow conservation at u and v.

Lemma 3.16. Let G′ be obtained from G by contracting an edge of
cost zero not having any parallel edges, let B′ be a minimum weight
K-basis of G′, and let B be obtained from B′ as described above. Then
B is a minimum weight K-basis of G for K ∈ {D,U, I,W,TUM,F}.

Proof. Let T′ be a spanning forest of G′ and let Γ ′ be the cycle
matrix corresponding to B′. Let A′ be the square submatrix
selected by the rows not in T′. Then T := T′ + g is a spanning
tree of G. We obtain the cycle matrix for B by adding a row for
g and setting the entries in this row appropriately. Observe
that A′ remains the square matrix selected by the non-tree
edges. Thus B is a K-basis of G. The weight of B is the weight
of B′.

Conversely, let B be any K-basis of G and let B′ be obtained
from B by identifying u and v. The matrix Γ ′ for B′ is obtained
from the matrix Γ for B by deleting the row corresponding
to g.

Let C′ be any cycle in G′. We lift C′ to a cycle C in G.
The representation of C with respect to B translates into a
representation of C′ with respect to B′. Thus B′ is also of type
K. Also, w(B′) ≤ w(B). �

Lemma 3.17 ([12]). Let K ∈ {D,U} and let e be any edge. For
any minimum weight circuit F containing e, there is a minimum
weight K-basis containing F. Any minimum weight K-basis contains
a minimum weight circuit containing e.

Proof. Let B be a minimum weight K-basis. Then F =∑
C∈B λCC. Clearly, there must be a C ∈ B such that e ∈ C and

λC 6= 0. Then w(F) ≤ w(C) and B′ := B \ C + F is a K-basis of
weight no larger than the weight of B. Hence B′ is a minimum
weight K-basis. If w(F) < w(C), then B was not a minimum
weight K-basis. �

Lemma 3.17 does not hold for strictly fundamental bases.
The sunflower graph SF(3) of Fig. 7 provides an example. Any
F-basis contains a circuit of length 4. For the edge inducing
this circuit, the shortest circuit through this edge is not
contained in B.
Lemma 3.18. Let g and f be parallel edges with w(g) ≤ w(f). For
K ∈ {D,U,W} a minimum weight K-basis of G can be obtained from
a minimum weight K-basis B′ of G′ := G − f by adding a cheapest
circuit through f ; call it C.

Proof. C is clearly independent of B′. Also, C introduces an
edge that is not used in any of the other cycles. Thus, if B′

is a K-basis of G′, B := B′ ∪ C is a K-basis of G with w(B) =
w(B′) + w(C). Assume, for the sake of argument, that G has
a K-basis B̂ with w(B̂) < w(B). We will show that this implies
that G′ has a K-basis of weight less than w(B′).

Assume first that K ∈ {D,U}. A cheapest circuit containing
f is either the circuit4 g ◦ f−1 or has the form f ◦ P where P
is a cheapest path connecting the endpoints of f in G \ {f, g}.
In the latter case, g ◦ P is a cheapest cycle containing g. By
Lemma 3.17 we may assume that B contains the circuit g◦ f−1

in the former case or the circuits g ◦ P and f ◦ P in the latter
case. Assume now, that B̂ contains another circuit, say f ◦ Q,
containing f . Replacing this circuit by g ◦ Q yields a basis of
weight no larger than B̂ since g ◦ Q = f ◦ Q + g ◦ f−1 in the
former case and g ◦ Q = f ◦ Q + g ◦ P − f ◦ P in the latter case.
We conclude that G has a basis of weight no larger than B̂ in
which g◦ f or f ◦P is the only circuit containing f . Deleting this
circuit from the basis gives us a basis of G− f .

For K =W, we have to argue differently. Let Γ̂ be the cycle
matrix for B̂. We may assume that Γ̂ has an upper triangular
matrix in its last ν rows, with the arcs of some spanning forest
T placed above.

Assume first that the row for g is above the row for f . Then
f must be a non-tree arc, because otherwise g and f form
a circuit in T. Hence, there is a circuit Cf ∈ B̂ “introducing”
f , i.e., the diagonal entry in the row indexed by f belongs
to Cf . We delete Cf from the basis and replace, in the other
basic circuits, occurrences of f by g. Removing the row of f as
well, we obtain the cycle matrix of a W-basis for G′ of weight
w(B̂)−w(Cf ) < w(B)−w(C) = w(B′), which is a contradiction.

Assume next that the row for f is above the row for g.
Then g must be a non-tree arc and hence there is a circuit
Cg introducing g; f may be a tree arc or a non-tree arc. If f is a
tree arc, we make g a tree arc, replace f by g in all circuits and
delete f and Cg. If f is a non-tree arc, the circuit Cf introducing
f does not use the arc g, because g was assumed to be
arranged below f . We replace f by g in all circuits and delete
f and Cg. The circuit C′f obtained from Cf by replacing f by g

now introduces g. In either case, we obtain the cycle matrix of
a W-basis for G′ of weight w(B̂)−w(Cg) < w(B)−w(C) = w(B′),
which is again a contradiction. �

Open Problem 5. Extend statements 3.12 to 3.18 to types of
cycle bases not covered by the statements.

Open Problem 6. Let e = {u,v} be a non-metric edge of a
biconnected graph G, i.e., distG(u,v) < w(e). Each minimum
K-basis B has precisely one circuit C ∈ B with e ∈ C. This is
true for K ∈ {D,U}. Is this true for any other type?

4 We assume that g and f are oriented in the same way; f−1 is
the reversal of f and runs anti-parallel to g.
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Fig. 13 – A graph G featuring minimal integral cycle bases
with different weight sequences. The graph consists of two
cycles of length 11 that are connected by 22 spokes. The
edges on the outer and inner cycle have weight 4 each, and
the spokes have weight 15.

3.8. Weight sequences

We consider the sequence of weights of circuits in a minimal
K-basis sorted into non-decreasing order. Let K ∈ {D,U} and B
and B′ be distinct K-bases of G, both of minimal weight. Then
their ordered sequences of weights coincide. This is not true
for integral bases.

Lemma 3.19. For K ∈ {D,U}, let σ and σ′ be the non-decreasing
sequences of weights of circuits of two minimal K-bases B and B′,
respectively. Then σ = σ′.

Proof. This is true since both the undirected and the directed
cycle space form a vector space over GF(2) and Q, respectively.
Hence the cycles, together with linear independence, form
a matroid (cf. Theorem 3.10). Finally, it is a well known fact
that the non-decreasing weight sequences of minimal bases
in matroids coincide. �

Lemma 3.20. There is a graph G and twominimal integral bases, B
and B′, of G whose non-decreasing weight sequences do not coincide.

Proof. Consider the graph G depicted in Fig. 13. It arises from
the generalized Petersen graph P11,3 by the addition of an
extra set of 11 spokes. We give weight four to all inner and
outer edges and weight 15 to all spokes. Let B and B′ be the
two sets of circuits in G, shown in Figs. 14 and 15, respectively.
Either set forms an integral cycle basis of G as the reader
may verify. To see minimality of B and B′, note that the
first 22 circuits in B are in fact the only ones in the graph
whose weight does not exceed 42. Besides those, there are
only two more circuits – the inner and outer ones – whose
weight is at most 44. Replacing the last circuit in B by either
the inner or the outer ring yields a non-integral basis (the
determinant is either 2 or 3). Every circuit in G other than the
so far considered ones has weight at least 46. Hence, there are
exactly two sets of 23 circuits whose weight is less than 926.
Both form a cycle basis of G, but neither is integral. �

3.9. Necessary and sufficient conditions for optimality

We now derive necessary and sufficient conditions for
optimality of a given cycle basis. We also show that if
no minimum directed basis is integral, then no minimum
integral basis is TUM.

Let G be a connected directed graph with spanning tree T,
let N = E \T be the set of non-tree arcs, and let B be a directed
cycle basis. For any cycle C, let C′ be the restriction of C to
the non-tree arcs and let Γ ′ be the ν × ν matrix formed by
the restrictions of the circuits in B. Then Γ ′ is a non-singular
matrix and hence has an inverse. We may write the inverse
as (1/detB)S for an integral matrix S. Then S · Γ ′ = (detB)I.
That is,

〈Si,C′j〉 = (detB)δij for all i and j,

where 〈., .〉 is the inner product of vectors, δij is Kronecker’s

symbol, and Si denotes the i-th row of S. We will next show
that the Cj’s must satisfy a local optimality condition.

Theorem 3.21 ([13]). If B = {C1, . . . ,Cν} is a minimum weight K-
basis for K ∈ {D,U, I}, then there is a ν × ν integral matrix S such
that 〈Si,C′j〉 = 0 for i 6= j, and for all j,

• Cj is a minimum weight circuit with 〈Sj,C′j〉 6= 0, if K = D,

• Cj is a minimum weight circuit with 〈Sj,C′j〉 6= 0 mod 2, if
K = U,

• Cj is a minimum weight circuit with 〈Sj,C′j〉 = ±1, if K = I.

Proof. Let S be defined as in the discussion preceding the
theorem. Then, certainly, 〈Si,C′j〉 = 0 for i 6= j. So assume that

there is a j such that Cj does not have the second property.
Let Dj have the property and let Γ ′′ be the matrix obtained by
replacing C′j by D′j. Then

S · Γ ′′ = J,
Fig. 14 – A minimal I-basis B of G with weight sequence σ = (38, . . . ,38,42, . . . ,42,42,46).
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Fig. 15 – A minimal I-basis B′ of G with weight sequence σ′ = (38, . . . ,38,42, . . . ,42,44,44).
where J is equal to (detB)I in all columns except for column j.
The j-th column has a non-zero diagonal element for K = D,
has a non-zero diagonal element modulo 2 for K = D, and
has diagonal element ±1 for K = I. Thus, det J 6= 0 for K = D,
det J 6= 0 mod 2 for K = U, and det J = 1 for K = I. Thus B−Cj+Dj
is a K-basis cheaper than B. For K = I, this follows from the fact
that det S ∈ Z, detΓ ′′ ∈ Z, and det S · detΓ ′′ = det J = 1 implies
detΓ ′′ = 1. �

For K ∈ {D,U}, local optimality implies global optimality.

Theorem 3.22 ([14]). Let κ ∈ {Q,GF(p)} and let B = {C1, . . . ,Cν}
be a set of ν circuits. If there is a ν × ν integral matrix S such that
〈Si,C′j〉 = 0 for i 6= j, and for all j, Cj is a minimum weight circuit

with 〈Sj,C′j〉 6= 0 (evaluation in κ), then B is a minimum weight

κ-basis.

Proof. Observe first that S · Γ ′ is a diagonal matrix whose
diagonal elements are non-zero elements in κ. Thus, detΓ ′

is a non-zero element of κ and B is a κ-basis.
If B is not a minimum κ-matrix, there is a maximal j such

that {C1, . . . ,Cj} can be extended to a minimum κ-basis. We
have j < ν. Let B′ = {C1, . . . ,Cj,Dj+1, . . . ,Dν} be a minimum
κ-basis. Cj+1 is a linear combination of the vectors in B′, i.e.,

Cj+1 =
∑

i≤j λjCj +
∑

i>j λjDj. Since 〈S
j+1,C′j+1〉 6= 0, there must

be an i > j such that λj〈S
j+1,D′i〉 6= 0. Then w(Cj+1) ≤ w(Di) and

hence B− Di + Cj+1 is also a minimum weight κ-basis. �

The argument above does not work for integral basis, since
the determinant of B − Di + Cj+1 may be different from one.
Theorem 3.21 has an interesting consequence. A TUM-basis
that is a minimum integral basis is also a minimum directed
basis.

Theorem 3.23. If no minimum directed basis of a graph is integral,
then no minimum integral basis is TUM.

Proof. We argue indirectly. Let B = {C1, . . . ,Cν} be a minimum
integral basis that is also TUM. We show that B is a minimum
directed basis. By Theorem 3.21 there is an integral matrix S
such that 〈Si,C′j〉 = 0 for i 6= j, and such that for all j, C′j is a

minimum weight circuit with 〈Sj,C′j〉 = ±1. We claim that Cj is

a minimum weight circuit with 〈Sj,C′j〉 6= 0. The theorem then

follows from Theorem 3.22.
Fix j and consider any circuit C with 〈Sj,C′〉 6= 0. Since

B is TUM, we have C =
∑

i λiCi with λi ∈ {−1,0,+1}. Then
〈Sj,C〉 = λj〈S

j,C′j〉 = ±1 and hence w(C) ≥ w(Cj). �
4. Length and weight of cycle bases

In this section we discuss a priori bounds on the length
and weight of minimum cycle bases. We state the bounds
as functions of the number n of vertices, the number m of
arcs, and the total weight W of the edges. Many applications
benefit from small length or small weight bases as we will see
in Section 7; algorithms for computing minimum or nearly
minimum weight bases will be discussed in Section 5. Table 2
summarizes the results. It is interesting to note that all
upper bounds have been shown for either weakly or strongly
fundamental bases. Although we know that general bases
are not always fundamental (see Example 3.3), it seems that
fundamentality gives sufficient structure to the problem to
make an analysis of their length achievable or at least easier
than for general bases.

Open Problem 7. Derive apriori bounds on theweight (length)
of directed, undirected, integral, and totally unimodular
bases.

Open Problem 8. For K,K′ ∈ {D,U, I,TUM,W,F} and a graph G
with weight function W, let

rK,K′ (G) =
weight of a minimum K-basis
weight of a minimum K′-basis

and

rK,K′ (n,m)

= max{rK,K′ (G) | G is a graph with n nodes and m edges}.

Derive upper and lower bounds on rK,K′ (n,m). For example,
rW,D(n,m) = O(logn), since every graph with n nodes has aW-
basis of weight O(W logn) (see Theorem 4.4) and since every
D-basis has a weight of at least W. In the preceding chapter,
we established rK,K′ (n,m) > 1 for certain pairs K and K′ and
certain values of n and m.

The bounds given in Table 2 are obtained by different
methods. There are essentially four approaches:

1. Use of special graph properties like planarity.

2. Induction.

3. Use of clusters, partitions, and spanners.

4. Results of extremal graph theory.
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Table 2 – Bounds for minimum weight W- and F-bases. W denotes the total edge weight and W(MST) is the weight of a
minimum spanning tree. Bounds for unweighted graphs are only stated if they are better than the bound derived for
weighted graphs with W = m. In the bound for planar graphs, φ is the maximal size of any face.

Graph class Minimum W-basis Minimum F-basis

Weighted
General O(W logn), Theorem 4.4
General O(n ·W(MST)+W), Theorem 4.2 O(W log2 n log logn),

Theorem 4.11
Planar Θ(W)

Unweighted
General O(m logn log(m/n)), Theorems 4.1 and 4.5 O(n2), Theorem 4.12
Planar O(n

√
nφ), Theorem 4.7

Outerplanar Θ(n), [15]
d-dim grids Θ(n) Θ(n logn), Theorem 4.8
We start with some obvious bounds. Throughout this
section, we restrict attention to biconnected graphs. There
are m − n + 1 circuits in a basis and each circuit has a
length of at most n. Thus any basis has a length of at most
mn and a weight of at most mW. Throughout this section,
W =

∑
e∈E w(e) denotes the total weight of the edges. Obvious

lower bounds areΩ(m) andΩ(W), since in biconnected graphs
every edge has to belong to at least one circuit of any basis.
Extremal graph theory provides a non-trivial lower bound.

Theorem 4.1. For any integer h = 2 mod 4 and h ≥ 6, there is
a graph Gh(n) with n nodes and m = hn/2 edges, such that any
cycle basis for Gh(n) has length Ω(m logn/ log(m/n)). In particular,
there is a graph family where m = Θ(n) and any basis has length
Ω(m logn), and for any integer k, there is a graph family where
m = Θ(n1+1/k) and any basis has length Ω(mk).

Proof. For any integer h with h = 2 mod 4 and h ≥ 6, there
exists an infinite family of h-regular graphs, i.e., m = hn/2,
in which every cycle has length Ω(logn/ log(m/n)); see [16].
Since a basis consists of m − n + 1 circuits, any basis has
length Ω(n logn/ log(m/n)). For h = 6, we obtain graphs with
m = Θ(n), for which every basis has length Ω(m logn). For
h = n1/k, we obtain graphs with m = Θ(n1+1/k), for which
every basis has length Ω(mk). �

Open Problem 9. Prove a non-trivial lower bound for weighted
graphs.

4.1. Weakly fundamental bases

The first result for general graphs was given by Horton in
1987; Liebchen [3] observed that the construction yields not
only an undirected basis but also a weakly fundamental basis.
We generalize Horton’s proof to yield an upper bound for
weighted graphs.

Theorem 4.2 ([12,3]). Every simple graph G has a W-basis of
a length of at most 3(n − 1)(n − 2)/2 and a weight of at most
2nW(MST) + 2W, where W(MST) is the weight of a minimum
spanning tree.

Proof. We prove only the upper bound for weighted graphs.
For the case of uniform weights, we have W(MST) = n− 1 and
W = m. This gives a bound of 2n2+2n2/2 = 3n2 for the uniform
case.
Let T be an MST of G. The claim clearly holds for n ≤ 3. So
assume that G has more than three vertices and let v be a leaf
of T. Our W-basis for G consists of two parts: first, a W-basis
B(G− v) of G− v constructed recursively, and second, d(v)− 1
cycles passing through v. Observe that a basis for G − v has
cardinality m − d(v) − (n − 2) = m − (n − 1) − (d(v) − 1) and
hence we are adding the right number of cycles. The graph
consisting of T plus the d(v)−1 non-tree edges incident to v is
planar. We form d(v)−1 circuits by taking all but one face cycle
of this planar graph. The resulting set of circuits is weakly
fundamental; this follows from an argument analogous to the
one used in the proof of Lemma 3.5.

It remains to argue the bound on the weight. By the
induction hypothesis, B(G−v) has a weight of at most 2(n−1) ·
W(MST − v) + 2W(G − v). The circuits added in the induction
step have a combined weight of at most 2W(MST) + 2W(v),
where W(v) denotes the sum of the weights of the edges
incident to v. Thus the weight of the resulting basis is at most
2nW(MST)+ 2W. �

The upper bound is tight. Consider the complete graph on
n nodes. It has m = n(n − 1)/2 edges. Since any circuit in
any basis contains at least three edges, any cycle basis has
a length of at least 3(m− n+ 1) = 3(n− 1)(n− 2)/2. For sparse
graphs, a much better bound is possible. Rizzi [17] proved that
every graph has a W-basis of length O(m logn) and that every
weighted graph has a W-basis of weight O(W logn). The proof
given here was found by T. Kavitha and R. Rizzi. The proof
makes use of the fact that every graph of minimum degree
three contains a logarithmic length cycle.

Lemma 4.3 ([18]). Any graph with a minimal degree of at least
three contains a cycle of a length of at most 2

⌈
log2 n

⌉
. Moreover,

such a cycle can be found in time O(n).

Proof. Let G be our graph and let v be an arbitrary vertex.
Grow a breadth-first search tree rooted at v. As long as only
tree edges are encountered, every vertex has at least two
children. Thus if 20 + 21 + · · · 2k > n, there must be at least
one non-tree edge incident to a vertex of depth k − 1 and
hence a cycle of length 2k exists. This proves the bound on
the length of a shortest cycle. With respect to the time bound,
we observe that the first non-tree edge encountered yields the
desired cycle. �
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a b c

Fig. 16 – In (a), all edge weights are equal to one. In (b), the two indicated super-edges have weight two. The dashed line
indicates a short cycle. It consists of three super-edges and has weight four. The heaviest super-edge has weight two. We
delete its edges from the graph and make e a non-tree edge and f a tree edge or vice-versa, (c).
Theorem 4.4 ([17]). Any weighted graph G with total weight W
has a weakly fundamental basis of weight O(W logn). Such a basis
can be determined in time O(nm).

Proof. We build the basis and a spanning tree concurrently.
Initially, the basis and the spanning tree are empty. Let G be
our current graph, which is initially set to the input graph.
If G is empty, we stop. If G has a vertex of degree zero, we
delete the vertex, and if G has a vertex of degree one, we
delete the vertex and add the incident edge to the spanning
tree. So assume that every vertex has degree two or more. We
call a maximal path whose interior vertices have degree two a
super-edge; an edge whose endpoints both have degree three
or more is also a super-edge. The weight of a super-edge is the
sum of the weights of the edges forming the super-edge. The
endpoints of super-edges have degree three or more in G; see
Fig. 16. The graph consisting of the vertices of degree three or
more, and the super-edges joining them, contains a circuit C
consisting of O(logn) super-edges. Let p be the heaviest super-
edge in C and let C be the cycle in G represented by C. Then,
w(C) = O(w(p) logn). We add C to our basis. We also delete all
edges belonging to p from G, designate an arbitrary edge of
p as a non-tree edge, and add all other edges of p to T. If p
consists of k edges, m decreases by k and n decreases by k− 1.
So ν decreases by 1 as it should.

The basis constructed in this way is weakly fundamental
because the edge of p designated as a non-tree edge is
not used in any cycle constructed later. Also, its weight is
O(W logn) because the cost of the cycle added in an iteration
is at most O(logn) times the weight of the edges deleted in
this iteration. �

In the case of uniform weights, Theorem 4.4 establishes
the existence of a weakly fundamental basis of length
O(m logn). This is tight for graphs with m = O(n) edges,
as Theorem 4.1 asserts the corresponding lower bound.
Kaufmann and Michail [19] have recently shown that the
lower bound can also be matched for larger values of m. The
improvement exploits the fact that graphs with at least n1+1/k

edges contain a cycle of a length of at most 2k – see [20].
We now proceed as follows. As long as m ≥ n1+1/k for a
constant k, still to be determined, we find cycles of a length
of at most O(2k). We delete one of its edges and charge the
cost of the cycle to it. As soon as m ≤ n1+1/k, we switch to the
construction in Theorem 4.4. We construct cycles consisting
of O(logn) super-edges, delete the edges in the heaviest super-
edge, and charge O(logn) to each edge removed. The total
charge is

O(mk+ n1+1/k logn)
k=2(logn)/ log(m/n)

= O
(

m
logn

log(m/n)

)
.

Theorem 4.5 ([19]). Every graph has a weakly fundamental basis
of length O(m logn/ log(m/n)). For m = Θ(n1+1/k), the bound is
O(mk) and for m = n logc n and positive constant c, the bound is
O(m logn/ log logn). Finally, for m = cn, the bound is O(m logn).

In the non-uniform case, a similar improvement is not
possible, as the following example shows. Consider a graph
G = G1 + G2, where G1 is the complete graph on n/2 vertices
and G2 is a graph with m = O(n/2) vertices and girth Ω(logn).
The edges of G1 have weight zero and the edges of G2 have
weight one. Then, any basis of G has weight Ω(W logn) and
G has Ω(n2) edges. Thus the bound of Theorem 4.4 cannot be
improved for dense graphs and general weight functions.

We close our discussion of weakly fundamental bases with
some remarks on planar graphs. Every planar graph has a 2-
basis and these are weakly fundamental by Lemma 3.5. Thus
every planar graph has a W-basis of length O(n) and weight
O(W).

4.2. Fundamental bases

Upper bounds for strictly fundamental bases are obtained
by constructing spanning trees of small diameter or, more
generally, spanning trees of small stretch. Clearly, a spanning
tree T of diameter D or with

∑
e=(u,v)∈E dT(x, y)/m ≤ D gives

rise to an F-basis of length O(Dm). Here, dT(x, y) is the length
of the path in T connecting x and y. We review results
for planar graphs and for general graphs. The constructions
make use of graph separators and graph partitions with
suitable properties.

Definition 4.1. A set S ⊂ V is an (α, β)-separator if |S| ≤ β
√

n
and any connected component of G−S contains nomore than
αn vertices.

Lemma 4.6 ([21]). Any biconnected planar graph with n vertices,
m edges, and maximal face size φ has an (α, β)-separator with
α = 2/3 and β = 2

√
φ/2. Moreover, the separator constitutes a

simple cycle and is thus called a simple cycle separator (SCS).
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Fig. 17 – Stern and Vavasis’s construction of an F-basis for planar graphs.
Cycle separators are the basis for the following theorem.

Theorem 4.7 ([22]). Any planar graph G with maximal face size φ
has an F-basis of length O(n

√
φn).

Proof. We may assume that G is biconnected. Fig. 17 illus-
trates the construction. Let S be a simple cycle separator of
size β

√
n in G. We contract S into a single vertex v. Clearly,

v becomes an articulation point in the resulting graph. Let
G1,G2, . . . ,Gk denote the components that would result if v
were deleted. We make k copies v1 to vk of v, one for each
component, and connect vi with v’s neighbors in Gi. Each Gi
has at most αn vertices and the maximal face size is no more
than φ. A spanning tree of G is obtained by taking the cycle
S minus one edge plus spanning trees of the components.
The spanning trees of the components are constructed recur-
sively. We stop when the components have constant size; any
spanning tree can be used for the constant size components.

Let D(n) be the diameter of the spanning tree constructed
in this way. Then D(n) ≤ O(

√
φn)+ D(αn) = O(

√
φn). �

Outerplanar graphs have strictly fundamental bases of
linear size [15].

Theorem 4.8. For grid graphs of fixed dimension the minimal
length of a fundamental basis is Θ(n logn).

The upper bound for two-dimensional grids was first
shown by Stern and Vavasis [22]. A simplified construction
that, in addition, applies to any fixed dimension was found
by Alon et al. [23]. It is illustrated in Fig. 18 and yields a
basis of length no more than (4/3)n logn as shown by Köhler
et al. [24]. The lower bound was also established by Alon
et al. [23]; Köhler et al. [24] paid attention to the constant
factor and proved, using a different method, that any strictly
fundamental basis for the planar grid has a length of at least
(1/12)n log2 n− O(n).

The first upper bound on the length of strictly fundamental
cycle bases in general graphs was given by Alon et al. [23].
Fig. 18 – A spanning tree for d-dimensional grid graphs
with length 2i in all dimensions [23]. The construction is
shown for d = 2. If i = 1, an optimal spanning tree for the
structure is returned. If i > 1, the graph is partitioned into
2d cubes of length 2i−1 and trees for the subgraphs are
constructed recursively. The set of 2d vertices in the center
of the graph is connected such that they form the same tree
that is used at the base of the recursion.

We follow the very descriptive explanation of their technique
by Peleg [25]. The construction relies on partitioning a given
graph into clusters such that the diameter of the clusters and
the number of edges between clusters (intercluster edges) are
controlled at the same time.

Lemma 4.9 ([25, p. 153]). Given an unweighted graph G = (V,E),
|V| = n, and a parameter x > 1, there is a partition P of G into
clusters Ci such that:

1. the radius of each cluster is at most x lnm, and
2. the number of intercluster edges is at most m/x.

Proof. The clusters are grown one by one. As long as there is
a vertex not assigned to any cluster, choose one such vertex
and grow a cluster C around it in discrete steps. Initially, C
consists only of the vertex. Let Eout(C) be the set of edges with
exactly one endpoint in C, let Nout be the endpoints outside C
of the edges in Eout(C), and let Ein(C) be the edges with both
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a b

c

Fig. 19 – Alon et al.’s approach to constructing a spanning tree with average stretch in exp(O(
√
logn log logn)). Shown is the

first level: (a) A partition in 8 clusters, C1 to C8, with the properties described in Lemma 4.9; (b) Red edges denote the
spanning tree with radius ≤ x lnm for each cluster. All red edges are part of the resulting tree T; (c) Each cluster is contracted
to one vertex, possibly introducing multiple edges between clusters. The resulting graph has less than m/x edges. This
graph is the starting point for the next level. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
endpoints in C. We add Nout to C if |Eout(C)|/|Ein(C)| ≥ 1/x. If
|Eout(C)|/|Ein(C)| < 1/x, the growth of C is stopped, C is added
to the partition and deleted from G, and the next cluster is
grown.

Clearly, any edge of G is contained in at most one cluster.
Thus the number of intercluster edges is at most m/x.
Consider the growth of any particular cluster C. We start
with a single vertex v and no edge. In the first iteration, all
neighbors of v (that are not assigned to any previous cluster)
are added to the cluster. Let mi be the number of edges added
in the i-th iteration. Then mi ≥ (m1 + · · · + mi−1)/x. For the
analysis of the growth of the mi’s, assume equality. Then
mi−mi−1 = mi−1/x and hence mi = (1+x)mi−1/x. We conclude
that

m1 + · · · +mi ≥ mi = Ω

((
1+ x

x

)i
)
.

Thus i ≤ (lnm)/ ln(1 + 1/x) ≤ x lnm and we have also
established the first property. �

We now come to the construction of the spanning tree.
Fig. 19 illustrates the construction. Let P be a partition of
G1 = G as described in the above theorem. For every cluster
Ci, let Ti be a spanning tree of diameter 2x lnm. Such a tree
exists by construction. The union of the Ti form a forest F in
G. Any intracluster edge, and there are at most m of them, will
give rise to a fundamental circuit of length no greater than
1 + 2x lnm. Only the m/x intercluster edges can give rise to
longer fundamental circuits.

We contract every cluster Ci to a single vertex vi and
obtain the multi-graph G2 formed by the intercluster edges.
We apply the theorem to G2 and obtain spanning trees of
diameter 2x ln(m/x) ≤ 2x lnm for the clusters of G2. We add
these spanning trees to the forest F. Consider any intracluster
edge of G2. It gives rise to a cycle of length 1 + 2x lnm in G2.
With respect to F, this cycle may have a length up to (1 +
2x lnm)2 since any vertex representing a cluster of G1 must be
expanded to a path of length 1+2x lnm. We conclude that we
might have m/x fundamental circuits of length (1 + 2x lnm)2.
There are at most m/x2 intercluster edges in G2.

The construction continues until graphs of constant size
are obtained. The recursion depth is at most logx m. The total
length of the fundamental circuits constructed in this way is∑
0≤i≤logx m

m

xi
(1+ 2x lnm)i+1 ≈ mx(2 lnm)logx m.

With x = exp(c(
√
lnn ln lnn)) for an appropriate constant c, we

obtain:

Theorem 4.10 ([23], [25, p. 215]). Every multi-graph has a strictly
fundamental basis of length mexp(O(

√
logn log logn)).

A much improved result has been obtained recently.

Theorem 4.11 ([26]). Every graph has a strictly fundamental cycle
basis of length O(W log2 n log logn).
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Table 3 – Polynomial time algorithms for undirected and directed minimum cycle bases. ω denotes the exponent of
matrix multiplication.

Exact algorithms, nonnegative weights

Undirected bases Directed bases
Deterministic Monte Carlo Deterministic Monte Carlo

O(m2n
logn +mn2) O(mω) O(m3n) O(mω)

Theorem 5.11 Theorem 5.27 Theorem 5.12 Theorem 5.28

Exact algorithms, conservative weights

Undirected bases Directed bases
Deterministic Deterministic Monte Carlo

O(n3 logn+ m2n
logn +mn2) O(m3n) O(n3 logn+m2n)

Theorem 5.14 Theorem 5.15 Theorem 5.16

(2k− 1)-approximation, integer k > 1, nonnegative weights
Undirected and directed bases

Monte Carlo
O(mn1+1/k +min(m,n1+1/k)ω), Theorem 5.39

Exact algorithms, planar graphs, nonnegative weights
Undirected bases and directed bases

O(n2), Theorem 5.33
The key ingredient for the improved result is a more
refined partitioning procedure, called star-decomposition. We
refer the reader to [26] for details. We observe in passing that
exp(O(

√
lnn ln lnn)) = o(nε) for any ε > 0 and hence even for

planar graphs, the bounds given in Theorems 4.10 and 4.11
are better than the bound given in Theorem 4.7.

For dense graphs with m = Θ(n2), optimal bounds can be
achieved. As early as 1982, Deo et al. [27] had conjectured that
every simple graph has a fundamental basis of length O(n2).
It took 25 years to prove the conjecture.

Theorem 4.12 ([28]). Every simple graph on n vertices has a
fundamental cycle basis of length O(n2).

Proof. Abraham et al. [29] showed that any graph5 G with
n vertices contains a spanning tree T with constant average
stretch, averaged over all pairs of vertices, i.e.,∑
x,y∈

(
V
2

) dT(x, y)
dG(x, y)

= O(n2).

Here, dG(x, y) and dT(x, y) are the distance between x and y in
G and T, respectively. Restricting the sum to the edges of G
establishes∑
e=(x,y)∈E

dT(x, y) = O(n2).

Since the length of a fundamental cycle closed by a non-tree
edge e = (x, y) is dT(x, y)+ 1, the theorem follows. �

Open Problem 10. Improve upon Theorem 4.11 or prove a
lower bound that is asymptotically larger than W logn (m logn
in the uniform case).

5 The result even holds for weighted graphs; we only need it for
unweighted graphs here.
5. Polynomial time algorithms for minimum
cycle bases

We will now present deterministic and randomized polyno-
mial time algorithms for computing undirected and directed
minimum cycle bases. The deterministic algorithms have
running time Ω(m2n/ logn +mn2), and the randomized algo-
rithms have running time Ω(mω) and hence cannot be used
for very large graphs. Therefore, we will also present tech-
niques for computing approximate minimum cycle bases.
Table 3 contains a summary of the best running times. The
hard variants of the minimum cycle basis problem will be
discussed in Section 6.

Open Problem 11. Most algorithms discussed in this chapter
have space requirement Ω(m2). Are there algorithms with
reduced space requirement (and maybe increased running
time) and algorithms for external memory?

Recall that a directed basis is a set of ν circuits that are
independent over Q and that an undirected basis is a set of ν
circuits that are independent over GF(2). We use κ to denote
either Q or GF(p), where p is a prime, and formulate most of
the algorithms in terms of the field κ.

5.1. The greedy algorithm and the Horton set

A minimum (directed or undirected) cycle basis can be
constructed by a simple greedy algorithm. This is almost a
direct consequence of Theorem 3.9. We start with an empty
basis and process the circuits of G in order of nondecreasing
weight; ties are broken arbitrarily. We add a circuit to the
partial cycle basis if it is linearly independent of the circuits
in the partial basis. We continue until we have obtained ν

linearly independent circuits. Checking linear independence
can be easily done by Gaussian elimination.
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Fig. 20 – The three cases in the proof of Lemma 5.2 (not showing symmetrical cases).
Theorem 5.1. The greedy algorithm constructs a minimum weight
cycle basis.

Proof. We could appeal to the fact the the greedy algorithm
works for matroids [30] and that the set of circuits of a graph
form a matroid. We prefer to give a self-contained proof.

Assume that the greedy algorithm does not construct a
minimum weight basis and consider the first time in the
execution of the algorithm that the partial basis cannot be
extended to a minimum weight basis. Say this happens after
the addition of the circuit C. Before adding C, we had a partial
basis B that could be extended to a minimum weight basis
Bopt. Let us write C as a linear combination of the circuits in
Bopt, say C =

∑
D∈Bopt λDD. Since C is linearly independent of

B, there must be a D ∈ Bopt \ B with λD 6= 0. Also, since this
D is linearly independent of B, we must have w(C) ≤ w(D).
Thus, Bopt − D+ C is also a minimum weight basis, which is a
contradiction. �

Since a graphmay have an exponential number of circuits,
the performance of the greedy algorithm in its basic form is
miserable. Horton [12] showed that the search for a basis can
be restricted to a set of O(nm) circuits. For a vertex v, let Tv
be a shortest path tree in G rooted at v. For any two nodes,
u and v, we use puv to denote the shortest path from u to v
contained in Tu. We do not assume puv = pvu or any other
consistency requirement.

Definition 5.1 ([12]). For a vertex v and an edge e = (x, y) such
that the tree paths from v to x and y, respectively, do not
share first edges (this includes the case where one of them
is empty), let Cv,e be the cycle consisting of the tree path from
v to x in Tv, followed by e, followed in turn by the reversal of
the tree path from v to y. The Horton set H consists of all such
circuits Cv,e.

The Horton set is really a multi-set, i.e., the mapping
(v, e) 7→ Cv,e is not necessarily injective. In fact, we will show
in Section 5.7 that if shortest paths are chosen carefully, it is
highly non-injective. This will lead to improved algorithms.
For now, we content ourselves to show that H contains an
MCB. For a circuit C, let z(C) ∈ V∩C be a vertex that minimizes
the number of non-tree edges of C w.r.t Tv. We call z(C) the
base node of C.

Lemma 5.2 ([12,31,32]). H contains a minimum cycle basis.
Moreover, when the greedy algorithm is executed with H , it extracts
a minimum cycle basis.
Proof. Consider the greedy algorithm run on the set of all
circuits. Circuits are ordered lexicographically according to

(weight of C,number of edges outside Tz(C), number of edges

in C).

Observe that the circuits in H have second coordinates equal
to one and hence come first among cycles of equal weight.

Let C be the first circuit outside H that is selected by the
greedy algorithm. Let z = z(C) and let e = (u,v) be a non-tree
edge (with respect to Tz) on C. Write C = Cz,u ◦ (u,v) ◦ Cv,z and
let p and q be the tree paths in Tz connecting z to u and v,
respectively. The cost of p is at most the cost of either cycle
path from z to u and the cost of q is at most the cost of either
cycle path from z to v. Consider the cycles C1 = Cz,u ◦ prev,
C2 = p ◦ e ◦ qrev, C3 = q ◦Cv,z (Fig. 20). The weight of C1, C2 and
C3 is at most the weight of C and C = C1 + C2 + C3.

We now distinguish cases. Assume first that e is the only
non-tree edge on C. Then Cz,u and Cv,z are contained in Tz.
Since C is a circuit and z lies on C, the tree paths to u and v
in Tz cannot have a common first edge; thus C = Cz,e ∈ H ,
which is a contradiction. Assume next that C contains more
than one non-tree edge. Then at least one of the cycles, C1 or
C3, is non-trivial. Also, with respect to Tz all three cycles have
at least one fewer non-tree edge than C and hence this is also
true of their respective base vertices.

Thus all three cycles are considered by the greedy algo-
rithm before C. Also, at least one of them is independent of
the current basis, so it was independent at the time it was
considered and hence should have been added. This either
contradicts our definition of C (first cycle outside H added to
the basis) or the operation of the greedy algorithm (a cycle not
added even though it is independent). �

For undirected cycle bases, Lemma 5.2 was first shown
by Horton [12]. Mehlhorn and Michail [31] observed that it
suffices to consider a slightly smaller set of circuits. Let Z be
a feedback vertex set of G, i.e., any circuit in G must contain
at least one vertex in Z. It suffices to consider the circuits
Cz,e where z ∈ Z and the paths in Tz to the endpoints of
e do not have a common first edge. Computing a minimum
feedback vertex set is known to be APX-hard, however, a
2-approximation can be computed efficiently [33]. Moreover,
Liebchen and Rizzi [32] extended Lemma 5.2 to directed bases.

Lemma 5.2 implies polynomial time algorithms for
finding a minimum undirected and directed cycle basis. We
first construct H by solving n single-source shortest-path
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problems. In the case of non-negative weights, this amounts
to n runs of Dijkstra’s algorithm and takes O(nm + n2 logn)
time. We treat the case of conservative weights in Section 5.5.
The Horton set consists of O(mn) circuits and a partial basis
consists of at most ν circuits. For any circuit in H , we must
decide whether it is independent of the current partial basis.
Gaussian elimination performs this task with O(νm) = O(m2)

arithmetic operations per circuit. Let Γ be the cycle matrix
of the current basis. We keep the non-tree part of Γ in
upper triangular form. Then independence of a circuit can
be checked with O(νm) arithmetic operations and, in the
case of independence, the cycle matrix can be extended by
an additional column with the same number of arithmetic
operations. We conclude that a minimum basis can be
constructed with O(m3n) arithmetic operations. The number
of arithmetic operations can be reduced to O(mωn) [34,32],
where ω denotes the exponent of matrix multiplication, i.e.,
m × m matrices can be multiplied with O(mω) arithmetic
operations. It is known that ω < 2.376.

Arithmetic operations over GF(2) take constant time. We
conclude that a minimum weight undirected cycle basis of
a nonnegatively weighted graph can be computed in time
O(mωn). For directed cycle bases we appeal to Theorem 3.8.
Let P be a set of m primes of value at least n. The primes
p ∈ P are in O(m logm) and hence arithmetic in GF(p) takes
constant time. Computing a minimum GF(p)-basis for all
p ∈ P is guaranteed to find a minimum directed basis. This
takes O(m1+ωn) time. Computing aminimum GF(p)-basis for a
random p ∈ P takes O(mωn) time. It finds a minimum directed
basis with probability at least 1/2.

5.2. De Pina’s approach

We will describe an alternative approach for computing
minimum cycle bases introduced by de Pina [14] and later
refined by Berger et al. [35], Kavitha et al. [36], Hariharan et al.
[37], Kavitha et al. [38], Mehlhorn and Michail [31] and Amaldi
et al. [39]. Operating in phases, it starts with an empty set of
circuits, and adds one circuit per phase. It does not necessarily
add the circuits in order of increasing weight. This increased
flexibility results in faster running time.

For two vectors, C and S, we use 〈C,S〉 to denote their
inner product. Two vectors are orthogonal to each other if their
inner product is zero. The following theorem is the basis of
de Pina’s approach; the version given here is due to Mehlhorn
and Michail [31] and refines Theorem 3.22.

Theorem 5.3 ([14,31]). Circuits C1, . . . ,Cν form a minimum κ-
basis, where κ = Q or κ = GF(p), if there are vectors S1, . . . ,Sν ∈ κ

E

such that for all i, 1 ≤ i ≤ ν, the following hold:

Prefix orthogonality: 〈Cj,Si〉 = 0 for all 1 ≤ j < i.
Non-orthogonality: 〈Ci,Si〉 6= 0.
Shortness: Ci is a minimumweight circuit inH with 〈Ci,Si〉 6= 0.

Proof. We first show linear independence. Let C :=
∑

i λiCi be
a non-trivial linear combination and assume that i0 is the
largest index for which λi 6= 0. Then 〈C,Si0

〉 = λi0
〈Ci0

,Si0
〉 6= 0.

We next show that the circuits form a minimum cycle
basis of G. Assume otherwise. Then consider the smallest i
such that C1, . . . ,Ci are not contained in any minimum cycle
Algorithm 1 An algebraic framework for computing a
minimum cycle basis.

1: let T be an arbitrary spanning tree.
2: for i← 1, . . . , ν do

3:
Determine a non-zero vector Si with Si(e) = 0 for
e ∈ T and orthogonal to C1 to Ci−1.

4: Compute a minimum weight cycle Ci ∈ H with
〈Ci,Si〉 6= 0.

5: end for

basis consisting only of circuits in the Horton set H . Let
B be a minimum weight basis consisting of circuits in the
Horton set that contains C1 to Ci−1. We may write Ci as a
linear combination of the circuits in B, Ci =

∑
C∈B λCC. Since

〈Ci,Si〉 6= 0, there exists some C ∈ B with 〈C,Si〉 6= 0. Since Ci
is a minimum weight cycle in H with 〈Ci,Si〉 6= 0, we have
w(Ci) ≤ w(C). Also C 6= Cj for j < i since 〈Cj,Si〉 = 0 for j < i.

Let B′ = B ∪ {Ci} \ {C}; B′ is a basis according to Theorem 3.9
and w(B′) ≤ w(B). So B′ is also a minimum cycle basis. It
consists only of circuits in H and contains C1 to Ci, which
is a contradiction. �

Theorem 5.3 leads to Algorithm 1. The algorithm operates
in ν phases. In each phase, a non-zero vector S, orthogonal
to all cycles in the partial basis, is determined and then a
shortest circuit C ∈ H with 〈S,C〉 6= 0 is computed and added
to the basis. We still need to show that there is always a vector
S of the desired form and a circuit to add.

Lemma 5.4. Let T be a spanning tree of G. For each phase i,
1 ≤ i ≤ ν: There is a non-zero vector Si ∈ κ

E such that 〈Si,Cj〉 = 0
for j < i and Si(e) = 0 for e ∈ T and there is at least one cycle C ∈H
with 〈C,Si〉 6= 0.

Proof. Let C′j be the restriction of Cj to N := E \ T. The space

spanned by C′1 to C′i−1 has dimension i− 1 and i− 1 < ν. Thus

there is a vector S′ ∈ kN with 〈C′j,S
′
〉 6= 0 for j < i. Define Si by

Si(e) = S′(e) for e ∈ N and Si(e) = 0 for e ∈ T.
Let e be any edge with Si(e) 6= 0 and let Ce be the

fundamental circuit defined by e. Then 〈Ce,Si〉 = Si(e) 6= 0.
Since the Horton set contains a basis, Ce can be written as a
linear combination of circuits in H . Thus, there must be at
least one circuit C ∈H with 〈C,Si〉 6= 0. �

The requirement that Si(e) = 0 for all e ∈ T in line (3) of
Algorithm 1 is essential. Assume G contains a bridge e. Then
the unit vector Si with Si(e) = 1 is trivially orthogonal to the
circuits C1 to Ci−1. However, line (4) will fail because there
is no circuit that is non-orthogonal to this Si. In the next
sections we describe how to implement the two main steps
of Algorithm 1.

5.3. Maintaining the orthogonal space

The vector Si is a non-trivial solution of the linear system
〈Cj,Si〉 = 0 for 1 ≤ j < i and Si(e) = 0 for all e ∈ T. The
naive way would be to solve this linear system using Gaussian
elimination with O(mω) arithmetic operations. Since we need
to solve one linear system per phase, the total number of
arithmetic operations required would be O(m1+ω).

However, the linear systems to be solved are not
independent. Each phase adds one additional equality. De
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Algorithm 2 Maintaining a Basis of the Orthogonal Space

1: Initialize Sj by Sj(ei) = δij for 1 ≤ j ≤ ν and 1 ≤ i ≤ m.
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci ∈ H with
〈Ci,Si〉 6= 0

4: for j← i+ 1, . . . , ν do

5: Sj = Sj −
〈Ci,Sj〉

〈Ci,Si〉
Si

6: end for
7: end for

Pina [14] and later Berger et al. [40] observed that it pays to
maintain a basis of the solution space of this linear system.
The basis is easily updated from one phase to the next.

Let T be an arbitrary spanning tree of G and let e1 to eν
be the non-tree edges. We set Si(ei) = 1 and Si(ej) = 0 for

j 6= i. This corresponds to the standard basis of the space κN.
At the beginning of phase i, we have Si,Si+1, . . . ,Sν that form
a basis of the space C⊥ of all vectors S that are orthogonal
to circuits C1, . . . ,Ci−1 and have S(e) = 0 for all e ∈ T. We
use Si to compute Ci (see Section 5.4) and update vectors
{Si+1, . . . ,Sν} to a basis {S′i+1, . . . ,S

′
ν} of the subspace of C⊥

that is orthogonal to Ci. The update step is as follows. For
i+ 1 ≤ j ≤ ν, let

S′j = Sj −
〈Ci,Sj〉

〈Ci,Si〉
Si.

Lemma 5.5. The set {S′i+1, . . . ,S
′
ν} forms a basis of the subspace

orthogonal to {C1, . . . ,Ci}.

Proof. We will first show that S′i+1, . . . ,S
′
ν are orthogonal to

C1, . . . ,Ci. Let j ≥ i+ 1 and ` ≤ i. We have

〈S′j,C`〉 = 〈Sj,C`〉 −
〈Ci,Sj〉

〈Ci,Si〉
〈Si,C`〉.

For ` < i, 〈Sj,C`〉 = 〈Si,C`〉 = 0. For ` = i, the terms on the
right-hand side cancel.

Now we will show that S′i+1, . . . ,S
′
ν are linearly indepen-

dent. Consider a linear combination

0 =
∑

j≥i+1

λjS
′

j =
∑

j≥i+1

λjSj −

 ∑
j≥i+1

λj
〈Ci,Sj〉

〈Ci,Si〉

Si.

Since the Sj, j ≥ i, are independent, we conclude that λj = 0
for all j. �

Let us now bound the number of arithmetic operations. In
each iteration, we update no more than ν vectors at a cost
of O(ν) arithmetic operations each. Thus the total number of
arithmetic operations is O(ν3) = O(m3). For undirected bases,
this is also the running time.

The vector Si is only needed in the i-th phase. In particular,
the second half of the vectors is only needed in the second
half of the computation. We can save time by not updating
these vectors at all in the first half of the computation and
then computing the cumulative effect of the first half of the
computation. We will be able to use fast matrix multiplication
for the cumulative update. We now give the details. Let k =
bν/2c. What is the effect of the first k phases on the vectors
Sk+1 to Sν?

For column vectors v1 to v`, we use [v1, . . . ,v`] to denote
the matrix with columns v1 to v`. Let S1 to Sν denote our
Algorithm 3Maintaining a Basis of the Orthogonal Space with
Bulk Updates

1: Initialize Sj by Sj(ei) = δij for 1 ≤ j ≤ ν and 1 ≤ i ≤ m.
2: MinimumCycleBasis(1, ν)
3: where
4: procedure MINIMUMCYCLEBASIS(`,u) F Adds Circuits C` to

Cu

5: if ` = u then
6: compute a minimum weight cycle Ci ∈ H with
〈Ci,Si〉 6= 0;

7: else
8: k← b(`+ u)/2c;
9: MinimumCycleBasis(`, k);
10: C← [C`, . . . ,Ck];
11: A← (CT

[S`, . . . ,Sk])
−1CT

[Sk+1, . . . ,Su];
12: [Sk+1, . . . ,Su] ← [Sk+1, . . . ,Su] − [S`, . . . ,Sk]A; F now

CT
[Sm+1, . . . ,Su] = 0

13: MinimumCycleBasis(m+ 1,u);
14: end if
15: end procedure

vectors before phase 1 and let S′1 to S′ν be the vectors after
phase k. Then,

[S′k+1, . . . ,S
′
ν] = [Sk+1, . . . ,Sν] − [S

′

1, . . . ,S
′

k]A

for some k× (ν− k)matrix A. We want 〈C`,S′j〉 = 0 for 1 ≤ ` ≤ k

and k+ 1 ≤ j ≤ ν. Let C = [C1, . . . ,Ck]. Then

0 = CT
[S′k+1, . . . ,S

′
ν] = CT

[Sk+1, . . . ,Sν] − CT
[S′1, . . . ,S

′

k]A

and hence

A = (CT
[S′1, . . . ,S

′

k])
−1CT

[Sk+1, . . . ,Sν].

Since 〈C`,S′i〉 = 0 for 1 ≤ ` < i ≤ k and 〈Ci,S
′

i〉 6= 0, the matrix

CT
[S1, . . . ,Sk] is lower triangular with non-zero entries on the

diagonal and hence invertible. We need to compute three
matrix products and one matrix inversion. Each of them can
be performed with O(mω) arithmetic operations. We conclude
that the cumulative update of Sk+1 to Sν at the end of phase
k requires only O(mω) arithmetic operations instead of the
Θ(m3) operations for the continuous update. We can carry
this idea further by applying it recursively, for example, by
not updating Sbk/2c+1 to Sk in the first bk/2c phases, but doing
a bulk update of these vectors after phase bk/2c. We thereby
obtain Algorithm 3.

Consider a call of procedure MimimumCycleBasis which is
not innermost and let r = u− `+ 1, s = k− `+ 1 and t = u− k.
In the update of the vectors Sk+1 to Su, we perform (s,m, s),
(s,m, t), (s, s, t), (m, s, t)matrix multiplications,6 one inversion
of an s × s matrix, and one addition of two m × t matrices. If
we split all matrices into blocks of s× s matrices and use fast
matrix methods for the blocks, the update requires O((m/s)sω)
arithmetic operations. The total number U of arithmetic
operations for all updates follows the recursion

U(r) =

{
0 if r = 1
O((msω−1))+ U(s)+ U(r− s) if r > 1 and s = dr/2e.

6 An (a,b, c) matrix multiplication multiplies an a × b matrix
with a b× c matrix.
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Fig. 21 – An example of the graph GS, where S = {(1,2)}.
Since the edge (1,2) belongs to S we have the edges
(1−,2+) and (1+,2−) connecting vertices on different sides.
The edges not in S, i.e., (1,4), (2,4), and (3,4) have copies
on both sides.

This recurrence has solution U(r) = O(mrω−1). In our
outermost call, r = ν = O(m). We conclude that the total
number of arithmetic operations in the update steps is O(mω).

Lemma 5.6. The total number of arithmetic operations performed
in lines 10 to 12 of Algorithm 3 is O(mω). In a computation over
GF(p) with logp = O(logm), the time spent in lines 10 to 12 is
O(mω).

5.4. Computing the circuits

We now come to the second main ingredient of the minimum
cycle basis algorithm. Given a non-zero vector S, compute a
minimum weight circuit C with 〈S,C〉 6= 0. We know from
Theorem 5.3 that the search can be restricted to H . We will
exploit this fact in Sections 5.4 and 5.7. Now, we will show
how to find C without this additional knowledge.

We first consider the undirected case and nonnegative
edge weights and reduce the computation to n shortest-
path computations. Over GF(2), the vector S is zero-one and
therefore corresponds to a subset of E; 〈S,C〉 6= 0 if and only if C
uses an odd number of edges in S. The following construction
is well known [41,42]. The signed graph GS is defined from
G = (V,E) and S in the following manner. GS has two copies
for each vertex v ∈ V. Call them v+ and v−. Let e = (u,v) be
any edge of G. If e 6∈ S, we put the edges (v+,u+) and (v−,u−)
into GS and if e ∈ S, we put the edges (v+,u−) and (v−,u+)
into GS. In either case, the edges inherit the weight of e. Fig. 21
illustrates the construction. The vertices of GS naturally split
into a + side and a − side. Edges of GS corresponding to
edges in E \ S connect vertices on the same side, and edges
corresponding to edges in S connect vertices on opposite
sides.

A path in G starting at a node v lifts to two paths in GS,
one starting in v+ and one starting in v−. The path ends on
the other side if and only if it uses an odd number of edges in
S. So a circuit passing through v and using an odd number of
edges in S lifts to a simple path of the sameweight connecting
v+ and v−. The lifted path does not use both copies in GS of an
edge of G. Conversely, consider a path p connecting v+ to v−
in GS. It may use both copies of an edge of G. In our example,
the path 〈3+,4+,1+,2−,4−,3−〉 uses both copies of (3,4). We
split

p = 〈v+, . . . , x∗〉(x∗, yĎ)〈yĎ . . . y−Ď〉(y−Ď, x−∗)〈x−∗, . . . ,v−〉

at the two copies of an edge, say (x, y) such that the “middle
part” q = 〈yĎ . . . y−Ď〉 does not use both copies of any edge; q
connects y+ and y− and w(q) ≤ w(p) since edge weights are
nonnegative. We summarize the discussion in:

Lemma 5.7. For each v ∈ V, let pv be a minimumweight minimum
cardinality path7 from v+ to v− in GS. Let v0 be such that pv0 has
minimumweight among the paths pv. Break ties in favor of the path
containing fewer edges. Let C = Cv0 be the projection of pv0 into G.
C is a minimum weight cycle in G using an odd number of edges
in S.

The computation of the path pv0 can be performed by
computing n shortest (v+,v−) paths, one for each vertex v ∈ V,
each by Dijkstra’s algorithm in GS and taking their minimum,
or by one invocation of an all-pairs shortest-paths algorithm
in GS. This computation takes O(n(m + n logn)) time. Note
that depending on the relation between m and n, we may
choose which shortest-paths algorithm to use. For example,
in the case when the edge weights are integers, or the
unweighted case, it is better to use faster all-pairs shortest-
paths algorithms than run Dijkstra’s algorithm n times.

Computation over GF(p): The signed graph technique extends
to computations over GF(p) [43]. The entries of the vector S
are now in {0, . . . ,p − 1}. Accordingly, we have p levels and p
copies v0 to vp−1 of each edge. An edge e ∈ E with s = S(v)
gives rise to edges (vi,vi+s) for 0 ≤ i < p. Superscripts are to
be read modulo p, but everything else is as before. Because of
the larger graph, the cost of the shortest-path computation is
multiplied by p.

Hariharan et al. [37] were able to remove the factor of p
in the running time. Consider a shortest-path computation
starting at v0. The algorithm outlined in the previous para-
graph computes for each w and each i ∈ {0, . . . ,p− 1} a short-
est path to wi. The improved algorithm computes for every w
only two paths. Let i0 be such that the path from v0 to wi0 is
no longer than to any wi and let i1 be such that the path from
v0 to wi1 is no longer than to any wi with i 6= i0. The algorithm
computes the paths to wi0 and wi1 and this can be done in
Dijkstra-time.

We will not go into more detail since the following section
presents a simpler and faster approach which is, furthermore,
the same for all GF(p).

Labeled trees: We know from Theorem 5.3 that the search for a
shortest circuit Ci with 〈Ci,Si〉 6= 0 in line 6 of Algorithm 3may
be restricted to the circuits in H . A compact representation of
the circuits in H is given by the shortest-path trees Tv, v ∈ V.
For v ∈ V, each edge e = (x, y) connecting vertices in distinct
subtrees of Tv gives rise to the circuit Cv,e ∈H .

How can we compute 〈Cv,e,Si〉 efficiently? The idea [31] is
to precompute most of the inner product. For any v and w, let

7 A minimum weight minimum cardinality path from v+ to v−

is a minimum weight path from v+ to v−. Among the minimum
weight paths, it has a minimum number of edges.
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pv,w be the path from v to w in Tv. We label w in Tv with `v,w =
〈pv,w,Si〉. For fixed v, the labels `v,w can be computed in O(n)
arithmetic operations. It takes O(n2) arithmetic operations to
label all trees. Once the labels are available, 〈Cv,e,Si〉 can be
computed with a constant number of arithmetic operations.
If e = (x, y),

〈Cv,e,Si〉 = `v,x + Si(e)− `v,y.

Lemma 5.8. If the shortest-path trees Tv, v ∈ V, are available, the
minimum weight cycle C ∈ H with 〈C,Si〉 6= 0 can be found with
O(nm) arithmetic operations.

5.5. Computing shortest-path trees

For nonnegative edge weights, we use Dijkstra’s algorithm
and obtain:

Lemma 5.9. If edge weights are nonnegative, the shortest-path
trees Tv, v ∈ V, can be computed in O(n(m+ n logn)) time.

For conservative edge weights, heaviermachinery needs to
be used. It is known that computing all-pairs shortest paths
in undirected graphs with real edge weights but no negative
cycles can be computed by solving a sequence of general
weighted matching problems.8

Lemma 5.10. If edge weights are conservative, the shortest-path
trees Tv, v ∈ V, can be computed in O(n2m+ n3 logn) time.

Proof. The single-sink single-source shortest-path problem
in a conservatively weighted undirected graph reduces to
a weighted perfect matching problem in a graph with O(n)
vertices and O(m) edges [30, page 278] and hence can be
solved in O(n(m + n logn)) time [44]. The construction of
the perfect matching problem consists of n “searches”; each
search takes O(m + n logn) time. The all-pairs shortest-path
problem can be reduced to a perfect matching problem plus
n2 searches [30, page 279]. �

5.6. Putting it together

We can now put the pieces together.

Theorem 5.11 ([36,31]). For nonnegative weight functions, a
minimum weight undirected cycle basis can be computed in
O(m2n/ logn+mn2) time.

Proof. It takes O(nm + n2 logn) time to compute the shortest-
path trees (Lemma 5.9), O(mω) time (Lemma 5.6) to compute
the Si, 1 ≤ i ≤ ν, and O(nm2) time to determine the cycles Ci,
1 ≤ i ≤ ν. The total running time is O(m2n).

Mehlhorn and Michail [31] have shown that word paral-
lelism on words of O(logn) bits can be used to extract the
cycles in O(m2n/ logn) time at the cost of increasing prepro-
cessing time to O(mn2). �

8 In directed graphs with no negative cycles, one solves
one single-source problem to obtain a potential function. The
potential function is then used to obtain an equivalent problem
with non-negative edge weights. This reduction does not work
for undirected graphs. Also, observe that making an undirected
graph bidirected will turn a negative edge into a negative cycle.
Theorem 5.12 ([37,31]). For nonnegative weight functions, a
minimum weight directed cycle basis can be computed in O(m3n)
time.

Proof. According to Theorem 3.8, it suffices to compute the
minimum GF(p)-basis for m primes larger than n. The best
such basis is a minimum weight directed cycle basis.

For each fixed p, it takes O(nm + n2 logn) time to compute
the shortest-path trees (Lemma 5.9), O(mω) time (Lemma 5.6)
to compute the Si, 1 ≤ i ≤ ν, and O(nm2) time to determine the
cycles Ci, 1 ≤ i ≤ ν. The total running time is O(m2n) for each
p and hence O(m3n), altogether. �

Theorem 5.13 ([37,31]). For nonnegative weight functions, a
minimum weight directed cycle basis can be computed in O(m2n)
time with a probability of at least 1/2.

Proof. According to Theorem 3.8, it suffices to compute the
minimum GF(p)-basis for a prime p chosen randomly from a
set of m primes larger than n. For such a prime the minimum
GF(p)-basis can be computed in O(m2n) time. �

Theorem 5.14. For conservative weight functions, a minimum
undirected cycle basis can be computed in O(n3 logn+m2n/ logn+
mn2) time.

Proof. Follows from Lemmas 5.10, 5.6 and 5.8, and the remark
made in the proof of Theorem 5.11. �

Theorem 5.15. For conservative weight functions, a minimum
directed cycle basis can be computed in O(m3n) time.

Proof. Follows from Theorem 3.8, and Lemmas 5.10, 5.6 and
5.8. �

Theorem 5.16. For conservative weight functions, a minimum
directed cycle basis can be computed in O(n3 logn+m2n) time with
a probability of at least 1/2.

Proof. Follows from Theorem 3.8, and Lemmas 5.10, 5.6 and
5.8. �

5.7. A solution in Monte Carlo running time O(mω)

We will show that minimum weight undirected and directed
bases can be computed in Monte Carlo time O(mω). The
improvement is based on two observations:

• The search for a minimum cycle basis can be restricted to
a subset of the Hortonmulti-set, namely the set of isometric
circuits, which have total length O(nm).

• The extraction of the minimum weight basis from the
set of isometric circuits can be done in Monte Carlo time
O(mω) and with an exponentially small error probability.

We introduce isometric circuits in Section 5.7.2 and show
that the set of isometric circuits contains a minimum weight
basis and that their total length is O(nm). The proofs require
that shortest paths be chosen in a careful way. We therefore
discuss unique shortest paths in Section 5.7.1. Finally, the
selection of the minimum weight basis from the set of
isometric circuits is discussed in Section 5.7.3.
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Fig. 22 – Hartvigsen and Mardon’s algorithm for constructing best paths.
5.7.1. Best paths
For the improved algorithm, we need to select shortest paths
carefully. We need to select a collection puv of shortest paths
such that any subpath of any puv is also in the collection
and such that if puzpzv is a shortest path connecting u and
v, then puv is equal to this path. The latter condition amounts
to uniqueness of shortest paths. We discuss two methods
for making shortest paths unique, a deterministic method
by Hartvigsen and Mardon [45] and a simple randomized
method. We will refer to unique shortest paths as best paths.

A deterministic solution: Let E = {e1, e2, . . . , em}. We order E via
e1 < e2 < · · · < em. With any set P = {ei1

< ei2
< · · · <

eik
} ⊆ E, we associate the tuple (w(P), k, ei1

, . . . , eik
). If P and

Q are distinct sets of edges, we say that P is better than Q and
write P ≺ Q if the tuple for P precedes the tuple for Q in the
lexicographic ordering, i.e., if either the weight of P is lower
than the weight of Q, or the weights are the same and the
cardinality of P is lower, or weights and cardinalities are the
same and min(P \ Q) < min(Q \ P). The relation “better” is a
linear ordering. Paths and circuits can be viewed as sets of
edges and hence we can order paths and circuits by ≺.

For any two nodes u and v, let puv be the best path from u to
v in G with respect to the ordering defined above. The empty
path is the best path from any node to itself and puv = pvu.
Subpaths of best paths are best, i.e., if x and z lie on puv then
the subpath of puv connecting x and z is equal to pxz.

Hartvigsen andMardon [45] showed that any shortest-path
algorithm can be extended to compute best paths (Fig. 22). We
first modify w to w′, where w′(e) = w(e) + ε and ε is a positive
infinitesimal.9 The effect of this change is that the order of
paths with different weights is not changed and that for paths
of the sameweight, the shorter path is preferred. Let d(u,v) be
the shortest path distances according to the modified weight
function (computed by any all-pairs shortest-path algorithm).

We now consider the pairs (u,v) in order of increasing
d(u,v) values; ties are broken arbitrarily. We assume
inductively that pxy is already computed for (x, y) with

9 Addition and comparison in R augmented by a positive
infinitesimal is as follows: we have (a+bε)+(c+dε) = (a+b)+(c+d)ε
and (a+ bε) < (c+ dε) if either a < c or a = c and b < d.
Fig. 23 – Selection of puv: There are three paths from u to v
realizing d(u,v). We pair u′ and v′ and u′′ and v′′; u′′′ is not
paired with any neighbor of v.

d(x, y) < d(u,v) and show how to compute puv in deg(u)+deg(v)
time. Hence, the total time is O(nm). puv is either the edge
uv or a proper path. The former is the case if and only if
d(u,v) = w′(uv). So assume that puv is a proper path and
let x and y be the neighbors of u and v on puv. Then puv =

uxpxv = puyyv, d(u, y) < d(u,v) and d(x,v) < d(u,v). Thus puy

and pxv are already available and x and y will be paired in the
inner for-loop. For any pair (u′,v′) that is formed in the inner
for-loop, uu′pu′v′v

′v is a minimum weight path of minimum
length connecting u and v. Moreover, puv′ = uu′pu′v′ and
pu′v = pu′v′v

′v; see Fig. 23. How can we select the best among
these paths? The crucial observation is that the candidate
paths are edge-disjoint; thus if p and q are candidate paths,
min(p \ q) < min(q \ p) if and only if minp < minq. Indeed,
consider candidate paths p and q and assume that both pass
through z. Then puz is a prefix of p as well as q and pzv is a
suffix of p as well as q. Thus p = q.

In summary, the time to compute best paths is the time
to solve the all-pair shortest-path problem for the modified
weight function w′ plus O(n2 logn) time to sort the d(u,v)’s
plus O(nm) time to extract best paths. The sorting step can be
avoided, see Lemma 5.17.

Remark The all-pair shortest-path problem can be solved
in O(nm + n2 logn) time. Pettie [46] improved this recently
to O(nm + n2 log logn). For planar graphs there is an O(n2)
algorithm [47] and for undirected graphs with integer edge
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weights, there is an O(nm) algorithm [48]. Thus, for sparse
graphs with m = O(n), the sorting step will be the bottleneck.
However, the sorting step is not required.

Lemma 5.17. Best paths can be computed in O(APSP + nm) time,
where APSP is the time to solve the all-pairs shortest-path problem
for the modified weight function.

Proof. We replace sorting by a topological ordering of a
suitable directed graph. The vertices are the pairs (u,v) with
u,v ∈ V. We have an edge from (u,v′) to (u,v) if v′v ∈ E and
d(u,v′) +w′(v′v) = d(u,v), and we have an edge from (u′,v) to
(u,v) if uu′ ∈ E and w(uu′) + d(u′v) = d(u,v). The number of
edges is 2nm. We process the nodes in topological order. �

A randomized solution: We set w′(e) = w(e)+ ε+ reε
2, where ε is

a positive infinitesimal and re is a random integer in [0..M−1]
for M = 2n2m2. For nodes x and y and integer `, let d(x, y, `) be
the minimum weight (with respect to weight function w′) of a
path of length ` connecting x and y. If shortest paths are not
unique, there must be an `, 1 ≤ ` ≤ n, a node x, and edges uy
and vy with u 6= v such that

d(x,u, `− 1)+w′(uy) = d(x,v, `− 1)+w′(vy).

There are fewer than n2m2 such choices. For each choice,
the probability that the event happens is at most 1/M. Thus,
the probability that shortest paths are not unique is at most
n2m2/M.

We run our favorite all-pairs algorithm for weight function
w′. Let d be the computed distance function. We perform
the following check: For any pair (x, y) with x 6= y, we check
whether there are two neighbors, u and v, of y with d(x, y) =
d(x,u) + w′(uy) = d(x,v) + w′(vy). If this is the case for some
pair (x, y), we declare the perturbation a failure, choose new
values re, and repeat. The check takes O(nm) time.We fail with
a probability of at most 1/2 and hence the expected number
of trials is at most 2.

Lemma 5.18. Best paths can be computed in Las Vegas time
O(APSP+nm), where APSP is the time to solve the all-pairs shortest-
path problem.

Circuits are also ordered by the weight function w′. A
circuit C is better than a circuit C′ if and only if w′(C) < w(C′).
Distinct circuits may have the same weight.

5.7.2. Isometric circuits
For any pair, u and v, of nodes, let puv be a best path
connecting u and v. In the preceding section, we learned how
to compute a collection of best paths. Horton [12] introduced
the notion of isometric circuits. A circuit C is isometric if for
any two vertices, u and v, on C, puv is contained in C. We
use I to denote the set of isometric circuits. Actually, Horton
called a cycle isometric if for any two vertices, u and v,
some shortest path connecting u and v is contained in C. Of
course, with this definition the number of isometric circuits
may be exponential. With the definition given here and an
unfortunate choice of designated shortest paths, the set of
isometric paths may be empty, as Fig. 24 shows. With the
right choice of designated shortest paths, isometric circuits
exist and can be used for a minimum weight basis.
Fig. 24 – All edges have weight zero. If (1,5,3) is chosen as
p1,3, (2,1,5,3,4) as p2,4, and (4,1,2,3,5) as p4,5, then no
circuit is isometric. The deterministic strategy of
Section 5.7.1 selects all edges as shortest paths and sets
p1,3 = (1,2,3), p2,4 = (2,1,4), p2,5 = (2,1,5), and
p4,5 = (4,3,5). The circuits (1,2,3,4,1) and (1,2,3,5,1) are
isometric, but the circuit (1,4,3,5,1) is not.

Lemma 5.19 ([39]). I contains a minimum weight κ-basis.

Proof. We run the greedy algorithm for cycle bases on the
set of all circuits ordered by the relation “better” defined
in the preceding subsection; ties are broken arbitrarily. The
algorithm starts with the empty basis and considers the
circuits in order of decreasing quality. Whenever a circuit is
encountered that is independent of the current basis, the
circuit is added to the current basis. We claim that the
algorithm chooses only circuits in I.

Consider a circuit C 6∈ I and let B be the partial basis when C
is considered for inclusion in B. There are vertices u and v on
C such that C does not contain puv. Split C at u and v to obtain
a path p1 from u to v and a path p2 from v to u. Consider the
cycles C1 = p1pvu and C2 = p2puv. We have C = C1+C2 and C1
and C2 are better than C. Thus, both circuits were considered
before C and hence lie in the span of B. Thus, C lies in the span
of B and is not added to B. �

Lemma 5.20 ([12]). Let C be any isometric circuit and let x be an
arbitrary vertex of C. Then there is an edge e = (u,v) on C such that
C = pxuepvx. Conversely, if for every x ∈ C, there is such an edge,
then C is isometric.

Proof. Let C = (x = v0,v1, . . . ,vk = x). Since the empty path is
the minimum weight path from x to x and C is not the mini-
mum weight path from x to x, there must be an i such that
pxvi = (v0,v1, . . . ,vi) but pxvi+1 6= (v0,v1, . . . ,vi,vi+1). Then
pxvi+1 = (vk,vk−1, . . . ,vi+1) and hence e = (vi,vi+1) is the de-
sired edge.

For the converse, consider any two nodes x and z on C and
let e = uv be such that C = pxuepvx; z lies on one of the paths
and subpaths of best paths are best paths. Thus C contains
pxz. �

Recall the definition of the Horton multi-set H . It consists
of all circuits Cx,e = pxuepvx, where e = uv and the paths
pxu and pxv do not share a first edge. By Lemma 5.20, each
isometric circuit C is a Cx,e for |C| different nodes x.

Lemma 5.21 ([39]). The total length of the isometric cycles is at
most nm.
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a
b

Fig. 25 – In (a) all edges have weight one; we select e1e2 as the best path connecting 1 and 3. The pairs (1, e2) and (3, e1) do
not contribute a circuit to the Horton set. The circuits C1,e3 and C3,e4 are bad by condition 2c. For the former cycle let x = 1,
u = 3, and v = 4; then 2 = s1(3) and 1 6= s2(4) and 3 6= s4(2). The other circuits are connected as shown below the graph. (b)
shows an isometric circuit C embedded onto a circle. The edges correspond to the circular arcs between the vertices and the
length of an arc is proportional to the weight of the corresponding edge. For any vertex v, we have C = Cv,e where e contains
the mirror image of v with respect to the center of the circle. We have the following connections: C1,e4 and C2,e4 are
connected by condition 2a, C2,e4 and C5,e2 are connected by condition 2b, and so on.
Proof. An isometric cycle C occurs |C| times in the Horton
multi-set and hence

∑
C∈I |C| can be no larger than the

cardinality of the Horton multi-set. �

We will next show that we can extract I from the Horton
multi-set in O(nm) time. For any node x, let Tx be the best-
path tree rooted at x, i.e., Tx is the union of the paths pxv over
all v. For every node v 6= x, let sx(v) be the child of x in Tx
containing v in its subtree. In other words, sx(v) is the first
node on the best path from x to v. The vectors sx for all x ∈ V
can be the computed in O(n2) time. The following lemma
shows how to identify different representations of the same
isometric circuit and how to discover non-isometric circuits.
The Hortonmulti-set consists of all Cx,e with e = uv and either
sx(u) 6= sx(v) or x ∈ {u,v} and e 6= puv.

Lemma 5.22 ([39]). Consider C = Cx,e ∈H .

1. If x is an endpoint of e, say e = xv, then C = epxv = Cv,e.
2. If x is not an endpoint of e, say e = uv, and x′ = sx(u) is the first

node on the best path from x to u then:
(a) if x = sx′ (v), then Cx′,e = C,
(b) if x 6= sx′ (v) and u = sv(x′) then C = Cv,xx′ , and
(c) if x 6= sx′ (v) and u 6= sv(x′) then C is not isometric.

Proof. If e = xv, we have C = pxvvx = xvpvx = Cv,e. This
establishes 1. Now assume that x is not an endpoint of e. Let
e = uv and let x′ be the first vertex on the best path from x to
u. Then pxu = xx′px′u.

If x is the first vertex on the best path from x′ to v, then
pux′px′v = puxpxv. Thus C = Cx′,e. This establishes 2a.

Now assume that x is not the first vertex on the best path
from x′ to v. If C is isometric, the best path from x′ to v must
be px′u followed by e. Therefore u is the first vertex best path
from v to x′. This establishes 2c. Conversely, if u is the first
vertex on the best path from v to x′, pvx′ = vupux′ and hence
C = pvxxx′px′v = Cv,xx′ . This establishes 2b. �
Lemma 5.22 allows us to identify different representations
of the same isometric circuit. It also allows us to exclude some
circuits as non-isometric. We next show that all representa-
tions of an isometric circuit will be identified and all non-
isometric circuits will be discovered. We set up a graph whose
vertices are the pairs (x, e), x ∈ V, e ∈ E. Let u be either end-
point of e and let v the other endpoint. We label (v, e) as bad if
either (x, e) does not contribute a circuit to H or condition 2c
holds. We connect two pairs if they satisfy condition 1 or 2a
or 2b; see Fig. 25.

Lemma 5.23 ([39]). All representations of an isometric circuit
belong to the same connected component.

Proof. Let C = (v0,v1, . . . ,vk = v0) be an isometric circuit, let
ei = (vi,vi+1), and for any i, 0 ≤ i < k, let j(i) be such that
C = Cvi,ej(i) . Fig. 25 shows how the different representations of
C are linked together. In this figure, a representation Cvi,ej(i) is
indicated as a dashed arrow from vi to ej(i). In cases 1 and
2a, vi and vi+1 point to the same edge, i.e., the tail of the
arrow advances by one position. In case 2b, we replace the
arrow from vi to ej(i) = vj(i)vj(i)+1 by the arrow from vj(i)+1 to
vivi+1, i.e., we reverse the direction of the arrow and it now
points from the tail of ej(i) to the cycle edge out of vi. In this
way, the arrow sweeps around the circuit once and links all
representations of the same circuit. �

Lemma 5.24 ([39]). If Cv,e is non-isometric then the component of
(v, e) contains a bad pair.

Proof. Let C = (v0,v1, . . . ,vk = v0) be a non-isometric circuit
and let ei = (vi,vi+1). For some, but not all, i, 0 ≤ i < k, there
will be a j(i) such that C = Cvi,ej(i) . Observe that if C = Cvi,ej(i) ,
the best paths from vi to the vertices of C are initial segments



C O M P U T E R S C I E N C E R E V I E W 3 ( 2 0 0 9 ) 1 9 9 – 2 4 3 227
of either pvivj(i) or pvivj(i)+1 . Also, if the best path from vi+1
to vj(i)+1 is contained in C, then either C = Cvi+1,ej(i) or C =
Cvj(i)+1,ei .

Thus, if C is non-isometric, there must be i such that the
best path from vi+1 to vj(i)+1 is not contained in C. For any
such i, (vi, ej(i)) will be declared bad. Thus, if Cv,e is non-
isometric, its component will contain a bad pair. �

Theorem 5.25 ([39]). In O(nm) time, we can extract for each
isometric cycle one pair (v, e) with C = Cv,e.

5.7.3. The algorithm
We assume κ = GF(p). We refine de Pina’s approach by select-
ing in phase i a minimum weight isometric circuit instead of
a minimum weight circuit from the Horton set, i.e., line (4) of
Algorithm 1 is changed into:

find a minimum weight isometric circuit Ci with 〈Ci,Si〉 6= 0.

A probabilistic search technique finds this circuit quickly.

Lemma 5.26 ([39]). Let C be a collection of circuits. For each
circuit C ∈ C, let λC ∈ GF(p) be chosen randomly and let D =∑

C∈C λCC. Let S be a non-zero vector in GF(p)E. If all circuits in
C are orthogonal to S, D is orthogonal to S. If C contains a circuit
that is non-orthogonal to S, D is orthogonal to S with a probability
of at most 1/p.

Proof. Clearly, if every circuit in C is orthogonal to S, then so
is D.

Assume next that C′ ∈ C is non-orthogonal to S and
consider a fixed choice of coefficients λC for the circuits C ∈ C,
C 6= C′. Also assume that there are two distinct choices α
and β for λC′ such that

∑
C∈C λCC are orthogonal to S. Then

αC′+
∑

C∈C,C 6=C′ λCC and βC′+
∑

C∈C,C 6=C′ λCC are orthogonal
to S. Thus (β−α)C′ is orthogonal to S, which is a contradiction.
Thus the probability that 〈D,S〉 = 0 is at most 1/p. �

Consider the |I| ≤ nm isometric circuits. We sort them by
nondecreasing weight and put a binary tree (of depth of at
most lognm, that is, O(logn)) on top of the sorted list. For each
node of the tree, we prepare k random linear combinations of
the circuits below the node. We find the cheapest circuit that
has non-zero inner product with Si as follows. Assume the
search has reached some node of the tree. We compute the
inner product of Si with the k linear combinations associated
with the left child. If one inner product is non-zero, we
proceed to the left child. If all k inner products are zero, we
proceed to the right child. The move to the left child is always
correct. However, themove to the right childmay be incorrect.
The probability that any specific decision is incorrect is at
most p−k. In any search, we make log |I| decisions, and we
need to find ν circuits. Thus the total number of decisions is
ν log |I| and hence the total probability of error is bounded by
ν log |I|p−k.

Each step of the binary search is a scalar product and
hence selecting one circuit takes O(km logn) time. Selecting
all circuits takes O(km2 logn) time.

How much time does it take to prepare the random linear
combinations? We maintain them as sparse vectors, i.e., as
the ordered list of their non-zero entries. In order to prepare
one linear combination for each node of the search tree, we
choose a randommultiplier λC ∈ κ for each isometric circuit C.
Fig. 26 – The envelope graph.

We then sum the sparse vectors as indicated by the tree.
Each non-zero entry of a circuit contributes cost O(1) for each
level of the tree and hence the total time to prepare one
random linear combination for each node of the search tree is
O(nm logn), by property 5.21. We want k linear combinations
for each node and hence require O(knm logn) time to prepare
all of them.

Theorem 5.27 ([39]). There is a Monte Carlo algorithm for finding
a minimum GF(p)-basis that works in O(nm + n2 logn + mω

+

km2 logn) time and errs with a probability of at most ν log(nm)p−k.
For k = m0.1, this is exponentially small, and the running time is
O(mω).

Undirected bases are GF(2)-bases and hence we are done.
For directed cycle bases we use Theorem 3.8, namely that a
minimum GF(p)-basis for a random p with p = Θ(m logm) is a
minimum directed basis with a probability of at least 1/2.

Theorem 5.28 ([39]). There is a Monte Carlo algorithm for finding
a minimum directed cycle basis that works in O(mω) time and errs
with a probability of at most 1/2.

5.8. A greedy algorithm for integral cycle bases?

Both the greedy algorithm (Section 5.1) and de Pina’s
approach (Section 5.2) fundamentally rely on Theorem 3.10,
namely the fact that all subsets of K-bases in G constitute a
matroid for K ∈ {D,U}. This is not true for integral bases.

Theorem 5.29 ([32]). The system of all subsets of integral cycle
bases in G is not a matroid.

Proof. We exhibit a graph with two integral cycle bases B1 and
B2 and a circuit C1 ∈ B1 \B2 such that for no circuit C2 ∈ B2 \B1,
is B1 \ {C1} ∪ {C2} again an integral basis.

Consider the directed envelope graph shown in Fig. 26 and
the spanning tree T indicated by the bold edges. The bases
B1 and B2 are given by the cycle matrices (only the parts
corresponding to non-tree edges are shown)

Γ1 =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 and Γ2 =


1 0 1 1
1 1 0 0
1 1 1 0
1 1 0 1

 .
The bases are integral since |detΓ1| = |detΓ2| = 1. Now
choose the circuit in the first column of Γ1 – call it C1 – to exit
the basis. Of course, neither the third nor the fourth circuit in
B2 can replace C1 since both already appear in B1 \ {C1}. But
adding the first or the second circuit of B2 results in a cycle
basis of determinant 2 or 3, respectively. �
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Fig. 27 – An integral cycle basis B1 of G with a total weight of 1169.
Fig. 28 – The (unique) minimum integral cycle basis B2 of G with a total weight of 1168.
Theorem 5.29 does not yet imply the failure of the greedy
algorithm nor of de Pina’s approach, since the weights of
cycles in G cannot be chosen independently for each cycle. A
greedy algorithm for minimum integral bases would consider
circuits in order of increasing weight. It would maintain a
partial basis that can be extended to an integral basis and add
a circuit to the current basis if this property is maintained. It
is not known how to implement this strategy efficiently. In
any case, it would not work.

Theorem 5.30. The greedy algorithm may end up with a non-
optimal integral cycle basis of G.

Proof. We again consider the graph introduced in Lemma 3.20
together with the same two integral bases B1 and B2 depicted
in Figs. 27 and 28. In contrast to Lemma 3.20, we assign
other weights to the edges. Let every inner and outer edge
have a weight of 5 whereas every spoke has a weight of 19.
Then the first 22 cycles in B1 are the only ones in G whose
weights do not exceed 53. Moreover, there are exactly two
cycles, the inner cycle CI and the outer cycle CO, with weight
55 and the weight of every other cycle is at least 58. Under this
assignment of weights, B1 has a total weight of 1169 whereas
the weight of B2 is 1168.

As a consequence, B2 is the unique minimum integral
cycle basis. On the other hand, the greedy algorithm first
picks the 22 cycles of weight of at most 53. These cannot be
extended to an integral basis by adding CI nor CO and hence
the greedy algorithm will end up with a basis similar to B1
and thus with a non-optimal basis. �

Finally, we observe that the basis B1 in the preceding proof,
although non-optimal, constitutes a locally optimal integral
cycle basis of G, i.e. B1 cannot be improved by an exchange of
a single cycle in G. This is true since the only two exchanges
which would decrease the weight of B1 are the replacement
of the 58-circuit by either CI or CO, but both result in a non-
integral basis. Hence a local-search procedure fails in general;
de Pina’s approach can be interpreted as such a local search.

5.9. Planar graphs

For planar graphs, a minimum undirected cycle basis can be
computed in O(n2) time, a minimum 2-basis can be computed
in linear time, and the notions of minimum directed, undi-
rected, integral, and weakly fundamental and totally unimod-
ular bases coincide. The algorithm was found by Hartvigsen
and Mardon [45]; Amaldi et al. [39] improved the running time
from O(n2 logn) to O(n2).

Let G be a plane graph, i.e., a planar graph that is
embedded into the plane. A plane graph divides the plane into
maximal open connected sets of points that we call faces. Any
circuit C divides the plane into two maximal open connected
sets of points, one bounded and one unbounded. We use
interior(C) to denote the bounded set. If interior(C) agrees with
one of the faces of G, we call C a face circuit. A collection of
circuits is called nested if, for any two circuits C and D in the
collection, the interiors are either disjoint or the interior of
one is contained in the interior of the other.

For a collection B of circuits, let FB be the face circuits that
do not belong to B. We define the directed inclusion graph DB
with vertex set B ∪ FB as follows. Let C and C′ be circuits in
B ∪ FB. We have an edge from C to C′ if interior(C) ⊂ interior(C′)
and there is no circuit C′′ ∈ B ∪ FB such that interior(C) ⊂
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interior(C′′) ⊂ interior(C′). The inclusion graph is acyclic; the
sources of the inclusion graph are precisely the face circuits
of G. The inclusion graph is a forest if and only if B is nested.

Theorem 5.31 ([45]). Let G be a plane graph. G has a minimum
(directed or undirected) cycle basis that is nested. The number of
isometric cycles is at most twice the number of faces of G.

Proof. The circuits in a basis are isometric ( Lemma 5.19). In
a plane graph, any two isometric circuits have either disjoint
interiors or the interior of one is contained in the interior of
the other.

Let B be the set of all isometric circuits. The inclusion
graph DB is a forest with f leaves, where f is the number of
faces of G. Each non-leaf has an indegree of at least two. Thus,
the number of nonleaves is at most f − 1. �

Theorem 5.32 ([45]). Let G be a plane graph. A nested collection B
of circuits is a minimum (directed or undirected) cycle basis iff B is a
minimum weight collection of circuits satisfying the following three
properties:

1. the inclusion graph DB is a forest,
2. every non-leaf in DB has exactly one child in FB, and
3. the circuits in FB have parents in DB.

Proof. Assume first that B is a basis. We first observe that the
number of circuits in B that are not face circuits is equal to the
number of face circuits that do not belong to B since the face
circuits form a basis and all bases have the same cardinality.

If B is nested, the inclusion graph is a forest. Consider any
non-leaf C of DB. If no child of C belongs to FB, C is the sum
of its children and B is not a basis. Thus any non-leaf C has
at least one child in FB. The nonleaves of the inclusion graph
are precisely the circuits in B that are not face circuits. Thus,
any non-leaf has exactly one child in FB and every circuit in
FB must have a parent.

Conversely, assume that B is a minimum cost collection of
circuits satisfying (1) to (3). Since DB is a forest, B is nested.
Since the circuits in FB have parents in DB and these parents
are distinct, the number of nonleaves in DB is exactly the
number of circuits in FB. So B has the right number of circuits
for a basis. Finally, any face circuit is representable as a sum
of circuits in B. This is obvious for the face circuits that belong
to B. For the face circuits in FB, it follows from (2) and (3). �

We now come to the algorithm for finding a minimum
weight basis. We start by computing the best-path trees Tv

for all vertices v; by Lemma 5.17 this takes O(n2) time plus
the time to solve the all-pair shortest-path problem. Freder-
ickson [47] showed how to compute all-pair shortest paths in
planar graphs in O(n2) time. The Horton multi-set consists of
O(n2) cycles. In O(n2) time, we extract one copy of each iso-
metric circuit from it (Theorem 5.25). The number of isometric
circuits is O(n) (Theorem 5.31). We sort the isometric circuits
by weight; it takes O(n2) time to determine the weights and
O(n logn) time to sort.

We construct the incidence matrix A between isometric
circuits and the faces of G. The entry corresponding to a
circuit C and a face F is one if F ⊆ interior(C). This matrix can
clearly be computed in O(n2) time.

We initialize the basis B to the empty set and set up the
corresponding inclusion graph DB. The vertices of DB are the
face circuits and there are no edges. As long as B does not
have the right number of circuits, meaning DB does not satisfy
(2) and (3), we do the following. If there is a non-leaf node
C that has two children in FB (case 1), let R1 and R2 be two
face circuits in FB having C as their common parent. If there
is no such non-leaf node, there must be a face circuit in FB
without a parent (case 2). Let R1 be this face and let R2 be
the unbounded face. In either case, we find the least weight
circuit D containing exactly one of R1 or R2 in its interior. We
can find D in time O(n) by scanning the columns of A.

We add D to B and update DB. If D is a face circuit, we
only have to remove D from FB. The inclusion graph stays the
same. If D is not a face circuit, we determine, starting from
the face circuits in interior(D) (we can find them in matrix A),
the maximal subtrees of DB that are contained in interior(D).
They become children of D. D either becomes a root (in case
2) or a child of C (in case 1). Updating DB takes O(n) time.

We conclude that we time O(n) time per base circuit for a
total of O(n2).

Theorem 5.33 ([45,39]). A minimum (directed or undirected)
circuit basis of a planar graph can be found in O(n2) time.

Hartvigsen and Mardon [45] observed that the minimum
cycle basis problem is dual to the all-pairs minimum cut
problem. Hence the all-pairs minimum cut problem in planar
graphs can also be solved in O(n2) time.

Theorem 5.34. Every planar graph has a minimum directed cycle
basis that is weakly fundamental, totally unimodular, and integral.

Proof. By the above, every planar graph has a minimum
directed cycle basis that is nested. Let B be such a basis. We
first show that B is totally unimodular. We need to show that
any circuit is a linear combination of the circuits in B with
coefficients in {−1,0,+1}. Let C be any circuit. Then,

C =
∑

F is a face circuit contained in interior(C)

F.

A face circuit either belongs to B or is the difference between
the parent of F in DB and the sum of the siblings of F in DB.
Thus,

C =
∑
F∈B

F+
∑

F∈FB

p(F)−
∑

D∈B and D is a sibling of F in DB

D

 .
If a circuit D occurs twice in the representation of D, it
occurs once as a parent and once as a child. As a parent,
its coefficient is +1, and as a child, it is −1, and hence
the two occurrences cancel. Thus, every circuit is a linear
combination of the circuits in B with coefficients in {−1,0,+1}.

We next show that B is weakly fundamental. We need
to show an ordering C1, . . . ,Cν of the circuits in B such that
Ci \ (Ci+1 ∪ · · · ∪ Cν) 6= ∅ for all i. Let DB be the inclusion
graph corresponding to B. If FB is empty, every bounded face
circuit belongs to B. There must be an edge on the unbounded
face that belongs to at most one circuit in B. Take this circuit
as C1 and continue in this fashion. Assume next that FB is
non-empty. Since every circuit in FB has a parent, we have a
non-leaf node C in DB, all of whose children are face circuits.
One of these face circuits, say F, belongs to FB and the others
belong to B. There must be at least one edge on the boundary
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of F that does not belong to C because, otherwise, C = F.
Let F′ be the other face circuit incident to e and let p be the
maximal path containing e and having all interior vertices of
degree two. We remove the edges of p from the graph, assign
F′ to e, delete F′ from B, and add the edges of p \ e to the
spanning tree. Removal of p merges F and F′ and B\F′ is a basis
for the modified graph. Continuing in this way constructs an
elimination order for the edges.

The proof is completed by the fact that any weakly
fundamental basis is integral. �

5.10. Approximation

Minimum directed and undirected cycle bases can be
computed in polynomial time. However, the running times
are fairly high degree polynomials, too high for applications,
e.g., circuit analysis, that need to find cycle bases of graphs
with several million vertices and edges. However, in these
applications, a nearly optimal basis is almost as good as an
optimal basis. It is therefore natural to explore approximation
algorithms. The results presented in this section are based on
[36,38]. We present two approximation techniques, the first
of which uses de Pina’s approach and replaces shortest-path
computations by approximate shortest-path computations.
The second technique uses Horton’s approach and replaces
the Horton setH by a smaller set of circuits that is guaranteed
to contain a 2-approximate cycle basis. We will start with
lower bounds that we will use in our quality estimates.

Lemma 5.35 ([14]). Let R1, . . . ,Rν be linearly independent vectors
in κν and let Ai be a shortest cycle in G such that 〈Ai,Ri〉 6= 0. Then∑ν

i=1 w(Ai) is a lower bound on the weight of any κ-basis.

Proof. Let {C1, . . . ,Cν} be a κ-basis. We may assume without
loss of generality that the Ai’s and Ci’s are sorted by weight,
that is, w(A1) ≤ w(A2) ≤ · · · ≤ w(Aν) and w(C1) ≤ w(C2) ≤ · · · ≤

w(Cν). The former may require a renumbering of the Ri’s. We
will show that w(Ai) ≤ w(Ci) for all i.

Consider a fixed i and observe that 〈Ck,R`〉 6= 0 for some
k and ` with 1 ≤ k ≤ i ≤ ` ≤ ν. Otherwise, the ν − i +
1 linearly independent vectors Ri,Ri+1, . . . ,Rν belong to the
subspace orthogonal to C1, . . . ,Ci; however, this subspace has
dimension ν− i, which is a contradiction. Thus, w(A`) ≤ w(Ck)

since A` is a shortest cycle with 〈A`,R`〉 6= 0 and hence
w(Ai) ≤ w(A`) ≤ w(Ck) ≤ w(Ci). �

Corollary 5.36. Let G be a graph. For any edge e, let SCe be the
minimum weight cycle containing e. Then

∑
e∈E w(SCe) is a lower

bound on the weight of any cycle basis.

Proof. Let Re be the unit vector whose entry corresponding to
e is one. The vectors Re, e ∈ E, are clearly independent (over Q
and over GF(p)) and 〈Re,SCe〉 = 1 6= 0. Clearly SCe is a shortest
cycle C with 〈Re,C〉 6= 0. �

5.10.1. Approximate shortest paths
De Pina’s approach works in phases. In each phase, we
compute a support vector S and a shortest circuit C with
〈S,C〉 6= 0. If instead of searching for a shortest circuit, we
search for a t-approximation of it, we should obtain a t-
approximate cycle basis. We next show how to realize this
idea for any integer k > 1 and t = 2k− 1.
Algorithm 4 Approximation algorithm. Best performance for
sparse graphs.

1: procedure SPANNER-APPROX-SPARSE(Graph G)

2:
Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges.
Let e1, . . . , eλ be the edges of G \ G′.

3:
For 1 ≤ i ≤ λ let Ci = ei + pi where ei = (ui,vi) and pi is a
shortest path in G′ from ui to vi.

4:
Find linearly independent Sλ+1, . . . ,Sν in the subspace
orthogonal to cycles C1, . . . ,Cλ.

5:

Call the recursive algorithm in Section 5.3 with input:
the graph G, sets {C1, . . . ,Cλ}, {Sλ+1, . . . ,Sν} and ν − λ to
compute (2k− 1)-approximate cycles Cλ+1, . . . ,Cν.

6: Return {C1, . . . ,Cλ} ∪ {Cλ+1 . . . ,Cν}.
7: end procedure

A t-spanner of an undirected graph G is a subgraph G′ of
G such that for any two vertices u and v, the distance from
u to v in G′ is at most t times their distance in G. Althöfer
et al. [49] showed that every weighted undirected graph on n
vertices has a (2k − 1)-spanner with O(n1+1/k) edges. Such a
spanner is easily constructed incrementally. We start with an
empty graph G′ and consider the edges of G in non-decreasing
order of weight. When an edge is considered, we add it to G′

if its endpoints are not already connected by a path using
at most 2k − 1 edges of G′; otherwise, we discard it. At any
stage, G′ is a (2k−1)-spanner of the edges already considered,
and its unweighted girth10 is at least 2k + 1, so it has only
O(n1+1/k) edges. The above procedure can be implemented to
run in O(mn1+1/k) time. From now on, G′ = (V,E′) denotes a
t-spanner of G. Let λ = |E \ E′| and m′ = |E′| = m − λ. Observe
that ν′ = m′ − n+ 1 = m− n+ 1− λ = ν− λ.

For each edge e = (v,w) ∈ E \ E′, let Ce be the circuit
consisting of e and the shortest path, say p, in G′ connecting v
and w. Then

w(Ce) = w(e)+w(p) ≤ w(e)+ tdistG(u,v) ≤ t w(SCe).

The circuits Ce, e ∈ E \ E′, are clearly independent and form
the first λ circuits in our t-approximate basis. The cost of
constructing these λ circuits is the cost of λ shortest-path
computations in G′ and hence bounded by O(λ · (n1+1/k +
n logn)). Since λ ≤ m we can compute both the spanner and
the λ circuits in O(mn1+1/k) time.

We need an additional ν − λ circuits for a basis. We
outline one approach and then discuss a second approach in
more detail. The first approach now switches to the recursive
algorithm in Section 5.3. It first computes a basis Sλ+1, . . . ,Sν
of the subspace orthogonal to Ce, e ∈ E \ E′ and then proceeds
as in Section 5.3; see Algorithm 4. Instead of computing a
shortest cycle in each phase, it computes a t-approximate
shortest path using the approximate distance oracle of [50]. This
data structure answers (2k − 1)-approximate shortest path
queries in O(k) time. The structure requires O(kn1+1/k) space
and can be constructed in O(kmn1/k) expected time.

Theorem 5.37 ([38,31]). For any integer k ≥ 2, Algorithm
4 computes a (2k − 1)-approximate undirected cycle basis in
O(kmn1+2/k +mn(1+1/k)(ω−1)) expected time.

10 The girth of a graph is the minimum number of edges in any
circuit.
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Algorithm 5 Approximation algorithm. Best performance for
dense graphs.

1: procedure SPANNER-APPROX-DENSE(Graph G)

2:
Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges.
Let e1, . . . , eλ be the edges of G \ G′.

3:
For 1 ≤ i ≤ λ let Ci = ei + pi where ei = (ui,vi) and pi is
the shortest path in G′ from ui to vi.

4:
Call the best exact algorithm to find an MCB of G′. Let
these cycles be Cλ+1, . . . ,Cν.

5: Return {C1, . . . ,Cλ} ∪ {Cλ+1, . . . ,Cν}.
6: end procedure

The second approach is even simpler. We complete the
basis by computing a minimum cycle basis of the t-spanner
G′; see Algorithm 5. The dimension of the cycle space of
G′ is ν′ = ν − λ and thus we have the right number of
circuits. Let Cλ+1, . . . ,Cν be a minimum cycle basis of G′.
Circuits {C1, . . . ,Cλ} ∪ {Cλ+1, . . . ,Cν} are, by definition, linearly
independent and we are also going to prove that they form a
t-approximation of an MCB of G.

For 1 ≤ i ≤ λ, we have Ci = ei+pi, where pi is a shortest path
in G′ between the endpoints of ei. In order to show that cycles
C1, . . . ,Cν constitute a t-approximation of the MCB, we again
define appropriate linearly independent vectors S1, . . . ,Sν ∈
κm and use Lemma 5.35. Consider the exact algorithm in
Section 5.3, executing with the t-spanner G′ as its input. Other
than the cycles Cλ+1, . . . ,Cν, the algorithm also returns the
vectors Rλ+1, . . . ,Rν ∈ κ

m′ such that 〈Ci,Rj〉 = 0 for λ + 1 ≤ i <
j ≤ ν and Ci is a shortest cycle in G′ such that 〈Ci,Ri〉 6= 0 for
λ+1 ≤ i ≤ ν. Moreover, the (ν−λ)×m′ matrix whose j-th row is
Rj is lower triangular with 1 in its diagonal. This implies that
the Rj’s are linearly independent. Given any vector S ∈ κm, let

S̃ be the projection of S onto its last m′ coordinates. In other
words, S̃ is the restriction of S to the edge set of G′. We define
Sj for 1 ≤ j ≤ ν as follows. Let S1, . . . ,Sλ be the first λ unit
vectors of κm. For λ+ 1 ≤ j ≤ ν define Sj as:

Sj = (−〈C̃1,Rj〉, . . . ,−〈C̃λ,Rj〉,Rj,1,Rj,2, . . . ,Rj,m′ ),

where Rj,1, . . . ,Rj,m′ are the coordinates of the vector Rj ∈ κ
m′ .

Note that the vectors Sj for 1 ≤ j ≤ ν, defined above, are
linearly independent. This is because the ν×νmatrix whose j-
th row is Sj is lower triangular with non-zeros in its diagonal.
The above definition of Sj’s is motivated by the property that

for each 1 ≤ i ≤ λ, we have 〈Ci,Sj〉 = −〈C̃i,Rj〉 + 〈C̃i,Rj〉 = 0,
since the cycle Ci has 0 in the first λ coordinates except the
i-th coordinate, which is non-zero. Lemma 5.38, shown below,
together with Lemma 5.35, implies the correctness of our
approach.

Lemma 5.38. Consider the above defined Sj for 1 ≤ j ≤ ν and let
Dj be a shortest cycle in G such that 〈Dj,Sj〉 6= 0. Cycle Cj returned
by the algorithm in Fig. 5 has a weight of at most t times the weight
of Dj.

Proof. This is obvious for 1 ≤ j ≤ λ since Dj is a shortest
cycle in G which uses edge ej and Cj = ej + pj, where pj is
a t-approximate shortest path between the endpoints of ej.
Consider now Dj for λ + 1 ≤ j ≤ ν. If Dj uses any edge ei for
1 ≤ i ≤ λ, we replace it with the corresponding shortest path
in the spanner. This is the same as saying consider the cycle
Dj − Ci instead of Dj. Let D′j = Dj −
∑

1≤i≤λ(ei ∈ Dj)Ci where

(ei ∈ Dj) is 1 if ei ∈ Dj and 0 if ei 6∈ Dj. Then,

〈D′j,Sj〉 = 〈Dj,Sj〉 +
∑

1≤i≤λ

(ei ∈ Dj)〈Ci,Sj〉.

But recall that our definition of Sj ensures that 〈Ci,Sj〉 = 0 for
1 ≤ i ≤ λ. This implies that 〈D′j,Sj〉 = 〈Dj,Sj〉 6= 0. But D′j, by

definition, has 0 in the first λ coordinates and S̃j = Rj, which
in turn implies that

〈D̃′j,Rj〉 = 〈D̃
′

j, S̃j〉 = 〈D
′

j,Sj〉 6= 0.

Cj is a shortest cycle in G′ such that 〈Cj,Rj〉 6= 0. Thus, Cj

weighs nomore than D̃′j (which is the same cycle as D′j), and by

construction, D′j weighs at most t times the weight of Dj. �

Thus, we have shown that the cost of our approximate
basis is at most t times the cost of an optimal basis. As a t-
spanner, we will again use a (2k−1)-spanner. The spanner has
O(min(m,n1+1/k)) edges and hence its minimum undirected
cycle basis can be computed in O(min(m,n1+1/k)ω) time.

Theorem 5.39 ([38,31]). For any integer k ≥ 2, Algorithm 4
computes a (2k − 1)-approximate undirected cycle basis in Monte
Carlo time O(mn1+1/k +min(m,n1+1/k)ω).

Directed graphs: Algorithm 5 readily extends to the directed
case. For the spanner computation we view our directed
graph G as undirected and we compute a (2k− 1)-spanner G′.
We then give to the edges of G′ the orientation that they have
in G.

As in the undirected case, we return two sets of cycles. The
first set is constructed as follows. For each edge ei ∈ E \ E′ for
1 ≤ i ≤ λ we compute the cycle ei + pi where pi is the shortest
path in G′ between the endpoints of ei when G′ is viewed as
an undirected graph. Then, we traverse each such cycle in an
arbitrary orientation and form our directed cycles based on
the direction of the edges in G. The second set is simply the
set of cycles of a directed MCB of G′. The time bound is the
same as in Theorem 5.39.

5.10.2. 2-approximation
A direct consequence of the technique in Section 5.4 is that
any reduction in size of the candidate collection H would
immediately imply better algorithmic bounds than those in
Section 5.6. In this section we show that a set of O(m

√
n logn)

cycles, which is a subset of H , contains a 2-approximate
minimum cycle basis.

Definition 5.2. For v, x ∈ V and S ⊂ V, bunch(v,S) consists of
all vertices closer to v than to any vertex in S and cluster(x,S)
consists of all vertices v with x ∈ bunch(v,S).

Lemma 5.40 ([51]). Given a weighted graph G = (V,E) and 0 <

q < 1, one can compute a set S ⊂ V of size O(nq logn) in
O(m/q logn) expected time such that |cluster(x,S)| ≤ 4/q for all
x ∈ V.

We take q = 1/
√

n logn and first compute, as given
in Lemma 5.40, a set S of O(

√
n logn) vertices. This takes

O(m
√

n log3/2 n) expected time and ensures that cluster(v,S)
has size

√
n logn for all v ∈ V. Also, bunch(v,S) for all v can be

computed in O(m/q) expected time [50], which is O(m
√

n logn).
We use two types of cycles:



232 C O M P U T E R S C I E N C E R E V I E W 3 ( 2 0 0 9 ) 1 9 9 – 2 4 3
• the O(m
√

n logn) cycles Cs,e for all s ∈ S and e ∈ E,

• the cycles Cu,e for each u ∈ V and e = (v,w) ∈ E
and either v or w in bunch(u,S). The number of such
cycles is

∑
u∈V

∑
v∈bunch(u,S) deg(v). Rewriting this sum, we

obtain
∑

v∈V deg(v) · |cluster(v,S)|, which in turn is at most√
n logn

∑
v∈V deg(v) = m

√
n logn.

Thus, our collection has O(m
√

n logn) cycles. We need
to show that it contains a 2-approximate cycle basis. Let
B1, . . . ,Bν be the minimum cycle basis of G determined by
Horton’s algorithm in order of non-decreasing weight, i.e.,
w(B1) ≤ w(B2) ≤ · · · ≤ w(Bν).

Lemma 5.41. For all 1 ≤ i ≤ νwe have Bi =
∑

C∈Ci
C where Ci is a

subset of our collection and each cycle in Ci weighs at most 2 ·w(Bi).

Proof. Consider any Bi. If Bi belongs to our collection, we set
Ci = {Bi}. Otherwise, Bi = Cu,e, where e = (v,w) and neither v
nor w is in bunch(u,S). Let s ∈ S be the nearest vertex in S to u.
Then, w(SP(s,u)) ≤ w(SP(u,v)) and w(SP(s,u)) ≤ w(SP(u,w)).

For any edge f ∈ Bi, the cycle C(s, f) is in our collection and
Bi =

∑
f∈Bi

C(s, f) since the paths from s to the endpoints of the
edges in Bi appear twice in this sum and cancel out. We set
Ci = {C(s, f) | f ∈ Bi}. It remains to show that w(C(s, f)) ≤ 2w(Bi)

for all f ∈ Bi.

We now distinguish two cases. Assume first that f 6=
e. Then f ∈ SP(u,v) or f ∈ SP(u,w). We may assume
w.l.o.g. that the former is the case. Then w(C(s, f)) ≤
w(SP(s,u)) + w(SP(u,v)) + w(SP(v, s)) since C(s, f) consists of
f and the shortest paths from s to the endpoints of f and
w(SP(v, s)) ≤ w(SP(s,u)) + w(SP(u,v)) by the triangle inequal-
ity. Thus, w(C(s, f)) ≤ 2(w(SP(s,u))+w(SP(u,v))) ≤ 2w(Bi) since
w(SP(s,u)) ≤ w(SP(u,w)).

Assume next that f = e. Then,

w(C(s, f)) = w(SP(s,v))+ c(e)+w(SP(w, s))

≤ w(SP(s,u))+w(SP(u,v))+ c(e)

+w(SP(s,u))+w(SP(u,w))

≤ 2w(SP(u,v))+ c(e)+ 2w(SP(u,w))

≤ 2w(Bi). �

Lemma 5.42. The collection defined above contains ν linearly
independent cycles A1, . . . ,Aν with w(Ai) ≤ 2·w(Bi) for i = 1, . . . , ν.

Proof. The lemma follows from Lemma 5.41. Assuming
otherwise, let j beminimal such that ∪i≤j Ci contains less than
j linearly independent vectors with w(Ai) ≤ 2 · w(Bi) for i =
1, . . . , j. Then j ≥ 1 and ∪i≤j−1 Ci contains at least j− 1 linearly
independent vectors with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , j − 1.
Also, ∪i≤j Ci spans {B1, . . . ,Bj} and hence contains at least j
linearly independent vectors. Thus, it contains a vector Aj
linearly independent of {A1, . . . ,Aj−1}. Furthermore, Aj ∈ Ci
for some i ≤ j and hence w(Aj) ≤ 2w(Bi) ≤ 2w(Bj), which is a
contradiction. �

It is now straightforward to extract the 2-approximate
MCB using the techniques that we have discussed so far. The
resulting running time is better than those in Section 5.6 but
not better than those in Theorems 5.27 and 5.28.
5.11. Algorithm engineering

Both exact and approximate algorithms for minimum cycle
bases have a fairly large worst-case running time. In this
section, we discuss heuristic improvements and algorithm
engineering issues. The hope is that in many cases heuristics
and algorithm engineering techniques will improve upon
the worst-case running time. We restrict attention to
computing minimum undirected bases. Implementations of
cycle basis algorithms are described in [52–56]. There is no
implementation of the Monte Carlo algorithm of Section 5.7
yet.

The first decision to be made is to choose between the
two main approaches. Horton’s approach first computes
O(nm) cycles and then uses Gaussian elimination to find an
optimum basis. No heuristics are known that improve upon
the worst-case. The situation is different for the algebraic
approach of Algorithm 1 where in each phase first a support
vector and then a cycle is computed.

How should we represent cycles and support vectors, as
sparse or as dense vectors? There are two arguments in favor
of a sparse representation. The theoretical argument is that
we know of the existence of bases of weight O(W logn); in
such a basis, we expect most circuits to have o(n) edges.
The engineering argument is that a dense representation
immediately introduces an Ω(m2) lower bound; we are
constructing m vectors of length m. Thus, the sparse
representation is preferred.

The next major question is how to compute each cycle. In
Algorithm 1, each cycle is computed after a support vector
is found. However, there are two possible ways for doing
this: (a) use the candidate set H or some other collection
that contains a minimum cycle basis and the labeled trees
representation, or (b) use the signed graph approach.

Although the labeled trees approach is faster for sparse
graphs by a logarithmic factor and is faster for dense graphs
when the extra technique of bit-packing from Mehlhorn and
Michail [31] is used, it has a major practical drawback which
needs to be addressed. It introduces a lower bound on the best
case of the algorithm. The labeled trees approach maintains n
shortest-path trees. In each of the ν phases of the algorithm,
each of these shortest-path trees is traversed, in order to
update the labels based on the current support vector. Thus,
the technique introduces an Ω(mn2) lower bound. For this
reason we believe that the signed graph approach is better.

The signed graph approach constructs a graph Gi(Si),
where Si is the support vector during phase i of the algorithm.
In this graph, it executes n single source shortest path
computations. There are, however, some heuristics that
can be used to reduce the number of such computations.
During phase i we might perform up to n shortest-path
computations in order to compute a shortest cycle Ci with an
odd intersection with the vector Si. We can use the shortest
path found so far as an upper bound on the shortest path.
This is implemented as follows: a node is only added in
the priority queue of Dijkstra’s implementation if its correct
upper distance is not more than our current upper bound.

We come to the most important heuristic. In each of the
ν phases, we are performing n shortest-path computations.
This results in Ω(mn) shortest path computations. Let S =
{e1, e2, . . . , ek} be a support vector at some point of the



C O M P U T E R S C I E N C E R E V I E W 3 ( 2 0 0 9 ) 1 9 9 – 2 4 3 233
execution. We need to compute a shortest cycle C such that
〈C,S〉 = 1. We can reduce the number of shortest path
computations based on the following observation.

Let C≥i be the shortest cycle in G such that 〈C≥i,S〉 = 1,
C≥i ∩ {e1, . . . , ei−1} = ∅, and ei ∈ C≥i. Then,

C = min
i=1,...,k

C≥i.

We can compute C≥i in the following way. We delete edges
{e1, . . . , ei} from G and the corresponding edges from the
signed graph Gi. Let ei = (v,u) ∈ G. Then we compute a
shortest path in Gi from v+ to u+. The path computed will
have an even number of edges from the set S and, together
with ei, an odd number. Since we deleted edges {e1, . . . , ei}, the
resulting cycle does not contain any edges from {e1, . . . , ei−1}.

Using the above observation we can compute each cycle in
O(k · SP(n,m)) time when |S| = k < n and in O(n · SP(n,m))
time when |S| ≥ n. Here SP(n,m) is the time of a single-
source shortest-path computation in a graph with n nodes
and m edges. In this way, the total cost of computing the basic
circuits becomes

SP(n,m) ·
∑

i=1,...,ν

min(n, |Si|).

Another issue that needs to be discussed is the use of fast
matrix multiplication when computing the support vectors.
Experiments in [56] with random graphs suggest that the
use of fast matrix multiplication is not necessary, even for
medium to large instances. The reason is that the cycles
computation part of the algorithm dominates the running
time, even though in theory it is the other way around. The
reason is that support vectors are typically sparse. Thus, the
technique of Algorithm 2, which has a worst-case bound of
O(m3), is sufficient. Moreover, due to its simplicity, it is very
easy to implement efficiently.

Moving to the approximation algorithms of Section 5.10,
we note that they significantly improve the running times.
This is not only a theoretical observation but is true in
practice as well. Algorithm 5 reduces the computation of an
approximate MCB to the computation of: (a) a spanner of the
input graph, and (b) the MCB of a sparse graph (the previously
computed spanner). This approximation algorithm is much
faster than any exact algorithm. Moreover, the approximation
algorithms do not really require fast matrix multiplication.
Algorithm 5 requires O(n3+2/k/ logn + n3+1/k) time in order
to compute a (2k − 1)-approximate MCB. If we do not use
fast matrix multiplication, the running time increases to
O(n3+3/k). We conclude that Algorithm 5, where the support
vectors are maintained as in Algorithm 2 and the cycles are
computed using the signed graph approach of Section 5.4,
will be an effective way of computing approximate minimum
cycle bases.

5.12. Relevant circuits

In general, minimum cycle bases are not unique. In some ap-
plications, e.g. in chemistry [10], it is useful to know all min-
imum cycle bases. A circuit that belongs to some minimum
cycle basis is called relevant. As their number could be ex-
ponential, the goal is to compute a set of prototype circuits
from which all relevant circuits can then be derived easily.
Vismara [57] presented an algorithm that, in a fashion similar
to Horton’s algorithm, extracts these prototypes from a poly-
nomially sized set of candidate circuits using Gaussian elimi-
nation. Vismara’s algorithm runs in O(m4) time. From these
prototypes, relevant circuits can be computed in O(n|CR|)

time, where CR denotes the set of relevant circuits.

6. Hardness results

We will show that the minimization problems for strictly
and weakly fundamental cycle bases are APX-hard. A
minimization problem belongs to class APX if it has a
constant-factor approximation algorithm and is APX-hard
if any problem in APX can be reduced to it by an L-
reduction; APX-hard problems do not have polynomial time
approximation schemes unless P = N P [58,59].

An L-reduction from an optimization problem P1 to
an optimization problem P2 consists of two polynomially
computable functions t1 and t2 with the following properties:

1. t1 maps instances of P1 to instances of P2 such that

optP2 (t1(I)) ≤ β1 optP1 (I)

for any instance I of P1. Here optPi
(X) denotes the optimum

value for instance X of problem Pi, and β1 is some constant.
2. t2 associates with any instance I of P1 and any feasible

solution S′ of the corresponding instance I′ := t1(I) of P2
a feasible solution S := t2(I,S

′) of I such that

|optP1 (I)− valP1 (I,S)| ≤ β2|valP2 (I
′,S′)− optP2 (I

′)|.

Here, valPi
(X,Y) denotes the objective function value of the

feasible solution Y for instance X of problem Pi, and β2 is
some constant.

L-reductions preserve approximability. If S′ is an ε-
approximation of the optimum solution of I′, i.e., |optP2 (I

′) −

valP2 (I
′,S′)| ≤ ε · optP2 (I

′), then |optP1 (I) − valP1 (I,S)| ≤ β2 · ε ·

optP2 (I
′) ≤ β1 · β2 · ε · optP1 (I), i.e., S is a β1β2ε-approximation to

the optimum solution of I.

6.1. Strictly fundamental cycle bases

Recall that a strictly fundamental cycle basis consists of
the fundamental circuits with respect to some spanning
tree. We saw in Theorem 4.11 that any graph has a strictly
fundamental basis of weight O(W log2 n log logn) and of
length O(n2). Deo et al. [27] showed the N P -hardness of
the minimum strictly fundamental cycle basis problem. We
will now sketch a proof of its APX-hardness [60]. The proof
consists of an L-reduction from the following special case of
the maximum satisfiability problem.

MAX-3-SAT-NAE-UN-9: Given a set X = {x1, . . . , xn} of Boolean
variables and a collection C = {C1, . . . ,Cm} of disjunctive
clauses with exactly 3 variables per clause, where all variables
appear unnegated and each occurs in at most 9 clauses, find
a truth assignment to the variables maximizing the number
of clauses containing both a true and a false variable.

MAX-3-SAT-NAE-UN-9 is a not-all-equal version of MAX-
3-SAT restricted to instances with unnegated variables, each
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Fig. 29 – The graph GI associated with the MAX-3-SAT-NAE-UN-9 instance I with variable set X = {x1,x2,x3,x4,x5} and
clause collection C = {x1 ∨ x2 ∨ x3,x3 ∨ x4 ∨ x5}. The spanning tree T of GI derived from the truth assignment
Φ = (true, false, true, true, true) is shown in bold.
variable having at most 9 occurrences. In [60], MAX-3-SAT-
NAE-UN-9 was shown to be APX-hard by means of a
sequence of standard L-reductions starting from MAX CUT-
3, the problem of finding a cut containing the maximum
number of edges in an undirected graph where all vertices
have a degree of at most 3. In turn, MAX CUT-3 has been
shown to be APX-hard in [61].

The main reduction. We now describe the L-reduction from
MAX-3-SAT-NAE-UN-9 to the minimum strictly fundamental
cycle basis problem (MSFCB). Let q and M be integer constants,
which we will fix later. Let I be an instance of MAX-3-SAT-
NAE-UN-9 with variable set X = {x1, . . . , xn} and clause
collection C = {C1, . . . ,Cm}. We construct an instance I′ of
MSFCB, i.e., a weighted graph GI, as follows. The set of
vertices is

V(GI) = {r, c
A
1 , c

A
2 , . . . , c

A
m, c

B
1, c

B
2, . . . , c

B
m, x

A
1 , x

A
2 , . . . ,

xA
n , x

B
1, x

B
2, . . . , x

B
n},

and the edges in E(GI) together with the corresponding
weights are:

• for each i = 1,2, . . . ,n, we have two edges {r, xA
i } and {r, x

B
i },

each of weight 1;
• for each i = 1,2, . . . ,n, we have 2q + 1 parallel edges

connecting vertices xA
i and xB

i , and all of them have weight
1;
• for each j = 1,2, . . . ,m and for each variable xi occurring in

Cj, we have the edges {cA
j , x

A
i } and {c

B
j , x

B
i }, each of weight

M.

We remark that edges of weight M may be replaced by
a path of length M and parallel edges may be split by an
additional intermediate vertex. In other words, the graph GI
could also be constructed as an unweighted simple graph.
The following easy-direction lemma indicates the intention
behind the reduction.

Lemma 6.1. Let Φ : {x1, x2, . . . , xn} 7→ {true, false}n be a truth
assignment such that there are t clauses in C containing both a
variable with value true and a variable with value false. Then GI
has a fundamental cycle basis of weight n(4q+3)+m(8M+12)− t.
Proof. By relabeling the clauses, we can assume w.l.o.g. that,
for j = 1,2, . . . , t, clause Cj contains a variable with value true
as well as a variable with value false. So, for t < j ≤ m, all
variables in Cj have the same truth value under Φ. Construct
a spanning tree T as follows (Fig. 29):

• for each i = 1,2, . . . ,n, include a single edge connecting xA
i

and xB
i ;

• for each i = 1,2, . . . ,n, include {r, xA
i } if Φ(xi) = true and

include {r, xB
i } if Φ(xi) = false;

• for each clause Cj, with 1 ≤ j ≤ t, select one variable x
with Φ(x) = true and one variable x̃ with Φ(x̃) = false, and
include the edges {cA

j , x
A
} and {cB

j , x̃
B
};

• for each clause Cj, with j = t + 1, . . . ,m, select a single
arbitrary variable xi occurring in Cj and include both edges

{cA
j , x

A
i } and {c

B
j , x

B
i }.

We next compute the costs of the fundamental cycles
induced by the non-tree edges. We distinguish the following
cases:

• For each i = 1,2, . . . ,n, T contains exactly one of the
two edges {r, xA

i } or {r, xB
i }. The other edge induces a

fundamental cycle of cost 3, for a total of 3n.

• For each i = 1,2, . . . ,n, 2q edges connecting vertices xA
i and

xB
i are not in T. Each of them induces a fundamental cycle

of cost 2, for a total cost of 4qn.

• For each j = 1,2, . . . , t, the four non-tree edges incident
to cA

j or cB
j induce four cycles. Exactly one of these cycles

has cost 2M + 2, while the others have cost 2M + 3. The
corresponding costs sum to t(8M+ 11).

• For each j = t+1, . . . ,m, each one of the two non-tree edges
incident to cA

j induces a cycle of cost 2M+ 2 if all variables

in Cj are true and of cost 2M + 4 if all these variables
are false. Analogously, each one of the two non-tree edges
incident to cB

j induces a cycle of cost 2M+ 4 if all variables

in Cj are true and of cost 2M + 2 if all these variables are
false. These costs sum to (m− t)(8M+ 12).
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Therefore the fundamental cycle basis induced by T has a
cost of

3n+ 4qn+ t(8M+ 11)+ (m− t)(8M+ 12)

= n(4q+ 3)+m(8M+ 12)− t. �

A key property of the reduction is that the type of spanning
tree considered in the lemma above gives rise to a minimum
strictly fundamental basis.

Definition 6.1. A spanning tree T of GI is well-behaved if it
satisfies the following properties:

1. for each j = 1,2, . . . ,m, the vertices cA
j and cB

j have degree

1 in T,

2. for each i = 1,2, . . . ,n, exactly one edge of the 2q+ 1 edges
{xA

i , x
B
i } belongs to T,

3. for each j = 1,2, . . . ,m, either for some i both edges {cA
j , x

A
i }

and {cB
j , x

B
i } belong to T or for some i1 and i2, with 1 ≤ i1 ≤

n, 1 ≤ i2 ≤ n and i1 6= i2, both edges {cA
j , x

A
i1
} and {xA

i1
, r} as

well as both edges {cB
j , x

B
i2
} and {xB

i2
, r} belong to T.

Lemma 6.2 ([60]). Assume q ≥ 9 and M ≥ 4. For any spanning
tree T of graph GI, we can, in polynomial time, derive from T a well-
behaved spanning tree T′ such that the weight of the basis induced
by T′ is no larger than the weight of the basis induced by T.

We can now state the main result of the section.

Theorem 6.3 ([60]). The minimum strictly fundamental cycle
basis problem is APX-hard.

Proof. It suffices to verify that the reduction presented is an
L-reduction. For any instance I = (X,C) of MAX-3-SAT-NAE-
UN-9, the corresponding instance I′ of MSFCB can obviously
be constructed in polynomial time.

The simple randomized argument implying that any MAX-
SAT instance with m clauses admits a truth assignment
satisfying at least m/2 clauses, is also valid for MAX-3-SAT-
NAE-UN-9. Thus opt(I) ≥ m/2.

According to Lemma 6.1, where q = 9, we have opt(I′) ≤
n(4q + 3) + m(8M + 12). Since we may assume that n ≤ 3m
(otherwise some variable would occur in no clause), opt(I′) ≤
3m(4q+3)+m(8M+12) = m(12q+8M+21) ≤ m(24q+16M+
42)opt(I). We set β1 = 24q+ 16M+ 42.

By Lemma 6.2, from any spanning tree T of GI we can
derive a well-behaved spanning T′ without increasing the
weight of the associated fundamental cycle basis. Now, the
three properties characterizing well-behaved spanning trees
make sure that it is possible to reverse the construction
described in the proof of Lemma 6.1. Therefore, to derive a
truth assignment Φ from any spanning tree T of GI, it suffices
first to derive a well-behaved spanning tree T′ from T and then
to set Φ(xi) = true when {xA

i , r} ∈ T′, and Φ(xi) = false when

{xB
i , r} ∈ T′. Condition (ii) of an L-reduction is then satisfied

with β2 = 1. �

We close this section with some open problems.
Open Problem 12. Is there an O(logn) approximation algo-
rithm for minimum F-bases? Is there one for planar graphs?
We remark that the approximability of the bottleneck ver-
sion, in which one looks for a strictly fundamental cycle ba-
sis where the weight of the maximum cycle is minimum, has
been addressed in [62].

Open Problem 13. Is the minimum F-basis problem in APX,
i.e., does it have constant factor approximation?

Open Problem 14. What is the complexity of the minimum
F-basis problem for planar graphs? We remark that the
related problem of computing a spanning tree with shortest
fundamental circuit is NP-complete for planar graphs [63].

6.2. Weakly fundamental cycle bases

We know from Theorem 4.4 that any graph has a weakly
fundamental cycle basis (W-basis) of weight O(W logn). Thus
the weight of a minimum W-basis can be approximated
within a factor of O(logn); no better approximation factor
is known. Rizzi [17] has shown that the minimum W-basis
problem is APX-hard and we will sketch his proof in this
section.

Open Problem 15. Is the minimum W-basis problem in
APX?

We first introduce a compact way of representing W-bases.
For T a spanning tree of G, any ordering e1, e2, . . . , eν of the
non-tree edges is called a removal sequence. Let C be a W-
basis of a connected graph G. If C 6= ∅, that is, if G is not
a tree, then there exists an edge e of G that is contained in
precisely one circuit of C. Let Ce be the only circuit in C that
contains e. Notice that G \ e is connected and C \ Ce is a W-
basis of G \ e. If this process is iterated over G \ e, we end
up with a spanning tree T of G. Furthermore, if we label the
i-th edge that has been removed in the process as ei, then
the sequence s = e1, e2, . . . , eν is a removal sequence having
the edges in T as tree edges and certifying that C is a W-
basis according to Definition 3.1. We say that the spanning
tree T, the ordering e1, e2, . . . , eν, and the W-basis C, from
which we started, are compatible. Notice that at any iteration
of the edge removal process it may be possible that more than
one edge of the current graph is contained in precisely one
circuit of C. Actually, there is always some freedom of choice
when removing the last edge. Thus, in general, a W-basis of
G may be compatible with more than one spanning tree of
G. Furthermore, even w.r.t. any particular tree T of G, a W-
basis may be compatible with more than one ordering of the
edges of G \ T. Conversely, any removal sequence e1, e2, . . . , eν
of G, might be compatible with more than one W-basis of
G. However, among the W-bases of G which are compatible
with the ordering e1, e2, . . . , eν, we can efficiently find one of
minimum cost by resorting to any shortest-path algorithm
as a subroutine. And we can also enforce the uniqueness of
this W-basis by adopting a lexicographic scheme to resolve
ties among circuits of the same weight. Indeed, given any
removal sequence e1, e2, . . . , eν of G, the unique W-basis of
G associated with the sequence e1, e2, . . . , eν is obtained as
described in AlgorithmW-DECODER.
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Fig. 30 – Wagner’s graph V8.

Algorithm W-DECODER (e1, e2, . . . , eν)

start with G′ := G, C = ∅, and,

for i = 1,2, . . . , ν, do,

add to C the unique11 cheapest circuit of G′ containing
edge ei;

remove edge ei from G′.

return C.

Notice that not every W-basis of G admits a removal
sequence encoding it such that the above algorithm can
reproduce it. We say that a W-basis C of G is locally-optimal
if there exists a removal sequence s of G such that the
execution of Algorithm W-DECODER (s) produces C. Indeed,
the above remarks inspire a natural local search approach for
the minimum W-basis problem, where, given any WFCB C of
G, we first obtain a removal sequence s compatible with C and
then substitute C with the W-basis C′ produced by Algorithm
W-DECODER (s). Notice that C′ is locally-optimal and its cost
never exceeds the cost of C.

A fundamental gadget: Our APX-hardness proof is based on
a single gadget. The gadget is derived from a graph first
described by Leibchen and Rizzi [2]; every W-basis of this
graph is strictly more expensive than the cheapest undirected
cycle basis. Indeed, since the minimum U-basis problem is in

11 Uniqueness is enforced by the adoption of a lexicographic
scheme.
P , the graphs produced by a reduction from a generic APX-
hard optimization problem to the minimumW-basis problem
are bound to involve such graphs.

Although, the inapproximability result also holds in the
unweighted case, we find it convenient to allow the use
of small natural weights (actually, all in {1,2,3}) in the
constructions and in the gadgets to follow. Clearly, an edge of
weight w may be replaced by a path of w edges and w−1 new
intermediate nodes without changing the essence of the cycle
basis problem. The transformation is polynomial as long as
the weights are polynomially bounded. So there is no harm in
using small integer weights. We start by describing a graph for
which no minimum U-basis is weakly fundamental. Consider
first the graph V8 in Fig. 30. Here, m = 12, n = 8, ν = 5 and the
circuits C1 = 2− 3− 7− 6, C2 = 3− 4− 0− 7, C3 = 4− 5− 1− 0,
C4 = 5− 6− 2− 1, and C5 = 6− 5− 4− 3− 2 form a W-basis of
V8. Indeed, the edge {6,7} is only contained in C1, {0,7} only in
C2, {0,1} only in C3, and {1,2} only in C4. For later convenience,
we also certify the independence of C1 to C5 by giving five sets
Σ1 to Σ5 such that Σi and Cj have an odd-sized intersection if
and only if i = j.

Σ1 = {{2,6}, {5,6}}with odd-sized intersection only with C1
(see Fig. 31 on the left);
Σ2 = {{2,6}, {5,6}, {3,7}} with odd-sized intersection only
with C2 (see Fig. 31 on the right);
Σ3 = {{1,5}, {2,3}, {2,6}} with odd-sized intersection only
with C3 (mirror image of Σ2);
Σ4 = {{2,3}, {2,6}}with odd-sized intersection only with C4
(mirror image of Σ1);
Σ5 = {{2,3}, {2,6}, {5,6}} with odd-sized intersection only
with C5 (see Fig. 31 in the middle).

Wewill use the name petal for the weighted graph obtained
from V8 by assigning cost 2 to the edges {6,7}, {7,0}, {0,1},
{1,2}, also called glue edges, and assigning cost 1 to all other
edges, called internal edges, Notice that all circuits of the petal
have a cost of at least 5, and C1, C2, C3, C4, C5 are actually
its only 5 circuits of a cost of precisely 5, hence they form
the unique minimum basis of the petal. A removal sequence
compatible with this locally-optimal W-basis of the petal is
illustrated in Fig. 32.
Fig. 31 – Certificates of independence for C1 (left), C2 (right), and C5 (middle).
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Fig. 32 – A removal sequence of a W-basis of weight 25.
Fig. 33 – A weighted graph F whose unique minimum
U-basis is not weakly fundamental.

Consider now the weighted graph F obtained by gluing
together 6 distinct petals as shown in Fig. 33: Let petal i, 0 ≤
i ≤ 5, be on nodes {vi

0,v
i
1, . . . ,v

i
7}; we glue the petals through

the following node identifications: v00 ↔ v10 ↔ v20 ↔ v30 ↔

v40 ↔ v50, and vi+1 mod 6
1 ↔ vi

7 and vi+1 mod 6
2 ↔ vi

6 for 0 ≤ i ≤ 5.
Edges that become parallel through this identification process
are replaced by a single edge of weight 2.

Clearly, nF = 31, mF = 60, and νF = 30. The six copies
of the circuits C1, C2, C3, C4, and C5 form a collection of
30 circuits in F whose independence can be established by
taking the 6 corresponding copies of each of the odd sets
Σ1,Σ2,Σ3,Σ4,Σ5. Hence, these 30 circuits form a U-basis of
F. Each of these 30 circuits has weight 5. Every other circuit
of F has cost at least 6; hence these 30 circuits form the
unique minimum U-basis of F. This cycle basis is not weakly
fundamental since each edge of F is contained in at least 2 of
these circuits.

It is also relevant to our discussion to exhibit a cheap W-
basis of F. In fact, F has a W-basis whose weight is only one
larger than the weight of the unique minimumW-basis intro-
duced above. Indeed, consider first one single petal of F and
its W-basis as encoded by the removal sequence displayed in
Fig. 34. ThisW-basis has weight 26 and leaves all glue edges as
tree edges. It is easy to extend this removal sequence for one
petal, say petal 0, to a removal sequence for F that encodes a
W-basis of weight 151: simply append to it, for each one of the
other 5 petals taken in clockwise order, a removal sequence
like the one in Fig. 32 (see the proof of Fact 6.1 for the details).

Fact 6.1. There are precisely 30 circuits of cost 5 in F. These
30 circuits constitute the unique minimum U-basis of F. This basis
has weight 150 and is not weakly fundamental. Furthermore, F
admits a W-basis of weight 151.

Proof. AlgorithmWFCB-DECODER constructs a W-basis of
weight 151 from the following removal sequence: first, within
petal 0, remove v05v06, v02v06, v03v07, v00v04, and v04v05 in this order;
next, for i = 1,2,3,4,5 and in sequence within petal i, remove
vi
1vi

2, vi
0vi

1, vi
0vi

4, vi
3vi

7, and vi
2vi

3 in this order. �

We are now ready to produce a weighted graph G (the
gadget) with the following properties: (1) G contains 4 nodes x,
y, z and w, and the edges wx, wy and wz, all of weight 1; (2) The
minimum U-basis of G has weight B and G has a W-basis of
weight B. (3) Let T be any spanning tree of G, compatible with
some W-basis of weight B. Then, the distance in T between
any two of the 4 nodes x, y, z and w is at least 3; (4) G has a
W-basis of weight B+ 1, for which wx,wy,wz ∈ T.

The intended functioning of the gadget is as follows.
Several copies of the gadget will be part of the graph
GH representing the minimum W-basis problem instance
constructed by the L-reduction proposed in Section 6.2. Each
such gadget (copy) is attached to the rest of GH by means of
the 4 nodes x, y, z and w, and, actually, occurs as an induced
subgraph of GH. Each removal sequence for GH contains, in
a natural way, a removal sequence for each one of these
gadgets. Indeed, a set of edges whose removal makes GH
acyclic also intersects all circuits of any given subgraph of
GH. Notice that after the removal of the sole edges prescribed
by a removal sequence for a gadget, the nodes of that gadget
are still connected within the gadget. In order to intersect all
circuits of GH, a removal sequence for GH will need to include
further edges. When obtaining a short W-basis of GH, the
following Boolean choice has to be made for each one of these
gadgets:
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Fig. 34 – The removal sequence of a W-basis of weight 26. Notice that all glue edges are tree edges.
either locally pay B + 1: pay the extra price of +1 by locally
applying a removal sequence avoiding the “cheap” edges
wx, wy, and wz, hence making it possible to disconnect
cheaply the 4 nodes w, x, y, and z with later removals;
or locally pay B: pay just the minimum B, but then these
4 nodes will remain connected within the gadget since
disconnecting them later would cost significantly more
than the +1. Indeed, by points (3) and (1) above, the cost
of disconnecting any two nodes among the 4 nodes w, x, y
will be at least 3− 1 = 2.

The above informal description will make full sense only
later, after all the pieces of the proposed reduction are in
place. We now present our gadget; see Fig. 35. The weighted
subgraph of G induced by the nodes a, b, c, y and w is called
the chamber. The gadget graph G is similar to the flower F from
Fig. 33 but it has 14 petals and 1 chamber, plus two edges
wx and wz, dubbed the jump edges. In Fig. 35, the 14 petals
are only hinted at for reasons of legibility. The numbers that
label some of the nodes represent the distances from node w
within the weighted graph G\{wx,wz} and, as such, certify the
truth of the last two properties listed in the following lemma.

Lemma 6.4. The graph G in Fig. 35 has 14 petals, one chamber,
n = 73, m = 147, and ν = 75. It has has a unique minimum U-basis
Cmin; this basis is weakly fundamental and has weight B := 377.
The edges wx, wy, and wz are all non-tree edges w.r.t. any removal
sequence encoding Cmin. There exists aW-basis of G of weight B+1,
and a removal sequence encoding this basis, w.r.t. which the edges
wx, wy, and wz are all tree edges. The distance between w and y in
G\yw is 4. The distance between w and x in G\xw is 5. The distance
between w and z is 5 in G \ zw and 6 in G \ {zw, xw}. The distance
between any two nodes in {x, y, z} is at least 4 in G \ {xw, yw, zw}.

Proof. All claims in the first sentence are readily verified. As
for the last four sentences, their truth can be readily verified
through shortest-path computations, and the distance values
reported in Fig. 35 may partially support the reader in this
task.

The remaining properties follow from the properties of the
petals and from the structure of G. We refer to Rizzi [17] for
detailed arguments. �
Fig. 35 – A gadget graph G with 11 petals, one chamber,
and two jump edges wx and wz.

The source problem of the L-reduction: Hypergraphs generalize

graphs. A hypergraph is a pair H = (V,E), where V is a finite

set of nodes and E is a finite set of hyperedges. A hyperedge is

a set of nodes. When all hyperedges have size t, H is called

t-uniform. Graphs are 2-uniform hypergraphs. A circuit in a

hypergraph is an alternating sequence of nodes and edges

v0, e0,v1, e1,v2, . . . ,vk, ek such that, for every i = 0,1,2, . . . , k,

we have vi ∈ ei and vi+1 mod k ∈ ei. The length of the circuit

is k, the number of edges comprising it. The girth γH of

a hypergraph H is the minimum length of a circuit in H.

A hypergraph is acyclic if it contains no circuit. A feedback

hyperedge set (FHS) of a hypergraph H = (V,E) is a set F ⊆ E such

that (V,E \ F) is acyclic. Given a hypergraph H, the MINIMUM

FEEDBACK HYPEREDGE SET (MFHS) problem seeks a minimum

cardinality FHS in H.
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Lemma 6.5 ([17]). There exists a constant α > 0 such that
theMFHS problem is APX-hard even when restricted to 4-uniform
hypergraphs with γ ≥ 6 in which a minimum cardinality FHS has a
size of at least α |E|.

The main reduction: The main L-reduction is from the MFHS
problem to the minimum W-basis problem. Let H = (V,E) be
a 4-uniform hypergraph with γH ≥ 6. Consider the weighted
graph GH obtained as follows:

1. Start from node set V;
2. Add a further node r adjacent to all nodes in V through

edges of weight 3;
3. For each hyperedge e = {v1,v2,v3,v4} ∈ E, add a new

and private copy Ce of the gadget graph and perform the
following 4 node identifications: v1 ↔ x, v2 ↔ y, v3 ↔ z,
and v4 ↔ w.

The following lemma establishes that the above poly-
time construction is an L-reduction from the MFHS problem
restricted to instances conforming to the properties in
Lemma 6.5 to the minimum W-basis problem. As a
consequence, the MWFCB problem is APX-hard.

Lemma 6.6. The hypergraph H = (V,E) admits an FHS of size t
iff GH admits a W-basis of weight (21 + B)m + t, where n = |V|,
m = |E|.

Proof. Assume first that the hypergraph H = (V,E) admits an
FHS F ⊆ E with |F| = t. We construct a W-basis CF of GH and
a removal sequence s encoding CF. We start with CF := ∅ and
s := ∅ and set G′ := GH.

For each e ∈ F, we proceed as follows. First, at cost (B + 1),
we put in CF all circuits of the W-basis of Ce of weight
(B+ 1). By Lemma 6.4, this basis can be encoded by a removal
sequence with respect to which the edges xw, yw, and zw
of Ce are all tree edges. Append this removal sequence to s
meanwhile removing from G′ the 75 edges it prescribes. After
the removal of these edges Ce is acyclic. Furthermore, the only
edges of Ce which are not bridges of G′ are the edges xw, yw,
and zw. Next, at cost 7+7+7 = 21, remove from G′ these three
edges of component Ce, meanwhile appending them to s and
adding to CF the three triangles they form together with node
r. Each of these triangles costs 7 = 3+ 3+ 1. Clearly, after the
removal of these three edges, no circuit of G′ can go through
an edge of Ce. After this has been performed for each e ∈ F,
we have paid (B+ 1+ 21) t = (21+ B) t+ t in total.

At this point, the number of connected components of
(V,E \ F) is n − 3(m − t); for each connected component C of
(V,E \ F), remove from G′ all edges of the form rc, c ∈ C, except
one. Each removal has cost 7 = 3 + 3 + 1 (explained in more
detail below) and adds a triangle through node r to CF. Once
these edges have been removed, no circuit of G′ contains r.
We now explain in more detail how the removal of these
edges can be performed within the claimed costs. First, select
a node a of C and a spanning tree A of G′[C]. Then, let A′ := A.
Consider A′ as a tree rooted at a. While A′ 6= {a}, consider any
leaf q of A′ and let p be the father of q in A′; remove from G′

the edge qr and append it to s, meanwhile inserting into CF
the triangle q − r − p (at a cost of 7 = 3 + 3 + 1); remove node
q from the rooted tree A′. In this way, we remove a total of
n− (n− 3(m− t)) = 3(m− t) edges, for a total cost of 21(m− t).
Up to this point, we have paid (B+ 1) t+ 21m in total.

Finally, for each e ∈ E \ F, put in CF all circuits of the W-
basis of Ce of weight B. Also, append to s and remove from G′

all non-tree edges of Ce w.r.t. any removal sequence encoding
this W-basis of Ce. After this, G′ is a spanning tree of GH. In
particular, the acyclicity of G′ follows from the acyclicity of
E \ F. Thus, CF is a W-basis of GH. In total, this last step has
cost (m− t)B and hence the total cost of CF is (21+ B)m+ t.

For the reverse direction, let C be a W-basis of GH of a
cost of at most (21+ B)m+ t. We may assume C to be locally-
optimal and encoded by means of a removal sequence s. Let
T be the spanning tree of GH made of the tree edges w.r.t. s.
Let E′ be the set of those hyperedges e ∈ E such that Ce ∩ T
is a spanning tree of Ce. Notice that the hypergraph (V,E′) is
acyclic since T is acyclic. Let F := E \ E′. It follows that F is an
FHS of the hypergraph H. Let f := |F|. We will show that |F| ≤ t.

Let ν denote the cyclomatic number of GH. By Lemma 6.4,
the cyclomatic number of each gadget Ce is 75. Therefore
ν = 75m + 3m = 78m since, to make GH acyclic, we need to
remove 3m further edges after having made each Ce acyclic.
Let G0

:= GH, and, for i = 1,2, . . . , ν, let Gi be the weighted
graph obtained from Gi−1 by removing the i-th edge ei from
the removal sequence s. For every e ∈ E, we denote by Ve the
nodes of the gadget Ce, and we say that edge ei is pertinent to
Ce if ei is an edge of Ce and if the induced graphs Gi

[Ve] and
Gi−1
[Ve] have the same number of connected components.

Clearly, the removal sequence s = e1, e2, . . . , eν contains
precisely νCe = 75 edges pertinent to Ce and the subsequence
se of s comprising these 75 edges encodes a W-basis of Ce.
Since the girth of H is at least 6, every circuit of GH which is
not a circuit of some Ce costs at least 7. As a consequence, for
every e ∈ E, the total cost of the circuits in C associated with
the edges in se is at least B. Besides the ν = 75m removals
considered up to now (which are precisely enough to make
each Ce gadget acyclic), we have 3m further removals. None of
these further removals can cost less than 7, since none of the
corresponding circuits in C is entirely contained in one single
Ce gadget. Furthermore, for every e ∈ F, the best edge removal
for making GH[Ve] acyclic and disconnecting the subgraph
GH[Ve]∩T has cost B+1. Indeed, for every e ∈ F, there exists an
ei in s such that Gi

[Ve] and Gi−1
[Ve] have the same number of

connected components. As a consequence, the corresponding
circuit Ci in C contains an edge (the edge ei) in Ce but is not
entirely contained in Ce. Now, if ei is neither the xw, nor the
yw, nor the zw edge of Ce, then the cost of Ci is strictly greater
than 7 (actually, at least 10); otherwise, the total cost of the
circuits in C associated with the edges in se is at least B+1. In
total, the cost is at least (m−f)B+f(B+1)+21m = m B+21m+f .
Since we know that this cost is at most (21 + B)m + t, we
conclude f ≤ t. �

7. Applications

Cycle bases arise in a wide range of engineering situations.
Here, we discuss three of them, which require different kinds
of cycle bases: The analysis of electrical circuits can be carried
out with any kind of cycle basis, whereas solving periodic
scheduling problems in traffic planning require integral bases,
and a graph drawing method requires strictly fundamental
bases.
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Fig. 36 – The representations of the the New York City subway network near JFK airport: the line plan, the track map, and
the PESP graph. In the lattermost, light gray dotted arcs model passenger transfers or turnarounds of trains, and dark gray
solid arcs model minimum headways and/or coordinated departures. A circuit in the PESP graph is highlighted.
7.1. Kirchhoff’s voltage law

Kirchhoff’s circuits laws govern the behavior of electrical
circuits. The zero-sum property states that the directed sum
of the electrical potential differences around any closed
circuit must be zero [64]. Cycle bases are relevant for circuit
analysis, since the zero-sum property holds for all circuits if
it holds for the circuits in a basis. Thus, circuit analysis can
restrict attention to the circuits in a basis. Indeed, consider
the cycle matrix Γ of some directed cycle basis and some
arbitrary cycle C. Then C = Γλ for some coefficient vector
λ. Now, if some vector x of potential differences satisfies
Kirchoff’s law for every circuit in the basis, i.e., xTΓ = 0,
then xTC = xT(Γλ) = (xTΓ )λ = 0Tλ = 0. For a more detailed
exposition of this application of cycle bases, we refer the
reader to Bollobás [65]. An in-depth presentation of how cycle
bases can be used for index reduction of differential algebraic
systems is given in Bächle [66].

7.2. Periodic scheduling in traffic planning

Periodic scheduling problems arise frequently in traffic
planning. Two examples are scheduling traffic lights and
timetabling public transport. They share a common mathe-
matical model that can be traced back to early work by Gart-
ner et al. [67] and Rüger [68] and that was put into its final
form by Serafini and Ukovich [69].

In the Periodic Event Scheduling Problem (PESP) we are given
a directed graph D = (V,A), vectors ` and u on the arcs, and
a scalar T called cycle time or period. For an arc a, `(a) and u(a)
are lower and upper bounds, respectively, for the travel time
across a. In the feasibility version of the problem, the question
is whether or not a node potential π exists, such that

`a ≤ πj − πi + Tpa ≤ ua, ∀a = (i, j) ∈ A,

where p constitutes an integral vector on the arcs. Then πi is
the event time at node i modulo the period T and pa translates
between periods. For example, if T = 60, a = (i, j), `(a) = 20,
u(a) = 30, πi = 45, πj = 10, then pa = 1. Onemay further add an
objective function, which will depend on the application. We
will next discuss two applications in somewhat more detail
and then make the connection to cycle bases.
Traffic light coordination. The task is to plan the red/green
timings of traffic lights. We assume that a desired cycle time
has already been determined, e.g., 60 s, and that minimum
durations for the green phases of the individual signal groups
(left turn lane, straight traffic, etc.) have been derived from
the traffic loads of the origin-destination pairs. It is then
necessary to schedule the events for each signal group,
i.e., when signals turn from green to red and from red to
green. Typical objectives are the minimization of the number
of red lights for drivers and the total travel time within the
network. Wünsch [70] discusses the traffic light coordination
problem and related problems in greater detail.

Periodic timetabling in public transport. The German train system
runs essentially on either a one- or a two-hour period.
Main lines run on a one-hour period, and secondary lines
operate on a two-hour period. Of course, the period is not
maintained during night hours. The Sunday schedule of the
Berlin subway runs on a 10-min period. Shorter periods
are used on weekdays, particularly during rush hours. The
comprehensive process of timetabling is highly complex, in
particular, when different train operation companies intend
to use the same track for the same time slot. We concentrate
here on purely periodic schedules.

A periodic timetable assigns arrival and departure times
to all pairs of lines and stations. For example, Berlin metro
line U9 leaves Zoo station southbound at minute 02 and
arrives at the next station, Kurfürstendamm, at minute 03.
Many constraints have to be respected. These include
minimum spacing intervals between two trains using the
same track, collision-free service on a single track, and
maximum durations for stops in intermediate stations.
Among themost important objectives are short transfer times
for the passengers as well as short turnaround times for
the trains in their terminus stations, where both also have
to respect certain minimum durations, too. In Fig. 36, these
types of arcs are shown for a small part of New York City.

Cycle bases for PESP. The practical performance of mixed in-
teger programming solvers on PESP instances as formulated
above is rather poor. We now describe a more efficient prob-
lem formulation that makes use of integral cycle bases.

Given an (in-) feasible solution (π,p) for the PESP, consider
the function x(a) on the arcs,

xa := πj − πi + Tpa, where a = (i, j).
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Fig. 37 – Two drawings of the same graph: The drawing on the left is generated by a refined version of a classic
force-directed layout approach and the drawing on the right is generated by first computing an F-basis that is then used to
draw the whole graph as described in [75]. The edges of the spanning tree are marked in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
The vector x is sometimes referred to as a periodic tension for
(π,p), and models the duration between its two events i and j.
Summation of this equality for the arcs of any circuit C yields
the cycle periodicity property

1
T

 ∑
a∈C+

xa −
∑

a∈C−
xa

 ∈ Z;
the important observation is that the sum on the left must
have an integral value for all circuits C. Nachtigall [71]
observed that if the cycle periodicity property holds for the
circuits in some strictly fundamental basis it holds for all
circuits. Liebchen and Peeters [72] generalized this result to
integral cycle bases.

Theorem 7.1 ([72,71]). Let x be some vector on the arcs of a
directed graph. There exists a pair (π,p) such that x is a periodic
tension of (π,p), if and only if x satisfies the cycle periodicity
property for all circuits of some integral cycle basis.

Indeed, assume that the cycle periodicity holds for all the
circuits in an integral basis and let C be an arbitrary circuit.
Then C =

∑
i λiCi, where the Ci’s are the basic circuits and the

λi are integral. Then

∑
a

C(a)xa =
∑
a

(∑
i

λiCi(a)

)
xa

=

∑
i

λi

(∑
a

Ci(a)xa

)
=

∑
i

λiqCi
T

and hence the net travel time along C is an integral multiple
of the period. For this argument to hold, it is essential that C
be an integral linear combination of the basic circuits.

Practical use. For both applications, the mathematical model
sketched above has made its way into practice — including
the computation of short integral cycle bases as a prepro-
cessing subroutine. For the traffic light scheduling problem,
Wünsch [70] reports, that since 2008, the method has been
commercially available as a module in one of the major
software suites for traffic planning. In periodic timetabling,
Liebchen [73] reports that the first mathematically optimized
railway timetable went into service in 2005, for the Berlin
subway network. About two years later, even a national rail-
way company reported that their new timetable was designed
with the help of combinatorial algorithms [74].

7.3. Graph drawing

Graph drawing is concerned with embedding graphs into the
plane in an aesthetically pleasing way. A position is assigned
to each vertex and each edge is drawn as a (poly-)line. The
goal is to obtain a clear, easily interpretable drawing of the
graph. [75] have shown that minimum or near minimum
strictly fundamental cycle bases are very useful in this
context.

They start with the observation that many real-world
graphs, such as social networks, are sparse and simultane-
ously clustered in the sense that the neighbors of a vertex are
frequently also connected directly to each other. These edges
will then form triangles. More generally, most edges of real-
world graphs belong to triangles or at least short cycles. This
is in contrast to sparse random graphs. However, there are
usually also some edges that connect seemingly random ver-
tices with each other [76]. Edges of the first category are often
called local edges and edges of the second category are called
global edges. Although there is no clear definition of either of
these categories, it is frequently desirable to show either the
local structure or the global structure of the graph. The span-
ning tree underlying a (near) minimal cycle basis will provide
the right scaffold. Moreover, it can easily be drawn in linear
time with a tree drawing method [77].

With this spanning tree as a scaffold, global edges can
now be defined as those edges that connect vertices with at
least a given threshold distance in the tree. By adding them
to the spanning tree, the global structure of the graph can
be emphasized. Analogously, by adding the other, non-global
edges to the spanning tree, the local, clustered structure is
prominently displayed. Thus, this method provides a neat
way to show both the local and global structure of a given
graph next to each other. Fig. 37 shows an example.
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8. Summary

Cycle bases of graphs are a rich subject with many
applications. We surveyed structural, algorithmic, and
complexity-theoretic results and compiled a list of open
problems. We also proved several new results. In particular,
we gave additional structural and characterization results,
obtained tight length bounds for weakly fundamental cycle
bases for the full spectrum of graph densities, simplified the
algorithmic treatment of directed cycle bases, and presented
the first algorithms for minimum cycle bases in the presence
of negative edges.
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