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On the history of ADM

Young area, has its roots in

algebra, graph theory, combinatorics

computer science (algorithm design and complexity theory)

optimization

Deals with optimization problems having a disrete structure

graphs, networks

finite solution space

Applications 

telecommunication networks, traffic networks

logistics, production planning, location planning

...

ADM at TU Berlin
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Basic courses

Graph and network algorithms (ADM I)

Linear and integer optimization (ADM II)

Special courses (ADM III)

Scheduling problems 

Applied network optimization

Polyhedral theory

...

Seminar (partly parallel with ADM II or ADM III)

Bachelor thesis or master thesis
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Linear optimization problems

Linear objective function, linear inequalities as side constraints

Linear optimization:   min cTx  subject to  Ax ! b, x " 0

Simplex algorithm

Duality

Geometry of linear optimization problems

Ax ! b, x " 0 define a polyhedron

1. Introduction
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Optimum is attained in a vertex (corner point)

The simplex algorithm traverses vertices
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Discrete problems as linear optimization problems

polyhedral theory

Discrete problems as geometric problems

Minimum spanning trees as vectors

Graph  G

1. Introduction
1.2 Content of ADM II
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Minimum spanning trees of  G  as vectors (incidence vectors)
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Convex hull of incidence vectors = polytope (yellow set)

polytope = yellow set

Computing a minimum spanning tree = linear optimization over this polytope
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Integer linear optimization

variables may only attain integer values

much more difficult problems

Solution methods

Lagrangian relaxation

cutting plane algorithms

LP-based approximation algorithms

...

Exercises with implementation assignments

1. Introduction
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Torsten Gellert (Exercises)

Christoph Hansknecht (Tutorials)

Website 

http://www.math.tu-berlin.de/coga/teaching/wt08/adm2/

http://www.math.tu-berlin.de/coga/teaching/wt10/adm2/

Notebook: http://www.math.tu-berlin.de/~moehring/adm2/

Literature

C.#H. Papadimitriou and K.#Steiglitz

Combinatorial Optimization: Algorithms and Complexity

Prentice Hall, Englewood Cliffs, NJ, 1982

Pocket book - 512 pages - Dover Publications 

First published: Juli 1998

Auflage: Unabridged

ISBN: 0486402584

B. Korte, J. Vygen:

Combinatorial Optimization: Theory and Algorithms

Springer, 2000/2002/2006/2008
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Springer, 2000/2002/2006/2008

jetzt auch auf deutsch 

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver

Combinatorial Optimization

Wiley 1998

V.#Chvátal

Linear Programming

Freeman, New York, 1983

G.#L. Nemhauser and L.#A. Wolsey

Integer and Combinatorial Optimization

John Wiley & Sons, New#York, 1988

M.#Grötschel, L.#Lovász, and A.#Schrijver

Geometric Algorithms and Combinatorial Optimization

Springer-Verlag, Berlin, 2nd#ed., 1993

D.#S. Hochbaum, ed.

Approximation Algorithms for NP-hard problems

PWS Publishing Company, Boston, MA, 1997
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PWS Publishing Company, Boston, MA, 1997

H.#M. Salkin and K.#Mathur

Foundations of Integer Programming

North-Holland, Amsterdam, 1989.

R.#J. Vanderbei

Linear Programming: Foundations and Extensions

Kluwer Acad. Publ., Dordrecht, 2nd#ed., 2001.

http://www.princeton.edu/~rvdb/LPbook/index.html

Encyclopedia

A. Schrijver:

Combinatorial Optimization: Polyhedra and Efficiency

Springer, 2003

3 volumes with 1881 Seiten, aso available as CD



2. Optimization problems
 

6

..................................................................................................................................................................................... 72.1 Examples
......................................................................................................................................... 82.2 Neighborhoods and local optimization

.......................................................................................................................................................... 92.3 Convex sets and functions
.................................................................................................................................................. 102.4 Convex optimization problems

2. Optimization problems
2.1 Examples

7-1

An (NP-) optimization problem  P0  is defined as follows

Each instance  I  ∈  P0  has a feasibility domain  SI.  Its elements  y ∈ SI  are called solutions

Feasibility (y ∈ SI) can in be tested in polynomial time 

Task:

Given an instance  I  and an objective function  c : SI  ->  Q  (rational numbers),  find an optimal solution y = 

OPT(I)  

i.e., y ∈ SI  with  OPT(I) = c(y)  !  c(x)  for all  x ∈ SI  

OPT(I)  denotes both, the optimal solution and the objective function value of the optimal solution

such a solution is called a global optimum (global minimum) or optimum (minimum)

An algorithm that does this is called exact

2.1 Example: Traveling Salesman problem (TSP)

Instance

Complete Graph  Kn,  n " 3

Rational edge weights  c(e)  "  0

Task
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Compute a Hamiltonian cycle  C  with minimal length
!!"" #

�
#∈$!"" !!#"

A concrete instance:

G = Kn  in the plane with Euclidean distances

Two feasible solutions

2. Optimization problems
2.2 Neighborhoods and local optimization
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Neighborhoods

Neighborhoods are defined as !-niggarded (w.r.t. some norm) for continuous problems. How for discrete 

problems?

A neighborhood for a problem class  P0  is given by a mapping

!" ! #" → "
#"

for each instance  I ∈  P0

NI(y) is called the neighborhood of  y  ∈ SI.  We write  N(y)  of  I  is clear from the context

2.4 Example: TSP

Define a neighborhood by a  2-exchange

N2(y) := { x ∈ SI | x  results from  y  by exchanging ! 2 edges from y by other edges }
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This generalizes to any k " 2  and yields the neighborhood Nk(y)

2.5 Example: MST

Define a neighborhood by exchanging an edge on a fundamental cycle 

N(y) := { x ∈ SI | x  results from  y  by adding an edge to  y  and deleting another edge on the resulting cycle}

2. Optimization problems
2.2 Neighborhoods and local optimization
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G T T'

2.6 Example: LP

Define a neighborhood as !-neighborhood

N!(y) := { x | Ax = b, x " 0, || y-x || ! ! }

y
!

Local and global optima
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Local and global optima

Consider a problem class P0  with neighborhood  N  and  let  I ∈ P0

y ∈ SI  is called  locally optimal w.r.t.  N  if  c(y)  ! c(x)  for all x ∈ NI(y)

2.7 Example: local minima in calculus

2.8 Example: TSP

Locally optimal solutions w.r.t.  Nk  are called  k-optimal or  k-opt  for short

exact neighborhood

A neighborhood  N  for a problem class  P0  is called exact

:<=>  every local optimum w.r.t.  N  is a global optimum 

2. Optimization problems
2.2 Neighborhoods and local optimization
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:<=>  every local optimum w.r.t.  N  is a global optimum 

More precisely,  for all  I ∈ P0,  every locally optimal  y ∈ SI  w.r.t.  NI  is globally optimal 

2.9 Example: TSP

N2  is  not  exact

Counter example :

1

5

4 3

2

cost a

cost b

cost c

a < b < c

tour y = "outer edges" has cost 5b

Since both green edges are adjacent, every 2-exchange can at most add one green edge, thus at best one 

green and one red

The new tour is worse if  a+c > 2b

=>  y  is locally optimal w.r.t. N2
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=>  y  is locally optimal w.r.t. N2

Two successive 2-exchanges add both green edges to the tour

1

5

4 3

2

1

5

4 3

2

1

5

4 3

2

This tour is better than  y  if  2a+c < 3b

a < b < c  and  a+c > 2b  and  2a+c < 3b  are fulfilled by  a = 1, b = 4, c = 8

Nn  is exact

clear since  Nn(y) = SI    !  

2.10 Example: MST

The neighborhood of MST is exact

Proof :

2. Optimization problems
2.2 Neighborhoods and local optimization
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Proof :

Use a theorem from ADM I:

T is optimal  <=>  every non-tree-edge  e  is the  most expensive  edge in the cycle induced by  e  in  T + e

 !

Neighborhoods motivate the principle of local search

Algorithm local search

Input

instance  I  of an optimization problem  P0  with neighborhood  NI

start solution  y ∈ SI

Output

local optimum w.r.t.  NI

Method

iterative improvement

while  there is a better solution  x ∈ NI(y)   do

choose better solution  x ∈  NI(y)

y := x
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y := x

return  y

2.11 Theorem (local search for MST)

Local search w.r.t. the MST-neighborhood is a polynomial algorithm for computing a (globally) optimal MST if 

(a)  it always chooses a non-tree-edge  f  that is cheaper than the most expensive edge of the cycle  K  

induced by  f 

(b)  it always deletes a most expensive tree-edge  e  from the cycle  K  induced by  f 

Proof:

1. Since the neighborhood is exact, the algorithm has computed a globally optimal solution at termination

2. The algorithm terminates in polynomial time

 Claim 1: A deleted edge never returns into the tree

Proof by contradiction

Let  K  be the cycle when  edge  e  is removed
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e K

Consider the first later point in time t  at which  e  is chosen to enter the tree

=>  e  is currently a non-tree-edge and induces a cycle  K'  

 

e K K'

=>  K'  results from  K  by the local search steps until time t

In every of these steps,  e  is a  non-tree-edge and induces a cycle K(e)  in the current tree

Claim 2: In every of these steps,  c(e) " c(g)  for all edges  g ∈ K(e)

Proof by induction along the sequence of cycles  K = K1, K2, K3, ... 

Base case: clear for  K = K1  by construction

Inductive step from  Ki  to  Ki+1  

clear for Ki = Ki+1
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clear for Ki = Ki+1

let Ki $ Ki+1  

two cases are possible

Ki+1 makes  Ki  larger

=>  Ki+1 = Ki - (some edges including the currently deleted edge  e') + P  (P is part of the 

current cycle from which we delete  e')

e e

e'

P

=>  c(e') " c(f)  for all edges   f ∈ P  because of (b)

c(e) " c(e')  by the inductive assumption,  (b)  =>  c(e) " c(f) for all edges f ∈ Ki+1

Ki+1  makes  Ki  smaller

=>  Ki+1 = K + (some edges including the currently added edge  e') - P  (P is part of Ki)

2. Optimization problems
2.2 Neighborhoods and local optimization
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e e

e'

P

f
0

=>  c(e') < c(f0)  for the removed edge f0,  c(e) " c(f) for all edges  f ∈ P because of the 

inductive assumption

=>  c(e) " c(f) for all edges   f ∈ Ki+1

Claim 2 contradicts the choice of  e  specified in (a)

So there are at most  m-n+1  exchanges (m = # edges, n = # vertices). Every exchange step can be done in  

O(n) time

determine the most expensive edge  e  in the cycle induced by the non-tree-edge  f and compare  c(e)  

and  c(f)

[by breadth first search in O(# edges in tree) = O(n)]

exchange  e  and  f  if  c(e) < c(f)

[O(n)  if the tree is maintained as array of adjacency lists]
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[O(n)  if the tree is maintained as array of adjacency lists]

Thus O((m-n+1)n)  =  O(mn)  altogether  !

Remark: we have obtained better algorithms in ADM I:  Kruskal O(m·log n) and Prim O(n2)

Exercises: Analyze local search for TSP with the k-opt neighborhood. Does it run in polynomial time?

2. Optimization problems
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Convex combination of two vectors

Let x, y ∈ Rn. Then every point

z = λ·x + (1-λ)·y  with  0 ! λ ! 1

is called a convex combination of  x  and  y  (a strictly convex combination if  0 < λ < 1)

the convex combinations of  x  and  y  are exactly the points on the line segment from  x  to  y

x

y

x-y

points on this line segment are vectors of the form  y + λ(x-y)

Convex set

S ! Rn  is called convex if  S  contains all convex combinations of any two points  x, y ∈  S

2.12 Example:
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Rn, Ø, {x}, x ∈  Rn  are convex

The convex subsets of  R1  are precisely the intervals

Convex sets in  R2 are those without "bays"

A B
C

2.13 Lemma

The intersection of (any number of) convex sets is convex

Proof:

Let  S = "i∈I Si,   Si  convex

Let x, y  ∈  S,   0 ! λ ! 1,   z = λ·x + (1-λ)·y

Def. of S  =>  x,y ∈ Si  for all i   =>   z ∈ Si  for all i   =>  z ∈ S   !

Lemma 2.13 is the basis for the definition of the convex hull of a set

2. Optimization problems
2.3 Convex sets and functions

9-3

The convex hull  conv(S)  of a set  S  is the smallest convex set containing  S, i.e.,

!"#$%!& '
�

!⊆"# " ("#$)*

"

 

This intersection exists, since  Rn  is one of the sets  M

An equivalent description is (exercise)

conv(S) = { λ1x
1 + ... + λkxk | xi ∈ S,  λi " 0,  % λi = 1,  k finite }

Theorem of Caratheodory: in  Rn, k ! n+1  suffices 

Convex function

Let  S ! Rn  be a convex set. A function  c : S -> R1  is called convex in S  if 

c(λ·x + (1-λ)·y)  !  λ·c(x) + (1-λ)·c(y)

for all x, y ∈ S,  all  0 ! λ ! 1

2.14 Example

Every linear function is convex

Interpretation of convex functions  c : R1  ->  R1
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!"c(x) + (1-!)·c(y)

x

c

y

c(x)

c(y)

z

z := λ·x + (1-λ)·y c(z) ! λ·c(x) + (1-λ)·c(y)

2.15 Lemma

Let  c  be convex in S ! Rn.  Then, for every real number  t,  the level set 

St  := { x ∈ S | c(x) ! t }

is convex

Proof:

Consider  z := λ·x + (1-λ)·y  with  x, y  ∈ St,  0 ! λ ! 1

=> c(z) ! λ·c(x) + (1-λ)·c(y) since c is convex

! λ·t + (1-λ)·t since x, y ∈ St

=> z ∈ St  !  

Level sets of a convex function  c : R2  ->  R1

2. Optimization problems
2.3 Convex sets and functions
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Level sets of a convex function  c : R2  ->  R1

c = 3 2 1

Concave function

c  in S ! Rn  is called concave if  -c  is convex

<=>  c(λ·x + (1-λ)·y)  "  λ·c(x) + (1-λ)·c(y)   for all x, y ∈ S,  all 0 ! λ ! 1
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Convex optimization = minimizing a convex function on a convex set.

Important principle: local Optima are global Optima

2.16 Theorem (local - global)

Consider an instance  I  of an optimization problem with  SI  ! Rn  convex and  c  convex in  SI.  

=>  The neighborhood 

N!(y) := { x ∈ SI  : || y-x || ! ! }

defined by the Euclidean distance is exact for every  ! > 0.

Proof:

Let  ! > 0  and let  y  be locally optimal w.r.t.  N! .

Consider  x  ∈ SI.  Show that  c(y) ! c(x).  

This is trivial if  x ∈ N!(y)

So assume  x ∉ N!(y)

=>  then there is some  λ  such that   z := λ·x + (1-λ)·y ∈ N!(y)  and  z $ y  

2. Optimization problems
2.4 Convex optimization problems
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SI

N
!
(y)

y

x

z

c convex  =>  c(z)  !  λ·c(x) + (1-λ)·c(y),  moreover  c(z) " c(y)  since  y  is locally optimal

⇒ !!"" !
!!#" " !# " $"!!%"

$
!
!!%" " !# " $"!!%"

$
$ !!%"

Hence  c(x) " c(y)  ! 

Observe: this holds without any further assumptions on  c;  in particular,  c  need not be differentiable.

Historical definition of convex optimization problems

An instance  I  of an optimization problem is called a convex optimization problem if

SI  is specified as set of all  x ∈ Rn  fulfilling side constraints of the form:
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SI  is specified as set of all  x ∈ Rn  fulfilling side constraints of the form:

gi(x)  "  0 i = 1,...,m

gi : R
n  ->  R1   concave, i = 1,...,m

c  is convex in SI

2.17 Lemma

The feasible set  SI  of an instance  I  of a  historically defined convex optimization problem is convex

Proof:

gi  concave  =>  -gi  convex  

=>  Si := { x | -gi(x) ! 0 }  = { x | gi(x) " 0 }  convex because of Lemma 2.15

=>  SI  =  "i Si  is convex because of Lemma 2.13  ! 

2.18 Theorem

In a convex optimization problem, every local optimum is a global optimum

2.19 Remark

There can be many global optima

2. Optimization problems
2.4 Convex optimization problems
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There can be many global optima

Every instance of LP is a convex optimization problem

=>  every local minimum is a global minimum

Calculus offers sufficient criteria for smooth functions to be convex:

D ! Rn  open, c : D -> R1 is twice continuously differentiable,

Hessian matrix (= matrix of 2nd partial derivatives) of  c  is positive semidefinite
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(3.1) General Form

  !"# !"# # ∈ R$% ! ∈ R$

such that aT
i x = bi i ∈ M ai ∈ Rn

aT
i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj arbitrary j ∈ N

3.1 Example: Diet problem (historically the oldest LP)

n   foods,  j = 1,..., n

m  nutrients  (proteins, vitamins etc.)  i = 1,..., m

aij  =  amount of nutrient  i  per unit of food  j,   

ri   = required amount of nutrient  i  per time period (week)

xj  = amount of food  j  per time period (week)

cj  = cost per per unit of food  j  

x = (x1, x2, ..., xn)T  models a weekly diet

feasible diet fulfills  Ax " r  with A = (aij),  r = (r1, r2, ..., rm)T

(3.2)  Computing a "cheapest" feasible diet is the LP

min  cTx
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min  cTx

s.t. Ax " r

  x " 0

An LP of the form (3.2) is called in canonical form

An LP of the form 

(3.3) min  cTx

s.t. Ax = b

   x " 0

is called in standard form

An LP of the form (3.1) is called in general form

3.2 Lemma (Equivalence of the three forms)

All 3 forms are equivalent

in the sense that an instance  I  of one form can be transformed into an instance  I'  of any other form by a 

simple transformation such that one can easily construct an optimal solution of  I  from an optimal solution of  

I'

Proof

3. The Simplex algorithm
3.1 Forms of linear programs
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Proof

it suffices to provide the following transformations:

general form -> canonical form

eliminate equality constraints and unrestricted variables∑n
j=1 aijxj = bi →

∑n
j=1 aijxj ≥ bi and

∑n
j=1 aijxj ≤ bi

xj unrestricted → xj = x+j − x−j , x+j , x
−
j ≥ 0

general form -> standard form

eliminate  """  by introducing surplus variables  si " 0
∑n

j=1 aijxj ≥ bi → ∑n
j=1 aijxj − si = bi

eliminate  "!"  by introducing slack variables  si " 0

 ∑
n
j=1 aijxj ≤ bi → ∑n

j=1 aijxj + si = bi      ! 
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Goal: Develop an algorithm to solve LPs

Starting point: LP in standard form

min  cTx

s.t. Ax = b      

       x " 0 

with initial assumptions 3.1 - 3.3  (which we will get rid of later)

Assumption 3.1:  A is an  (mxn)-matrix with full row rank  m

3.3 Example

min 2x1 +x4 +5x7

s.t. x1 +x2 +x3 +x4 = 4

x1 +x5 = 2

+x3 +x6 = 3

+3x2 +x3 +x7 = 6

xj ≥ 0 ∀j

3. The Simplex algorithm
3.2 Basic feasible solutions
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!!!"" #





$ $ $ $ ! %

$ $ ! &

$ $ ! '

' $ $ ! (





A  has full row rank  m = 4

Recall from linear algebra:

column rank = row rank = rank(A) = m

A basis of  A  is a set of   m  linearly independent columns  B = {Aj, Ak, ..., Ar}, and these columns are called basic 

columns. The other columns are called non-basic columns.

We denote the  submatrix of these columns by  B (sometimes AB)   and the corresponding indices by  B(1),..., B

(m).

So  B = (AB(1), AB(2), ..., AB(m)).  Sometimes we will identify  B  with the set of indices, i.e.,  B = { B(1), ..., B(m) }.

AN  denotes the submatrix of non-basic columns.
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A  has at most   (n
m)   bases

3.3 Example (continued)

Basis 1:




! ! ! ! ! "

! ! ! #

! ! ! $

$ ! ! ! %





 

B(1) = 4, B(2) = 5, B(3) = 6, B(4) = 7

Basis 2




! ! ! ! ! "

! ! ! #

! ! ! $

$ ! ! ! %





B(1) = 2, B(2) = 5, B(3) = 6, B(4) = 7

Basis 3
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! ! ! ! ! "

! ! ! #

! ! ! $

$ ! ! ! %





B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7

! !





" " "

"

"

# " "





Every basis matrix is invertible and can be transformed into the identity matrix by elementary row operations 

and column permutations (Gaussian elimination).

If we transform the whole extended matrix  (A|b) with these operations, we obtain a solution of  Ax = b  by 

setting the basic variables to the (transformed) right hand side, and the non-basic variables to 0. This solution 

is called the basic solution for basis B.

The applet below can be used to carry out these operations
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http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

3.3 Example (continued)

Basis 1

no transformation needed since  B = identity matrix

basic solution: x4 = 4, x5 = 2, x6 = 3, x7 = 6, xj = 0 otherwise 

Basis 2





! ! ! ! ! "

! ! ! #

! ! ! $

$ ! ! ! %









! ! ! ! ! "

! ! ! #

! ! ! $

"$ "# "$ ! ! "%





B(1) = 2, B(2) = 5, B(3) = 6, B(4) = 7

basic solution: x2 = 4, x5 = 2, x6 = 3, x7 = -6, xj = 0 otherwise 

Basis 3
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! ! ! ! ! "

! ! ! #

! ! ! $

$ ! ! ! %









! ! !! !! " !!

! ! " "

! ! " #

!# # " ! " $





B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7

basic solution:  x2 = -1, x1 = 2, x3 = 3, x7 = 6, xj = 0  otherwise 

If we permute the columns of  A  and  x  such that  A = (AB, AN)  and  x = (xB, xN)T,  then the elementary 

transformations correspond to  multiplying the linear system  (AB, AN) (xB, xN)T = b  from the left with the 

inverse  B-1  of the basis:

B-1(AB, AN) (xB, xN)T  =  B-1b 

  <=>    B-1ABxB + B-1ANxN     =  B-1b

  <=> xB + B-1ANxN  =  B-1b

If we set  xN  =  0  in the basic solution, we obtain  xB  =  B-1b

So if  B  is a basis of  A, then we obtain the associated basic solution  x = (xB, xN)T  as  

xB  = B-1b,  xN  = 0
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xB  = B-1b,  xN  = 0

3.3 Example (continued)

Basis 3

! !





" " "

"

"

# " "




⇒ !

!"
!





" !" !"

"

"

!# # $ "





⇒ !" !





!"

!#

!$

!%




! "

!#
# !





# !# !#

#

#

!$ $ " #




"





&

"

$

'




!





!#

"

$

'





A basic solution  x  is called a basic feasible solution (bfs for short) if  x " 0, i.e.,  x  is a feasible solution of the 

LP

3.3 Example (continued)

The basic solution of basis 1 is feasible, those of basis 2 and basis 3 are not.
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The role of basic solutions for the simplex algorithm

From an algebraic view, the simplex algorithm will turn out to be a local search on the set of basic feasible 

solutions

To see this we need

a neighborhood (two basic feasible solutions are neighbors if they differ in at most one column)

an algorithmic analysis how to go from one basic feasible solution to a neighbor (pivot operation, pivot step, or 

simply pivot)

we start with a few mathematical properties of (feasible) basic solutions

Some mathematical properties of (feasible) basic solutions

3.4 Lemma (The values of basic variables are bounded)

Let the entries of  A  and  b  be integer numbers and let  x  be a basic solution of  Ax = b. 

Let  α := maxij |aij|  and  β := maxi |bi|. Then

|xj|  !  m! αm-1 β   for all j

Proof:

Let  xB  = B-1b  with  B = (AB(1), AB(2), ..., AB(m)).  
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Let  xB  = B-1b  with  B = (AB(1), AB(2), ..., AB(m)).  

By Cramer's rule we obtain 

xB(i) =
detBi

detB mit Bi = (AB(1), . . . , AB(i−1), b,AB(i+1), . . . , AB(m))

A, b  integer  =>  det B  integer  =>  |det B| " 1

Expanding  det Bi  along column  b  yields  m  summands of the form  bi · [(m-1)x(m-1) sub-determinant of A]. 

Each such sub-determinant is the sum of  (m-1)!  products of  (m-1)  entries from A.  Hence:

!!"!#"! #
!$%&"#!

!$%&"!
" !$%&"#! " $ # % # !$ $ '"( # &$$' # $(&$$'%

    !

3.5 Lemma (Every basic feasible solution can be optimal, we cannot do with a subset)

Let  x  be a basic feasible solution of  Ax = b,  x " 0  with basis  B.  

=> there is a cost vector  c  such that  x  is the only optimal solution of   

min  cTx

s.t. Ax = b      

   x " 0 

Proof:
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Proof:

Set cj :=

{
0 if j ∈ B
1 if j "∈ B

=>  cTx  = 0,  as  non-basic variables  are  0 

=>  x  is optimal, as  cTy " 0  for every feasible solution  y

let  y  be another optimal solution

=>  yj = 0  for all j ∉ B

=>  Ay = b  reduces to  ByB = b  =>  yB = B-1b  =  xB 

=>  x  is the only optimal solution   !

We will see later that basic feasible solutions also suffice, i.e., they constitute the smallest set of feasible 

solutions on which the optimum is attained for all cost vectors  c

Existence of basic feasible solutions

Question: does every LP have a basic feasible solution?

Assumption 3.2:  The feasible domain  SI  of an LP is non-empty
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Assumption 3.2:  The feasible domain  SI  of an LP is non-empty

3.6 Theorem  (Existence of basic feasible solutions)

With assumptions

3.1:  rank(A) = m

3.2:  SI  $  Ø

there exists at least one basic feasible solution

Proof:

SI  $  Ø  =>  there are feasible solutions

let  x  be a solution with the most 0-entries and let w.o.l.g.  x1, ..., xt  >  0,  xt+1, ..., xn  = 0

=>  Ax = b  reduces to  A1x1 + ...+ Atxt = b   (3.4)

A

x
1
 x

1      
...

 
    x

t
 0   ... 0

let  A' := (A1 ,..., At)  and  r := rank(A')

3. The Simplex algorithm
3.2 Basic feasible solutions

13-12

let  A' := (A1 ,..., At)  and  r := rank(A')

=>  0 ! r ! min {t, m}

case distinction

r = 0

=>  Aj = 0  for  j = 1, ..., t  =>  (3.4)   Ax = 0

=>  (choice of  x)   x = 0

=>  x is a basic feasible solution for any basis, a particular basis exists because of assumption 3.1

0 < r < t

we generate a contradiction

let  B´  be a non-singular submatrix of  A'  with rank  r,  w.l.o.g.

  

x
1
 x

2 
...

 
x

r
 ... x

t
 0   ... 0

B´
!

�
!




""" # # # ""$
###

# # #
###

"$" # # # "$$





let Bj´ the columns of the first  r  entries of  Aj  (j = 1, ..., t)  and let  b´ be the vector of the first  r  
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let Bj´ the columns of the first  r  entries of  Aj  (j = 1, ..., t)  and let  b´ be the vector of the first  r  

entries of  b

r < t  =>  the last  m - r  equations of  (3.4)  are redundant and we can write  (3.4)  as

B1´x1 + ...+ Bt´xt  =  b´

<=>     B1´x1 + ...+ Br´xr  =  b´ - (Br+1´xr+1 + ...+ Bt´xt)

 

⇔ !!�
"" # # # " !

�
$#




%"
$$$
%$



 % &�
!

�
!�
$&"" # # # " !

�
'

�



%$&"
$$$
%'





Multiplying from the left with  (B´)-1  yields

 




!!
"""
!"



 # $#�%!!$�
! $#�%!!

�
#�
"&!% & & & % #

�
'

�



!"&!
"""
!'





⇔




x1
...

xr



 =




β1
...

βr



 +




α1,r+1 . . . α1t

...
. . .

...
αr,r+1 . . . αrt








xr+1

...
xt



 (∗)

for some numbers  αij  and  βi , 

i.e.,,  x1, ..., xr   depend affinely linear on  xr+1, ..., xt 
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i.e.,,  x1, ..., xr   depend affinely linear on  xr+1, ..., xt 

Use  (*)  to construct a new feasible solution with more 0-entries 

there is a row  i  with αi,r+1  $ 0  (otherwise we may choose  xr+1 =  0  which contradicts the choice of 

x)

vary  xr+1   such that one of  x1, ..., xr  or  xr+1  becomes 0,  but all stay  " 0

αi,r+1  < 0  =>  xi  grows  when  xr+1  gets smaller  =>  x1, ..., xt  stay  " 0 

αi,r+1  > 0  =>  decreasing  xr+1  by  θ > 0  yields the condition  xi  - αi,r+1·θ  " 0 

choose θ := min { xr+1, xi
αi,r+1

| αi,r+1 > 0 }

and set  yr+1 := xr+1 - θ  and  yj := xj   for  j > r+1   

=>   y1, ..., yr  are determined by  (*)  and are  " 0 

=>   y = (y1, ..., yn)T   is a feasible solution of the LP

2 cases:

yr+1 = 0  (occurs if  θ =  xr+1)

or  some  y1, ..., yr   become  0

=>  contradiction to the choice of  x

0 < r = t ! m
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0 < r = t ! m

A'  has t columns,  rank(A') = t  =>  the  t  columns of A' are linearly independent

=>  (rank(A) = m)  they can be augmented to a basis  B  of  A  by adding columns of  A  

=>  x  is a basic feasible solution for basis  B   !

Boundedness of the feasible domain

last assumption

Assumption 3.3:  { cTx | Ax = b, x " 0 }  is bounded from below

this will show that we can restrict ourselves  to bounded feasibility domains  SI = { x | Ax = b, x " 0 }  

3.7 Theorem (The feasible domain can be assumed as being bounded)

Assume

3.1:  rank(A) = m

3.2:  SI  $  Ø

3.3: { cTx | Ax = b, x " 0 }  is  bounded from below

Then the LP

min  { cTx | Ax = b,  x " 0 } (LP)

is equivalent to the LP
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is equivalent to the LP

min  { cTx | Ax = b,  x " 0,  xj ! M } (LP*)

with M := (m+1)! αm β  

α := maxij { |aij|, |cj| }  

β := maxi { |bi|,  |z| }

z := inf { cTx | Ax = b,  x " 0 }

in the sense that the optimal values coincide and (LP) and (LP*) have a common optimal solution that is a basic 

solution of (LP).

Proof:

let  G := { cTx | Ax = b,  x " 0 } !  R1   =>  z := inf G  >  -&  because of assumption (3.3)

G is closed (since defined by  =  and  " and the linear function cTx)   =>  z ∈ G  

=>  { x ∈ Rn | cTx  = z,  Ax = b,  x " 0 } is the set of optimal solutions of (LP)   (3.5)

Two cases

rank { cTx  = z,  Ax = b }  =  m+1

Theorem 3.6  =>  (3.5)  has a basic feasible solution  x  with basis B

Lemma 3.4  =>  x  fulfills the bounds  xj ! M

Moreover:  x  is feasible for (LP)
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Moreover:  x  is feasible for (LP)

(3.5)  =>  x is optimal for (LP)  and this also for (LP*),  as  SLP* !  SLP 

rank = m+1  =>   B  without the row for  cTx  = z  contains  m  linearly independent columns from  A

=>  x is a basic solution of (LP)  

rank { cTx  = z,  Ax = b }  =  m

=>  c  is a linear combination of the rows  ai  of  A,  say  c = % diai

=>  cTx  =  (% diai)
Tx  =  % diai

Tx   =  % dibi  =  constant, independent of x

=>  every such solution of (LP) is optimal, in particular a feasible basic solution. 

This fulfills the bounds because of Lemma 3.4  !
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Main statements of this chapter

The feasible domain of an LP in canonical form is a polyhedron

The basic feasible solutions of the associated LP in standard form correspond to vertices of this polyhedron 

The optimum is attained in a vertex of the polyhedron / in a basic feasible solution of the associated LP in 

standard form

Basic geometric facts

Ø $ S ! Rd  is a linear subspace of  Rd

<=> S  is closed under vector addition and scalar multiplication

<=> S  is the set of solutions of a homogeneous linear system  Ax = 0

Then  dim(S) + rank(A)  =  d

T ! Rd  is an affine subspace of  Rd

<=> T  is  a linear subspace translated by some vector, i.e.,

T = { u + x | x ∈ S } ,  S  linear subspace, u ∈ Rd

<=> T  is set of solutions of an inhomogeneous linear system  Ax = b

dimension  dim(T) := dim(S)
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Dimension of a set  S ! Rd

= dimension of the smallest affine subspace containing S  (affine hull of S)

Examples:

a line has dimension 1

|S| = k ! d+1   =>  dim(S)  !  k-1

The set of solutions  S  =  { x | Ax = b, x " 0 } of an LP in standard form fulfills  dim(S) ! n-m

because:

rank(A) = m  =>  { x | Ax = b } has  dimension  n-m   (as long as  Ax = b  is solvable)

the sign restrictions  xj " 0  can lower the dimension

e.g.,  if   { x | Ax = b } " { xj " 0 } = {0}

Hyperplane in  Rd

=  affine subspace of dimension  d-1

=  set of solutions of an equation  a1x1 + ... + adxd  =  b   (not all  aj = 0)

it defines two (closed) halfspaces

{ x | a1x1 + ... + adxd  "  b }  and  { x | a1x1 + ... + adxd  !  b }

Polyhedron in  Rd

3. The Simplex algorithm
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=  non-empty intersection of finitely many halfspaces (generated by hyperplanes)

=>  polyhedra are convex

Polytope in Rd

=  bounded polyhedron

Example: Platonic Solids

http://www.3quarks.com/GIF-Animations/PlatonicSolids/index-de.html

Geometric aspects of polytopes

Feasible domains  S  of  LPs  in canonical form are polyhedra. They are polytopes if  S  is bounded or can be 

assumed to be bounded.

3.8 Example
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x2

x1

x3

  H1

     H2 H4

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

   H7

H5

H6

x2

x1

x3

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

H3

The polytope is the intersection of the following halfspaces

x1 + x2 + x3 !  4   hyperplane  H1

x1              !  2   hyperplane  H4

 x3  !  3   hyperplane  H3

     3x2 + x3  !  6   hyperplane  H2

 xj   "  0   hyperplanes  H5,  H6,  H7
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 xj   "  0   hyperplanes  H5,  H6,  H7

A hyperplane  H  supports polyhedron  P 

:<=>  H " P  $ Ø  and  P  is contained in one of the halfspaces defined by  H 

f := H " P  is then called a face of  P, and  H  is called a  P supporting hyperplane defining  f

important: facet :=  face of dimension d-1  

vertex or extreme point :=  face of dimension 0  (a point)

edge :=  face of dimension 1  (a line segment)

Some geometric facts (without proof)

(a)  A facet defining hyperplane of  P  belongs to one of the halfspaces that define  P  (i.e., deleting  H  

changes  P)

(b)  Face defining hyperplanes do generally not fulfill  (a). 

The halfspace  x2  !  2  in Example 3.8  defines  a face  ({ x2  !  2 } " P)  that is an edge but not a facet).

This halfspace is redundant, its generating inequality is already implied by others:

x3  "  0,   3x2 + x3  !  6 =>   3x2  !  3x2 + x3  !  6  =>   x2  !  2

(c)  An edge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the 
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(c)  An edge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the 

converse is not true)

3.9 Theorem (Minkowski 1896)

(a)  Every polytope is the convex hull of its vertices,

i.e., every point  x  of a polytope  P  can be represented as

x =  λ1x
1 + ... + λkxk,  xi  vertex of P,   λi " 0,  % λi = 1,  k finite

(b)  if  V ! Rd  is finite,  then  conv(V)  is a polytope  P  and  { vertices of  P }  !  V

Proof

partly an exercise

(a)  by induction on dimension d

In example 3.8 we have 
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(b) is intuitively clear geometrically, but more complicated to prove algebraically.  !

3. The Simplex algorithm
3.3 The geometry of linear programs

14-7

Consequence: There are two views on a polytope:

1.  as convex hull of a finite set of points

(e.g.,  of the incidence vectors of solutions of a combinatorial optimization problem)

2.  as the intersection of finitely many halfspaces (if this intersection is bounded)

(this is the natural view when the inequalities are explicitly given, e.g., as for LPs in canonical form)

A third, algebraic, will be derived in the sequel.  It consists of a linear system  Ax = b, x " 0  whose basic 

feasible solutions correspond to the vertices of  P. 

Algebraic interpretation of polytopes

From the polytope to the linear system

Let  P  be a polytope  in R+
n-m   given by the  n  inequalities  (3.6)

   xi  " 0 i = 1, ..., n-m

hi,1x1 + ... + hi,n-mxn-m + gi  !  0   i = n-m+1, ..., n

Let  H  be the coefficient matrix of inequalities  i = n-m+1, ..., n

Introduce slack variables  xi  for inequalities  i = n-m+1, ..., n   (m many)

=>  (3.6)  becomes  Ax = b,  x " 0,  x ∈ Rn   with   A = (H|I),   b = -(gn-m+1, ..., gn)T  
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=>  (3.6)  becomes  Ax = b,  x " 0,  x ∈ Rn   with   A = (H|I),   b = -(gn-m+1, ..., gn)T  

i.e., the feasible domain  S  of an LP in standard form

This induces the following mapping (transformation)  f : P -> S    (3.7)

x� =




x�1
...
x�n−m



 ∈ P �→





x1
...
xn−m
...
xn




∈ S

with xi =






x�i i = 1, . . . , n − m

−gi −
n−m

∑
j=1

hijx�j
� �� �

slack

i = n − m + 1, . . . , n

Observe:  x  is uniquely determined by  x´, i.e.,  f  is injective

From the linear system to the polytope

Let  Ax = b,  x " 0,  x ∈ Rn  be the feasible domain  S  of an LP in standard form (under assumptions 3.1 - 3.3).

Then there exists a basis  B, and we consider the partition  A = (AB,AN)  and  x = (xB, xN)T  in basic and non-

basic variables. 

W.o.l.g. let  B = { n-m+1, ..., n }  (last m columns of A)
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W.o.l.g. let  B = { n-m+1, ..., n }  (last m columns of A)

 Multiplying  Ax = b  from the left by  B-1  gives

B-1 (AB,AN) (xB, xN)T =  xB + B-1AN
 xN  =  B-1b =: b´

With   B-1Aj =:  A´j   we obtain

!"!#" # $�
# !

%!&�

'#$

(�
#'!' # # $) * * * ) &

Hence  Ax = b,  x " 0  is equivalent to  (3.8)

  

!�
" !

�#!$
%!" &�

"%'% " # " ! "( ) ) ) ( $

'% " # % �∈ *

These are  n  inequalities in the variables  x1, ..., xn-m,  which define a polytope  P  in  Rn-m  (since S is bounded)

This construction defines  the following mapping  g : S -> P  ( for B = { n-m+1,...,n } )    (3.9)

! !





!"

###

!"!#

###

!"





∈ $ �→ !�
!





!�
"

###

!�
"!#



 ∈ %

with  xj´ := xj    j = 1, ..., n-m  (we "forget" the slack of basic variables).
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with  xj´ := xj    j = 1, ..., n-m  (we "forget" the slack of basic variables).

Obviously,  g  is a linear function and injective, as  xn-m+1, ..., xn  are uniquely determined by  x1, ..., xn-m.

Moreover:

xj = 0  for j = 1, ..., n-m, i.e. j ∉ B,  implies that  x´ lies on a  "coordinate hyperplane" in  P  

xj = 0  for j = n-m+1, ..., n, i.e. j ∈ B,  implies that a  P-defining inequality holds with equality

(basic variables "correspond" to slack variables, where this role is defined somewhat arbitrarily by the 

choice of  B)

3.8 Example (continued)

! !
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values of the
given variables

values of the
slack variables

!
�
!





"

"

#



 ∈ " ↔ ! !





"

"

#

$

"

"

%





∈ #

Observe:  f and g  are bijections between  P  and  S,  where  g  depends on the choice of the basis and  

determines  P.

3.10 Theorem (Interpretation of vertices in the three views)

Let  P  be a polytope and let  S = { x |  Ax = b, x " 0 }  be the associated feasible set of an  LP in standard form. 

Let  y´= (y1´, ..., yn-m´)T ∈  P  and let  y = (y1, ..., yn)T ∈  S  be the associated vector according to  (3.7)  

Then the following statements are equivalent:

(1)  y´  is a vertex of  P

(2)  y´ cannot be represented as a strict convex combination of other points from  P 

(3)  y   is a basic feasible solution of  S
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(3)  y   is a basic feasible solution of  S

Proof

(1) => (2)

Assume there are  z´, z´´  ∈  P,  0 < λ < 1  with  y´ = λ z´ +  (1-λ)z´´ 

y´ is a vertex  =>  there is a halfspace  HS = { z | hTz ! g }  with  HS " P = {y´}

z´, z´´  ∉  HS   =>   hTz´ > g   and  hTz´´ > g   =>  hT(λ z´ +  (1-λ)z´´)  >  g

=>  y´  ∉  HS,  a contradiction

(2) => (3)

Let  y ∈ S  be constructed from  y´ according to  (3.7)  and let  B' := { j | yj > 0 }

Claim:  the columns  Aj  with j ∈ B'  are linearly independent

if not, there exist numbers  dj  (not all 0)  with  %j # B' djAj = 0    (3.10)

Definition of B'  =>  %j # B' yjAj = b    (3.11)  

(3.11) + θ·(3.10)  and  (3.11) - θ·(3.10)  yield

%j # B' (yj + θdj)Aj = b   and    %j # B' (yj - θdj)Aj = b

yj > 0   for  j ∈ B'  =>   θ > 0  can be chosen in such a way that  yj + θdj "  0   and   yj - θdj "  0.

To this end we must have:

θ  !  yj /|dj| for  negative  and  positive  dj
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θ  !  yj /|dj| for  negative  and  positive  dj

=>  this is possible for all  j ∈ B'  simultaneously

define  x1  and  x2  from  S  by 

x1
j :=

{
yj − θdj j ∈ B′

0 otherwise
x2

j :=

{
yj + θdj j ∈ B′

0 otherwise

=>   x1,   x2 ∈  S, different from y,  and  
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g : S -> P  defined by (3.9) is linear and  g(y) = y´ 

⇒ !
� ! ""!# ! "
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with  g(x1),  g(x2)  ∈  P  =>  a contradiction to (2)

=>  |B'| ! m  =>  (Assumption 3.1)  B' can be augmented to a basis  B  

=>  y  is a basic feasible solution for  B

(3) => (1)

let  y  be a basic feasible solution of  Ax = b, x " 0  with basis  B

Lemma 3.5  =>  there is a cost vector  c  such that  y  is the only optimal solution of the LP with cost vector  
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Lemma 3.5  =>  there is a cost vector  c  such that  y  is the only optimal solution of the LP with cost vector  

c.

In other words,

y is the only solution of  (3.12)

cTx  !  cTy  =: b0 ,  

Ax = b,  x " 0 

Transform (3.12) into standard form with a slack variable  xn+1  for  cTx  !  b0 :





!! " " " !# !

$! " " " $#
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###

"









%!

###
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 %

�
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&

�

=>  B $ {n+1}  is a basis of  (3.12)

Transform  (3.12)   according to  transformation  g  defined by (3.9).

This yields a system of linear inequalities whose  m  last inequalities define the polytope  P.

The first inequality is transformed into  c1´x1´ + ... +  cn-m´xn-m´  !  b0´   (3.13)

The transformation is a bijection

=>  y -> y´, and  y´ is the only point in  P  fulfilling  (3.13) with equality
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=>  y -> y´, and  y´ is the only point in  P  fulfilling  (3.13) with equality

=>  c1´x1´ + ... +  cn-m´xn-m´  =  b0´  is a supporting hyperplane H  of P  and  H " P  =  {y´}

=>  y´ is vertex of  P   !  

There is a similar characterization for edges of the polytope  (later)

Corollary (Feasible solutions are convex combinations of basic feasible solutions)

Under assumptions 3.1 - 3.3, every feasible solution in S is a convex combination of basic feasible solutions.

Proof:

Because of Theorem 3.7, we may assume that the feasible domain  S  is bounded

=>  the associated polyhedron  P  is a polytope

Let  x ∈ S  and let  x'  be the associated point in  P

=>  (Minkowski's Theorem)   x'  is a convex combination of vertices  x'i  of  P

=>  x  is a convex combination of the basic feasible solutions  corresponding to these vertices 

because:

let  x' = % λix'i   =>   z := % λix
i  ∈ S,  as  S is convex

g  linear  =>  g(z) = % λig(xi)  =  % λix'i  = x'
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g  linear  =>  g(z) = % λig(xi)  =  % λix'i  = x'

g  injective, g(x) = x' = g(z)   =>  x = z  !  

A more precise analysis of the correspondence "basic feasible solution <-> vertex"

vertices  x´, y´ are different  <=>  associated basic feasible solutions  x, y  are different

But: in general not the associated bases!

i.e., different bases    �⇒  different associated basic solutions

Example 3.8 (continued)

! !
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B = { 1, 2, 3, 6 }   B' = { 1, 2, 4, 6 }

=>  B-1b  =  (B')-1b' = (2, 2, 0, 3)T.  In both cases the associated basic solution is  (2, 2, 0, 0, 0, 3, 0)T 

Geometric view:

Non-basic variables in  B  are  x4, x5, x7    =>   x4 = x5 = x7 = 0

=>  x´ ∈  H1 " H2 " H4

3. The Simplex algorithm
3.3 The geometry of linear programs

14-17

=>  x´ ∈  H1 " H2 " H4

Non-basic variables in  B´ are  x3, x5, x7  non-basic variables  =>   x3 = x5 = x7 = 0

=>  x´ ∈  H5 " H2 " H4

i.e.,  x´ lies on more than 3 facets

in both cases,  x´ is the same vertex  (2,2,0)T  and  x = (2, 2, 0, 0, 0, 3, 0)T  is the same basic feasible 

solution

degenerate basic feasible solution, degenerate vertex

=  basic feasible solution (corresponding to a vertex) with more than  n-m  zero entries

3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices)

x  is a basic feasible solution for several bases  =>  x  is degenerate 

x´ is a degenerate vertex  <=>  x´ lies in the intersection of more than  n-m  facets

Proof

Let  B  and  B'  be different bases for  x

=>  xj  = 0  for the  n-m  Indices  j ∈ B  and for the  n-m  Indices  j ∈ B' 

=>  x is degenerate

The statement for vertices is left as an exercise  !  
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The statement for vertices is left as an exercise  !  

The Fundamental Theorem of linear optimization

We are now prepared to show that the optimum of an LP is attained at a vertex / a basic feasible solution 

(assuming 3.1 - 3.3).

Note that there can also be optima attained at other points (e.g., if  c is constant on a face of the polytope)

3.12 Theorem (Fundamental Theorem of linear optimization)

Every instance of LP attains its optimum at a basic feasible solution.

Every convex combination of basic optimal feasible solutions is optimal.

Proof

First statement: geometrically with associated transformed objective function  cTx -> dTx´

Transformation of the objective function into the geometric view

Let  SI  be given by { Ax = b, x " 0 }  and let  B  be a basis for a basic feasible solution.

Consider the polytope  P  associated with  basis  B  according to transformation (3.9)

=>  P  is defined via the non-basic variables  xN  and  xB  =  B-1b  -  B-1AN
 xN

The objective function  cTx  is then transformed as follows:
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cTx = cT
BxB + cT

N xN

= cT
B(B−1b − B−1 AN xN) + cT

N xN

= cT
BB−1b
� �� �
constant

+ (cT
N − cT

BB−1 AN)� �� �
dT

xN

=>  min cTx  (algebraic) corresponds to  min dTxN  (geometric)

Proof in the geometric view

P  is closed and bounded,  y -> dTy  is continuous  on  P

=>  optimum is attained on  P 

let  y0  be optimal and let   yk,  k = 1, ..., r  be the vertices of  P

Minkowski's Theorem  =>  y0  =  % λkyk   with  λk " 0,   % λk  =  1

let  j  be an index for which  dTyj  is minimum among the vertices yk,  k = 1, ..., r 

=>  dTy0  =  dT % λkyk  =  % λkdTyk   "   % λkdTyj  =  dTyj % λk  =  dTyj  

=>  yj  is optimal  =>  optimum is attained at a vertex

correspondence vertices <-> basic feasible solutions   =>  optimum is attained at a basic feasible solution  

The second statement is easy to see   !  

Corollary



3. The Simplex algorithm
3.3 The geometry of linear programs

14-20

Corollary

Every optimal solution is a convex combination of basic optimal feasible solutions

Proof:

Let  x  be an optimal solution of  min cTx,  Ax = b, x " 0

Corollary of Theorem 3.10  =>   x  is a convex combination of basic feasible solutions

say  x =  λ1x
1 + ... + λkxk,  with basic feasible solutions  xi,   λi " 0,  % λi = 1,  k finite

=>  cTx  =  % λi c
Txi    (*)

Assume that  xr  is not optimal  =>  cTx  <  cTxr

(*),  λi " 0   =>   there is some  xs  in the convex combination with  cTx  >  cTxs

=>  this contradicts the fact that  x  is optimal

=>  all basic solutions in the convex combination are optimal  ! 

Theorem 3.12 is the basis for the simplex algorithm

clever local search among the vertices (geometric view)

clever local search among the basic feasible solutions (algebraic view)
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Main topics of this chapter

We consider the pivot operation that defines the neighborhood of basic feasible solutions

We analyze the underlying algebraic calculus

We will introduce the use of tableaus 

First thoughts on the pivot operation

Let  y  be a basic feasible solution of  Ax = 0,  x " 0   with basis  B

=>  can write  Ay = b  as   %i # B  AB(i)yB(i)  =  b      (3.14)

B  basis  =>  every column  Aj ∉ B  is a linear combination of basic columns

=>  there are numbers  xij  (i = 1, ..., m)  with  %i = 1,...,m  AB(i)xij  =  Aj      (3.15)

 (3.14) - θ·(3.15)   =>  %i = 1,...,m  AB(i) (yB(i) - θxij)  +  θAj   =  b       (3.16)

We will now change  θ in (3.16) to obtain another basic feasible solution.  

We consider 3 cases:

Case 1:  y  is not degenerate  and not all  xij ! 0   (i = 1, ..., m) 

y  not degenerate  =>  all  yB(i) > 0   (i = 1, ..., m) 

transition  from  θ = 0  to  θ  > 0  corresponds to the transition from  y  to  x(θ)  with
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x�(θ) =






yB(i) − θxij � = B(i), i = 1, . . . , m

θ � = j

0 otherwise

=>  x(θ)  has  m+1 entrees > 0   (for small  θ)

x(θ)  stays feasible as long as  x(θ) " 0

since:  Ax(θ)  =  %i = 1,...,m  AB(i) (yB(i) - θxij)  +  θAj   =  b  because of  (3.16)

x(θ) " 0  holds as long as  0 !  θ !  θ0  with 

!! " #$% !
"#&$'

%$&
" %$& ' !( $ " (( ) ) ) ( * # &)*(+'

If the minimum of (3.17)  is attained  at  k,  then  x(θ0)  is a basic feasible solution with basis  B' = B - {B(k)} 

U {j}

since

1.  the columns  Aj  with  j ∈ B'  are linearly independent  

Suppose not. Then there exist numbers  di  (not all 0)  with  %i = 1,...,m, i $ k  diAB(i)  +  djAj  =  0

(3.15)  =>  %i = 1,...,m, i $ k  diAB(i)  +  dj(%i = 1,...,m  AB(i)xij)  =  0

this is a linear combination of the columns of B that gives  0.  
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this is a linear combination of the columns of B that gives  0.  

So all coefficients in the linear combination must be 0

=> (di + djxij) = 0  for  i = 1, ..., m,  i $ k   and  djxkj  = 0

xkj  determines  θ0   => xkj > 0  =>  dj  =  0   =>  di = 0  for  all i,  a contradiction

2.  x(θ0)N'  =  0  by construction 

3.3 Example (continued)
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= 1·A1 - 1·A3 + 1·A6 + 1·A7 

=>  (3.16)  reads as  (2 - θ)·A1 + (2 + θ)·A3 + (1 - θ)·A6 + (4 - θ)·A7 + θ·A5

=>  transition  from  y = x(0)   to   x(θ)  reads as
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=>  transition  from  y = x(0)   to   x(θ)  reads as

y =





2
0
2
0
0
1
4





→ x(θ) =





2 − θ
0

2 + θ
0
θ

1 − θ
4 − θ





→





1
0
3
0
1
0
3





for θ = 1

x(1)  is a basic feasible solution with basis  B = { 3, 1, 5, 7 }

Case 2:  y  is degenerate

so there is an index  i  with  yB(i) =  0  and  xij > 0  

=>  θ0 = 0  

=>  no movement in  Rn  and thus also not in  Rn-m

=>  we stay in the same vertex / basic feasible solution, but obtain another basis,  as  AB(i)  and  Aj  are 

exchanged

Case 3:  all  xij ! 0   (i = 1, ..., m) 

=>  θ  can be made arbitrarily large and  x(θ)  stays feasible

=>  SI  is unbounded

=>  objective function is not bounded from below because of Theorem 3.7
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=>  objective function is not bounded from below because of Theorem 3.7

 

Basis exchange

3.13 Theorem  (basis exchange)

When computing θ0,  suppose that the minimum is attained at  i = k,  then  x(θ0)  is a basic feasible solution 

with basis  B´, and

 
!�!"" #

�
!!"" " �# #

$ " # #

x(θ0)  is degenerate  if  k  is not unique

Proof: this follows from the previous arguments

In the example we obtain  k = 3,  B(3) = 6,  B´(3) = 5  ! 

This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply 

pivot)

We say that:   AB(k)  leaves the basis and  Aj  enters the basis

          xB(k)  leaves the basis and  xj  enters the basis

θ0  is called the primal step length
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θ0  is called the primal step length

Two basic feasible solutions with different bases are called neighbors, if one can be obtained from the other by 

a pivot operation. So pivot operations define a neighborhood on the set of basic feasible solutions.
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Goal: make the pivot operation efficient

=>  must get hold of the  xij  

=>  must express non-basic columns as a linear combination of basic columns

this can be done by transforming the basis to an identity matrix

An example

Let  Ax = b  be given as

3x1  +  2x2  +  x3             =  1

5x1  +    x2  +  x3  +  x4       =  3

2x1  +  5x2  +  x3           +  x5 =  4

We write this down in a tableau:

!! !" !# !$ !%

! # " ! & &

# % ! ! ! &

$ " % ! & !

with  b  as column  0
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We transform the linear system / the tableau  w.r.t.  a basis  B  is such a way that the basic columns form the 

identity matrix.

For  B = { 3, 4, 5 } this gives the following tableau

!! !" !# !$ !%

! # " ! & &

" " !! & ! &

# !! # & & !

=>  xB(1)  =  x3  =  1

  xB(2)  =  x4  =  2

  xB(3)  =  x5  =  3

Moreover  A1  =  3AB(1)  +  2AB(2)  -  1AB(3).  The coefficients are obviously given by the column of  x1

=>  the numbers  xij  are in column  j  of the transformed tableau (transformed such that  B  is the identity 

matrix)

So if  A1  is to enter the basis, then 

!! " #$% !
"#&$'

%$(
" %$( & !' $ " (' ( ( ( ' ) # " #$% !

(

)
'
*

*
# "

(

)
+%, * " (

The tableau for the new basis is then obtained by transforming it so that  A1  becomes the new unit vector in 
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The tableau for the new basis is then obtained by transforming it so that  A1  becomes the new unit vector in 

the basis

!! !" !# !$ !%

!

#
! "

#

!

#
& &

$

#
& !'

#
!"

#
! &

!&

#
& !!

#

!

#
& !

=>  xB´(1)  =  x1   =  1/3

  xB´(2)  =  x4  =  4/3

  xB´(3)  =  x5  =  10/3

In this basis exchange,  a11  plays the role of the  pivot element  (as in Gaussian elimination)

The pivoting rules

Let  (xij)  be the tableau for basis  B  and let  (x'ij)  be the tableau for the new basis  B', both with the right-

hand-side as column  0, i.e. (xi0)  and. (x'i0).  Let  xkj  be the pivot element.  Then the entries of the new tableau  

are obtained by
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are obtained by

(3.18)






x�kq =
xkq
xkj

q = 0, . . . , n

x�iq = xiq − x�kqxij i = 1, . . . , m, i �= k; q = 0, . . . , n

B�(i) = B(i) i = 1, . . . , m, i �= k

B�(i) = j i = k

Mnemonic:

k

i

q j

xkq xkj

xiq xij

must become 1

must become 0
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Goal: Understand the change of the objective function for a basis exchange

First thoughts on the change of the objective function

Let  y  be a basic feasible solution with basis  B

=>  y  has the objective function value (cost)  zy  =  %i = 1,...,m  cB(i)yB(i)  

If  Aj  enters the basis,  then  Ax(θ)  =  %i = 1,...,m  AB(i) (yB(i) - θxij)  +  θAj  ( =  b )

θ  =  1  =>  for every "unit" of variable  xj  entering the basis,  xij  units of  yB(i)  leave basis

=>  the cost changes by   1·cj  -  %i = 1,...,m  xijcB(i) 

Set  
zj := ∑m

i=1 xijcB(i)

c̄j := cj − zj

c̄j  is called the reduced cost coefficient (or simply reduced cost) of  xj 

it describes the change in cost when  xj  is entering the basis with value  xj = 1

zj describes the change in cost contributed by the the basic variables of basis B  when  xj  enters the basis with 

value  xj = 1

We will show:

!!" # "  

=>  we can improve the cost by letting  xj  enter the basis
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=>  we can improve the cost by letting  xj  enter the basis
c̄j " 0  for all non-basic variables  xj

=>  current feasible basic solution is locally optimal w.r.t. the basis exchange neighborhood

=>  we have a globally optimal feasible basic solution, i.e., the neighborhood w.r.t. basis exchange is exact

Notation

X  =  current tableau for basis  B

A  =  initial matrix,  b initial right hand side

Then

X  =  B-1(b|A)  

i.e., current tableau is obtained by multiplying  (b|A)  with  B-1  from the left

!
"
! #

"

$
% ! #

"

$
$
!"
&

i.e., this equation describes  the change in cost  zj  for the basic variables when  xj  = 1  enters the basis 

because:
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Optimality criterion

3.14 Theorem (Optimality Criterion)

Let  x  be a basic feasible solution with basis  B.  Then

(1)  A pivot step  at which  xj  enters the basis with value  xj = θ0  changes the cost by
!!""# # !!$"# ! $#% $&'()%

(2)  If

!! " ! ! " " # $%&'#(

i.e., all reduced costs are non-negative, then  x  is optimal.

Proof 

Proof of (1)  (intuitively clear from our first thoughts above, here is the precise derivation)

When  xj  enters the basis, the pivoting rules (3.18) yield the following new right hand side (=  column 0 of 
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When  xj  enters the basis, the pivoting rules (3.18) yield the following new right hand side (=  column 0 of 

the tableaus)

x′i0 =





xi0 − θ0xij i #= k

θ0 i = k
with θ0 =

xk0
xkj

Let  z  be the old objective function value function value and let  z'  be the new one

=>  new objective function value is

z� =
m

∑
i=1, i �=k

(xi0 − θ0xij)cB(i) + θ0cj

    

=
m

∑
i=1

xi0cB(i)

� �� �
=z

−θ0

m

∑
i=1

xijcB(i) − (xk0 − θ0xkj)cB(k) + θ0cj

    

= z + θ0

�
xkjcB(k) + cj −

m

∑
i=1

xijcB(i)

� �� �
=cj−zj

�
− xk0cB(k)
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= z + θ0(cj − zj) + θ0xkjcB(k)� �� �
= xk0cB(k) as θ0=xk0/xkj

− xk0cB(k)

! ! " "#$#$ ! !$%

=>  (3.19)

Proof of (2)

Let  y  be a feasible solution of the LP, i.e.,  Ay = b,  y " 0

!! " ! ! " " # ⇒ ! " ".  Together with  y " 0  we obtain

cTy ≥ zTy = cT
BB−1 Ay = cT

BB−1b = cT
BxB

So  x  is globally optimal (and in particular also a best basic feasible solution)  !

Tableau with reduced costs

The optimality criterion suggests to make the reduced costs available in the tableau. 

=>  add them as  row 0 

Question: How to obtain the initial reduced costs from the given objective  c?

Write the cost as 

0  =  -z0  +  c1x1  +  ... +  cnxn     
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0  =  -z0  +  c1x1  +  ... +  cnxn     

This can be seen as enlarging  Ax = b  to 
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For a basic variable  xj  we obtain 

  

since  (xij) is a unit vector 
with 1 at entry  i0 with B(i0) = j

!!" " !" ! #" " !" !
$�

%"#

&%"!'$%% " #

⇒ !" !
#�

$!"

%$"!&#$$ ! !" ! !&#$"$ ! !" ! !" ! "

So  c̄j = 0  for basic variables

for non-basic variables  xj  we obtain:  (3.21)

c̄j = cj − zj = cj −
m

∑
i=1

xijcB(i) = cj − cT
BB−1 Aj = cj − cT

BXj

i.e.,    is obtained from  c  and  X  for non-basic variables
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i.e.,  
c̄j  is obtained from  c  and  X  for non-basic variables

for  -z0  we obtain:  (3.22)

−z0 = −
m

∑
i=1

cB(i)xB(i) = −cT
BX0

i.e.,  -z0  is also obtained from  c  and  X  

New enlarged tableau (in the following denoted as tableau)

!!! ""# # # # ""$ # # # ""%

&#! &## # # # &#$ # # # &#%

$$$
$$$

$$$
$$$

&'! &'# # # # &'$ # # # &'%

(!#) (!#*$

x
B

3.15 Theorem (Updating the reduced cost)

At a basis exchange, the reduced costs are updated by the same rules (3.18) as all other rows of the tableau 

(3.18).  

In other words: for column  j  entering the basis,  row  0  is transformed so that  !!" " ##"   becomes  0.  The 

resulting changes in row 0 give the new reduced costs and the new  -z0
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In other words: for column  j  entering the basis,  row  0  is transformed so that     becomes  0.  The 

resulting changes in row 0 give the new reduced costs and the new  -z0

Proof: checking  !  

3.16 Corollary (Test for an unbounded objective function)

c̄j  < 0,  all  xij  ! 0  (i = 1,...m)   =>  cTx  is not bounded from below

Proof

θ  and thus  x(θ)  can then become arbitrarily large

=>  the objective function decreases by  ! ! !"# → "     !

The basic version of the simplex algorithm

Algorithm (Generic simplex algorithm)

Input

Tableau  X  of an LP in standard form with full row rank and with identity matrix as feasible basis

Output 

At termination: an basic optimal feasible solution or the message that the objective function is unbounded

Termination is not guaranteed

Method (iterative pivoting in the direction of decreasing cost)

while  there is a column  j  with    < 0  do
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while  there is a column  j  with  !!"  < 0  do

choose column  j  with  !!"  < 0 

if  xij  ! 0  for all i  then  return  "objective function is unbounded"

determine  θ0  and index  k, for which the minimum in  (3.17)  is attained

pivot with pivot entry  xkj   according to  (3.18)  (also for row 0)

return  xB

Example

min     x1  +    x2  +  x3  +  x4   +  x5        

s.t. 3x1  +  2x2  +  x3             =  1

5x1  +    x2  +  x3  +  x4       =  3

2x1  +  5x2  +  x3           +  x5 =  4

xj  " 0

Initial tableau (not yet with reduced costs and identity matrix as basis)
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!! !" !# !$ !%

& ! ! ! ! !

! # " ! & &

# % ! ! ! &

$ " % ! & !

Transform it w.r.t. basis  B = { 3, 4, 5 }

i.e., columns 3, 4, 5  change into unit vectors (including row 0 for the cost coefficients)

!! !" !# !$ !%

!" !& !# !# ' ' '

!# ! # " ! ' '

!$ " " !! ' ! '

!% # !! # ' ' !

A specific transformation:

1.  subtracting row 1 from row 2 and from row 3 yields the identity matrix in rows 1-3; 

2. subtracting rows 1-3 from row 0 correspond to (3.21) and (3.22)

Pivot operation:

Columns 1 and 2 have reduced costs  < 0,  we choose x2  to enter the basis.
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Columns 1 and 2 have reduced costs  < 0,  we choose x2  to enter the basis.

Computing  θ0  yields  θ0 = min { 1/2, 3/3 }  =  1/2  with  k = 1. Hence  xB(1) = x3  leaves the basis.

!! !" !# !$ !%

!" !&#" ##" ' ##" ' '

!" !#" ##" ! !#" ' '

!$ %#" (#" ' !#" ! '

!% ##" !!!#" ' !##" ' !

All reduced costs " 0  =>  optimal solution reached

x = (0, 1/2, 0, 5/2, 3/2)  is as basic optimal solution with cost  z = 9/2

Applets for pivoting

Advanced Simplex Pivoting Tool

Advanced Simplex Pivot Tool

Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html
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Main topics of this chapter

Strategies for the choice of a column (pivoting rules)

Strategies for the choice of a pivot element in a column if there are more than one

In particular: Ensure termination of the simplex algorithm

Strategies for the choice of a column (Pricing)

We have a choice if several  !!"  < 0, this choice influences the number of pivot operations.

There is no "best" choice. Commercial solves apply a wide selection of heuristics. Here are some of them:

(1)  Steepest relative descent among the non-basic variables

Among all columns  j  with   !!"  < 0,  choose j  with maximum  | !!" |  

This column has the largest relative descent of cost in the direction of a non-basic variable. However, since  

θ0  is not known yet, this choice does not necessarily lead to the largest descent.

(2)  Steepest absolute descent among the non-basic variables

Among all columns  j  with   !!"  < 0,  choose j  with maximum  | θ0!!" |  

This column has the largest absolute descent of cost in the direction of a non-basic variable. It generally 

reduces the number of pivots, but at the price of an increase of computational effort by a factor of  m  per 

pivot compared with  (1)
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pivot compared with  (1)

(3)  Largest relative descent in the whole feasible domain

Among all columns  j  with   !!"  < 0,  choose j  with maximum
c̄j�

1 + ∑m
i=1 x2

ij

=
c̄j

�x(θ)− x� with θ = 1

This column has the largest relative descent of cost in the direction of  x(θ) - x, but is computationally very 

expensive

Strategies for the choice of the pivot element 

This choice is not so important for termination of the simplex algorithm if  θ0 > 0, because then the pivot 

operation leads to a new vertex / a new basic feasible solution with a better objective function value. 

It is however important if  θ0 = 0.  In this case, the current basic solution is degenerate and the pivot operation 

changes only the basis, but not the basic solution / vertex, see Theorem 3.13

This may lead to cycling, i.e., starting from tableau  X  we arrive again at tableau  X after several pivots

=>  we have traversed a  "cycle"  of different bases with the same basic solution

=>  the simplex algorithm does not terminate
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3.15 Example (An example for cycling , Gass 1964)

min   -3/4 x1  +  150 x2  -1/50 x3  +  6 x4      

s.t.   1/4 x1  -    60 x2  -1/25 x3  + 9 x4 !  0

  1/2 x1  -    90 x2  -1/50 x3  + 3 x4 !  0

      x3           !  1

  xj  " 0

Initial tableau with a basis of slack variables

!! !" !# !$ !% !& !'

!" ( !##$ !%( !!#%( & ( ( (

!% ( !#$ !&( !!#"% ) ! ( (

!& ( !#" !)( !!#%( # ( ! (

!' ! ( ( ! ( ( ( !

Choosing the sequence 

x11 x22 x13 x24 x15 x26

of pivot element, we arrive again at the initial tableau

Proof: check, e.g. with the Matrix Row Operation Tool

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-4

Proof: check, e.g. with the Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

Anti-cycling rules

The lexicographic anti-cycling rule

Divide every row  i  with xij > 0  by  xij  and choose the lexicographically smallest of them as pivot row

Lexicographic rule:

Choose  k  such that 

1
xkj

· Xk,· = lex-min

�
1

xij
· Xi,· | i = 1, . . . , m, xij > 0

�

where  Xi,•  =  i-th row of tableau  X  and lex-min = lexicographic minimum

!! "#
"#!

"#$

3.16 Theorem  (The lexicographic anti-cycling rule avoids cycling )

(a)  The rows  i = 1, ..., m  of the current tableau can be made lexicographically positive. 

(b)  If the rows i = 1, ..., m  of the current tableau are lexicographically positive, then the  simplex 
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(b)  If the rows i = 1, ..., m  of the current tableau are lexicographically positive, then the  simplex 

algorithm with lexicographic anti-cycling rule terminates after finitely many steps.

Proof

(1)  The rows  of the current tableau can be made lexicographically positive. 

e.g.  by permuting the basic columns to positions 1,2,...,m

=>  every row either starts with  xi0 > 0  or with  (0,...,0,1,...),  where  xi,B(i) = 1

=>  every row is lexicographically positive, i.e.,   >lex  (0,0,...,0)

(2)  The lex-min is unique

Suppose not  =>  there are rows  i, r  with 

!

!"#
"!"#$ !"!$ % % % $ !"&$ %

!

!'#
"!'#$ !'!$ % % % $ !'&$

=>  rows  i  and  r  are linearly dependent

=>  this contradicts assumption 3.1 that rank(A) = m

(3)  All rows of the tableaus stay lexicographically positive after a pivot step

if  xkj  is the pivot element, then the new rows after pivoting are

for  i = k:
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!

!"#
"!"#$ !"!$ % % % $ !"&$

xkj > 0  =>  we stay lexicographically positive

for  i $ k:

!!""# !"## $ $ $ # !"%$ ! !"&
#

!'&
!!'"# !'## $ $ $ # !'%$

This  is   >lex  (0,0,...,0)

⇔ !

!"#
"!"#$ !"!$ % % % $ !"&$ '%&'

!

!(#
"!(#$ !(!$ % % % $ !(&$

This is the case since row  k  is the lex-min, and the lex-min is unique (equality cannot happen)

(4)  Row 0 (the cost row) strictly increases lexicographically after every pivot step

if  xkj  is the pivot element, then the new row 0 after the pivot operation is obtained as
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> 0 as 
pivot element

< 0 as 
reduced cost in 
the pivot column

lex positive

!!!""##" $ $ $ ""#%$ !
#

&'(����
"#(����

!&'%" &'#" $ $ $ " &'%$� �� �

=>  the new row  is lexicographically larger

(5)  Termination 

Every basis uniquely determines  row 0  because of  (3.21) and (3.22).

Row 0 grows lexicographically  =>  corresponding basic solutions must be different

There are only finitely many basic solutions  =>  termination    ! 

3.15 Example (continued)

The initial tableau is already lexicographically positive
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!! !" !# !$ !% !& !'

!" ( !##$ !%( !!#%( & ( ( (

!% ( !#$ !&( !!#"% ) ! ( (

!& ( !#" !)( !!#%( # ( ! (

!' ! ( ( ! ( ( ( !

The sequence

x11 x22 x23 x34 x35

of pivot elements fulfills the lexicographic anti-cycling rule and terminates with an optimal solution. The 

initial degenerate basic solution is left after pivoting with  x34.

Proof: check, e.g. with the Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

Bland's anti-cycling rule

Among all columns  j  with  !!"  < 0  choose the one with smallest column index  j 

Among all rows  i  with  θ0  =  xi0/xij   choose the one with smallest column index  B(i)

Proof: Exercise  ! 
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Empirical tests show that Bland's rule needs many pivots

Anti-cycling  in practice

Experience shows that cycling is mostly already resolved by the rounding caused by floating point arithmetic. 

Commercial solvers control the progress of the objective function and change their pivot rule if there is 

evidence of cycling until they reach a different basic feasible solution. 
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Goal: Provide an initial tableau for the simplex algorithm, i.e., a tableau that is already transformed w.r.t. to the 

basis of a basic feasible solution

This is easy if the LP is given in the form  Ax ! b,  x " 0  with  b " 0. Then we just introduce slack variables  s1, ..., 

sm  and the associated columns form a basis

Initial tableau

!! " " " !# $! $" " " " $%

!& # '! " " " '# # # " " " #

$! (! )!! " " " )!# ! # " " " #

$$$
$$$

$$$
$ $ $

$$$
$$$

$$$
$ $ $ #

$% (% )%! " " " )%# # # " " " !

For general LP in standard form, this is done with the two-phase-method

Given:  LP  in standard form

min  cTx

s.t. Ax = b      

x " 0 

and w.l.o.g.  b " 0  (otherwise multiply rows by -1)
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Phase I

Introduce artificial variables  xa = (x1
a, ..., xm

a)T   ( a for artificial )  and solve the LP

min ξ = xa
1 + . . . + xa

m

s.t. xa + Ax = b (3.23)

xa, x ≥ 0

with the simplex algorithm (the artificial variables form a basis and the cost coefficients w.r.t.  ξ  are in 

reduced form  (3.21))

There are 3 possible outcomes

Case 1:  The minimum of  ξ  is  0  and all  xi
a  are non-basic variables

=>  all  xi
a = 0  and we have a basic feasible solution for the initial problem

Case 2:  The minimum of  ξ  is  0  but some  xi
a  are basic variables

Let  xB(i)  be an artificial variable.

ξ = 0  =>  xB(i) = 0  

Try to eliminate xB(i) from the basis.

To that end we need in tableau  X  a non-artificial non-basic column  j  with  xij $ 0  

(since  xB(i) = 0, we can pivot with  xij  (first multiply row i  by -1  if xij < 0)
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Case 2a:  There is such a non-artificial non-basic column  j  with  xij $ 0  

Pivot with  xij

=>  we have a basis with fewer artificial variables

Case 2b:  There is no non-artificial non-basic column  j  with  xij $ 0  

=>  xij = 0  for  j = 1, ..., n,  i.e. for all non-artificial variables

clear from the above for non-basic variables xj   

basic variables  xj  have a  0  in position  i  in their column because only  xB(i)  has a  1  there

=>  rank(A)  <  m  

=>  assumption 3.1  violated  

this implies that row  i  of  A  is a linear combination of the other rows of  A  and can be deleted 

together with  artificial variable xB(i)  

We can therefore drop assumption 3.1,  Phase I  provides a test for rank(A) = m

Repetition of these steps results in a basic feasible solution of the initial LP (possibly after deleting some 

linearly dependent rows from  A.  The remaining rows have full rank.)

Case 3:  The minimum of  ξ  is  > 0

=>  the initial LP has no feasible solution, i.e.,  S = Ø
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We can therefore drop assumption 3.2, Phase I  provides a test for  S $ Ø

Phase II

Continue with the basic feasible solution from Phase I  (if  S $ Ø)

To this end, we must compute the reduced costs   !!"  and the objective function value  -z0  of the original 

objective  c  for the current basis from Phase I

either with (3.21) and (3.22)

or by applying all transformations of Phase I also to the cost coefficients  cj    

Theorem 3.15  =>  these transformations give the reduced costs   !!"  at the start of  Phase II 

Algorithm (Two-Phase-Method)

Input

LP in standard form 

Output 

At termination : basic optimal solution or the message that the objective function is unbounded or that  S = 

Ø  

Termination  can be guaranteed by anti-cycling rules
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Method

Phase I

add artificial variables  x1
a, ..., xm

a 

call  simplex algorithm  with objective   ξ  =  % xi
a

if  ξopt  >  0  then  return  "there is no feasible solution"

if  basis contains artificial variables  

then  

if  one of these artificial variables cannot be removed from  the basis

then   

delete the associated row 

call  Phase I  for the resulting LP

else  //  ξopt  =  0  and the basis contains no artificial variables

call  Phase II

Phase II

call  simplex algorithm  with the original objective w.r.t. the basis from Phase I
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3.17 Theorem  (Two-Phase-Method)

The two-phase-method solves every LP in standard form.  Assumption (3.1)-(3.3)  can be dropped. They are 

checked in the Two-Phase-Method.

Proof

clear from the above  !  

Example

min     x1  +    x2  +  x3  +  x4   +  x5        

s.t. 3x1  +  2x2  +  x3             =  1

5x1  +    x2  +  x3  +  x4       =  3

2x1  +  5x2  +  x3           +  x5 =  4

xj  " 0

Initial tableau for Phase I, we also keep track of the given objective function
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!"
!

!"
"

!"
#

!! !" !# !$ !%

!# & & & & ! ! ! ! !

!$ & ! ! ! & & & & &

!"
!

! ! & & # " ! & &

!"
"

# & ! & % ! ! ! &

!"
#

$ & & ! " " ! & ! 5

To obtain the reduced costs w.r.t. ξ  for Phase I, we must transform the costs of the artificial variables to 0 

(reduced costs are 0 for basic variables).

We achieve this by subtracting each row 1,...,m from the ξ-row  (the z-row has already reduced costs 0 in the 

basic columns)

Start tableau for Phase I
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!"
!

!"
"

!"
#

!! !" !# !$ !%

!# & & & & ! ! ! ! !

!$ !' & & & !!& !' !# !! !!

!"
!

! ! & & # " ! & &

!"
"

# & ! & % ! ! ! &

!"
#

$ & & ! " " ! & ! 5

Pivoting with the pivot elements marked by a red circle yields

!"
!

!"
"

!"
#

!! !" !# !$ !%

!# !!$# !!$# & & & !$# "$# ! !

!% !!$$# !!&$# & & & !$$# !$# !! !!

!! !$# !$# & & ! "$# !$# & &

!"
"

$$# !%$# ! & & !'$# !"$# ! &

!"
#

!&$# !"$# & ! & !!$# !$# & !
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!"
!

!"
"

!"
#

!! !" !# !$ !%

!# !!$" !!$" & & !!$" & !$" ! !

!% !$ $ & & " & ! !! !!

!" !$" !$" & & #$" ! !$" & &

!"
"

%$" !!$" ! & '$" & !$" ! &

!"
#

#$" !!%$( & ! !!!$" & !#$" & !

  

!"
!

!"
"

!"
#

!! !" !# !$ !%

!# !# & !! & !$ & & & !

!$ !#%" '%" ! & !!%" & #%" & !!

!" !%" !%" & & #%" ! !%" & &

!$ %%" !!%" ! & '%" & !%" ! &

!"
#

#%" !%%" & ! !!!%" & !!%" & ! -3/
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!"
!

!"
"

!"
#

!! !" !# !$ !%

!# !&$" %$" !! !! #$" ' #$" ' '

!% ' ! ! ! ' ' ' ' '

!" !$" !$" ' ' #$" ! !$" ' '

!$ %$" !!$" ! ' ($" ' !$" ! '

!% #$" !%$" ' ! !!!$" ' !!$" ' ! -3/

We are lucky since the final tableau of Phase I is already optimal for Phase II (all reduced costs w.r.t.  c  are  

" 0)
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Goal: Interpret the simplex algorithm geometrically

It walks from vertex to vertex along edges of the polyhedron with occasional extra pivots in degenerate 

vertices

3.8 Example (continued)

max       x1 + 14x2 + 6x3    <=>    min  - x1 - 14x2 - 6x3

s.t. x1 +     x2 +   x3 !  4   

x1                !  2   

        x3 !  3   

               3x2 +   x3 !  6   

    xj   "  0   

After adding slack variables (= first basis) , the simplex algorithm yields the following tableaus:
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1 !! !" !# !$ !% !& !'

!" ( !! !!$ !& ( ( ( (

!$ $ ! ! ! ! ( ( (

!% " ! ( ( ( ! ( (

!& # ( ( ! ( ( ! (

!' & ( # ! ( ( ( !

  

!! !" !# !$ !% !& !'

!" " ( !!$ !& ( ! ( (

!$ " ( ! ! ! !! ( (

!! " ! ( ( ( ! ( (

!& # ( ( ! ( ( ! (

!' & ( # ! ( ( ( !

2

3 !! !" !# !$ !% !& !'

!" !$ ( !) ( & !% ( (

!# " ( ! ! ! !! ( (

!! " ! ( ( ( ! ( (

!& ! ( !! ( !! ! ! (

!' $ ( " ( !! ! ( !

   

!! !" !# !$ !% !& !'

!" #( ( ( ) !$ !!# ( (

!" " ( ! ! ! !! ( (

!! " ! ( ( ( ! ( (

!& # ( ( ! ( ( ! (

!' ( ( ( !" !# # ( !

4
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!! !" !# !$ !% !& !'

!" #( ( ( !"## ! ( ( !###

!" " ( ! !## ( ( ( !##

!! " ! ( "## ! ( ( !!##

!& # ( ( ! ( ( ! (

!% ( ( ( !"## !! ! ( !##

5 !! !" !# !$ !% !& !'

!" #" ! ( ( " ( ( $

!" ! !!#" ! ( !!#" ( ( !#"

!# # ##" ( ! ##" ( ( !!#"

!& ( !##" ( ( !##" ( ! !#"

!% " ! ( ( ( ! ( (

6

This sequence corresponds to the following sequence of vertices in the associated polytope with variables  x1, 

x2, x3
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x2

x1

x3

 

    

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

1

2

3

4 5=

6

We will analyze this observation now more closely.

Adjacency of vertices and basic feasible solutions

Two vertices  x´,  y´ of a  polyhedron  P  are called adjacent

:<=>  the line segment  [ x´, y´]  is an edge of  P
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:<=>  the line segment  [ x´, y´]  is an edge of  P

two basic feasible solutions x, y  of  Ax = b, x " 0  are called adjacent

:<=> if one obtains  By from  Bx  by a single pivot operation  according to Theorem 3.16

Observe:

(1)  One then also obtains Bx from By  by a single pivot, i.e., the neighborhood is symmetric

(2) Then there are columns  j and k  with  By  =  ( Bx -  { Aj } ) $ { Ak }  

(3)  This does not exclude that  x = y, i.e., that the basic solution is degenerate

According to this definition, the simplex algorithm traverses a sequence of pairwise adjacent basic feasible 

solutions  x1, x2, ..., xN  with  

cTx1  "  cTx2  " ... " cTxN  =  zopt  

3.18 Theorem (Interpretation of edges in the three views)

Let  P  be a polytope and  let S = { x |  Ax = b, x " 0 }  be the associated feasible set of an LP in standard form. 

Let  x´ = (x1´, ..., xn-m´)T,  y´= (y1´, ..., yn-m´)T ∈  P  be different vertices and let  x = (x1, ..., xn)T,  y = (y1, ..., yn)T 

∈  S  be the associated basic feasible solutions  according to  (3.7). 

Then the following statements are equivalent:

(1)  [ x´, y´]  is an edge of  P

(2)  If  z´∈ [ x´, y´]  is a strictly convex combination of points u´, v´ ∈  P,  then  u´, v´ ∈ [ x´, y´] 
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(2)  If  z´∈ [ x´, y´]  is a strictly convex combination of points u´, v´ ∈  P,  then  u´, v´ ∈ [ x´, y´] 

(3)  x, y  are (different) adjacent basic feasible solutions of  S

Proof

Similar to Theorem 3.10, we use again the transformation  P <-> S

(1) => (2)

Let  [ x´, y´]  be an edge of  P  =>  there is a supporting hyperplane  H  with  H " P = [ x´, y´], say  H = { w´ | 

hTw´= g }.

Assume that (2) is wrong for z´∈ [ x´, y´],  and let w.o.l.g.  u´ ∉  [ x´, y´]  and  hTu´< g.

Then  hTv´! g,  since  P  is contained in a halfspace induced by  H 

=>  g  =  hTz´ =  hT(λu´+ (1-λ)v´)  =  λhTu´ + (1-λ)hTv´  <  g   as   λ $ 0,  a contradiction

(2) => (3)

Assume that  x´, y´ fulfill (2) but not (3), i.e.,  x  and  y are not adjacent

Let  Mx, My  be the sets of columns  Aj  of  A  with  xj  > 0  and  yj > 0, respectively.

Claim: there is a basic feasible solution  w $ x, y  such that:  wj > 0  =>  Aj ∈ Mx $ My

Suppose not. Let w.o.l.g.  y $ 0  (possible since  x $ y). Then choose
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cj :=






0 Aj ∈ My

1 Aj ∈ Mx − My

nM otherwise

with  M  large enough so that  cjuj  >  n  for every basic feasible solution  u  (such an  M  exists because of 

Lemma 3.4).

=>  y  is the only  optimal solution for  c  and every basic feasible solution  u  with entries  uj > 0  not in  Mx 

$ My  has higher cost than  x

=>  if we start the simplex algorithm in  x  w.r.t.  c,  it would report that no improvement is possible  (since  

x  and  y  are not adjacent)  and thus claim that  x  is optimal,  a contradiction 

Consider now the vertex  w´∈ P  corresponding to  w.  Since w´ is a vertex,   w´ is not in  [ x´, y´]

=>  w  is not in [ x, y ]

Let  z := 1/2 (x + y)  =>  zj > 0  for all  Aj ∈ Mx $ My  =>  each  entry of  z  can be decreased a little without 

reaching  0

Let  d :=  z - w   =>   dj $ 0 only for entries in  Mx $ My 

zj > 0 for all entries in  Mx $ My   =>  there is  θ > 0  with  u := z + θd,  v := z - θd  "  0

With these definitions,   Au = b  and  Av = b, i.e.,  u, v ∈ S.

Moreover:  w  not in [ x, y ]  =>  u, v  not in  [ x, y ] 
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Moreover:  w  not in [ x, y ]  =>  u, v  not in  [ x, y ] 

 

x

y

zw

z - w

=>  z = 1/2 (u + v)  is a convex combination of the feasible points u, v ∉ [ x, y ]

=>  (transformation to  P)  z´ = 1/2 (u´ + v´)  is a convex combination of the points  u´, v´ ∉ [ x´, y´],  a  

contradiction to (2)

(3) => (1)

Let  Bx, By  be the bases for  x  and  y  with  By  =  ( Bx -  { Aj } ) $ { Ak }  

Define  c  by 
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cj :=

�
0 if Aj ∈ Bx ∪ By

1 otherwise

Claim:  x  and  y  are the only basic optimal feasible solutions w.r.t.  c

clearly: x, y  are optimal w.r.t.  c

assume there is another basic optimal feasible solution  z  

construction of  c  =>  z  fulfills  zj > 0   =>  Aj ∈ Bx $ By 

=>   Bz ! Bx $ By 

Aj ∉ Bx  => (with  | Bx $ By | = m +1,  z $ x )   Aj ∈ Bz

=>   Bz =  ( Bx -  { Aq } ) $ { Aj }  

=>  there are single pivots that change  x  into  y  (Aj  enters,  Ak  leaves)  and to  z  (Aj  enters,  Aq  

leaves), respectively. In both cases,  Aj  enters the basis.

Let  Bx(r) = k  and  Bx(s) = q

⇒ !! "
"#!

"#$
"
"%!

"%$

=>  y = z,  a contradiction

Claim =>  only convex combinations of  x, y  fulfill 

Aw = b
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Aw = b

w " 0

cTw ! cTx

The transformation of  S  to  P as in the proof of Theorem 3.10  yields:  

Only points  w´ in  [ x´, y´]   fulfill the inequality  dTw´ ! dTx´  (d´ =  transformed cost vector) in  P

=>  [ x´, y´]  is the intersection of a halfspace with  P

=>  [ x´, y´]  is an edge of  P  !  

3.19 Remarks

(1)  LP is a convex optimization problem. So the Euclidean neighborhood 

N!(y) := { x ∈ SI  : || y-x || ! ! }

is exact because of Theorem 2.16.
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N
!
(y)

(2)  The geometric interpretation of the simplex algorithm defines another neighborhood via adjacency of 

vertices:

NP(y) := { x | x vertex of  P,  x  adjacent to  y }

This neighborhood is also exact because of Theorem 3.18, Theorem 3.10 and Theorem 3.14. It corresponds to 

the graph neighborhood in the skeleton graph of the polytopes.
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NP(y)
skeleton 

graph
of  P

(3)  The algebraic interpretation of the simplex algorithm defines a third neighborhood via adjacency of basic 

feasible solutions:

NA(y) := { x | x  basic feasible solution,  x  adjacent to  y }

This is also exact in the sense of Theorem 3.14 (no negative reduced cost) and corresponds also to a graph 

neighborhood. This graph  G results from the skeleton graph by refining every polytope vertex by a set of graph 

vertices (= all basic feasible solutions corresponding to the polytope vertex). G coincides with the skeleton graph  

iff  P  has no degenerate vertices.
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iff  P  has no degenerate vertices.

1467 = 
4567

2456

3457 1357

23572345

1235

1367

12671236

2356

1256 1246

unordered set 
of basic columns 

NA(y)

(4)  So the simplex algorithm can be seen as a local search on the graph defined by neighborhood  NA. Checking 

for better neighbors can be done by checking the sign of the reduced costs and thus is very simple. 

(5)  It is not known if this local search is polynomial. There are counterexamples for all known pivot rules that 

require exponentially many pivots.
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require exponentially many pivots.

These counterexamples are in most cases so-called Klee-Minty cubes, i.e., slightly distorted cubes on which 

the  simplex algorithm all visits all vertices, while it could reach the optimal vertex in one step.

http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html

(6)  Luckily, these counterexamples are not practically relevant. Empirically, the runtime of the simplex 

algorithm is linear in the number of rows. 
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The dual of an LP in general form

Derivation of the dual

Consider an LP in general form:    (4.1)

  min cTx x ∈ Rn, c ∈ Rn

  

s.t. aT
i x = bi i ∈ M ai ∈ Rn

aT
i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N
xj unconstrained j ∈ N

we transform it to standard form according to Lemma 3.2 with 

surplus variables  xi
s  for the inequalities 

split variables      xj  =  xj
+  -  xj

-  with  xj
+,  xj

-  " 0

This gives
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min ĉT x̂

s.t. Âx̂ = b, x̂ ≥ 0 with

Â =



Aj, j ∈ N

�������
(Aj,−Aj), j ∈ N

�������

0, i ∈ M

−I, i ∈ M





x̂ =
�

xj, j ∈ N | (x+j , x−j ), j ∈ N | xs
i , i ∈ M

�T

ĉ =
�
cj, j ∈ N | (cj,−cj), j ∈ N | 0, i ∈ M

�T






(4.2)

where, w.o.l.g., matrix  !!  has full row rank, and where  Aj  denotes the column of  xj  in (4.1) 

The previous results on the simplex algorithm give:

If (4.2) has an optimal solution, then there is a basis  !!  of  !!  with 

!!" ! "!!"!#
!#!#$

� �� �
%&$"

!% " '

i.e., reduced cost  " 0

 Let  m  be the number of constraints in  (4.1). Then
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 πT := ĉT
B̂ B̂−1 ∈ Rm

is a feasible solution  for inequalities 

πT Â ≤ ĉT (4.3)

Inequalities  (4.3)  have 3 groups w.r.t. their columns:

Group 1
!"#$ ! %$& $ ∈ ' !"("#

Group 2

!"#$ ! %$

"!"#$ ! "%$




 ⇔ !"#$ ! %$& $ ∈ ' "#($%

Group 3

!!" " ! ⇔ !" # !# " ∈ $ "#%$%

Definition of the dual of LP

(4.4) - (4.6) define constraints for a new LP with variables  π1, ..., πm.  These constraints, together with the 

objective function  max πTb  constitute the dual LP of (4.1).  The initial problem (4.1)  is called the primal LP.
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objective function  max πTb  constitute the dual LP of (4.1).  The initial problem (4.1)  is called the primal LP.

Transformation rules primal -> dual (follow from (4.4) - (4.6))

primal dual

min cTx max πT b

aTi x = bi i ∈ M πi unconstrained

aTi x ≥ bi i ∈ M πi ≥ 0

xj ≥ 0 j ∈ N πTAj ≤ cj

xj unconstrained j ∈ N πTAj = cj

Observe: The dual LP is obtained from the optimality criterion of the primal. The variables  π1, ..., πm  

correspond to multipliers of the rows of  !!  that fulfill the primal optimality criterion.  

4.1 Theorem (dual dual = primal)

The dual of the dual is the primal. 

We therefore speak of primal-dual pairs of LPs

Proof

Write the dual in primal form:
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Write the dual in primal form:

min πT (−b) such that

(−AT
j )π ≥ −ci j ∈ N

(−AT
j )π = −ci j ∈ N

πi ≥ 0 j ∈ M

πi unconstrained j ∈ M

The transformation rules yield the following dual LP

max xT (−c) such that

xj ≥ 0 j ∈ N

xj unconstrained j ∈ N

−aTi x ≤ −bi i ∈ M

−aTi x = −bi i ∈ M

which is the primal LP   !  

The Duality Theorem

4.2 Theorem (Weak and Strong Duality Theorem)

Let  x  be  a primal feasible  solution and  π  be a dual feasible solution. Then (Weak Duality Theorem)
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Let  x  be  a primal feasible  solution and  π  be a dual feasible solution. Then (Weak Duality Theorem)

!
"
# ! $

"
% !"&#$

If an LP has an optimal solution, so has its dual, and the optimal objective values are the same (Strong Duality 

Theorem)

Proof

Let  x  be a primal feasible  solution and  π  be a dual feasible solution. Then

cTx
π dual feasible

≥ (πTA)x = πT (Ax)
x primal feasible

≥ πT b

Assume w.o.l.g. that the LP is in primal form  (4.2)  and has an optimal solution  

=>   has an basic optimal feasible solution  !!  with associated basis  !!  and  πT = ĉT
B̂
B̂−1

  is feasible for the 

dual by construction

For this  π  we obtain  

!
"
# ! "#$"#%

#%!$%# ! #$"#%"
#%!$

#% ! #$"#%#&% ! #$"#&

So  π  and  !!  have the same objective function value.

Weak Duality  (4.7) then implies that  π  is  a dual optimal solution   !  
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4.3 Theorem (Possible primal-dual pairs)

Primal-dual pairs exist exactly in one of the following cases: 

(1)  both LPs have a finite optimal solution and their objective values are equal

(2) both LPs have no feasible solution

(3) one LP has an unbounded objective function and the other has no feasible solution
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dual

primal

finite
optimal solution

fin
ite

opt
imal s

olu
tio

n

fea
sib

le 
sol

uti
on,

unb
oun

ded

ob
jec

tiv
e no 

fea
sib

le

sol
uti

on

feasible solution,
unbounded
objective

no feasible
solution

(1)

(3)

(2)(3)

Proof

Strong Duality Theorem  =>  Case (1)  occurs  in row 1 and column 1 of the table, and this is the only table 

entry in which it occurs

Consider now row 2 of the table, i.e.,  x  is a primal feasible solution but  cTx  unbounded from below.

If there is a dual feasible solution  π, we obtain  πTb  !  cTx  with the Weak Duality Theorem  

=>  cTx  is bounded  from below, a contradiction.
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=>  cTx  is bounded  from below, a contradiction.

Therefore case (3)  can only occur at positions (2,3) and (3,2)

An example for (3)

(P) min  x1   s.t.    x1 + x2  "  1,   - x1 - x2  "  1,     x1, x2  " 0

=>  (P)  has no feasible solution

(D) max  π1 + π2   s.t.    π1 - π2  !  1,   π1 - π2  !  0,     π1, π2  " 0

!
1

!
2 !

T
b

=>  πTb  is unbounded 

So only entry (3,3) remains. This case can occur

An example for (2)
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An example for (2)

(P) min  x1   s.t.    x1 + x2  "  1,   - x1 - x2  "  1,     x1, x2  unconstrained  

x
1

x
2

=>  (P) has no feasible solutions

(D) max  π1 + π2   s.t.    π1 - π2  =  1,   π1 - π2  =  0,     π1, π2  " 0

=>  (D) has no feasible solution    !  

The transportation problem and its dual

Hitchcock problem or transportation problem (Hitchcock 1941) is a special minimum cost flow problem, see ADM 

I
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I

supply
in A

demand
in B

A B
u = !

                                    G  "bipartite"

We want to transport a good (oil, grain, coal) at minimum cost from the supply locations to the demand 

locations

Vertex  i ∈ A  (i = 1, ..., m)  supplies  ai  units

Vertex  j ∈ B  (j = 1, ..., n)  demands  bj  units,  total supply = total demand.

Edges (i,j)  ∈ A x B  have cost  cij  per transported unit and infinite capacity  uij 

An LP formulation for the transportation problem

xij  =  number of  units transported from  i  to  j

min   %i,j  cijxij    s.t.

%j  xij   =  ai  for all i    (pick up supply  ai  from vertex  i)

%i  xij   =  bj  for all j    (deliver demand  bj  to vertex  j )
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%i  xij   =  bj  for all j    (deliver demand  bj  to vertex  j )

xij  " 0  for all  i, j

The associated matrix  A  of coefficients has the form

i 
= 

1,
...

,m
j 

= 
1,

...
,n

!!! !!" " " " !!# !"! !"" " " " !"# " " " !$! !$" " " " !$#

! ! " " " ! # # " " " # " " " # # " " " #

# # " " " # ! ! " " " ! " " " # # " " " #

$ $ $
$ $ $

$ $ $
$ $ $

# # " " " # # # " " " # " " " ! ! " " " !

! # " " " # ! # " " " # " " " ! # " " " #

# ! " " " # # ! " " " # " " " # ! " " " #

$ $ $
$ $ $

$ $ $
$ $ $

# # " " " ! # # " " " ! " " " # # " " " !

The dual of the transportation problem

Introduce dual variables  ui,  vj  for the constraints as follows

ui - %j  xij   =  - ai  for all i   

vj   %i  xij   =  bj  for all j   

The dual LP reads

max  %i  - aiui  +  %j bjvj    s.t.
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max  %i  - aiui  +  %j bjvj    s.t.

- ui + vj  !  cij  for all  i, j

ui,  vj   unconstrained

Interpretation of the dual LP

"Dual" entrepreneur offers to do the transportation for pairs (i,j) 

He can buy the supply  ai  at location  i  from the primal entrepreneur, transport it to  j  and sell it there

ui  =  price to buy a unit of the good at vertex  i

vj  =  returns per unit at vertex  j

vj - ui  =  profit per unit bought in  i  and sold in  j 

vj - ui  ! cij  dual entrepreneur must stay below primal transportation cost in order to get the transport  (i,j)  

from the  primal entrepreneur (otherwise primal entrepreneur will do it himself)

Dual entrepreneur wants to maximize his total profit   %j bjvj -  %i aiui   under these conditions

The dual of the diet problem

The primal problem (see example 3.1)

min  cTx

s.t. Ax " r

 x " 0
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 x " 0

The associated dual problem

max  πTr

s.t. πTA ! cT

πT " 0

Interpretation

The dual entrepreneur makes nutrient pills for each of the  m  ingredients (magnesium, vitamin C, ...)

He asks the price  πi  per  unit of nutrient  i 

πTAj  !  cj   <=>  the total price of all pills substituting one unit of food  j  must not exceed the price  cj  of one  

unit of food  j    (pills will not be bought otherwise)

max  πTr   <=>  maximizing total profit of the dual entrepreneur

Dual LPs often have a natural interpretation in practice
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Complementary slackness provides simple necessary and sufficient conditions for optimality of a pair of primal 

feasible and dual feasible solutions. They have far reaching consequences for the design of algorithms (primal-dual 

algorithms, primal-dual approximation algorithms)

4.4 Theorem (Complementary slackness)

Let  x  be a primal feasible solution and  π  be a dual feasible solution. The following statements are equivalent:

x, π  are optimal (in the primal and the dual, respectively)

ui  :=  πi·(ai
Tx - bi)  =  0  for all  i = 1, ..., m     (4.8)

vj  :=  (cj - πTAj)·xj  =  0  for all  j = 1, ..., n (4.9)

i.e.,: (slack of primal or dual constraint)·(value of associated dual or primal variable)  =  0

Proof

ui " 0

since

ai
Tx - bi  =  0   =>   ui   = 0

ai
Tx - bi  "  0   =>   πi   " 0   =>   ui  " 0

vj  "  0
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since

xj  unconstrained  =>  πTAj  = cj   =>  vj  =  0

xj  " 0   =>  πTAj  ! cj   =>  vj  "  0

Set  u := %i ui,  v := %j vj   =>   u, v  "  0.  Then

u = 0  <=>  (4.8)  holds  

v = 0  <=>  (4.9)  holds  

Then

u + v =  %i πi·(ai
Tx - bi) + %j (cj - πTAj)·xj

=  - %i πibi + %j cjxj   +  %i πiai
Tx  -  %j πTAjxj 

=  - πTb + cTx   +  (πTA)x  -  πT(Ax) 

 =  - πTb + cTx 

Hence:  u + v  =  - πTb + cTx

Suppose  (4.8)  and (4.9)  hold   =>  u + v  = 0  =>  cTx = πTb

Weak Duality Theorem  =>  x, π  are optimal

Suppose that  x  and  π  are optimal

Strong Duality Theorem  =>   cTx = πTb   =>  u + v  = 0  =>  (4.8)  and (4.9)   !  
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The shortest path problem as primal LP

Shortest Path Problem (SP)

Instance

Digraph G 

Rational edge weights c(e), e ∈ E(G)

Vertices  s, t ∈ V(G)

Task

Determine an elementary s,t-path  P  of minimum  weight  c(P)  (shortest  s,t-path)
!!"" #

�
#∈$!"" !!#"c(W) = ∑e∈E(P) c(e)

(SP) is an instance of (LP)
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The vertex-edge-incidence matrix   A = (aij)  of  G is defined as

i
ej

i
ej!"# !"






#$ %&''(

!$ %&''(

) (*+(,

if       

if       

otherwise       

where  V(G) = { 1, ..., n }  and  E(G) = { e1, ..., em }

Example

 

s

a

b

t

e
1

e
2

e
3

e
4

e
5

G

   

!! !" !# !$ !%

" ! ! & & &

# & & & !! !!

$ !! & ! ! &

% & !! !! & !

A

The vertex-edge-incidence matrix  of a digraph has per column exactly one  1,  exactly one  -1,  and  0  

otherwise

=>  sum of rows is 0  =>  rank(A) < n

Later:  rank(A) = n-1  if  G  is connected (in the undirected sense) 
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Later:  rank(A) = n-1  if  G  is connected (in the undirected sense) 

Let  fj  be a variable representing the amount of flow on edge  ej,  and  let  f := (f1, ..., fm )T 

Flow conservation  in node  i  is then expressed as  ai
Tf  = 0

 

v
3
0
2

4

1

inflow in v  = 5  =  outflow from v

An  s,t-path is a flow of flow value 1  from  s  to  t  (all  fj = 1  on the path and  0  otherwise) 

=>  every  s,t-path is a solution of the linear system 

row s
row t

flow conservation

!" ! # "#$ # !





%$

!$

&

'''

&





Af = b with 

with  v = 1

Of course, this linear system has also solutions that do not correspond to  s,t-paths. But we have
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4.6 Lemma 

(1)  If

min  cTf

Af = b

f " 0

has an optimal solution, then also one with  fj ∈ { 0, 1 }.  Every such solution corresponds to an  s,t-path

(2)  The simplex algorithm finds such a solution

Proof:

(1) follows from the algorithm for minimum cost s,t-flows in ADM I

(2) can easily be shown directly, but follows also from the fact that matrix  A  is totally unimodular and  b 

is integer.  Then all basic feasible solutions of the LP are integer. We will show this more general result in 

Chapter 7.2.    !  

Solving (SP) with the simplex algorithm

We formulate  (SP)  as (LP) 

min  cTf
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min  cTf

Af = b   (A = vertex-edge-incidence matrix )

f " 0

and solve it with the simplex algorithm.

Since  rank(A) < n,  we may delete a row

=>  delete the row for vertex  t,  this yields  b " 0

In the example we obtain the following tableau for cost vector  c = (1, 2, 2, 3, 1) 

Initial tableau, not yet transformed w.r.t. a basis,  and graph  G  with edge costs

!! !" !# !$ !%

! " " # !

" ! ! ! & & &

# & !! & ! ! &

$ & & !! !! & !

 

s

a

b

t

1

2

2

3

1

G

Choose  { 1, 4, 5 }  as basis and transform the tableau w.r.t. that basis. 

Interpret the associated basic feasible solution in the graph.
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!! !" !# !$ !%

!$ & !! & & &

!! ! ! ! & & &

!$ ! & ! ! ! &

!% & & !! !! & !

     

s

a

b

t

e
1

e
4

e
5

f
5
 = 0

1 3

The basic solution has  n-1  = |V| - 1  variables, but not every s,t-path has so many edges

=>  many basic feasible solutions are degenerate (a common phenomenon in combinatorial optimization problem)

Next tableau and basic feasible solution in the graph

!! !" !# !$ !%

!# & & ! ! &

!! & ! & !! !! &

!" ! & ! ! ! &

!% ! & & & ! !

s

a

b

t

e
1

e
2 e

5

2 1

=>  optimal solution found, shortest path has length 3

The dual of the shortest path problem

We formulate it w.r.t. the full tableau containing also the row for vertex  t  

4. Duality
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We formulate it w.r.t. the full tableau containing also the row for vertex  t  

=>  dual variables  πi  correspond to a node potential in graph G

Tableau in the example:

!! !" !# !$ !% "

# ! " " # !

$% ! ! & & & '!

$& & & & !! !! !!

$' !! & ! ! & &

$" & !! !! & ! &

Dual LP: 

max  πs  -  πt 

πi  -  πj  !  cij   for all edges  (i, j) ∈ E(G)

πi  unconstrained

Interpretation of the dual LP

Along any path  
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i k p q t...

from  i  to  t  we have

  (πi - πk)  +  (πk - πp)  + ... +  (πq - πt)   =  πi - πt   

    !  cik           !  ckp                   !  cqt  

=>  πi - πt   !  cik  +  ckp   + ... +   cqt   =  length of the path from  i  to  t

Since this holds for every such path, 

πi - πt   !  length of a shortest path from i  to  t

=>  max  πs  -  πt   is equivalent to

finding the greatest lower bound for the length of a shortest path from  s  to  t

Complementary slackness conditions

Path  f  and  node potential  π  are primal-dual optimal   <=>

(1) fij  >  0   =>  πi - πj  =  cij  

i.e.,  edge  (i,j)  lies on a shortest path  =>  potential difference  = cost

(2) πi - πj  <  cij  =>  fij  =  0  

i.e.,  potential difference  <  cost  =>  edge  (i,j)  does not lie on a shortest path

4. Duality
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i.e.,  potential difference  <  cost  =>  edge  (i,j)  does not lie on a shortest path

Interpretation:

the lower bounds  πi - πt  are tight along any shortest path 

The cord model  (for  cij " 0)

edge  (i, j)  <->   cord with length  cij 

πi - πj   <->   pulling vertices  i  and  j  apart

πi - πj  !  cij    <->   pulling is bounded from above by length  cij  

max  πs  -  πt   <->   pull  s  and  t  apart as far as possible

complementary slackness: the cords on shortest paths are the tight ones

Remarks
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Remarks

Deleting the row for vertex  t  =>  we have no variable  πt   =>  the dual objective function is  max πs  

But:  edges  (i,t)  yield the dual constraint  πi  !  cit,  so that  πs  cannot get arbitrarily large.

We obtains the same dual constraint  πi  !  cit  if we set  πt  = 0  (which we may do w.o.l.g. since we only have 

potential differences in the dual).

Dijkstra's algorithm  (ADM I) applied to the dual graph (in which the direction of all edges of  G  is reversed) 

iteratively computes the  πi,  where  πt  is set to  0.

4. Duality
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This is a central and very useful lemma in duality theory. It has several variants also known as Theorems of the 

Alternative. 

Cones and projections

The cone  C(a1, ..., am)  generated by  a1, ..., am

Let  a1, ..., am ∈ Rn  (e.g. the rows of matrix  A).  The cone  C(a1, ..., am)  generated by  a1, ..., am  is defined as 

!!""# $ $ $ # "%# $% ! & ∈ R' " & %

%�

(%"

)("(# )( # & $

=  set of non-negative linear combinations of a1, ..., an 

vectors in the green angle 
have a non-negative projection 
onto  a1  und  a2

a2

a1

C(a1,a2)
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The projection of y  onto  a

y

a
α

!"#

�!� ! �#�cos α = 

projection of y onto a   =  �!� cos α

=>  the projection of y  onto  a  is non-negative  <=>  yTa  is non-negative

4.5  Theorem (Farkas' Lemma)

Let  a1, ..., am ∈ Rn  and  c ∈ Rn.  The following are equivalent

(1)  for all  y ∈ Rn :  yTai  " 0 for all i = 1,...,m   =>   yTc  "  0

i.e., for all  y : 

 y  has a non-negative projection onto each  ai   

=>  y has a non-negative projection onto c

(2)  c ∈ C(a1, ..., am)

i.e.,  c  lies in the cone generated by  a1, ..., am  
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Proof

(1) => (2)

Consider the LP

min  cTy

ai
Ty  " 0      i = 1,...,m

y  unconstrained

=>  y = 0  is a feasible solution of the LP

The objective function is bounded from below since the constraints of the LP imply  cTy " 0  because of  (1),.

=>  LP has a finite optimal solution

=>  the dual LP 

max 0

πTAj  = cj

π " 0

has a feasible solution

=>  there are numbers  π1, ..., πm  " 0  with  c = πTA  =  %i πiai

=>  c ∈ C(a1, ..., am)
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(2) => (1)

c ∈ C(a1, ..., am)  =>  there are numbers  πi  " 0  with  c = %i πiai

consider  y  with  yTai  " 0 for all i = 1,...m

=>  yTc  =  %i πiy
Tai  "  %i πi·0  =  0   !  

There are many equivalent formulations of Farkas' Lemma. Examples are

(A)  ∀ y  (yTai  " 0  ∀ i  =>  yTb  " 0)   <=>  ∃  x " 0  with  ATx  = b  (original version by Farkas 1894)

(B)  ∀ y " 0  (yTai  " 0  ∀ i  =>  yTb  " 0)   <=>  ∃  x " 0  with  ATx  !  b

More in Chapter 7.5

An application of Farkas' Lemma: necessary conditions for the disjoint path problem

Disjoint Path Problem

Instance

Undirected graph G 

Pairs of vertices  { s1, t1 }, ..., { sk, tk }

Task

Determine pairwise edge disjoint paths from  si  to  ti   (i = 1, ..., k)

4. Duality
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An example: minimum cost embeddings of VPNs into the base net of Telekom

The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and 
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The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and 

hopefully also sufficient criteria for the existence of a solution.

Cut criterion

Let  H  be the graph with  V(H) := V(G)  and  E(H) := { { s1, t1 }, ..., { sk, tk } }.  A necessary condition for the 

existence of a solution is the cut criterion

  |δG(X)| ≥ |δH(X)| for all ∅ �= X ⊆ V(G)

i.e.,  there are at least as many edges leaving  X  in  G  as there are pairs in  H  to be connected 

X V-X

G

 

V-X

X V-X

H

The cut criterion is not sufficient

4.6 Example
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1 1

3

2

3 4

2 4
G H

Cut criterion holds, but there is no solution

Distance criterion

Let  distG,z(s,t)  be the length of a shortest path from s  to t  in  G  w.r.t. edge weights  z(e) " 0, e ∈ E(G). 

An instance of the disjoint path problem fulfills the distance criterion

:<=>  for any choice of edge weights  z(e) " 0, e ∈ E(G), 

�

!!"#"∈$!%"

&'!#(")!!" #" #
�

*∈$!("

)!*"

The cut criterion reduces to the distance criterion for edge weights

z(e) :=

�
1 if e ∈ δ(X)

0 otherwise

4.7 Theorem (The distance criterion is necessary)
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4.7 Theorem (The distance criterion is necessary)

The distance criterion is necessary and sufficient for the existence of a fractional solution of the disjoint 

path problem.

In particular, it is necessary for the existence of a solution of a disjoint path problem

Proof

Consider the disjoint path problem as a cycle packing problem

cycles = all elementary cycles in  G + H  that contain exactly one edge of H

k := number of these cycles

integer cycle packing = union of pairwise edge disjoint cycles that contain every edge of  H  in exactly one 

cycle

(existence  <=>  feasibility of the disjoint path problem)

fractional cycle packing = non-negative linear combination (of incidence vectors) of all these cycles such 

that the resulting vector has the value  1  at the entries corresponding to the edges of  H,  and is at most  

1  at every entry corresponding to an edge of G.

(they contain integer cycle packings as special case)

Example 4.6 has the following cycles in the cycle packing problem
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A formulation of the fractional cycle packing

Let  M  be the  E(G)-cycle-incidence matrix, i.e.,
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Let  M  be the  E(G)-cycle-incidence matrix, i.e.,

rows of M     <->  edges of G

columns of M   <->  incidence vectors of all cycles of  G + H

Me,C  = 1  <=>  e  lies on cycle C

Let  N  be the  E(H)-cycle-incidence matrix, i.e.,

rows of N      <->  edges of H

columns of N    <->  incidence vectors of all cycles of  G + H

Ne,C  = 1  <=>  e  lies on cycle C

Observe: every column of  N  contains exactly one  1

=>  fractional cycle packing  =  π' ∈ Rk  with  π' " 0,  Mπ' ! 1,  Nπ' = 1

Add slack variables to obtain a linear system and denote the enlarged vector again by  π
=>  fractional cycle packing  =  π ∈ Rk+m  (m = |E(G)|)  with  π " 0,  Mπ = 1,  Nπ = 1

Write it as

Aπ = 1, π ≥ 0 with A =

�
M I

N 0

�

i.e., the all ones vector  1 lies in the cone  C(A1, ..., Ak+m)  generated by the columns  Aj = of A

Applying Farkas' Lemma gives condition (3)
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Applying Farkas' Lemma gives condition (3)

Farkas' Lemma yields:  there is such a vector  π
<=>  for all  y ∈ R|E(G)|+|E(H)| :  yTAj  " 0 for all j = 1,...,k+m   =>   yT1  "  0  

Partition  y  into  (z,v)T,  such that  z  corresponds to the rows of  M  (edges of  G)  and  v  to the rows of  

N  (edges of  H). 

We then get:  

yTAj  " 0   =>  zi  " 0                    for columns  Aj  of slack variables

yTAj  " 0   =>   zTMj  + vTNj  "  0   for the other columns  Aj 

Let  Cj  be the cycle of column  Aj 

=>  Cj  decomposes into a path  Pj  in  G  and an edge  f  from  H

Then

zTMj  =  length  z(Pj)  of the path  P j  w.r.t. edge weights  z(e) 

vTNj   =  edge weight v(f), where  f  is the edge of  H  lying on cycle  Cj 

Hence

yTAj  " 0   =>  z(P j)  + v(f)  "  0   for all cycles  Cj  containing edge f

So  z(P j) + v(f) "  0  is equivalent to

distG,z(s,t)  + v(f)  "  0  with  f = { s, t } (1)
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distG,z(s,t)  + v(f)  "  0  with  f = { s, t } (1)

The constraint  yT1  "  0  becomes 

%e # E(G) z(e)  +  %e # E(H) v(e)  "  0 (2)

Farkas' Lemma then yields for arbitrary (z,v)   (3)

z(e) " 0,  distG,z(s,t)  + v(f)  "  0   for all edges  f = { s, t } in H  

=>   %e # E(G) z(e)  +  %f # E(H) v(f)  "  0

Condition (3) is equivalent to the distance criterion is (by proving that their negations are equivalent)

(3) violated  =>  distance criterion violated

(3) violated  =>  there are  z, v  with  

z(e) " 0,  

distG,z(s,t)  + v(f)  "  0   for all edges  f = { s, t } in H  and 

%e # E(G) z(e)  +  %f # E(H) v(f)  <  0

=>  0  !  %f # E(H) distG,z(s,t)  +  %f # E(H) v(f)  <  %f # E(H) distG,z(s,t)  -  %e # E(G) z(e)

=>  %e # E(G) z(e)  <  %f # E(H) distG,z(s,t)

=>  distance criterion violated

distance criterion violated  =>  (3) violated

distance criterion violated  
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distance criterion violated  

=>  there is  z " 0  with  %e # E(G) z(e)  <  %f # E(H) distG,z(s,t)

choose   v(f) := - distG,z(s,t)  for edge  f = {s, t}  in  H

=>  distG,z(s,t)  + v(f)  "  0  for all edges  f = { s, t } in H  and 

%e # E(G) z(e)  +  %f # E(H) v(f)  =   %e # E(G) z(e)  -  %f # E(H) distG,z(s,t)  < 0

=>  (3) is violated   !   

The distance criterion is stronger than the cut criterion

Example 4.6 does not fulfill the distance criterion

1 1

3

2

3 4

2 4
G H

Set  z(e) = 1  for all  e  in  G  =>  %f = {s,t} # E(H)  distG,z(s,t)  =  8,  %e # E(G) z(e)  = 6

The distance criterion is not sufficient for the existence of a solution of the disjoint path problem
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The distance criterion is not sufficient for the existence of a solution of the disjoint path problem

The instance of the disjoint path problem

1

12

2G H

A fractional cycle packing 

! +! +! +!

So the distance criterion holds because of Theorem 4.7

There is no solution for the disjoint path problem
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How to get dual information from the optimal primal tableau?

Suppose w.o.l.g. that the initial tableau (possibly with artificial variables from Phase I) has columns  1,...,m  as 

basic columns  and that the tableau is transformed w.r.t. to this basis

1

1

...

Then the following properties hold in the optimal tableau with basis  B

rows  1,...,m  are obtained from the  initial tableau by multiplying it with  B-1  from the left

the reduced cost are obtained as
!!" " !" ! #

$%" " # $%&&#'

where π  is an optimal solution of the dual problem (Proof of the Strong Duality Theorem)

In columns  1,...,m  (which are unit vectors in the initial tableau) we get
!!" " !" ! #

$%" " !" ! #" #$&%%&

Hence an optimal dual solution is obtained from the optimal tableau of the primal as
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!" ! #" ! "#" #" ! $$ % % % $ &% #&%$'%

Observe: this holds for the dual problem of the initial tableau (and not for dual versions of other, equivalent 

primal formulations).

Moreover, the first m columns contain  B-1  =  B-1 I     (4.13)

cj - !j

B-1

4.8 Example (Example for the Two-Phase-Method continued)

Initial tableau 
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!"
!

!"
"

!"
#

!! !" !# !$ !%

!# & & & & ! ! ! ! !

!$ & ! ! ! & & & & &

!"
!

! ! & & # " ! & &

!"
"

# & ! & % ! ! ! &

!"
#

$ & & ! " " ! & !

Optimal tableau

!"
!

!"
"

!"
#

!! !" !# !$ !%

!# !&$" %$" !! !! #$" ' #$" ' '

!% ' ! ! ! ' ' ' ' '

!" !$" !$" ' ' #$" ! !$" ' '

!$ %$" !!$" ! ' ($" ' !$" ! '

!% #$" !%$" ' ! !!!$" ' !!$" ' !

(4.12)  gives  π1 = 0 - 5/2  =  - 5/2

π2 = 0 - (- 1)  =  1

π3 = 0 - (- 1)  =  1

for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with artificial 
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for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with artificial 

variables  xi
a

4.9 Example (Example for the shortest path problem continued)

Solving the primal problem

Initial tableau has no identity matrix, but 2 unit vectors

=>  add one artificial variable in Phase I

!" #! #" ## #$ #%

!$ ! & & & & &

!% & ! " " # !

& !" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% & & & !! !! & !

Transform cost coefficients of  ξ  and  z  to reduced form  (must become  0  for basic variables)

4. Duality
4.5 Dual information in the tableau

26-5

!" #! #" ## #$ #%

!$ !! & !! !! & & &

!% & & $ # & & &

& !" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% & & & !! !! & !

Pivot step

!" #! #" ## #$ #%

!$ & ! & & & & &

!% !# !# ! & & & &

& #" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% ! ! ! & !! & !

=> ξ = 0 and  xa  is a non-basic variable

=>  optimal w.r.t.  z

basic columns of the 
initial tableau

Primal information (visualized in the graph) 
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s

a

b

t

e
2 e

5

2 1

e
4

the primal optimal solution displays the edges on the shortest path

Dual information (obtained from the primal optimal tableau and displayed in the graph)

!" ! #$% ! "#$% ! # ! $!%& ! %

!% ! #' ! "#' ! % ! # ! %

!& ! #( ! "#( ! ) ! # ! )

!' ! #

πt  = 0  since row  t  is not in the primal LP 
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s

a

b

t

1

2

2

3

1

3

1

0

3

the dual solution displays the shortest distance from a vertex to  t



4. Duality
4.6 The dual Simplex algorithm

27-1

Goal: use the primal tableau to solve the dual LP

Characteristics of the dual LP

The primal optimality condition  !! ! "  becomes a dual constraint

=>  the primal simplex algorithm has a primal feasible solution

and fulfills the dual constraint  !! ! "  only at termination when the optimum is reached

This suggests the following characteristics for the dual simplex algorithm

generate a sequence of dual feasible solutions

establish primal feasibility only at termination when the optimum is reached

Deriving the operations in the tableau

Tableau  X  with basic solution

 
4. Duality

4.6 The dual Simplex algorithm
27-2

 

!! !" !# !$ !%

!# ! & & & &

!" ! ! ! & & &

!$ ! & & & ! !

!# !! !! & ! & !!

=>  dual feasible, i.e.,

primal infeasible, i.e.,   

 !! ! "dual zulässig, d.h.  !! ! " 

nicht primal zulässig, d.h.  xB  ! 0  

Choose a  pivot row  r  (instead of a  pivot column)  with  xr0  <  0  (i.e., an infeasible entry  xr0  <  0 in the primal 

basic solution)

Choose a  pivot column  in row  r  the by considering entries  xrj  <  0  (as to obtain  xr0  "  0  after the pivot)

Pivoting  with  xrs  <  0  changes the cost row to

!�
!" " !!" !

!#"

!#$
!!$ " " #% & & & % '
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0

r

j s
x0j x0s

xrj xrs

must become 0

must become 1

To stay feasible in the dual,  x0j´ " 0  for all  j

⇒
!!"

!#"
!

!!$

!#$
"#$% !#" % !for

=>  choose column  s  is such a way that 

!!"

!#$
" #$% !

!!$

!#$
" !#$ % !& $ " && ' ' ' & ( #

Observe the symmetry with the primal simplex algorithm

in particular:  all  xrj  >  0  =>  dual LP has an unbounded objective function

4.10 Theorem (Interpretation of the dual simplex algorithm)

The dual simplex algorithm is the primal simplex algorithm applied to the primal formulation of the dual LP

4. Duality
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The dual simplex algorithm is the primal simplex algorithm applied to the primal formulation of the dual LP

Proof: Check    !

4.11 Example (Example for the shortest path problem continued)

initial tableau, not yet transformed w.r.t. a basis and graph with costs

!! !" !# !$ !%

! " " # !

" ! ! ! & & &

# & !! & ! ! &

$ & & !! !! & !

 

s

a

b

t

1

2

2

3

1

G

choose  B = { 2, 4, 3 }  as basis and transform the tableau w.r.t.  B,  display the basic solution in the graph
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!! !" !# !$ !%

!# ! & & & &

!" ! ! ! & & &

!$ ! & & & ! !

!# !! !! & ! & !!

=>  dual feasible

primal infeasible   

s

a

b

t

e
1

e
2

e
3

e
4

e
5

the basic solution  corresponds to the  s,t-cut  X = { s, a }

ADM I:  s,t-cuts are "dual structures" of  s,t-flows. This is confirmed here by LP duality

Choosing the pivot element

r = 3  is the pivot row 

choosing the pivot column:

 

!!"

!#$
" #$% !

!!$

!#$
" !#$ % !& $ " && ' ' ' & ( # " #$% !

&

$&
&
!

$&
# " !

j = 1 j = 5

=>  s = 5  is  the pivot column
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!! !" !# !$ !%

!# ! & & & &

!" ! ! ! & & &

!$ ! & & & ! !

!# !! !! & ! & !!

pivot operation

!! !" !# !$ !%

!# ! & & & &

!" ! ! ! & & &

!$ & !! & ! ! &

!% ! ! & !! & !

s

a

b

t

e
2 e

5

2 1

e
4

=>  primal and dual feasible  =>  optimal

The dual optimal solution can be obtained from the inverse of the optimal basis  as  !"
! #

"

$
$
!"

  (Duality 

Theorem). 

The optimal basis is  B = { 2, 4, 5 }  with inverse
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!
!!

"





! # #

# ! #

! # !





So

!" ! #"$$
!" ! #$%%% "&





" ' '

' " '

" ' "



 ! #%%%% "&

s

a

b

t

1

2

2

3

1

3

1

0

3

Observe: in this case we could not obtain  π  and  B-1  directly from the optimal tableau, since the dual LP is not 

the one constructed from the initial tableau with basis  { 2, 4, 3 },  but the dual LP of Example 4.9.

5. Computational aspects of the Simplex algorithm
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The full tableau is redundant (identity matrix!) and may contain very many non-basic columns (all of them are 

stored at every pivot step,  =>  much memory for every tableau).  The revised simplex algorithm uses in every step 

only essential information in a memory-efficient way. 

The core of that information is the inverse  B-1 of the current basis  B, from which we can easily compute all 

information needed for a pivot step

The revised simplex algorithm is used in all commercial LP-codes

Main idea of the revised simplex algorithm: the CARRY matrix

consider the initial tableau with identity matrix  =  initial basis on the left in the tableau

-z 0   ....   0

b I

!!"

CARRY(0)

because of  (4.13),  matrix  I  will change to the inverse  B-1  of the current basis  B  in subsequent pivot steps
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after iteration  �  the tableau contains the following data in den first  m+1 columns  

-z´ - !
T

B
-1

!"##$
!�"

b´

where  

πT   =  dual solution  because of   (4.12),  in general infeasible.  

The numbers  πi  are also called simplex multipliers.

b´  =  B-1b  is the current right hand side  =  current primal solution

z´  =  cB
TB-1b  is the current primal cost

It suffices to maintain the following data for the simplex algorithm

1.  initial tableau 
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c
T

Ab

2.  current CARRY-matrix  !"##$!�"

3.  current basis by its column indices  B(1),...,B(m)

From 1., 2., and 3.,  one can obtain all data required for a pivot step

(1)  Pricing Operation  (computing reduced costs)

iteratively compute  
!!" " !" ! #

$%"

for  non-basic variables until some reduced cost  !!" # "  or  !! ! "  (=>  termination with an optimal solution)

(2)  Generation of the Pivot Column  (transforming the pivot column w.r.t. the current basis)

compute

!" ! #
!"
$"

=  column  s  of the current tableau  X
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=  column  s  of the current tableau  X

the pivot element  xrs  is obtained as  

 
!"#

!" #!$ % $

&�
!

#!$

← !" #$%%&
!�"

← !" #$

or  z  is unbounded is  (if all  xis ! 0)

(3)  Pivot Operation (pivot step)

compute !"##$!�"#$

i.e., transform  Xs  into the unit vector  (with  1 at  the pivot element)  and apply the corresponding row 

operations to  !"##$!�" 

-z´ - !
T

B
-1

!"##$
!�"

b´

X
s

r ← !"#

(4)  Basis Update

set  B(r) := s
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set  B(r) := s

The Two-Phase-Method works similarly

one starts with the artificial cost vector

(1, ..., 1, 0, ..., 0)

artificial variables
x1

a, ..., xm
a  form the initial basis

Transformation to reduced cost w.r.t. this basis changes the cost to 

!" !" !

#�

$ " #

%$"

for each non-basic variable

At the end of Phase I we change over to the original cost vector

=>   compute    - πT  =  - cB
TB-1   and put it into   !"##$!�" 

compute   - z  =  - cB
Tb´  and put it into   !"##$!�" 

The required data is available:  cB  is stored in the initial data,  B  is stored,  and  B-1  and  b´ are stored in  
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!"##$
!�" 
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(1)  Do not look at every non-basic columns per iteration

one needs all reduced costs 

  !!" " !" ! #
$%"

only to prove optimality. At other steps, partial pricing  is enough (in the primal simplex; it is not possible in the 

dual simplex).

(2)  Columns  Aj  of non-basic variables come from the initial tableau

this is often sparse (in particular with combinatorial problems, e.g. there are only 2 entries $ 0 in a vertex-edge-

incidence matrix)

=>  can exploit techniques to save memory usage and runtime (data structures and algorithms for sparse 

matrices)

(3) Maintain !"##$!�"  implicitly

since  !"##$!�"  is obtained in a simple way from  !"##$!�!"#,  it is not necessary to store the complete matrix  

!"##$
!�".

!"##$
!�" # %� ! !"##$

!�"$"

with
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with

!� ! ""## $ $ $ # "%!## &# "%$## $ $ $ # "'%   models elementary row operations

ei  =  i-th unit vector

 

! !





!
""#

"$#

###

"

"$#

###

!
"%#

"$#





pivot row

=>  store ⇒ !� !"#$%&#'( )*'%& "+,#-./' *() 0/!$.$/( #by its  η-vector and position r

inductively

CARRY(�) = P�−1 · P�−2 · . . . · P1 · CARRY(0)

if  �  gets large, one can "re-invert" , i.e., the search for an equivalent but shorter sequence of η-vectors  (� ! m  

suffice)

(4)  Combine these techniques with methods for numerical stability

LU-partition, Cholesky-factorization
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LU-partition, Cholesky-factorization

(Class on numerical methods)

Every regular matrix  B  can be written as  B = P·L·U  with

P  =  permutation matrix   (then  P-1  =  PT)

L  =  lower triangular matrix

U  =  upper triangular matrix

Linear systems  Bx = b  can then be easily solved: 

Bx = b  transforms to  LUx = PTb  

solve  Ly = PTb

solve  Ux = y

i.e., solve 2 linear systems in triangular form

Some quotations by Bob Bixby, the "father" of Cplex and Gurobi
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Bixby

ISMP 2003

from Solving Real-World Linear Programs: A Decade and More of Progress, Operations Research (50) 2002, 3-15

It was thus around 1987 that I became seriously involved in the computational aspects of linear programming. 

The first version of CPLEX, CPLEX 1.0, was released in 1988. 

Advances in computing machinery
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Table 1: Machine improvements–Simplex algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50
Sun 3/50
25 MHz Intel 386
IBM 3090/108S
Cray X-MP/416

Compaq Server ES40, 667 MHz
Pentium 4, 1.7 GHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz

900
800
400
45
10

Table 2: Machine improvements–Barrier algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50
Sun 3/50
33 MHz Intel 386
IBM 3090/108S
Cray X-MP/416

Pentium 4, 1.7 GHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz

13000
12000
4000
10
5

The IBM 3090 is included here because, into the mid 1980s, these machines were
typical of the mainframes that dominated LP practice. It is worth noting that the
simplex speedup listed is surely a significant overestimate of the speedup relative
to a code such as MPSX. The C compilers for these machines were not very good;
moreover, the CPLEX code took no account of the special properties of the 3090
architecture. MPSX, by contrast, was written largely in machine assembly code and
tuned to the specifics of the 3090 architecture.

The final machine listed, the Cray X-MP, was never in wide use as an LP com-
puting environment. However, significant testing was carried out on these machines
in the late 1980s and early 1990s, and they do illustrate the upper limit of computing
power available at that time.

What I conclude from Tables 1 and 2 is that for desktop computing, machine
speedups have contributed a factor between 500 and 1000 to the speed of simplex
algorithms. Barrier algorithms, on the other hand, have experienced speedups an
order of magnitude greater. This difference is fundamental to the fact that barrier
algorithms have emerged as a powerful computational tool in linear programming.

5 LP computation: 1947 – late 1980s

George Dantzig is widely recognized as the father of linear programming. A central
part of his many contributions to this subject was the recognition that linear pro-
gramming was more than simply a conceptual tool. It was important to be able to
solve linear programs and compute actual answers:

5

Algorithmic  improvements

The dual simplex algorithm with steepest edge. 

The dual simplex algorithm was introduced by Lemke [1954]. It is not a new algorithm. However, to my 

knowledge, commercial implementations of this algorithm were not available in 1987 as full-fledged 

alternatives to the primal simplex algorithm. [...]

All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed, 
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All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed, 

computational tests, some of which will be presented later in this paper, indicate that the overall 

performance of the dual algorithm may be superior to that of the primal algorithm.

There are a number of reasons why implementations of the dual simplex algorithm have become so 

powerful. The most important is an idea introduced by Goldfarb and Forrest [1992], a so-called “steepest-

edge” rule for selecting the “leaving variable” at each dual simplex iteration. This method requires 

relatively little additional computational effort per iteration and is far superior to “standard” dual 

methods, in which the selection of the leaving variable is based only upon selecting a basic variable with 

large primal infeasibility.

Linear algebra 

Linear algebra improvements touch all the parts of simplex algorithms and are also crucial to good 

implementations of barrier algorithms. Enumerating all such improvements is beyond the scope of this 

paper. I will mention only a few. For simplex algorithms, two improvements stand out among the rest.

The first of these to be introduced was dynamic LU-factorization using Markowitz threshold pivoting. This 

approach was perfected by Suhl and Suhl [1990], and has become a standard part of modern codes. In 

previous-generation codes, “preassigned pivot” sequences were used in the numerical factorization (see 

Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred, 
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Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred, 

but encountered serious difficulties in the alternative case.

The second major linear algebra improvement is that LP codes now take advantage of certain ideas for 

solving large, sparse linear systems, ideas that have been known in the linear-algebra community for 

several years (see Gilbert and Peierls [1988]). At each major iteration of a simplex algorithm, several size- 

able linear systems must be solved. The order of these systems is equal to the number of constraints in 

the given LP. Typically these systems take as input a vector with a very small number of nonzero entries, 

say between one and ten – independent of overall model size – and output a vector with only a few 

additional nonzeros. Since it is unlikely that the sparsity of the output is due to cancellation during the 

solve, it follows that only a small number of nonzeros in the LU-factorization (and update) of the basis 

could have been touched during the solve. The trick then is to carry out the solve so that the work is linear 

in this number of entries, and hence, in total, essentially a constant time operation, even as problem size 

grows. The effect on large linear programs can be enormous.

Presolve

This idea is made up of a set of problem reductions: Removal of redundant constraints, fixed variables, and 

other extraneous model elements. The seminal reference on this subject is Brearley et al [1975]. Presolve 

was available in MPS III, but modern implementations include a much more extensive set of reductions, 
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was available in MPS III, but modern implementations include a much more extensive set of reductions, 

including so-called aggregation (substituting out variables, such as free variables, the satisfaction of the 

bounds of which are guaranteed by the satisfaction of the bounds on the variables that remain in the 

model). The effects on problem size can be very significant, in some cases yielding reductions by factors 

exceeding an order of magnitude. Modern presolve implementations are seamless in the sense that problem 

input and solution output occur in terms of the original model.

Examples of performance improvements

Tables 10 and 11 give solution times for the models in Table 8 using CPLEX 1.0,

2.2, 5.0, and 7.1. Runs were made on a 300 MHz UltraSparc. In the first table I have

tabulated the best of the primal and dual solution times for each of the eight models

and for each of the CPLEX versions. The final column specifies which algorithm was

the winner for each of the eight models running CPLEX 7.1. The second table records

the best of all three algorithms, barrier, primal, and dual, with the final column again

recording the winners for version 7.1.

Table 10: Solution times–Best simplex

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

701.1

110.5

275.0

736.0

271.9

1123.2

102.2

252.3

275.8

104.4

260.5

664.0

229.1

698.6

51.3

220.8

120.6

46.7

22.6

693.9

161.7

675.0

15.5

64.6

primal

primal

dual

dual

dual

primal

dual

dual

Table 11: Solution times–Best of three

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

203.0

110.5

46.5

171.4

152.6

999.1

102.2

252.3

117.1

99.5

31.5

71.7

113.4

340.5

51.3

132.0

67.3

46.7

22.4

32.4

82.2

124.7

15.5

47.9

barrier

primal

barrier

barrier

barrier

barrier

dual

barrier

Table 12 compares CPLEX 1.0 to the various other versions using geometric means

of individual ratios of solve times. According to this table, the best simplex algorithm

in CPLEX 7.1 is almost 52 times faster than CPLEX 1.0 on these models, and the

best of three is 114 times faster.

A shortcoming of the testset in Table 8 is that these models are no longer “large,”

though they were certainly considered large in 1994. In addition, a single algorithm,

barrier, is dominant
6
. To construct a more comprehensive, less biased measure of

recent improvements I will use a larger, more comprehensive testset, and focus on

6Lustig et al [1994] effectively acknowledge this fact, pointing out that seven of these models
came into their possession precisely because they were apparently difficult to solve with simplex
algorithms.

19

full paper
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SOLVING REAL-WORLD LINEAR PROGRAMS:
A DECADE AND MORE OF PROGRESS

ROBERT E. BIXBY
ILOG, Inc. and Rice University, bixby@ilog.com or bixby@rice.edu

This paper is an invited contribution to the 50th anniversary issue of the journal Operations Research, published by the Institute of
Operations Research and Management Science (INFORMS). It describes one person’s perspective on the development of computational
tools for linear programming. The paper begins with a short personal history, followed by historical remarks covering the some 40 years of
linear-programming developments that predate my own involvement in this subject. It concludes with a more detailed look at the evolution
of computational linear programming since 1987.

1. INTRODUCTION

I am a relative newcomer to computation. For the first half
of my scientific career, my research focused exclusively on
the theoretical aspects of operations research and discrete
mathematics. That focus began to change in the early 1980s
with the appearance of personal computers.
My first PC was used primarily to implement elemen-

tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that I was teaching. As a result,
I started writing my own code, initially a simple tableau
code.
At that time, in the early 1980s, I knew nothing about

the computational aspects of linear programming (LP). I
knew a great deal of theory, but numerical analysis and the
computational issues associated with numerical algorithms
were not subjects that were part of my graduate education.
I had no idea that tableaus were numerically unstable.
Fortunately for me, by the time my interests in compu-

tation had started, the Department of Industrial Engineer-
ing and Management Sciences at Northwestern University
had hired Bob Fourer, one of the creators of the AMPL
modeling language. Bob had worked for several years at
the National Bureau of Economic Research doing practi-
cal linear programming, followed by a graduate career at
Stanford. He knew a lot about the computational aspects of
mathematical programming, and he passed on a great deal
of that knowledge to me in informal conversations.
Linear programming become more central to what I

was doing when a friend of mine, Tom Baker, founded
Chesapeake Decision Sciences (now a part of Aspen Tech-
nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. I said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

To this day, I’m not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.
After the code was delivered to Chesapeake, there fol-

lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, I
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib1 testset my code was indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.
This comparison to XMP was an important part of

what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.
This was the mid-1980s, and integer-programming com-

putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grötschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
tion, they did not deal well with issues such as degeneracy.
The situation at the time is well described by some remarks
of Grötschel and Holland (1991), commenting on their use
of MPSX/370 in work on the traveling salesman problem:
They note that if the LP-package they were using had been
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with the appearance of personal computers.
My first PC was used primarily to implement elemen-

tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that I was teaching. As a result,
I started writing my own code, initially a simple tableau
code.
At that time, in the early 1980s, I knew nothing about
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were not subjects that were part of my graduate education.
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nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. I said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

To this day, I’m not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.
After the code was delivered to Chesapeake, there fol-

lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, I
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib1 testset my code was indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.
This comparison to XMP was an important part of

what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.
This was the mid-1980s, and integer-programming com-

putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grötschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
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Goals of this chapter

Illustrate the revised simplex algorithm

Illustrate how to handle  LPs with  (exponentially) many columns:  Column Generation

We use a path-based formulation of the max-flow problem

The max-flow problem (see ADM I)

Maximum Flow problem (MFP)

Instance

network (G, u, s, t)  where

G  is a digraph

s, t  are vertices of G, called the source and the sink, respectively

u(e) " 0  is the capacity of edge e

Task

Find an  s,t-flow  f  with maximum flow value  v(f)

s,t-flow  f = edge weight  f(e)  for every edge with 

0 ! f(e) ! u(e)  for all edges e

flow conservation in all vertices  v $ s, t
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flow conservation in all vertices  v $ s, t

flow value  v(f)  = net outflow out of   s

Example: a flow f

s

1

2

t

3/3

2/3 3/3

2/3

f

1/1

f(e)/u(e) v(f) = 5

A formulation of the max-flow problem as LP with edge-variables (edge-based formulation)

we use the vertex-edge-incidence matrix as for the shortest path problem

max  v    (maximize the flow value  v)   such that
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row s
row t (redundant)

flow conservation

!" ! # "#$ # !





%$

!$

&

'''

&





with

f  !  u

f  "  0

Here  E(G) = { e1, ..., em }  and   f = (f1, ..., fm )T , i.e.,, we have a variable per edge for the flow on that edge 

A formulation of the max-flow problem as LP with path-variables (path-based formulation)

is based on the Flow Decomposition Theorem of ADM I

ADM I, Theorem 5.2 (Flow Decomposition Theorem for s,t-flows, Ford-Fulkerson 1962)

Let  f $ 0  be an  s,t-flow in  (G, u, s, t). Then

f is a positive linear combination of (incidence vectors of) directed (elementary) s,t-paths and directed 

(elementary) cycles

the number of these paths and cycles can is at most  m  

if  f  is integer, then there is such a linear combination with integer coefficients

Example
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Example

s,t-flow

s

1

2

t

3

2 2

3

1

1

f

decomposition into directed paths and cycles (not unique)

s

1

t

3 3

s

2

t

2 2

1

2

1

1

corresponding linear combination
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f
s1

f
s2

f
12

f
1t

f
21

f
2t

3

2

1

3

1

2

f = 

1

0

0

1

0

0

=   3·

0

1

0

0

0

1

+   2·

0

0

1

0

1

0

+   1·

Observe: the s,t-paths determine the flow value, cycles play no role

The path-based LP

Let  P1, ..., Pp  be all directed elementary  s,t-paths in  G  (Observe: p may be exponential in  n).

The  edge-path-incidence matrix  D = (dij)  is defined by 

dij :=

�
1 edge ei lies on path Pj i = 1, . . . , m
0 otherwise j = 1, . . . , p

f = (f1, ..., fp )T  is a flow vector that has an entry  fj  for s,t-path  Pj  denoting the amount of flow that is sent 

along path  Pj  

The capacity constraints read

Df ! u
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Df ! u

i.e.  

!!""# $ $ $ # !"%# !





&"
$$$

&%



 " '"

! of flows on all paths containing ei
= flow in edge  ei

for every row  ei 

Flow conservation holds trivially and the flow value  v  is obtained as 

v  = %j  fj    

Then the path-based LP is

min  cTf  with  cj = -1 

Df  !  u

f  "  0

We transform it into standard form by adding slack variables  si  

=> min  c´Tf´  with   f´= (f | s)T,   c´= (c | 0)T  
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=> min  c´Tf´  with   f´= (f | s)T,   c´= (c | 0)T  

D´f´ =  u  with   D´= (D | I)                                 (5.1)

f´  "  0

Slack variable  si  represents the residual capacity on edge  ei 

Solving the path-based formulation with the revised simplex algorithm

a basic feasible solution is given by  f = 0  and  s = u

=>  Phase I is not necessary

column  Dj  of path  Pj  has (Pricing Rule)  reduced cost 
 

!!" < 0  

⇔ !!" " !" ! #
$%" & #  

<=>     (-π)T Dj  <  1   because of   cj = -1

Interpretation

-π  =  vector of edge weights  -πi   of edge  ei   

(-π)T Dj  =  length of the path  Pj  w.r.t.  edge weights   -πi 

Idea  

Compute the shortest  s,t-path  P  w.r.t.  -π.  Then   (5.2)
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Compute the shortest  s,t-path  P  w.r.t.  -π.  Then   (5.2)

P  has length  "  1  =>  optimality criterion holds for all columns belonging to paths

P  has length  <  1  =>  have found a column (path) to enter the basis

So it is not necessary to store all (exponentially many) columns of paths explicitly

In general, the idea

Find  a column that violates the optimality criterion at most

is again an LP, whose solution is often much simpler than all generating all columns in the revised simplex 

algorithm explicitly.

This idea is called Column Generation

For the column of slack variable  si  we obtain

si  has negative reduced cost  <=>  -πi  < 0      (5.3)

since:

reduced cost of column  si  is  0 - (πT I)i   =  -πi   <  0 

5.1 Theorem (Solving the path-based max-flow problem with column generation)

A basic feasible solution of  (5.1)  fulfills the optimality criterion   
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A basic feasible solution of  (5.1)  fulfills the optimality criterion   

<=>  -π  " 0  and the shortest s,t-path  w.r.t.  -π  has length  " 1

The pivot steps in the revised simplex algorithm are shortest-path computations with edge lengths  -π  "  0  or 

letting a slack variable  si  enter the basis if  -πi   <  0 

Proof

If   -πi   <  0  for some i,  then  si  is because of  (5.3) a non-basic variables with negative reduced cost  =>  

optimality criterion violated

If  -π   "  0,  then pricing reduces because of  (5.2) and (5.3) to computing a shortest s,t-path with non-

negative edge weights  -π.   !

Consequence

The revised simplex algorithm solves the max-flow problem (essentially) as a sequence of shortest path 

problems

Need only a (m+1)x(m+1) CARRY matrix in each iteration

5.1 Example

Prepare data for the revised simplex algorithm
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Prepare data for the revised simplex algorithm

s

a

b

t

e
1

e
2

e
3

e
4

e
5

G u
i 
= 1

     

! ! ! ! ! !

!" " "

!# " "

!$ " "

!% " "

!& " "

!"##$
!"# -!

T

-πT  = 0  =>  every s,t-path is a shortest path with cost 0 < 1 

=>  choose w.o.l.g.  P1 = { e1, e3, e5 }  as entering column

s

a

b

t

e
1

e
2

e
3

e
4

e
5

    

The associated column  D1  of the initial LP is  (1, 0, 1, 0, 1)T   and  we obtain the transformed column  X1  as 

X1  =  B-1D1  =  D1
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X1  =  B-1D1  =  D1

The reduced cost of column  X1  is then  

c1 - πT D1  =  -1  +  length of the path  =  -1 + 0  = -1

Data for pivot operation:

!!

!

"

!

"

!

! ! ! ! ! !

!" " "

!# " "

!$ " "

!% " "

!& " "

1st pivot
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! ! " " " "

!! ! !

"# ! !

"$ " !! !

"% ! !

"& " !! !

!"##$
!"#

η-vector  
 

s

a

b

t
e1

e2

e3

e4

e5

1 0

00

0

graph with edge weights -π  
and shortest path

The associated column  D2  of the initial LP is  (0, 1, 0, 0, 1)T   and we obtain the transformed column   X2  as  

X2  =  B-1D2  =  D2

The reduced cost is  c2 + length shortest path  =   -1 + 0  =  -1

Data for next pivot:
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! ! " " " "

!! ! !

"# ! !

"$ " !! !

"% ! !

"& " !! !

!!

"

!

"

"

!

2nd pivot

 

! " " " " !

!! ! !

"# ! ! ! !!

"$ " !! !

"% ! !

!# " !! !

!"##$
!"#

η-vector  
 

s

a

b

t
e1

e2

e3

e4

e5

0 0

10

0

graph with edge weights -π  
and shortest path

The associated column  D3  of the initial LP is  (1, 0, 0, 1, 0)T  and  we obtain the transformed column  X2  as  

X3  =  B-1D3  =  (1, 1, -1, 1, -1)T

The reduced cost is  c3 + length shortest path  =   -1 + 0  =  -1
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The reduced cost is  c3 + length shortest path  =   -1 + 0  =  -1

Data for next pivot:

!!

!

!

!!

!

!!

! " " " " !

!! ! !

"# ! ! ! !!

"$ " !! !

"% ! !

!# " !! !

3rd pivot

  

!"##$
!"#

! " # # # "

!$ " "

"! # # " !"

"$ " # "

"% # !" "

!! " # "
 

s

a

b

t
e1

e2

e3

e4

e5

1 0

10

0

length shortest path ! 1

=>  have reached an optimal solution with maximum flow  f3 + f2



5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-15

s

a

b

t
e1

e2

e3

e4

e5

1 1

11

0 maximum 
flow

Remarks

Column generation maintains only a (changing) subproblem of the initial problem (called the master problem) with 

few columns. It generates new columns when needed for improvement by solving the pricing operation as a 

separate optimization problem over all possible (and only implicitly represented) columns.

In the max-flow example, the pricing reduces to a simple shortest path problem. In general, the pricing will be 

more difficult and often even NP-hard (e.g. if the flow carrying paths must respect additional constraints, e.g. in 

traffic applications where routes must not be too long, or only main streets ...).  

Column generation is one of the workhorses for solving complex network problems. More in ADM III
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Goal of this chapter

modify the simplex algorithm so that lower and upper bounds can be handled implicitly

serves as preparation for the network simplex (programming exercise)

lower bounds are easy

upper bounds need a modified definition of a basic feasible solution, this then leads to a more efficient and 

rather easy variation of the simplex algorithm

LP in standard form with lower and upper bounds

min cTx  s.t.  Ax = b,  � ! x ! u     

� =





�1
...

�n



 ≥ 0 vector of lower bounds

u =





u1
...

un



 ≥ � vector of upper bounds
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Approaches

(1)  treat bounds as additional constraints and transform the resulting LP into standard form with slack 

variables for the bound constraints

=>  matrix  A  gets larger

unwanted, as bounds are very simple constraints

(2)  treat bounds implicitly by a slight variation of the simplex algorithm

->  in this chapter

Treat lower bounds by substituting variables

Approach:  xj  =  yj  +  �j    

=>   yj  =  xj - �j     

=>  write initial LP as 

min  cTy  s.t.  Ay = b´,   0 ! y ! u´

with  b´:= b - A�  and  u´:=  u - �

Solution  y  of the modified LP yields a solution  x  of the initial LP by 

x  =  y  +  �
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So assume w.o.l.g.  � = 0  in the sequel

i.e.,  min cTx  

s.t.  Ax = b (5.4)

0 ! x ! u  

and w.o.l.g. rank(A) = m

Basic feasible solutions for LPs with upper bounds

Extended partition of the variables

Instead of a partition of the variables/columns of A  into  B  (basic variables) and  N  (non-basic variables)  we 

now consider an extended partition into 

B basic variables 

L non-basic variables with value = lower bound = 0

U non-basic variables with value = upper bound = uj

for such a partition we want that

BxB + LxL + UxU   =   BxB +  UuU  =  b     (5.5)

which gives

xB  = B-1(b - UuU)  =  B-1b - B-1UuU
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A basic feasible solution with basis  B  of an LP with upper bounds is every basic solution of the form (5.5)

5.2 Theorem (Fundamental Theorem for LPs with upper bounds)

If LP (5.4) has an optimal solution, then also an optimal solution that is a basic feasible solution of the form 

(5.5).

Proof

Model  x ! u  with slack variables  s  as linear system  x + s = u

Then we obtain the following large LP in standard form  (LPSU)

min  cTx

s.t.  Ax = b

x + s = u

x " 0,  s " 0

Since  A  has full row rank, also (LPSU) has full row rank.

Let  (x,s)T  be a basic feasible solution of (LPSU)  with basis  B´. 

Set 

B := { j ∈ { 1,...,n }  |  xj ∈ B´ and  sj ∈ B´ }  and  p := |B|

L := { j ∈ { 1,...,n }  |  xj ∉ B´ and  sj ∈ B´ }  and  s := |L|
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L := { j ∈ { 1,...,n }  |  xj ∉ B´ and  sj ∈ B´ }  and  s := |L|

U := { j ∈ { 1,...,n }  |  xj ∈ B´ and  sj ∉ B´ }  and  q := |U|

Identifying  B = AB  and  U = AU  we can permute  B´ such that:

     

PB�QT =





B Bq 0 0

Ip 0 Ip 0

0 Iq 0 0

0 0 0 Is



 rows for
x + s = u

with permutation matrices  P  and  Q

Counting the rows of B´ gives  m + n  =  m + p + q + s

Counting the columns of B´ gibes  m + n  =  2p + q + s

=>  p = m  =>  B is an  mxm-matrix

Laplace expansion of det(B´)  =  det(P B´Q)  along the last  n  rows gives  |det(B´)|  =  |det(B)|

B´ is a basis of the large LP  =>  det(B´) $ 0  =>  det(B) $ 0

=>  B  is basis of A

Since  B´(x,s)T  =  (b,u)T,  the permuted form of B´ transforms into  (5.6)

BxB + UxU                  =  b 

  xB             + sB          =  uB        



5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-6

  xB             + sB          =  uB        

            xU                  =  uU 

                                  sL    =  uL

So the partition  B, L, U  defines a basic solution  BxB + UxU  =  b  of the form  (5.5) 

=>  every basic feasible solution of the large LP corresponds to a basic feasible solution of (5.4)  in the form 

of (5.5)

=>  statement with the Fundamental Theorem of linear optimization (Theorem 3.12)   !

Optimality criterion for LPs with upper bounds

5.3 Theorem (Optimality criterion for LPs with upper bounds)

A basic feasible solution of the form (5.5) is optimal

<=>  the reduced costs in the tableau fulfill 

c̄j = 0 for xj ∈ B
c̄j ≥ 0 for xj ∈ L
c̄j ≤ 0 for xj ∈ U





(5.7)

Proof:

By transforming the optimality conditions of the large LP   !
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By transforming the optimality conditions of the large LP   !

Choosing the pivot element for LPs with upper bounds

Choosing the pivot column

Choose column  Aj   with  j ∈ L  and    
!!" < 0   or  column  Aj   with  j ∈ U  and  

!!" > 0    (5.8)  

Choosing the pivot row

xs ∈ L  =>  increase  xs  as much as possible

xs ∈ U  =>  decrease  xs  as much as possible

Use the representation of x(θ)   according to  (3.16)

!�!"" #






#$!%" ! "!%& � # $!%"' % # $' ( ( ( ' )

" � # &

% &'(&)

and take into account that  xs  = us  is possible

xis  < 0  =>  xB(i)  increases

⇒ bound θi =
ui − xi0
−xis

for θ

xis  > 0  =>  xB(i)  decreases
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xis  > 0  =>  xB(i)  decreases

⇒ bound θi =
xi0
xis

for θ

(as in the ordinary simplex algorithm)

Choose  θ  as minimum of the  θi  and  us.  There are 2 cases 

The minimum is attained at  us 

leave the basis unchanged,  variable xs  moves from  U to  L  or vice versa

The minimum is attained at  θ = θr 

pivot with  xrs

the new value of xs  is  θ  (if  xs = 0)  or  us - θ  (if xs = us)

Termination 

requires additional arguments
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A more detailed treatment of the network simplex algorithm will be done in the exercises

Here: a proof that it is a specialization of the simplex algorithm with upper bounds

Network problem  (Input for the network simplex)

min  cTx  s.t.  Ax = b,   0 ! x ! u

A  =  vertex-edge-incidence matrix of a digraph  G = (V, E)

In the terminology of ADM I this is a  Minimum Cost Flow Problem (MCFP)

Basic solutions of the network problem

we assume in the sequel that  V = { 1,...,n }  and  that G  is connected.

rows of A  add up to  0

=>  delete w.o.l.g. the row for vertex 1  and denote the resulting matrix again by  A 

=>  A has  n-1  rows

Consider a spanning tree  T  of G

=>  T  has  n-1  edges

Let  B  be the set of the associated columns of A
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Let  B  be the set of the associated columns of A

Example:

1

3 2

5 4

T
!"!#$ !%! "$ !%!&$ !#!'$

" " !"

# !" "

% " "

' !"

& !"

B

Consider  T  as undirected tree with root  1 

Order the vertices of T  in  preorder traversal (i.e., root-left-right recursively)

in the example:  1, 3, 5, 2, 4

Order the edges according to this vertex order, 

i.e., for each vertex  j $ 1  take the (unique) last edge on the path from  1  to  j.

in the example:  (3,1)  (3,5)  (1,2)  (2,4)

 consider  the permuted matrix  B´  according to these row and column orders
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!"! #$ !"!%$ !#!&$ !&!'$

# !# #

" # #

% !#

& !# #

' !#

5.4 Lemma

The permuted matrix  B´  obtained from the preorder traversal of the tree is (after deleting row  1) an upper 

triangular matrix with entries $ 0 on the diagonal.

Proof

Suppose that the preorder traversal just visits vertex i.

Let  j  be the father of i  in  T.

=>  (i,j)  or  (j,i)  is tree edge, say  (i,j) 

Permutation of the rows and columns  =>  (i, (i,j))  is an entry on the diagonal of B´

Preorder traversal  =>  j  was visited from  i 

=>  column  (i,j)  contains
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=>  column  (i,j)  contains

-1 in row  j 

+1 in row  i  

 0 in all later rows  !

5.5 Consequence

The rows and columns of the vertex-edge-incidence matrix of a spanning trees of G  can be permuted by a 

preorder traversal so that the resulting matrix is non-singular and upper triangular.

The linear systems  Bx = b  and  πTB = cB
T  of the revised simplex algorithm can easily be solved by exploiting 

the upper triangular form and the fact that every column contains at most 2 entries $ 0. This amounts to 

simple iterative substitution along the triangular form.

5.6 Theorem (correspondence basis <-> spanning tree)

Every spanning tree of G  defines a basis of the network problem (which need not be feasible w.r.t.  0 ! x ! u).

Every basis of the network problem defines a spanning tree of G.

Proof 

=>:
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=>:

Lemma 5.4.

In particular, every basis has  n-1  columns.

<=:

Let  B  be a basis of the network problem

=>  the associated columns correspond to a subgraph  G´ with  n-1  edges

Claim:  G´ has no undirected cycles

Assume that  G´ has an undirected cycle  C.

choose an orientation of C  and let  C+  be the set of forward edges and  C-  be the set of backward 

edges of C  w.r.t. the chosen orientation.

every vertex  i  in  C  is incident to exactly 2 edges from  C 

⇒ ∑
e∈C+

Ae − ∑
e∈C−

Ae = 0

this contradicts the fact that  B  is a basis.

ADM I, Theorem 2.3  =>  every undirected graph with  n  vertices and  n-1  edges and without cycles is a 

tree  !
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Steps in the revised simplex algorithm

Basis  B  =  tree  together with partition  B, L, U.

1. Computing the right hand side

It is the solution of  

BxB =  b - UuU  =: b´

=>  solve the  linear system  BxB =  b´

iteratively along the triangular form  of  B  according to  Consequence 5.4

2. Computing the simplex multipliers  πi

They are the solution of  

πTB = cB
T

=>  πi  - πj  =  cij  for column/edge  (i,j) ∈ B 

=>  iteratively along the triangular form  of  B , πi  of the last row can be read of directly, then iterate 

backwards

3. Optimality criterion

reduced cost of column/edge  (i,j)  is 
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reduced cost of column/edge  (i,j)  is 
!!"# " !"# ! $

%&"# " !"# ! $" # $#

Section 5.4  =>

c̄ij ≥ 0 for (i, j) ∈ L

c̄ij ≤ 0 for (i, j) ∈ U

4. Computing the transformed column  Xrs

-Xrs  corresponds to the change of the basic variables when the value  xrs  of the non-basic pivot column is set 

to  1

so (r,s)  enters the basis,  B  is a tree

=>  B + (r,s)  contains a unique cycle  C

Orienting  C  according to  (r,s)  partitions  C  into a set of forward edges and a set of backward edges.

Setting xrs  to 1  then implies in  C  a change by

+1  on forward edges

-1  on backward edges

=>  pivot operation corresponds exchanging edges on this cycle.

If the non-basic variable  xrs  is the "bottleneck",  then there it changes only from  L  to  U  or vice versa (see 
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If the non-basic variable  xrs  is the "bottleneck",  then there it changes only from  L  to  U  or vice versa (see 

Section 5.4).

5. Computing an initial basic feasible solution

= Phase I, see Exercises

6. Anti-cycling 

by considering only strong tree solutions, see Exercises.

Literature on the network simplex algorithm

Chapter 11 in

K. Ahuja, T.L. Magnanti, J.B. Orlin

Network Flows: Theory, Algorithms, and Applications

Prentice Hall, 1993
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Background

Primal-dual algorithms are based on complementary slackness. 

They were originally developed for network problem  [Dantzig, Ford, Fulkerson 1956]

They provide a general method to derive "specialized" algorithms for combinatorial optimization problems, exact 

and approximate.

Basic idea

Start with an LP in standard form

(P)  min z = cTx

Ax = b " 0    (w.o.l.g.)

x " 0

The associated dual LP is

(D) max w = πTb

πTA ! cT

π  unrestricted

Complementary slackness yields

x ∈ SP,  π ∈ SD  are optimal
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x ∈ SP,  π ∈ SD  are optimal

<=> πi(ai
Tx - bi) = 0  for all  i   (this holds since  Ax = b) 

(cj - πTAj)xj = 0  for all  j     (6.1)   

So: (6.1)  =  is the only condition for optimality

Primal-dual algorithm

Given  π ∈ SD,  find  x ∈ SP   such that  x  and  π  fulfill  (6.1)

We search for such an  x ∈ SP  solving an auxiliary problem, called the restricted primal (RP), determined by 

the given dual feasible solution  π ∈ SD.

If no such  x  exists, we use information from the dual (DRP) of the restricted primal (RP) in order to 

construct a "better" dual solution  π ∈ SD.

We iterate this process until we (hopefully) find an optimal pair  x, π 
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primal
problem

P

dual
problem

D
RP DRP

x ?π π´

improving π

Remark: this is essentially a dual algorithm, since we have a dual feasible solution  π  in every step and obtain  

an optimal primal feasible solution  x  only at termination. It is nevertheless called primal-dual because of the 

role of the complementary slackness conditions.
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Constructing a dual feasible start solution  π
All  cj " 0

=>  π = 0  is dual feasible, as πTA ! cT

Some  cj < 0

Use a trick:

Introduce another primal variable  xn+1  " 0 

Introduce another primal constraint  

x1 + x2 + ... + xn+1  =  bm+1   

with  bm+1   "  n·M  (M from Lemma 3.4)  and  cm+1  = 0

Lemma 3.4  =>  this constraint does not change  SP 

The dual problem then is

max w = πTb + πm+1bm+1

πTAj + πm+1  ! cj     j = 1,...,n

     πm+1  ! 0

πi  unrestricted, i = 1,...,m

A feasible solution of this dual LP is given by

πi  = 0     i = 1,...,m
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πi  = 0     i = 1,...,m

πm+1  =  minj cj   <  0   (since at least one  cj   <  0)

=>  a dual feasible solution can be constructed quite easily (much simpler than a primal with the Two-Phase-

method)

The Restricted Primal (RP)  

Assume that we have a dual feasible solution  π  of (D) 

To fulfill (6.1), set

J := { j | πTAj  = cj }   

We call  J the set of admissible columns

(6.1)  =>   x ∈ SP  is optimal  <=>  xj  =  0  for all  j ∉ J

So we are looking for an  x  with  

% j # J  Ajxj  = b

x " 0,  xj  =  0  for all  j ∉ J

This search is a pure feasibility problem, which we will solve with Phase I of the simplex algorithm. The Phase I 

problem is called the Restricted Primal (RP):

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-3

!"# ! $
�"

#$% $
%
#

&'()*
�

+∈, %#+$#+ & $
%
# $ -# # $ %. / / / . "

$+ ! ' + ∈ ,

$+ $ ' + �∈ ,

$%
# ! ' # $ %. / / / . "






(01)

may delete 
these xj 

We can solve (RP) with the simplex algorithm. (RP) searches for a feasible solution of (P) without the columns  Aj  

with  j ∉ J.  The artificial variables define the initial basis of (RP). 

If  ξopt =  0, then each artificial variable is  0  and  x  is a feasible solution of (RP)

=>  x is an optimal solution of (P)

If  ξopt >  0,  then there is no x in (RP) fulfilling (6.1)

=>  we investigate the dual LP of (RP)

The dual (DRP) of the restricted primal

(DRP) reads
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max w = πTb (6.2)

s.t. πT Aj ≤ 0 j ∈ J (6.3)

πi ≤ 1 i = 1, . . . , m (6.4)

πi unrestricted i = 1, . . . , m (6.5)






(DRP)

Let  π´ be an optimal solution of (DRP)  (it exists because of Strong Duality)

Idea: combine  π´ with the original dual solution  π  to

π* := π + θπ´      (6.6)

where  θ  is chosen such that  π*  stays feasible in (D) and the dual objective function of (D) strictly increases

Consequence for the dual objective function of (D):

 

(π*)Tb  = πTb  + θ(π´)Tb  

= ξopt >  0  as  (RP) and (DRP) 
are a primal dual pair  

Hence  θ > 0  is required for a strict increase of the dual objective function 

Consequences for dual feasibility in (D)

dual feasibility means
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dual feasibility means

(π*)TAj  = πTAj  + θ(π´)TAj  !  cj   for  j = 1, ..., n

this is no problem if  (π´)TAj  !  0  (this holds for all j ∈ J  since   π´∈ SDRP)

There are 2 cases

(π´)TAj  !  0  for all  j = 1, ..., n

=>  θ  can be made arbitrarily large

=>  the dual objective function of (D) is unbounded  

Theorem 4.3  =>  (P) has no feasible solution

(π´)TAj  > 0  for some  j ∉ J

Then we obtain a constraint for  θ:

!
TAj  + "(!´)TAj  !  cj

> 0

so θ ≤
cj − πT Aj

(π�)T Aj

We summarize
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6.1 Theorem (Infeasibility of (P) in the primal-dual algorithm)

If  ξopt >  0  in  (RP)  and  (π´)TAj  !  0  for all  j = 1, ..., n  w.r.t. the optimal solution  π´ of (DRP),  then (P)  has 

no feasible solution.

Proof: clear from the above  !

6.2 Theorem (Improvement of the dual solution in the primal-dual algorithm)

If  ξopt >  0  in  (RP)  and  (π´)TAj  >  0  for some  j ∉ J,  then

!! "# $%& !
"# " $%&#

'$�(%&#

# # �∈ '( '$�(%&# ) ) $ '**+(

is the largest  θ,  such that  π* := π + θπ´  is dual feasible.  Then

w* := (π*)Tb  = πTb  + θ1(π´)Tb  >  w  (= πTb)

Proof: clear from the above  !

The primal-dual algorithm

Algorithm (Primal-Dual)

Input
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Input

Primal LP (P) in standard form

Associated dual LP (D) with feasible solution π   (possibly constructed by the above trick)

Output 

At termination : an optimal solution or a message that (P) has no feasible solution

Termination  can be guaranteed by anti-cycling rules 

Method

repeat

Construct (RP)  by computing  J := { j | πTAj  = cj }  

call  Phase I  with cost vector   ξ  =  % xi
a    for  (RP)

if   ξopt  >  0  then  

call  dual Simplex  for  (DRP)  and take the computed optimal solution  π´ 

if  (π´)TAj  !  0  for all  j = 1, ..., n 

then  return  "(P) has no feasible solution"

else  

compute  θ1   according to  (6.7)  

set  π := π + θ1π´
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set  π := π + θ1π´

until   ξopt  =  0

return  solution  x  of (RP)

6. Primal-dual algorithms
6.3 Remarks on the primal-dual algorithm

37-1

(1)  Restart:  The basic optimal solution of the previous  (RP) is a basic feasible solution for the new (RP)

6.3 Theorem (Keeping admissible basic columns) 

Every admissible column of the optimal basis of (RP) remains admissible at the start of the next iteration of 

the primal-dual algorithm

Proof

Let  Aj  be an admissible column of the optimal basis of (RP)

Definition of admissible column  =>  Aj  is a column of A, i.e., does not belong to an artificial variable

reduced cost of a basic column is  0,  π´ is a dual optimal solution of (RP)
⇒ ! " #!" " !" ! $#

�%$%" " ! ! $#�%$%"

⇒ !!�""#$ # $

Then

(π*)TAj  = πTAj  + θ1(π´)TAj  =  πTAj  + 0  =  πTAj  =  cj

since Aj is an admissible column w.r.t. π

=>  Aj  remains admissible w.r.t.  π*    

An optimal basis of (RP) is composed of 

admissible columns  => stay admissible because of  Theorem 6.3
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admissible columns  => stay admissible because of  Theorem 6.3

columns of artificial variables  =>  stay in the new (RP)

=>  Theorem and  (1)   !

(2)  (RP)  can be solved with the revised simplex algorithm 

this follows from Theorem 6.3. We only need to update the set  J  for the non-basic columns

(3)  Termination can be achieved by anti-cycling rules

6.4 Theorem (Termination  of the primal-dual algorithm)

The primal-dual algorithm solves (P) in finitely many steps

Proof

Interpret (RP) as a sequence of pivots of variables  x1
a, ..., xm

a, x1, ..., xn 

(possible since xj = 0 for j ∉ J and thus can be interpreted as a non-basic variable)

=>  (RP)  traverses a sequence of basic feasible solutions  of (I | A) 

Claim: The objective function decreases monotonically along that sequence (not necessarily strictly)

this is clear within the repeat-loop, because then the algorithm is just the ordinary (revised) simplex 

algorithm.
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algorithm.

consider now a new entry into the repeat-loop  

=>  we compute θ1  

Let  r  be the index at which the minimum is attained in the computation of  θ1  

Sub-Claim:  column  r  is admissible and has negative reduced cost in the new (RP) 

 
!!∗""#$ # !
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#$ $ %%!!

�""#$ # !
"
#$ $

&$ ! !
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=>  Ar  is admissible w.r.t. π*  =>  r  admissible in the new (RP)

in the new (RP) column  r  has reduced cost  (see Proof of Theorem 6.3 in this subsection)

0 - (π´)TAr  <  0     

as (π´)TAr  >  0  by definition of  θ1

Sub-Claim => when entering the repeat-loop, we may choose column  r  as pivot column in the sense of the 

ordinary simplex algorithm with monotonically decreasing cost

Claim  =>  adapting the lexicographic rule to the sequence of basic solutions of (I | A)  yields termination  !
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Deriving  (P), (D), (RP), (DRP)

We consider the formulation of (SP)  from Section 4.3

(P) min  cTf

Af = b   (A = vertex-edge-incidence matrix)

f " 0

where the row of vertex  t  is deleted

The dual LP is

(D)  max  πs  -  πt 

πi - πj  !  cij   for all edges  (i, j) ∈ E(G)

πi  unrestricted

πt  = 0  (corresponds to deleted row t)

The set of admissible columns is

IJ = { (i,j) ∈ E | πi - πj  =  cij  }  
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(RP)  then is

min  ξ = % i=1,...,n-1  xi
a  

 

xa + Af  =  

1
0

0

...

row s

fij  " 0  for all edges (i,j) ∈ E(G)

fij  = 0  for all edges (i,j) ∉ IJ

xi
a  " 0  for  i = 1, ..., n-1

The associated dual  (DRP)  is

max  w =  πs   

πi - πj  !  0    for all edges  (i, j) ∈ IJ

πi         !  1    for   i = 1, ..., n-1   (obtained from the columns of the  xi
a)

πt        =  0

Interpretation of the primal-dual algorithm
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(1)  ξopt =  0  in  (RP)  <=>  there is a path from  s  to  t  using only edges from  IJ.

Each such path is an optimal solution of (P), i.e., a shortest s,t-path

Proof

"=>"

Let  ξopt =  0

=>  every basic optimal solution of (RP) is an  s,t-path with  fij  = 0  for all edges  (i,j) ∉ IJ

=>  this path uses only edges from  IJ.

"<="

every s,t-path containing only edges from  IJ  is feasible in (RP) and has  ξ  =  0

=> this path is optimal for (P) because of the primal-dual method (is satisfies complementary slackness)   !

(2)  If there is no path from  s  to  t  with edges only from  IJ, then π´ with

π�
i :=

�
0 t can be reached from i via edges from I J or i = t
1 otherwise

is optimal for  (DRP)

Proof
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π´  is feasible for (DRP)

πi  !  1  and  πt  =  0  holds by definition

Assume that  πi´ - πj´  !  0  is violated for edge  (a,b) ∈ IJ

π´ has only values  0  and  1   =>   πa´ = 1  and  πb´ = 0

Definition of π´  =>  t  can be reached from  b  via edges from  IJ 

(a,b) ∈ IJ  =>  t  can be reached from  a  via edges from  IJ

=> πa´ = 0, a contradiction 

π´  is optimal for (DRP)

The objective function is  max w = πs    

Constraint  πs  !  1  =>  every  π  with  πs  =  1  is optimal

=>  π´  is optimal   !

(3)  For  ξopt >  0  and  π´  defined in  (2)  we obtain

θ1  =  min { cij - (πi - πj) | (i, j) ∉ IJ,  πi´- πj´ = 1 }

Proof

Let  ξopt >  0  and  π´  be defined as in  (2),  so in particular optimal for (DRP).

(6.7) implies



6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-5
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(π´)TAij  =  πi´ - πj´  >  0  <=>  πi´ = 1  and  πj´ = 0   =>  (π´)TAij =  πi´ - πj´ = 1    !

(4) The primal-dual algorithm reduces (SP) to a sequence  of  reachability problems 

Can  t  be reached from  i  via edges from  IJ ?

or., after inverting the orientation of all edges,

Which vertices can be reached from  t  via edges from  IJ ?

Proof

Follows from (1)-(3)  !

6.5 Example

Input data
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s

1

2

3

4

t

2

3

1

1

5

23

2

cij

cij " 0  =>  π = 0  is feasible in (D)

Iteration 1

s

1

2

3

4

t

!

0

0

0 0

0

0

 

s

1

2

3

4

t

!´

1

1

1 1

1

0
IJ = Ø

2

5

θ1  =  min { cij - (πi - πj) | (i, j) ∉ IJ,  πi´- πj´ = 1 }   =  2  for  edge  (3,t)

=>  π* = π + θ1π´ =  (0,...,0)T + 2·(1,1,1,1,1,0)T = (2,2,2,2,2,0)T

Iteration 2
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s

1

2

3

4

t

!

2

2

2 2

2

0

2

    

s

1

2

3

4

t

!´

1

1

1 0

1

05

3

2

2

θ1  =  min { 3 - (2 - 2), 2 - (2 - 2), 5 - (2 - 0) }   =  2  for  edge  (4,3)

=>  π* = π + θ1π´ =  (2,2,2,2,2,0)T + 2·(1,1,1,0,1,0)T = (4,4,4,2,4,0)T

Iteration 3

s

1

2

3

4

t

!

4

4

4 2

4

0

2

2

   

s

1

2

3

4

t

!´

1

1

1 0

0

0

3

2

2

1

θ1  =  min { 3 - (4 - 2), 1 - (4 - 4) }   =  1  for  edges  (1,3) and (2,4)

=>  π* = π + θ1π´ =  (4,4,4,2,4,0)T + 1·(1,1,1,0,0,0)T = (5,5,5,2,4,0)T

Iteration 4
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s

1

2

3

4

t

!

5

5

5 2

4

0

2

2

3

1

   

s

1

2

3

4

t

!´

1

0

0 0

0

0

3

2

2

1

2

1

θ1  =  min { 2 - (5 - 5), 1 - (5 - 5) }   =  1  for  edge  (s,2) 

=>  π* = π + θ1π´ =  (5,5,5,2,4,0)T + 1·(1,0,0,0,0,0)T = (6,5,5,2,4,0)T

Iteration 5

 

s

1

2

3

4

t

π

6
5

5 2

4
0

2
2

3

1
1

optimum 
reached

π = (6,5,5,2,4,0)T   is dual optimal  =  vector of shortest distances to  t

Detailed interpretation of the different steps

(1)  Define  W  as 

W := { i ∈ V | t  can be reached from  i  via edges from IJ }  =  { i ∈ V |  πi´  = 0 } 
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W := { i ∈ V | t  can be reached from  i  via edges from IJ }  =  { i ∈ V |  πi´  = 0 } 

πi  remains unchanged as soon as  i ∈ W, since  πi´ = 0  afterwards

(2)  When an edge (i, j)  enters  IJ, it stays in IJ,

because  πi and πj  change by the same amount  =>  πi - πj  stays the same 

(3)   i ∈ W  =>  πi  = length of a shortest path from  i  to  t

(inductive proof)

In every iteration of the algorithm, one adds those vertices from  V - W  to  W  that are closest to  t  

(inductive Proof)

Consequence

The primal-dual algorithm for (SP) with c " 0  is essentially Dijkstra's algorithm, as in the chord model in 

Section 4.3
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Deriving  (P), (D), (RP), (DRP)

Primal LP (P)  and dual LP (D)

We consider the formulation of the transportation problem from Section 4.1

(P) min   %i,j  cijfij    s.t.

%j  fij   =  ai  for all i    (pick up supply  ai  from vertex  i)

%i  fij   =  bj  for all j    (deliver demand  bj  to vertex  j )

fij  " 0  for all  i, j

with  (w.o.l.g.)   %i ai  =  %j bj   

Introduce dual variables  αi,  βj  for the two groups of constraints

αi   %j  fij   =  ai  for all i   

βj   %i  fij   =  bj  for all j   

The dual (D) then is

(D) max  %i  aiαi  +  %j bjβj    s.t.

αi + βj  !  cij  for all  i, j

αi,  βj   unconstrained

A feasible solution of (D) is  

αi = 0  for all i
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αi = 0  for all i

βj = mini cij for all j   does not require that all  cij " 0)

Restricted primal (RP)

The set of admissible columns is

IJ = { (i,j) ∈ E | αi + βj  =  cij  }  

Restricted primal  (RP)  

min  ξ = % i=1,...,m+n  xi
a  

%j  fij  + xi
a      =  ai   for  i = 1, ..., m

%i  fij   + xm+j
a  =  bj  for  j = 1, ..., n

fij  " 0  for all edges (i,j) ∈ IJ

fij  = 0  for all edges (i,j) ∉ IJ

xi
a  " 0  for  i = 1, ..., m+n

We modify (RP) by substituting the artificial variables  xi
a  in the objective function and obtain (with  fij  = 0  

for all edges (i,j) ∉ IJ)
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ξ  =  !i ai  +  !j bj  -  2 !(i,j) ! IJ  fij

constant  

=>  minimizing  ξ   <=>  maximizing  %(i,j) # IJ  fij

Deleting the artificial variables then yields  (because of   xi
a  " 0)

(RP') max  %(i,j) # IJ  fij

%j  fij   !  ai   for  i = 1, ..., m

%i  fij   !  bj  for  j = 1, ..., n

fij  " 0  for all edges (i,j) ∈ IJ

fij  = 0  for all edges (i,j) ∉ IJ

=>  (RP') corresponds to a max-flow problem in the graph G of admissible edges



6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-4

s t

a1

a2

am

b1

bn

!

!

!
!

=  capacities

admissible edges

I J

The primal-dual algorithm yields:

f  is optimal in (P)  <=>  the maximum flow value  fulfills   v(f)  =  %i ai  =  %j bj   

The dual (DRP) of (RP)

Introduce dual variables  ui,  vj  for the two groups of constraints

ui   %j  fij  + xi
a      =  ai   for  i = 1, ..., m

vj   %i  fij   + xm+j
a  =  bj  for  j = 1, ..., n

The dual of  (RP)  is

(DRP) max  w  =  %i  aiui  +  %j bjvj    s.t.

ui + vj  !  0  for all  (i,j) ∈ IJ
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ui + vj  !  0  for all  (i,j) ∈ IJ

ui,  vj   !  1  

ui,  vj   unrestricted

6.6 Lemma (Optimal solution of (DRP))

Let  ξopt > 0   in (RP)  and let  f  be a maximum  s,t-flow in   G.

Let  I* ! I  be the set of vertices that can be reached from  s  in  Gf  (i.e. there is a flow augmenting path 

from  s  to  these vertices).

Let  J* ! J be the set of vertices that can be reached from  s  in  Gf  (i.e. there is a flow augmenting path 

from  s  to  these vertices).

Then

αi  :=  1    if  i ∈ I* αi  := -1  if  i ∉ I*

βj  := -1   if  j ∈ J* βj  :=  1  if  j ∉ J*

is an optimal solution of (DRP).

Proof

From ADM I we know that  X := {s} $ I* $ J*  is a cut of minimum capacity of  G, and that every max-flow 

algorithm computes such a cut. Hence the sets  I*  and  J*  can be determined efficiently.

We analyze this cut of  G
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We analyze this cut of  G

-1

1

s t

I*

J*
-1

1

flow = 0 on the edges
from  I-I*  to  J*

no edges 
from  I*  to  J-J*

saturated
edges

saturated 
edges

(1)  there is no edge (i,j)  from  I*  to  J-J* 

otherwise  j ∈ J*  because of the infinite capacity of  (i,j)

(2)  fij  = 0  for all edges (i,j)  from  I-I*  to  J*  

otherwise  (j,i)  is a  backward edge in  Gf, implying  i ∈ I* 

(3)  edges  (s,i)  from  s  to  I-I*  are saturated

otherwise  i ∈ I* 

(4)  the edges  (j,t)  from  J*  to  t  are saturated 

otherwise there is a flow augmenting s,t-path
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otherwise there is a flow augmenting s,t-path

(5) the flow value is   v(f) = %i # I-I* ai  +  %j # J* bj   

since:  v(f) = net outflow out of  X = {s} $ I* $ J*  into  V(G) - X   

    =>   (5) follows from (1) - (4) 

(A)  αi  and  βj  are feasible for  (DRP)

Show that  αi  +  βj  !  0  

If  αi + βj  >  0  =>  αi = 1  and  βj =  1  =>  i ∈ I*  and  j ∈ J-J*

=>  a contradiction to (1)

(B)  αi  and  βj   are optimal for  (DRP)

The objective function value for  αi  and  βj  is

w  =  %i  aiαi  +  %j bjβj   

=   %i # I* ai  -  %i # I-I* ai  -  %j # J* bj  +  %j # J-J* bi 

Because of  (DRP') and (5)

ξopt  =  %i ai  +  %j bj  - 2v(f)  

               =  %i ai  +  %j bj  - 2( %i # I-I* ai  +  %j # J* bj )  =  w

Weak duality  =>  αi and  βj  are optimal   !  

Updating the dual solution
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Updating the dual solution

Let  αi and  βj  be a dual solution of (D) and let αi´ and  βj´  be the optimal solution of (DRP)

If  ξopt  > 0,  then there are 2 cases in the primal-dual algorithm (Theorem 6.2)

Case 1:  αi´ + βj´  !  0  for all  (i,j) ∉ IJ

=>  (P)  is infeasible by Theorem 6.2

this cannot happen as  (P)  has a feasible solution, 

e.g.  fij  =  (1/%k ak)·ai·bj  

Case 2:  αi´ + βj´  >  0  for some  (i,j) ∉ IJ

So this case is the standard case.  (6.7)  yields
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We summarize
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6.7 Lemma (Updating the dual solution)

Let  ξopt > 0   in (RP)  and let  f  be a maximum s,t-flow in  G.

Let  I* ! I  be the set of vertices that can be reached from  s  in  Gf

Let  J* ! J be the set of vertices that can be reached from  s  in  Gf

Then 

!! " #$% !
"#$ " %# " &$

&
# # ∈ '∗( $ �∈ )∗ $

and the new dual solution is obtained as

αi* = αi + θ1   if   i ∈ I* αi* = αi - θ1   if   i ∉ I*

βj* = βj - θ1   if   j ∈ J* βj* = βj + θ1   if   i ∉ J*

Every optimal flow of the old (RP') stays feasible in the new (RP').

Proof

The new dual solution is obtained as  π* := π + θ1π´ 

Hence the values of  αi*  and  βj*  follow from the value of  θ1  and  Lemma 6.6  

It remains to show that the optimal flow stays feasible. This follows already from Theorem 6.3, since the 

optimal flow is a basic feasible solution of (RP'). We give a direct proof below.
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optimal flow is a basic feasible solution of (RP'). We give a direct proof below.

Claim: edges (i,j) with positive flow stay admissible in the new (RP)

fij > 0  =>  edge  (i,j)  is admissible in the old (RP)  =>  αi + βj  =  cij  

analysis of the cut of  G  (Proof of Lemma 6.6)  =>  two possible cases 

Case 1:  i ∈ I*  and  j ∈ J*

=>  αi* + βj*  = αi + θ1 + βj - θ1  =  αi + βj  =  cij  

Case 2:  i ∈ I-I*  and  j ∈ J-J*

=>  αi* + βj*  = αi - θ1 + βj + θ1  =  αi + βj  =  cij    !  

 

The primal-dual algorithm for the transportation problem

Algorithm alpha-beta

Input

Instance of the transportation problem, i.e., numbers ai > 0,  bj > 0,  and  cij  with  %i ai  =  %j bj   

Output 

A minimum cost transportation plan  fij  

Method

Determine a feasible solution of (D)  by 
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Determine a feasible solution of (D)  by 

αi := 0  for all i

βj := mini cij for all j  

repeat

construct graph  G   of admissible edges from  IJ := { (i,j) ∈ E | αi + βj  =  cij  }

compute a maximum  s,t-flow  f  in  G  // warmstart with the flow from the previous iteration is possible

if   v(f) < %i ai   then  

set  I* := { i ∈ I | there is a flow augmenting  s,i-path  in  Gf  }

set  J* := { j ∈ J | there is a flow augmenting  s,j-path  in  Gf }

set

 
!! "# $%& !

"#$ " %# " &$

'
# # ∈ '∗( $ �∈ )∗ $

and take as new dual solution

αi := αi + θ1   if   i ∈ I* αi := αi - θ1   if   i ∉ I*

βj := βj - θ1   if   j ∈ J* βj := βj + θ1   if   i ∉ J*

until   v(f) = %i ai 

return  flow  f  
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return  flow  f  

Interpretation

For the transportation problem, the paradigm of the primal-dual algorithm leads to two nested loops of 

reachability problems .  The loops  "combinatorialize"  cost and capacities.

Transportation Problem
combinatorialize cost

Max-Flow-Problem
combinatorialize capacities

Reachability Problem
find a flow augmenting path

6.8 Example

Input data
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1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

cij  matrix

1

2

3

1

2

3

4

5

3

4

3

2

2

5

ai bj

Calculating the dual solution

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

= mini cij 
αi
0
0
0

βj 1 1 2 2

marks the admissible
edges (i,j) 

Iteration 1

Construct graph  G  of admissible edges and compute a maximum s,t-flow in  G  and the  sets  I*  and  J*
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1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

   

1

2

3

1

2

3

4

s t

2

3

3

2

f

4

4

4

3

2

I*

J*

flow value  v(f) = 9  <  %i ai  = 12   =>  update the dual solution

Updating the dual solution

Determine  θ1

  

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
0
0
0

βj 1 1 2 2

cij  matrix

!! "# $%& !
"#$ " %# " &$

'
# # ∈ '∗( $ �∈ )∗ $

I* = { 1 },  J* = { 2 }
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I* = { 1 },  J* = { 2 }

edge (1,1) -> (2 - 0 - 1) / 2  = 1/2

edge (1,3) -> (3 - 0 - 2) / 2  = 1/2   =>   θ1  = 1/2

edge (1,4) -> (4 - 0 - 2) / 2  = 1

Computing the new dual solution

αi := αi + θ1   if   i ∈ I* αi := αi - θ1   if   i ∉ I*

βj := βj - θ1   if   j ∈ J* βj := βj + θ1   if   i ∉ J*

So  α1 = 1/2 α2 = -1/2 α3 = -1/2

β1 = 3/2 β2 = 1/2 β3 = 5/2 β4 = 5/2

Iteration 2

Construct graph  G  of admissible edges 
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1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
1/2
-1/2
-1/2

!"
!

"

#

"

$

"

$

"

marks admissible edges

1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

Compute a maximum s,t-flow in  G  and the  sets  I*  and  J*
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1

2

3

1

2

3

4

s t

2

3

3

2

f

4

4

4

3

2

I*

J*

    

1

2

3

1

2

3

4

s t

4

3

3

2

f

4

4

4

3

2

I*

J*

2

2

             previous flow                                        new flow

flow value  v(f) = 11  <  %i ai  = 12   =>  update the dual solution

Updating the dual solution

Determine  θ1
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1 2 3 4

1 2 1 3 4

2 1 2 2 3

3 3 1 4 2

!
i

1/2

-1/2

-1/2

!"
!

"

#

"

$

"

$

"

I* = { 1, 2 },  J* = { 1, 2, 3 }

edge (1,4) -> (4 - 1/2 - 5/2) / 2  = 1/2

edge (2,4) -> (3 + 1/2 - 5/2) / 2  = 1/2   =>   θ1  = 1/2

Compute the new dual solution

αi := αi + θ1   if   i ∈ I* αi := αi - θ1   if   i ∉ I*

βj := βj - θ1   if   j ∈ J* βj := βj + θ1   if   i ∉ J*

So  α1 = 1 α2 = 0 α3 = -1

β1 = 1 β2 = 0 β3 =  2 β4 = 3

Iteration 3

Construct graph  G  of admissible edges 
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1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
1
0
-1

βj 1 0 2 3

marks admissible edges

1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

Compute a maximum s,t-flow in  G  and the  sets  I*  and  J*
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1

2

3

1

2

3

4

s t

4

3

3

2

f

4

4

4

3

2

I*

J*

2

2

   

1

2

3

1

2

3

4

s t

5

3

3

2

f

4

4

5

3

2

2

2

1

             previous flow                                        new flow

flow value  v(f) = 12  =  %i ai  = 12   =>  have constructed an optimal solution

Runtime of the algorithm

Let w.o.l.g.  m ! n  =>  G  has  O(n) vertices and O(n2) edges

The primal objective of (RP') increases with every flow augmenting path and is bounded from above by  %i ai .

=>  total runtime for flow augmentations is  (%i ai )·O(breadth first search)  =  (%i ai )O(n2)

All other computations (constructing  G,  θ1,  the new dual solution)  are in  O(n2)  and happen at most (%i ai ) 
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All other computations (constructing  G,  θ1,  the new dual solution)  are in  O(n2)  and happen at most (%i ai ) 

times

=> Total runtime of the primal-dual algorithm is  (%i ai )O(n2)

=>  the primal-dual algorithm is only pseudo-polynomial

It can be improved by Capacity Scaling for the  ai  and  bj  (see ADM I, Section 6.4, for capacity scaling) 

=>  essentially only log(max { ai, bj })  many max-flow problems with runtime O(n3)

An interesting special case is the assignment problem, which is defined by  ai  =  bj  = 1   (then  n = m) 

=>  %i ai = n  =>  runtime O(n3)

The alpha-beta algorithm was first developed for maximum weighted matching in bipartite graph (Paul Kuhn 

1955) and is known as Hungarian method, see e.g. 

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency

Volume 1, Chapter 17.2
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Goal of this section

Sketch of a primal dual algorithm for weighted (perfect) matching. 

This closes the gap from ADM I, Section 7.1

Matching

Let  G  be an undirected graph. A matching of G is 

a set  M ! E(G)  of edges such that no 2 edges of M share an endpoint

a matching M is called perfect if every vertex of  G  is incident to an edge of M 

a graph with a perfect matching (red edges)
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Maximum weight matching problem (MWMP)

Instance

Undirected graph  G, edge weights  c(e)

Task

Find a matching M with maximum weight c(M)

!!"" #
�

#∈"

!!#"

Minimum weight perfect matching problem (MWPMP)

Instance

Undirected graph  G, edge weights  c(e)

Task

Find a perfect matching  M  with minimum weight c(M) 

or report that there is no perfect matching

6.8 Lemma (Equivalence of matching problems)
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MWMP and MWPMP are equivalent in the sense that there is a simple transformation from one problem to the 

other such that one can construct from an optimal solution of one problem an optimal solution of the other.

Proof

"=>"

Let  (G,c)  be an instance of the minimum weight perfect matching problem.

Choose  K  large enough so that  c'(e) := K - c(e) > 0  for all edges e, and only maximum cardinality 

matchings of  G  have maximum weight w.r.t.  c'.  ( K := 1 + %e # M |c(e)|  suffices)

Let  M  be  an optimal solution of the maximum weight matching problem for  (G, c')

M  has maximum cardinality  =>  M  is a perfect matching for  (G,c)  or there is no perfect matching in G

If  M  is perfect, then  c'(M)  = Kn/2 - %e # M c(e).   So M  has maximum weight w.r.t.  c' iff  M  has 

minimum weight w.r.t. c.

"<="

Let  (G,c)  be an instance of the maximum weight matching problem.

Add  |V(G)|  many new vertices to  G  and so many edges that the new graph  G'  is complete.

Set  c'(e) := - c(e)  if  e ∈ E(G)  and  c'(e) := 0  if  e  is a new edge.

Let  M'  be an  optimal solution of the minimum weight perfect matching problem for  (G', c')

=>  M := M' " E(G)  is an optimal solution of the maximum weight matching problem   ! 
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=>  M := M' " E(G)  is an optimal solution of the maximum weight matching problem   ! 

The primal-dual algorithm for the minimum weight perfect matching problem

Primal LP (P) 

There is no obvious LP-formulation. The following theorem was one of the pioneering results of Edmonds.  

Given an  instance  (G,c)  with  G = (V, E), he considers the LP  (P)

min  %e # E  c(e)xe

x(δ(v)) = 1  for all  v ∈ V   

x(δ(S)) " 1  for all odd vertex sets  S  of  G 

x " 0

Here  x(δ(S)) :=  %e # δ(S)  xe

6.9 Theorem (Matching polytope Theorem, Edmonds 1965)

Let  (G,c)  be an instance of the minimum weight perfect matching problem.  Then:

(1)  G has a perfect matching  <=>  (P) has a feasible solution

(2)  In this case the minimum weight of a perfect matching of  G  is equal to the optimal value of (P).

Proof

The primal-dual algorithm constructs an optimal solution  x  of (P)  (if there is one) that is  a perfect 
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The primal-dual algorithm constructs an optimal solution  x  of (P)  (if there is one) that is  a perfect 

matching of  G.

=>  Theorem 6.9 and Lemma 3.5 imply that all basic feasible solutions of (P) correspond to perfect 

matchings.  ! 

Dual LP (D)

We do not transform (P) into standard form. The primal-dual algorithm can be adapted also to other forms of 

(P).

Let  U  be the set of all odd vertex sets of  G.  The dual LP of (P) is  (D)

max  %(yv : v ∈ V) + %(YS : S ∈ U)  

yv  + yw + %(YS : e ∈ S ∈ U)  !  c(e)  for all edges  e = vw ∈ E

YS  "  0  for all  S ∈ U

yv  unrestricted

Complementary slackness conditions

xe > 0  =>  c(e) - (yv  + yw + %(YS : e ∈ S ∈ U))  =  0

YS  >  0  =>  x(δ(S))  =  1
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YS  >  0  =>  x(δ(S))  =  1

If  x  is the incidence vector of a perfect matching  M, then the complementary slackness conditions are 

equivalent to

e ∈ M  =>  c(e) - (yv  + yw + %(YS : e ∈ S ∈ U))  =  0     (6.8)

YS  >  0  =>  |M " δ(S)| = 1          (6.9)

Remarks on the primal-dual algorithm

(6.8) defines "admissible" edges for the matching that we look for in the (RP)

(6.9) corresponds to |M " δ(S)| = 1, if  S  has been shrunk to a pseudo-node  v  (a blossom)

=> a solution of (RP) corresponds essentially to searching a perfect (so a maximum cardinality) matching in the 

graph of admissible edges in which all sets  S  with  YS  >  0  are shrunk

=>  we can compute such a solution with the algorithm for a maximum cardinality matching (e.g. the one from 

ADM I).

An optimal solutions of (DRP) can (similar to the transportation problem) be obtained directly from the best 

matching in (RP), but this is more complicated than for the transportation problem.

Altogether, the minimum weight perfect matching problem reduces to a sequence of maximum cardinality 

matching problems.
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matching problems.

The algorithm can be implemented to run in  O(n2m)  time. In particular, at most  n  variables YS  >  0  

throughout the algorithm.

There are improvements for dense graphs (that work only on sparse subsets of the edges)

For details see Chapter 5.3 in

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver

Combinatorial Optimization

Wiley 1998
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Integer linear programs (Integer Linear Program, ILP, IP) require all variables to be integer, i.e.,  xj ∈ Z for all  j.  

Mixed integer linear programs (Mixed Integer Linear Program, MILP, MIP)  may require only some of them to be 

integer.

In this section:

Integer variables add much modeling power.  Many non-linear effects can be modeled by IPs.

The drawback is that  IPs  are  NP-hard in general.

LP relaxation of an IP

standard form of an IP

min  cTx

s.t. Ax = b

x " 0 and integer

Special case: 0/1  IP  or  Binary Integer Program

min  cTx

s.t. Ax = b

xj ∈ { 0, 1 }
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The LP relaxation of an IP is obtained be dropping the integrality constraints, i.e.,

min  cTx

s.t. Ax = b

x " 0 

in the general case, and 

min  cTx

s.t. Ax = b

0 ! xj ! 1

in the 0/1 case.

Solving the LP relaxation and rounding

need not yield a feasible solution

may work when variables have large values, but even then large errors can occur.
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objective function

IP optimum

LP optimum

If  xj ∈ { 0, 1 }  (decision variables)

e.g. the  fij  in the shortest path problem

then rounding a fractional solution need not make sense

(we will use it nevertheless later with some care for approximation algorithms)

Modeling with IPs

(1)  Fixed Charge Cost
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0

b

x

c(x)

c(x) =

�
ax + b i f x > 0
0 i f x = 0

! ∈ R!" #" $ % "

Introduce a  0/1-variable  δ  and the constraint  x ! δ·U,

where  U  is an upper bound for the values of x 

Claim: the cost function can now be modeled as  c(x,δ) = ax + bδ
x > 0  =>  δ = 1  =>  c(x) = ax + b

x = 0  =>  δ = 0  in the optimum, as  a, b > 0  =>  c(x) =  0   !

(2)  Disjunctive constraints

x " a  or  y " b  with  a, b " 0  and x, y " 0

Introduce a  0/1-variable  δ 

Claim: The inequalities  x " δa  and  y " (1-δ)b  model the disjunctive constraint

clear since  δ  is a  0/1 variable  !
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(3)  Conditional constraints

if  x < a  then  y " b  else  y " 0   with  a, b > 0

Claim: A conditional constraint can be reduced to case (2)

the conditional constraint is equivalent to 

y " 0

x " a  or  y " b   !

(4)  Discrete variables  

x ∈ { s1, ..., sm }

Claim: a discrete variable  x ∈ { s1, ..., sm }  can be modeled as

    x = s1δ1  + ... + smδm  with  δj ∈ { 0, 1 }  and  δ1  + ... + δm  =  1

clear  !

7.1 Example (Minimum weight perfect matching problem as IP)

Every solution of the IP

min  %e # E  c(e)xe

7. Integer linear optimization
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min  %e # E  c(e)xe

x(δ(v)) = 1  for all  v ∈ V   

xe ∈ { 0, 1 }

is a perfect matching

Complexity of ILPs

7.2 Theorem (Complexity of ILPs)

(1)  SATISFIABILITY (SAT)   is reducible to ILP

(2)  Deciding if an ILP has a feasible solution is an  NP-hard problem

(3)  It is NP-hard to round a feasible solution of the LP relaxation of an ILP to a feasible solution of the ILP

Proof

Consider an instance of SAT  given by  m  clauses  C1, ..., Cm  with Boolean variables  x1, ..., xn

Introduce for every Boolean variable  xi  a  0/1-variable  zi  with  zi = 1  if  xi = TRUE 

Satisfying a clause can then be written as a linear inequality, and the existence of a satisfying truth 

assignment is equivalent to the existence of a feasible solution of the ILP. 

Example: 
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is equivalent to

z1 + z2 + z3 " 1

z1 + (1-z2)  " 1

z2 + (1-z3)  " 1

z3 + (1-z1)  " 1

(1-z1) + (1-z2) + (1-z2)  " 1

zi ∈ { 0, 1 }

If every clause has  " 2  literals (this is the non-trivial case), then  zi = 1/2   is a feasible solution of the LP 

relaxation. So rounding to a feasible solution of the ILP is as hard as finding a satisfying truth assignment 

for the given SAT instance. !

Remark: 

The proof does not show that testing for feasibility is NP-complete. To that end we need a certificate for 

feasibility of polynomial length (see ADM I).  It is not directly obvious if such a certificate exists. 

One can, however, show that the entries  xj  of an integer feasible solution  x  are not too large (a statement 
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One can, however, show that the entries  xj  of an integer feasible solution  x  are not too large (a statement 

similar to Lemma 3.4). Thus x  itself can serve as a certificate.  So NP-hard can be replaced by NP-complete in 

Theorem 7.2.
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Main question of this section

When does an LP have integer basic solutions? 

=>  Then the corresponding ILP can be solved by solving the LP relaxation with the simplex algorithm.

We consider here the following special case:

When does  Ax = b  have only integer basic solutions for an arbitrary choice of integer right hand side  b?

This is then a property of the matrix  A

Totally unimodular matrices

A quadratic matrix  B  with integer entries is called unimodular

:<=>  det B ∈ { -1, 1 }

A matrix  A  with integer entries is called totally unimodular (TUM)

:<=>  every quadratic non-singular submatrix is unimodular

First properties

A  TUM  =>  A has only entries  aij  ∈ { -1, 0, 1 }

the smallest non-unimodular matrix is
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! ! "

" ! !

! " !





Given a basis  B  of A  with  B = (AB(1), AB(2), ..., AB(m)),  Cramer's rule yields

 
xB(i) =

det Bi

det B
with Bi = (AB(1), . . . , AB(i−1), b, AB(i+1), . . . , AB(m))

=>  xB(i)  is integer  if  A  is TUM  and  b  is integer  

Polyhedra of linear optimization problems with integer vertices

Let  R1(A)  :=  { x ∈ R! | Ax = b, x " 0 }  be the polyhedron of the standard form of the LP

Let  R2(A)  :=  { x ∈ R! | Ax ! b, x " 0 }  be the polyhedron of the canonical form of the LP

Remark:

Both polyhedra are are defined here as subsets of  R!. 

The definition of  R2(A)  follows the correspondence between geometric and algebraic interpretation of LPs  in 

Section 3.3. Thus the vertices of R2(A)  correspond to the basic feasible solutions of the  LP  { Ax + s = b, x, s  

" 0 } enhanced by slack variables  s.

The vertices of R1(A)  correspond also to the basic feasible solutions of the  LP  { Ax = b, x " 0 }
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The vertices of R1(A)  correspond also to the basic feasible solutions of the  LP  { Ax = b, x " 0 }

because: 

If  x  is a basic feasible solution with basis  B,  then  xN = 0,  i.e.,  x  lies in the intersection of  the  n-m  

hyperplanes  xi = 0  with  i ∈ N  and the  m hyperplanes   aix = bi,  i = 1, ..., m.  

The opposite direction follows with arguments similar to those in the proof of Theorem 3.6.

Example:

x2

x1

x3

(1,0,0)

R1(A) 

A = (1,1,1)

      
x2

x1

(1,0)

R2(A) 

A = (1,1)

Here  x3  takes the role of a slack variable for  R2(A) 
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7.3 Theorem (Integrality of R1(A))

If  A  is totally unimodular, then all vertices of R1(A)  are integer for any integer right hand side  b.

In particular, for an LP in standard form with totally unimodular matrix  A  and integer right hand side  b,  the 

simplex algorithm always terminates with an integer optimal solution.

Proof: 

follows from section "first properties"  !

7.4 Theorem (Integrality of R2(A))

If  A  is totally unimodular, then all vertices of R2(A)  are integer for any integer right hand side  b.

In particular, for an LP in canonical form with totally unimodular matrix  A  and integer right hand side  b,  the 

simplex algorithm  applied to the corresponding standard form with slack variables always terminates with an 

integer optimal solution.

Proof:

Adding slack variables gives the matrix  (A|I).

Let  C  be a non-singular quadratic submatrix of (A|I)

=>  after a suitable permutation of the rows, C  has the form
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=>  after a suitable permutation of the rows, C  has the form
�

! !

" #$

�

with B = quadratic submatrix of A

Ik = (k,k)-identity matrix

=>  |det(C)|  =  |det(B)|  =  1, since  A  is TUM

=>  (A|I)  is  TUM

=>  statement with Theorem 7.3  and Theorem 3.10  !

So Theorems 7.3 and 7.4 say that the polyhedra  R1(A)  and  R2(A)  have integer vertices, if  A  is totally 

unimodular and the right hand side  b  is integer.

Recognizing totally unimodular matrices

The complexity of recognizing totally unimodular matrices has been open for a long time and was solved by 

Seymour only in 1980. He proved a "Decomposition Theorem" stating that every totally unimodular matrix can be 

constructed from "simple" totally unimodular matrices by certain construction rules. His  Decomposition 

Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)
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Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)
4m).

For details see Chapters 19 and 20 in 

A. Schrijver

Theory of Linear and Integer Programming

Wiley 1986

We will only show a sufficient criterion

7.5 Theorem (A sufficient criterion for total unimodularity)

A matrix  A  with entries  aij  ∈ { -1, 0, 1 }  is totally unimodular if it fulfills (1) and (2) below:

(1)  A  has  at most 2 entries $ 0 per column

(2)  The rows of A  can be partitioned into two disjoint sets  I1, I2  such that

for every column with 2 entries $ 0 and the same sign, the associated rows lie in different sets  Ij

for every column with 2 entries $ 0 and different signs, the associated rows lie in the same set  Ij

Proof by induction on the size  k  of the quadratic submatrix

Base case k = 1
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Base case k = 1

obvious, as A has only entries  aij  ∈ { -1, 0, 1 } 

Inductive step to k

Let  C  be a quadratic non-singular (k,k)-submatrix of  A

=>  each column of C  has at least one entry $ 0

Case 1:  C  has a column with exactly one entry  aij $ 0

Laplace expansion of  det(C)  along this column yields

 |det(C)|  =  |aij|·|det(C')| 

where  C'  is the  submatrix of C  after deleting row  i  and column  j 

C  non-singular  =>  |det(C')| $ 0

inductive assumption  =>  |det(C')| = 1

aij  ∈ { -1, 1 }  =>  |det(C)|  = 1

Case 2: all columns of C  have at least 2 entries $ 0

(1)  =>  all columns have exactly 2 entries $ 0

consider the partition of the rows in  I1, I2   according to (2)

=>   
�

!∈"!
#!$ "

�
!∈"#

#!$  for every column  j  

=>   
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=>     for every column  j  

=>   
�

!∈"!
#! !

�
!∈""

#! # $

i.e., a linear combination of the row vectors of C  yields the null vector

=>  this contradicts that  C  is non-singular

=>  this case cannot occur   !

7.6 Corollary (Important classes of totally unimodular matrices)

Every LP in standard form or canonical form, whose matrix of coefficients is the 

1. vertex-edge incidence matrix of a digraph

2. vertex-edge incidence matrix of a bipartite graph

has only integer basic optimal solutions (for an integer right hand side b).

This covers LP formulations of 

shortest path problems

max-flow problems

transportation problems

Proof

Case 1

In this case, A  contains exactly one  +1  and one  -1  per column
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In this case, A  contains exactly one  +1  and one  -1  per column

=>  set   I1 = set of all rows,  I2 = Ø

Case 2

Let  G  be a bipartite graph with bipartition  A and  B

i

j
A B

=>  the column of edge  ij  contains exactly 2 entries $ 0, a  +1  for vertex  i,  and a  +1  for vertex  j

=>  set   I1 = A,  I2 = B  !

The Theorem of Birkhoff & von Neumann for doubly stochastic matrices

We show with our results a famous theorem on doubly stochastic matrices

An  nxn-matrix with entries  0 ! aij ! 1  is called doubly stochastic

:<=>  each of its rows and columns sums to 1
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:<=>  each of its rows and columns sums to 1

An nxn-matrix with entries  aij  ∈ { 0, 1 }  is called a permutation matrix

:<=>  each of its rows and columns contains exactly one  1

7.7 Theorem (Birkhoff 1946, von Neumann 1953)

Every doubly stochastic  nxn-matrix is a convex combination of  nxn-permutation matrices

Proof

A doubly stochastic matrix  M  can be seen as a feasible solution of the assignment problem

min   %i,j  cijfij    s.t.

%j  fij   =  1   for all i = 1, ..., n

%i  fij   =  1   for all j = 1, ..., n

fij  " 0  for all  i, j

Let  A  be the associated matrix of coefficients and let  R1(A)  be the associated polyhedron of the 

standard form

=>  R1(A) is a polytope, as the feasibility domain is bounded because of   0 ! fij ! 1 

Minkowski's Theorem (Theorem 3.9)  =>  M  is a convex combination of the vertices of  R1(A) 

A  is the vertex-edge incidence matrix of the complete bipartite graph Kn,n
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A  is the vertex-edge incidence matrix of the complete bipartite graph Kn,n

=>  A is totally unimodular because of Corollary 7.6

=>  The vertices von  R1(A)  are integer because of Theorem 7.3

0 ! fij ! 1  =>  the vertices of R1(A)  are permutation matrices   !
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Goal of this section

Introduction of Branch and Bound as a standard technique for solving NP-complete problems exactly, in 

particular IPs.

Although quite simple, Branch and Bound is the basis and the workhorse for all commercial IP solvers, but of 

course improved by quite a number of additional methods and tricks.

The basic idea of Branch and Bound

Branch and Bound (B&B)  =  problem dependent, cleverly organized systematic search in the set of feasible 

solutions for an optimal solution, or until termination with a "good" solution (i.e., one with an instance-dependent 

performance guarantee)

The use of lower bounds for a minimization problem
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gap 

solution 

cost 

we do not know how good a feasible solution is, if it was computed with a heuristic (e.g. with local search)

 

gap solution 

cost 

lower bound 

lower bounds for the optimal value narrow the "optimality gap"

So: If the optimum is unknown, then lower bounds yield quality guarantees for solutions of a hard optimization 

problem

Branch & Bound

7. Integer linear optimization
7.3 Branch and bound algorithms

44-3

illustrated for the disjoint path problem (see Section 4.4)

We imagine the solution space (= set of feasible solutions) as a set of points

Every point represents a feasible solution

Branching = partition the current set of solutions into  " 2  subsets (not necessarily disjoint)
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branching is usually displayed in a tree (Branch and Bound Tree)

here: partition the set of solutions into 4 subsets depending on which red edge is used on a path between the 

red terminals 
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the subsets are displayed as children of the parent

branching is iterated, this generates the B&B tree

here: the choice of the topmost red edge generates the subproblem given by the graph below, which no 

longer contains the topmost red edge, as it is reserved for den path connecting the red terminals above. So 

in the subproblem,  the red terminal has been moved.
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the set of feasible solutions of that subproblem can then be partitioned again w.r.t. to edges of the same or 

another pair of terminals

here: choose the green terminals and partition the set of solutions into 2 subsets representing the 2 ways to 

choose a green edge for the path
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Bounding is used for pruning branches of the B&B tree with the use of lower bounds

Assumption 1: we know a feasible solution with cost  k  
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Assumption 1: we know a feasible solution with cost  k  

Assumption 2: we know a lower bound  s  for the optimal value in  L1

=>  we need not search  L1  if  s " k  and thus may delete the subtree of the B&B tree rooted in  L1

This way of deleting subtrees of the B&B tree is called pruning, and is depicted here by brown (withered) 

branches. The node (and its subtree) is then called fathomed.
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Branching and Bounding is used together with

Good search strategies for choosing the next node (= subset of feasible solutions) in the B&B tree

depth-first search

breadth-first search

best-first-search (node with best ( = smallest) lower bound)

combinations of the above

The tree is of course maintained implicitly and will never be generated explicitly

Techniques for generating good lower bounds (next chapter)

Lagrangian relaxation
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Lagrangian relaxation

LP-relaxation (natural for IPs)

Techniques for constructing feasible solutions in tree nodes (they provide upper bounds on the optimum)

Runtime is exponential, depends very much on the quality of the lower bounds
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good lower bounds                 bad lower bounds

small B&B tree                 huge B&B tree

Generic Branch and Bound Algorithm

Input
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Input

instance  I  of a problem

Output

feasible solution  x ∈ SI  with performance guarantee given by the objective function value  c(x)  and a lower 

bound  �  for the optimum

Ingredients

lower bounding strategy

branching strategy

search strategy

Method

1. Work in the root

consider a slightly modified, easier to solve instance  I'  (a relaxation) for computing a lower bound for  I;

compute the optimal solution  x'  of I',  let  z' be the objective function value;

if  x' ∈ SI  then  return  x'  // x' is optimal

set  � := z'  // initial global lower bound

// initialize data structure  D  for maintaining the already generated still unsearched nodes of the B&B tree

add  I  with  (I)  :=   to  D 
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add  I  with  �(I)  := �  to  D 

use heuristics to generate feasible solutions 

set  x* := best feasible solution found

set  u := c(x*)   // initial upper bound

2. Main loop

while   performance guarantee  (u-�)/�  is not small enough  and  we have not run out of time or memory  do

choose next node  v  of the B&B tree from  D  for searching // search strategy

if  �(v)  "  u  then  delete  v from  D // pruning

else

generated the children  v1, ..., vk  of v  // branching rule

// union of the feasibility domains of the children = feasibility domain of v 

for  each child  vi  do

compute the optimal solution  x'  of (the relaxation of)  the associated subproblem, let  z' be its 

objective function value  // bounding rule

if  x' ∈ SI  and  z' < u  then  

x* := x'  // update the best known feasible solution

u := z'   // update the global upper bound
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u := z'   // update the global upper bound

else  

if  z' < u  then  add  vi  with  �(vi)  := z'  to  D   // new subproblem

delete  v from  D // v  is fathomed

� := min { �(w) | w in D }  // update global lower bound

return  x*  and  �

Branch and Bound for IPs

natural for bounding: LP relaxation

natural for branching: branch w.r.t. fractional variables in the LP relaxation 

7.8 Example (The KNAPSACK problem, see ADM I)

KNAPSACK

Instance

n  items with weight  wi  and profit  ci

a knapsack with capacity (= total weight)  W

Task
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Task

find a subset  S ! { 1, ..., n }  with  

maximum value  c(S) := % { cj | j ∈ S }

capacity of the knapsack is respected, i.e.,  w(S) := % { wj | j ∈ S }  !  W

An IP formulation of KNAPSACK

Introduce 0/1-variable  xj  with  xj = 1  if item  j  is put into the knapsack

min  %j -cjxj   s.t.

%j wjxj  ! W

xj  ∈ { 0, 1 }

7.9 Lemma (Optimal solutions of the LP relaxation of KNAPSACK)

An optimal solution of the LP-relaxation

min  %j -cjxj  

%j wjxj  ! W

0 ! xj ! 1

of the IP formulation of KNAPSACK is obtained as follows

sort and number the items is such a way that  c1/w1  "  c2/w2  "  ...  cn/wn   (largest profit per unit weight 
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sort and number the items is such a way that  c1/w1  "  c2/w2  "  ...  cn/wn   (largest profit per unit weight 

first)

compute in this order the smallest  k,  such that w1 + w2 + ... + wk+1  >  W

set  x1 = x2 = ... = xk  =  1  

xk+1  =  (W - w1 - w2 - ... - wk)/wk+1

xj = 0  otherwise

Proof by checking complementary slackness 

the primal dual pair is given by

c
1
   ...   c

n

w
1
   ...   w

n

1

1

!

!

!

x
1
   ...   x

n

W

1

1

u

v
1

v
n

complementary slackness conditions give

(1)  xj > 0  =>  wju + vj  =  cj 

(2)  u  > 0  =>  %j wjxj  = W   (is satisfied by  x  from the lemma)

(3)  vj > 0  =>  xj  =  1
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(3)  vj > 0  =>  xj  =  1

Define a dual feasible solution that, together with  x,  satisfies conditions (1) and (3) 

(3)  =>  vk+1 = vk+2 = ... = vn  :=  0

=>  (with (1) for  j = k+1)   wk+1u  =  ck+1  =>  u = ck+1/wk+1

=>  (with (1) for  j = 1, ... k)    wj(ck+1/wk+1) + vj  =  cj 

=>  vj  :=  cj - wj(ck+1/wk+1)  for  j = 1, ... k

=>  we have defined values for all dual variables from observing conditions (1) and (3)

show: this defines a dual feasible solution

need only show  vj  " 0, i.e., cj - wj(ck+1/wk+1)  " 0  for  j = 1, ... k.

This follows from  cj/wj  "  ck+1/wk+1   for  j = 1, ... k    !

Use the generic B&B algorithm with the following ingredients

lower bounding strategy = LP relaxation solved with Lemma 7.9

branching strategy = branch on fractional variables  xk+1

search strategy = best first

Instance
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Instance

  

W = 35! "! #!
#!
"!

! !" !!# $

# !% &' "

( ( !% %

) ( !# )

% ( & (

" ) !# (

$ !( #" #

heuristic solution  x1 = x2 = x3  =  1,  xj = 0  otherwise  =>  upper bound  u = -217

LP relaxation gives  x1 = x2 = x3  =  1, x4  = 1/3, xj = 0  otherwise  =>  lower bound  �  = -221 

Branch and Bound Tree
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x1 = x2 = x5 = 1

x3  = 1/3

lb = -216 > u

x1 = x2 = x4 = 1

x5  = 1/3

lb = -217 ! u

x1 = x3 = x4 = 1

x2  = 13/15

lb = -217 ! u

x1 = x2 = x3 = 1

feasible
z' = -217 ! u

x1 = x2 = x3 = 1

x7  = 1/13

lb = -219

x1 = x2 = x6 = 1

feasible
z' = -214 > u

x1 = x2 = x3 = 1

x6  = 1/4

lb = -220

x1 = x2 = x3 = 1

x5  = 1/3

lb = -220

x1 = x2 = x4 = 1

x3  = 1/3

lb = -219

x1 = x2 = x3 = 1

x4  = 1/3

lb = -221 1

5 2

3

4

x1 = x7 = 1

x2  = 2/5

lb = -174 > u

x4 = 1 x4 = 0

k = order of 
   the search

x5 = 1 x5 = 0

lb = lower bound

x6 = 1 x6 = 0

x7 = 1 x7 = 0

x3 = 1 x3 = 0

= pruned

= not added
   to D
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x1 = x2 = x5 = 1

x3  = 1/3

lb = -216 > u

x1 = x2 = x4 = 1

x5  = 1/3

lb = -217 ! u

x1 = x3 = x4 = 1

x2  = 13/15

lb = -217 ! u

x1 = x2 = x3 = 1

feasible
z' = -217 ! u

x1 = x2 = x3 = 1

x7  = 1/13

lb = -219

x1 = x2 = x6 = 1

feasible
z' = -214 > u

x1 = x2 = x3 = 1

x6  = 1/4

lb = -220

x1 = x2 = x3 = 1

x5  = 1/3

lb = -220

x1 = x2 = x4 = 1

x3  = 1/3

lb = -219

x1 = x2 = x3 = 1

x4  = 1/3

lb = -221 1

5 2

3

4

x1 = x7 = 1

x2  = 2/5

lb = -174 > u

x4 = 1 x4 = 0

k = order of 
   the search

x5 = 1 x5 = 0

lb = lower bound

x6 = 1 x6 = 0

x7 = 1 x7 = 0

x3 = 1 x3 = 0

= pruned

= not added
   to D

Using other relaxations than the LP-relaxation

This is possible, e.g. by deleting constraints

=>  the feasibility domain gets larger  =>  minimum gets smaller

7.10 Example (TSP in a digraph)

An IP formulation

Introduce 0/1-variable  xij  with  xij = 1  <=>  edge  (i,j)  is in the TSP tour

min  %ij cijxij  

%j xij  = 1   for all  i = 1, ..., n (7.1)

%i xij  = 1   for all  j = 1, ..., n (7.2)

%i,j # S  xij  !  |S|-1  for all  Ø $ S % { 1, ..., n } (7.3)  

xij ∈ { 0, 1 } (7.4)
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xij ∈ { 0, 1 } (7.4)

The Cycle Cover Relaxation of the TSP

Is obtained by deleting constraints  (7.3).

The remaining constraints define an assignment problem in which edges (i,i) are not permitted. One can 

model this in objective function with high costs  cii. Such assignment problems can be solved efficiently, e.g. 

with the primal-dual method of Section 6.5.

Using the cycle cover relaxation in a Branch and Bound algorithm

Take the cycle cover relaxation as lower bounding strategy

The optimal assignment  (xij)  is a tour if it fulfills constraint  (7.3). Otherwise branch as follows:

choose a cycle with smallest number of edges and branch by setting every edge to 0

=>  each edge of the cycle generates a child in the B&B tree
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Main statements of this chapter

Lagrangian relaxation is an important technique to generate "good" lower bounds for IPs. It relaxes side 

constraints, but punishes their violation in the objective function. By varying the penalty costs, the lower bound 

can be improved.

A systematic improvement of the penalty costs leads to subgradient optimization. This is a method to maximize 

a non-differentiable concave function.

The lower bound obtained in this way is at least as good as that obtained by LP relaxation, and both are equal 

under certain conditions. The advantage of Lagrangian relaxation over LP relaxation is due to a quicker 

(approximate) lower bound computation by combinatorial methods instead of solving an LP as in the LP-

relaxation.

Lagrangian relaxation is one of the workhorses in branch and bound algorithms

The basics of Lagrangian relaxation

Consider the integer linear program

(P) min cTx

s.t. Ax " b (k  "difficult" side constraints)

Bx " d (m-k  "easy" side constraints)
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Bx " d (m-k  "easy" side constraints)

x  integer

Relax the "difficult" side constraints  Ax " b and punish their violation in the objective function. 

To this end, introduce Lagrange multipliers  λ1, ..., λk for the relaxed side constraints. They form a kind of dual 

variable for these side constraints and must fulfill the conditions

aix " bi  =>  λi " 0 (7.5)

aix = bi  =>  λi  unrestricted (7.6)

For fixed such  λ = (λ1, ..., λk)T  the Lagrangian relaxation  (LRλ)  of (P)  is defined as

(LRλ) min cTx + λT(b - Ax)  =:  L(λ, x) 

s.t.  Bx " d

x  integer

L(λ,x)  is called the Lagrange function,  λ  =  (λ1, ..., λk)T  is also called  Lagrange vector and can be seen as 

vector of penalty costs.

We denote the feasibility domains of (P)  and  (LRλ)  with  S(P)  and  S(LRλ)  and the associated optimal values 

with  z(P)  and  z(LRλ), respectively.
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7.11 Lemma (Lagrangian relaxation yields lower bounds)

For every Lagrange vector  λ:

(1)  S(LRλ) & S(P)  

(2)  z(LRλ)  !  z(P) 

Proof 

(1) is trivial, as side constraints have been deleted

(2):

Let  x  be optimal w.r.t. (P)

=>  bi - aix  ! 0,   or  bi - aix  = 0  for equality constraints

=>  λi(bi - aix)  !  0  for all  i   =>   λT(b - Ax)  !  0

=>  z(P)  =  cTx  "  cTx + λT(b - Ax)  "  z(LRλ)  as  x ∈ S(P) ! S(LRλ)  !

 

7.12 Lemma (Optimality criterion)

If  x  and  λ  fulfill

(1)  x  is optimal w.r.t.  (LRλ)

(2)  aix " bi, or  aix = bi  for equality constraints
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(2)  aix " bi, or  aix = bi  for equality constraints

(3)  λT(b - Ax)  =  0

then  x  is optimal w.r.t.  (P).  If (3) is violated, then  x  is  !-optimal with  !  =  λT(b - Ax)

Proof

(1), (2)  =>  x ∈ S(P)

=>  z(LRλ)  =  cTx + λT(b - Ax)  =  cTx  "  z(P)  because of   (3)  and  x ∈ S(P)

=>  z(LRλ)  = z(P)  because of  Lemma 7.11.

If  x  violates (3), then  λT(b - Ax)  is the error term  !

The aim of Lagrangian relaxation

Partition the constraints of (P) is such a way that  (LRλ)  is much easier to solve than  (P) 

Make  z(P) - z(LRλ)  as small as possible (duality gap of Lagrangian relaxation)

i.e., make  L(λ)  :=  z(LRλ)  as large as possible by varying the Lagrange multipliers

=>  this leads to the optimization problem  maxλ L(λ)

When used for B&B, it is not required to solve  this optimization problem optimally. A good value of L(λ) usually 

suffices,  as each such value provides a lower bound for z(P).
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Lagrangian relaxation of the symmetric TSP via 1-trees

IP formulation of the symmetric TSP

Introduce 0/1-variable  xe with  xe = 1  <=>  edge  e  is in the tour 

(P) min  %e cexe  

x(δ(i)) = 2  for all  i = 1, ..., n (7.7)

x(S) ! |S|-1 for all  Ø $ S ! { 2, ..., n } (7.8)

observe: S ! { 2, ..., n } suffices to

 exclude short cycles 

xe ∈ { 0, 1 } (7.9)

Here  x(S) := %e = ij, i,j # S  xe   and   x(δ(i)) := %e # δ(i)  xe

A variation of (P) gives (LRλ)

Partition (7.7) into 

%e xe  =  n (7.10) redundant in (P)

x(δ(i)) = 2  for  i = 2, ..., n (7.11)

x(δ(1)) = 2  (7.12)
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x(δ(1)) = 2  (7.12)

(LRλ) is defined by relaxing (7.11)

(LRλ) min   %e cexe  +  %i = 2,...,n  λi(2 - x(δ(i)) 

s.t.  (7.8), (7.9), (7.10), (7.12)

Observe: (7.10) is not redundant in (LRλ)

Combinatorial structure of the feasible solutions of (LRλ)

7.13 Lemma (Feasible solutions von (LRλ) are 1-trees)

x  is a feasible solution von (LRλ)  <=>  x  is a 1-tree, i.e., 

x is a spanning tree on the vertex set  { 2, ..., n }

with 2 additional edges out of vertex 1

Proof

"=>"

let  x  be a feasible solution of (LRλ)

(7.9), (7.10), (7.12)  =>  x  has n-2  edges on vertices 2, ..., n

(7.8)  =>  x  is connected

ADM I  =>  a connected graph with  n-2  edges and  n-1  vertices is a spanning tree
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ADM I  =>  a connected graph with  n-2  edges and  n-1  vertices is a spanning tree

(7.12)  =>  2 additional edges out of vertex 1

=>  x is a 1-tree

"<="

every 1-tree fulfills conditions (7.8), (7.9), (7.10), (7.12)  !

The Lagrange function  L(λ,x)

L(λ,x) = %e cexe  +  %i = 2,...,n  λi(2 - x(δ(i)),   λi  unrestricted

=>  replace w.o.l.g.  λi   by  -λi    (this gives a better combinatorial interpretation)

=>  L(λ,x)  =  %e cexe  +  %i = 2,...,n  λi(x(δ(i) - 2)  

with x(δ(i)) - 2  =  deviation from the desired degree 2 of vertex  i

With  λ1 := 0  we obtain

L(λ,x) = %e cexe  +  %i = 1,...,n  λi(x(δ(i) - 2)

=  %e cexe  +  %i = 1,...,n  λix(δ(i))  -  2 %i = 1,...,n  λi  

=  %e cexe  +  %e=ij (λi + λj)xe  -  2 %i = 1,...,n  λi  

=  %e=ij (ce + λi + λj) xe  -  2 %i = 1,...,n  λi  

This gives new edge costs  ce´ = ce +  λi + λj  for  e = ij  minus the constant term  2 %i = 1,...,n  λi  
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This gives new edge costs  ce´ = ce +  λi + λj  for  e = ij  minus the constant term  2 %i = 1,...,n  λi  

Interpretation of the Lagrangian relaxation

Relaxed problem 

= computing a 1-tree with minimum weight w.r.t. edge costs  ce +  λi + λj  for edge  e = ij

Varying the Lagrange multipliers  λi  

=  varying the edge costs   ce  via  node values  λi

This variation of edge costs  has no influence on the optimality of a tour, but may change the 1-tree

because: 

%e=ij (ce + λi + λj) xe  -  2 %i = 1,...,n  λi   =  %e cexe   if  x  is a tour

If the minimum 1-tree is a tour, then this tour is optimal for (P) because of Lemma 7.12, as  λT(b - Ax)  =  0  

for any tour

A minimum 1-tree can be constructed in polynomial time as follows:

(1)  Compute a MST on the vertices  2, ..., n  with an algorithm from ADM I  (Kruskal or Prim)

(2)  Choose the two cheapest edges out of vertex 1

Algorithm for improving the lower bound (varying the λi)

Input
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Input

graph  G = (V, E)  with  V = { 1, ..., n }

edge costs   ce

Output

optimal tour or 1-tree with "good" lower bound  z(LRλ)

Method

// initialize the  λi

set  λi := 0  for every vertex  i

// initialize a step length  w > 0  for varying the  λi

set  w := 1  

repeat

compute a minimum  1-tree  x  for edge costs   cij +  λi + λj  

if  x  is  tour  then  return  x  // x is an optimal tour

// varying the  λi 

for  all  vertices  i $ 1  do

determine the degree  di  of vertex i

if  di $ 2  then  λi := λi + (di - 2)w  
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if  di $ 2  then  λi := λi + (di - 2)w  

vary the step length  w  if appropriate

until  z(LRλ) = z(x)  is "good" enough

return  best  x  found and the associated  λ

7.14 Example  (1-tree relaxation of the symmetric TSP)

Step length  w  is always  1

Graph with edge costs 
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Iteration 1

minimum 1 tree, varying the  λi  and new edge costs 
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Iteration 2

minimum 1 tree, varying the  λi  and new edge costs 
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Iteration 3

minimum 1 tree, varying the  λi  and new edge costs 
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Iteration 4

minimum 1 tree is a tour  =>  optimal tour constructed
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7.15 Example (In general there is no  λ  such that an optimal 1-tree is a tour)

Graph with edge costs  and optimal tour
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Graph with edge costs  and optimal tour
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Claim: for every choice of  λi  (with λ1 = 0), there is no tour w.r.t.   cij +  λi + λj   that is a minimum 1-tree

Consider the 1-trees
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The values of these 1-trees w.r.t. edge costs  cij +  λi + λj  is

value of T1  =  3 + 2λ2 + 1λ3 + 2λ4 + 3λ5 + 2λ6  =:  z1   

value of T2  =  3 + 2λ2 + 3λ3 + 2λ4 + 1λ5 + 2λ6  =:  z2   

7. Integer linear optimization
7.4 Lagrangian relaxation

45-14

value of T2  =  3 + 2λ2 + 3λ3 + 2λ4 + 1λ5 + 2λ6  =:  z2   

The value of an optimal tour w.r.t. cij +  λi + λj  is

4 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + 2λ6  =:  z0  

=>  z0 - z1  =  1 + λ3 - λ5   and  z0 - z2  =  1 - λ3 + λ5  

=>  either  z0 > z1  or  z0 > z2  

since  z0 < z1  and  z0 < z2  imply that  1 + λ3 - λ5  < 0  and   1 - λ3 + λ5  < 0

=>  λ3 - λ5  > 1  and - λ3 + λ5  > 1,  a contradiction  !

Observe: What we observe here for the TSP, viz. that  maxλ L(λ) $ z(P),  is generally the case.  Lagrangian 

relaxation provides in general only lower bounds for z(P).  But these are very valuable in a Branch & Bound 

algorithm.

For more information about Lagrangian relaxations of the TSP see

E.#L. Lawler, J.#K. Lenstra, A.#H.#G. Rinnooy Kan, and D.#B. Shmoys, eds.

The Traveling Salesman problem: A Guided tour of Combinatorial Optimization

John Wiley & Sons, New#York, 1985.
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Computing maxλ L(λ) by subgradient optimization

maxλ L(λ)  =  maxλ  minx  L(λ,x)  =  maxλ  min { L(λ,x) | x ∈ S(LRλ) }

Subgradient optimization uses the fact that  S(LRλ)  is finite when S(LRλ) is a polytope. This follows from the 

integrality of  x, and we will assume it in the sequel.

S(LRλ) finite  =>  we can write  S(LRλ)  as  S(LRλ) = { x1, x2, ..., xR }

=>  L(λ) = min { cTxr + λT(b - Axr)  |  r = 1, ..., R }

=>  L(λ)  is the minimum of finitely many affine linear functions  cTxr + λT(b - Axr)  of  λ
=>  L(λ)  is piecewise linear and concave, but in general not differentiable

!

L(!)

cTxr + !T(b - Axr)

Subgradient optimization 
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Subgradient optimization 

~ gradient method for maximizing a concave continuously differentiable function f : R! → R!

Gradient and subgradient

Gradient of a continuously differentiable function in  u

=  vector of partial derivatives in u:

∇!!"" #

�
#!

#$$

!""% & & & %
#!

#$'

!""

�

From calculus we know:

f is concave  <=>

f(v) - f(u)  !  ∇f(u)T(v-u)  for all  v, u  
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u v

f(v) - f(u)
!f(u)T(v-u)

f

Subgradient of a continuous concave function in  u

=  vector d  with  f(v) - f(u)  !  dT(v-u)  for all  v  

The set of subgradients in  u  is called the subdifferential of f  in  u  and is denoted by  'f(u) 

Then:  f is differentiable in u   =>  'f(u) = { ∇f(u) } 

Conditions for the maximum of a concave function

The continuously differentiable case

From calculus we know:

f  attains its maximum at  λ*  <=>  ∇f(λ*) = 0
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The non-differentiable case

7.16 Lemma (Condition for the maximum of a continuous concave function)

Let   f : R! → R!   be continuous and concave. Then

f  attains its maximum at  λ*  <=>   0 ∈ 'f(λ*) 

Proof

"<="

let  0 ∈ 'f(λ*)      

=>  0 = 0T(v - λ*)  "  f(v) - f(λ*)  for all v  =>  f  attains its maximum at  λ*  

"=>"

let  f  attain its maximum at  λ*

=>  0 = 0T(v - λ*)  "  f(v) - f(λ*)  for all v  =>  0 ∈ 'f(λ*)  !

Generic subgradient optimization

Input

a continuous concave function  f : R! → R!  

Output 
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Output 

a point  λ*  at which  f  attains its maximum, or a  point  λ  with a "good" value  f(λ)  

Method

choose a starting point  u0   

initialize a counter  i := 0  

repeat   

if  0 ∈ 'f(ui)  then  return  ui  // f attains its maximum at ui     

// this step my be skipped if the test  "0 ∈ 'f(ui)"  is computationally too expensive

compute a subgradient  di ∈ 'f(ui)  and a step length  wi > 0  

set  ui+1 := ui + wi·di  

i := i+1  

until  no more computing time or hardly any progress

return  the best point of the sequence  u0, ..., ui   

A typical run of the algorithm 
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f

# iterations

200100

The run shows that improvement need not be monotone

Main ingredients of the subgradient optimization

determine a step length  wi > 0

solved in theory by a theorem of Polyak, but still difficult in practice, usually requires experiments

7.17 Theorem (Polyak 1967)

Let  f : R! → R!  be concave and continuous and let  f  attain its maximum at  λ*.

Let  (wi)i # N  be a sequence of step lengths with 
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Let  (wi)i # N  be a sequence of step lengths with 

(1)   wi  "  0  for all i

(2)  (wi)i # N  is a monotonically decreasing null sequence 

(3)  the series  % wi  is divergent

Then the sequence of points ui  generated  by subgradient optimization  fulfills

lim i ! & f(ui)  =  f(λ*)

without proof  !

This theorem ensures convergence under relatively weak conditions, which can easily be met in practice. 

The only problem is to control the speed of convergence.  But this is not that important for the use in 

B&B.

Computing a subgradient  di ∈ 'f(ui)

This is simple, subgradients come for free in Lagrangian relaxation

7.18 Lemma (Subgradients in Lagrangian relaxation)

Let  x*  be an optimal solution of (LRλ)  in  λ = u.  
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Let  x*  be an optimal solution of (LRλ)  in  λ = u.  

Then  b - Ax*  is a subgradient of L(λ) = minx  L(λ,x)  in  λ = u,  i.e.,  b - Ax* ∈ 'f(u).

Proof by checking the definition of subgradient

L(v) - L(u)  =  minx  L(v,x)  -  minx  L(u,x)

=  minx  L(v,x)  -  L(u,x*)   since  x*  is optimal for  (LRu) 

!  L(v,x*)  -  L(u,x*)   since  x*  is feasible for  (LRv) 

=  (cTx* + vT(b - Ax*)) - (cTx* + uT(b - Ax*))

=  (vT - uT)(b - Ax*)  =  (b - Ax*)T(v - u)  !

Remark: In the 1-tree relaxation of the symmetric TSP,  a transition  of λi  to  -λi  reveals  x(δ(i)) - 2  as 

subgradient. The change of multipliers  λi  in this example are therefore an application of subgradient 

optimization.

Lagrangian relaxation vs. LP relaxation

There is a relationship between the optimal value of a Lagrangian relaxation and the optimal value of the LP 

relaxation of an IP.  

We consider:
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We consider:

The initial problem

(P) min cTx

s.t. Ax " b

Bx " d

x  integer

we do not consider sign constraints for  x,  but assume that these are contained in  Bx " d

The Lagrangian relaxation of (P)

(LRλ) min cTx + λT(b - Ax)  =  minx  L(λ, x)  =  L(λ)

s.t. Bx " d

x  integer

The LP relaxation of (P)

(LP) min cTx

s.t.  Ax " b

Bx " d

x  unconstrained
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x  unconstrained

with optimal value  z(LP)

7.19 Theorem  (Relationship between Lagrangian relaxation and LP relaxation)

maxλ  L(λ)  "  z(LP)

Equality holds if the polyhedron defined by  Bx " d  is integer (so that the integrality condition in (LRλ) may be 

dropped).

Proof

we show this for side constraints of the form  Ax " b  (=> λ " 0), the proof can easily be adapted to equations  

(λ  unconstrained).

 

max   L(λ)  =  max    min   L(λ,x)  =  max    min   L(λ,x)
λ ! 0  λ ! 0  x

Bx ! d
x gzz

λ ! 0  x
Bx ! d

holds if Bx ! d induces an integer 
polyhedron, otherwise we have  !
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=  max     min   (cTx + !T(b - Ax))
! ! 0  x

Bx ! d

=  max   [ λTb  +  min   (cT - λTA)x ]
λ ! 0  x

Bx ! d

=  max   [ λTb  +  max    dTy ]
λ ! 0  y ! 0

BTy = c - ATλ
LP duality

=        max     [ bTλ  +  dTy ]
λ ! 0
y ! 0

BTy = c - ATλ  

=            min        cTx
x unconstrained

Ax ! b
Bx ! d  

LP duality

 =  z(LP)  !

7.20 Remark

The 1-tree relaxation bound is because of Theorem 7.19 just the LP-relaxation bound of the TSP-polytope.

Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-
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Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-

relaxation should be preferred above the Lagrangian relaxation if  Bx " d  defines an integer polyhedron. But in 

practice one very often favors subgradient optimization, since it is usually much faster (very often,  L(λ)  con 

be computed combinatorially),  and since approximate values of  maxλ  L(λ)  are usually sufficient. 



7. Integer linear optimization
7.5 Cutting plane algorithms

46-1

Main statements of this chapter

We introduce cutting plane algorithms as another method to solve IPs exactly.

We show that that these are in principle finite methods.

From the proofs we learn more about integer polytopes (Gomory-Chvátal-Cuts, Chvátal Closure)

The integer hull of a polyhedron

The  integer hull  PI  of a polyhedron  P  is the convex hull of all its integer points.

P
I

P
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A polyhedron P  is called integer (or integral)  if all its vertices are integer.

Then a polyhedron  P fulfills:

(1)  P  is integer  <=>  P = PI 

(2)  integer optimization  on  P  <=>  linear optimization on PI  

Therefore, one is interested in linear descriptions of PI   (= description of  PI  by linear inequalities) 

One difficulty here is that  PI  need not be a polyhedron any more in general.

An example is given by

P := {(y, x) ∈ R2 | y
x
≤

√
2}

(exercise)

One can show, however, that PI  is a polyhedron when  P  is rational, and we will do this for rational polytopes  P.

A polyhedron  P = { x ∈ R! | Ax ! b }  is called rational, if all entries of  A  and  b  are rational numbers. We will 

assume in this chapter that  all polyhedra are rational. For the sake of completeness, we will mention this as an 

assumption in all theorems.

Criteria for the existence of feasible points and valid inequalities
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These criteria are alternative formulations of Farkas' Lemma (Lemma 4.5). 

An inequality  wTx ! t  is called valid for polyhedron  P,  if all points  x ∈ P  fulfill that inequality. 

7.21 Lemma (Farkas' Lemma for the existence of feasible solutions)

Consider a polyhedron  P = { x ∈ R! | Ax ! b }. Then:

(1)  P $ Ø  <=>  yTb  " 0  for all  y ∈ R!  with  y " 0 and  yTA = 0   

(2)  P = Ø  <=>  there is  y ∈ R!, y " 0  with  yTA = 0 and  yTb  !  -1

(3)  P = Ø  <=>  the inequality  0Tx  !  -1  can be obtained as non-negative linear combination of the inequalities 

in  Ax ! b

Proof

(1)

"=>"

Consider  the LP  max { 0Tx | Ax ! b }

P $ Ø  =>  every  x ∈ P  is an optimal solution of the  LP

Duality theorem  =>  the dual LP has an optimal solution and 

0  =  max { 0Tx | Ax ! b }  =  min { yTb | yTA = 0, y " 0 }  

=>  yTb " 0  for  all  y " 0  with  yTA = 0
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=>  yTb " 0  for  all  y " 0  with  yTA = 0

"<="

Consider  the  LP  min { yTb | yTA = 0, y " 0 }  

0  is a feasible solution of this LP

Assumption  =>  the objective function  yTb  is bounded from below by 0 

Duality theorem  =>  P  has an optimal solution, so in particular a feasible solution

(2)

follows from the negation of (1) 

P = Ø  <=>  there is  y' ∈ R!, y' " 0  with  (y')TA = 0 and  (y')Tb  <  0.

Let  g := (y')Tb  < 0

With  y := y'/|g|  we obtain

P = Ø  <=>  there is  y ∈ R!, y " 0  with  yTA = 0  and  yTb  !  -1   

(3)   

"<="

clear

"=>" 

take  y  from (2)  and multiply  Ax ! b  by  y  from the left  =>
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take  y  from (2)  and multiply  Ax ! b  by  y  from the left  =>

0Tx  =  yTAx  !  yTb  !  -1    =>    0Tx ! -1   !

7.22 Lemma (Farkas' Lemma for valid inequalities)

The following statements are equivalent for a non-empty polyhedron  P = { x ∈ R! | Ax ! b }:

(1)  wTx ! t  is a valid inequality for  P

(2)  There is  y ∈ R!, y " 0  with  yTA = wT  and  yTb ! t

Proof

(1) => (2)

Consider  the LP  max { wTx | Ax ! b }

P $ Ø,  wTx ! t  =>  the LP has an optimal solution

duality theorem  =>  the dual LP has an optimal solution  y*  and 

t  "  max { wTx | Ax ! b }  =  min { yTb | yTA = wT, y " 0 }  =  (y*)Tb

=>  y*  fulfills (2)

(2) => (1)

Ax ! b,  y " 0  =>   wTx  =  (yTA)x  =  yT(Ax)  !  yTb  !  t   !
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Cutting planes and cutting plane algorithms

Idea: use hyperplanes to cut off parts of polyhedron  P, but without cutting off points from  PI.  So these 

hyperplanes are valid for  PI  (possibly even a supporting hyperplane or a facet).  Such a hyperplane is called a 

cutting plane. A cutting plane  H  that cuts off a point  x* ∈ P - PI,  is called an  x* separating hyperplane.

P
I

P

Cutting plane algorithm (Idea)

Input 
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Input 

Integer linear program (IP)

min { cTx,  x ∈ PI }  with  P  =  polyhedron of the LP relaxation of (IP)

Output

optimal solution of (IP)

Method

repeat forever

solve the  LP  min { cTx,  x ∈ P }  

let  x*  be the computed optimal solution of the  LP

if  x*  is integer  then  return  x* // x* is an optimal solution of (IP)

compute a cutting plane that cuts off  x*  from  P  and is valid for  PI   // x* separating hyperplane 

let  H  be the associated halfspace containing  PI   

set  P := P " H

Obvious questions

(1)  how does one prove that an inequality is a cutting plane?

(2)  do cutting plane algorithms terminate?
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(2)  do cutting plane algorithms terminate?

(3)  how does one compute an  x*  separating hyperplane for a given  x* ∈ P - PI ?

We will answer here only  (1) and (2)  and show that there are proof techniques for  (1),  and that there is a 

finite set of cutting planes of a special structure such that cutting plane algorithms using them terminate with  

P = PI.

(3)  depends very much on the specific problem, we will show some examples in Chapter 8. 

Cutting plane proofs

For a polytope  P = { x ∈ R! | Ax ! b }, the validity of an inequality  wTx ! t  can be shown by Farkas' Lemma 

(Lemma 7.22).  This is more complicated for cutting planes.

7.23 Example (Example of a cutting plane proof)

Consider the system of linear inequalities

 2 x1 + 3 x2  !  27 (1)

 2 x1 - 2 x2  !    7 (2)

      -6 x1 - 2 x2  !   -9 (3)

      -2 x1 - 6 x2  !  -11 (4)
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      -2 x1 - 6 x2  !  -11 (4)

      -6 x1 + 8 x2  !   21 (5)

The associated polytope  P  and its integer hull
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P
I

P

x2 ! 5  is a valid inequality for  PI   

how can we derive it from the given inequalities for  P ?

Multiply (5) with 1/2
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Multiply (5) with 1/2

=>  -3x1 + 4x2  !  21/2

=>  -3x1 + 4x2  !  ⎣21/2⎦ =  10  is valid for  PI  (as there are only integer coefficients on the left hand side)

=>  this gives the new inequality  -3x1 + 4x2  !  10   (6)  for   PI

Multiply  (6)  with 2,  (1)  with 3  and add the resulting inequalities

=> -6x1 + 8x2  !  20

 6x1 + 9 x2  !  81

=>     17 x2  !  101

=>  we obtain the wanted inequality  x2  !  ⎣101/17⎦ =  5  by rounding down the right hand side

In general, these inequalities have the form 

yTAx  !  ⎣yTb⎦  with  y " 0  and  yTA  integer

where  Ax ! b  is the system of inequalities after the "previous" step.

This observation leads to the general definition of a cutting plane proof.

General definition

Let  Ax ! b  be a system of  m  linear inequalities.

A cutting plane proof for the inequality  wTx ! t  with integer  w  and  t  starting from  Ax ! b  is a finite 
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A cutting plane proof for the inequality  wTx ! t  with integer  w  and  t  starting from  Ax ! b  is a finite 

sequence of inequalities of the form 

 !
"
#!$% ! &#!$ "$ # $' ( ( ( ')%

together with non-negative numbers

 !"# !" ! " ! $% " ! # ! & # " " "$

such that, for each  k = 1, ..., M,  the inequality   
!"
#!$

% ! &#!$  

is obtained as non-negative linear combination 
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of the previous inequalities (initial and already generated), where 

- the coefficients of the variables on the left hand side are integer

- the right hand side is not integer is and is rounded down

- the last inequality of the sequence is the inequality  wTx ! t 

Inequalities of the form  

yTAx  !  ⎣yTb⎦  with  y " 0  and  yTA  integer
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yTAx  !  ⎣yTb⎦  with  y " 0  and  yTA  integer

are called  Gomory-Chvátal cuts. 

Gomory has shown in 1960 that these cuts lead to finite cutting plane algorithms. 

Chvátal has introduced cutting plane proofs in 1973. These proofs are similar to Farkas' Lemma in the variants 

Lemma 7.21 (2)  and 7.22.

7.24 Theorem (Cutting plane proofs for rational polytopes, Chvátal 1973)

Let  P = { x ∈ R! | Ax ! b }  be a rational polytope and let  wTx ! t  be an inequality with integer  w  and  t  that 

is valid for   PI. Then there exists a cutting plane proof of  wTx ! t'  from  Ax ! b,  for some  t' ! t.

Proof: see below.  !

7.25 Theorem (Cutting plane proofs for rational polytopes without integer points, Chvátal 1973)

Let  P = { x ∈ R! | Ax ! b }  be a rational polytope  without integer points.  Then there exists cutting plane 

proof of   0Tx ! -1  from  Ax ! b. 

Proof: see below.   !

For the proof we need a lemma that enables an inductive argument on the dimension of  P.  It shows that 
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For the proof we need a lemma that enables an inductive argument on the dimension of  P.  It shows that 

Gomory-Chvátal cuts for a face of a rational polyhedron can be lifted to the the polyhedron itself "by rotation".

7.26 Lemma (Rotation of Gomory-Chvátal cuts)

Let  F  be a non-empty face  of a rational polytope  P.  Assume that  F  is given by a  linear system and that  

cTx !⎣d⎦ is a  Gomory-Chvátal cut for  F.

Then there exists a  Gomory-Chvátal cut  (c')Tx !⎣d'⎦ for  P  with

F " { x | cTx !⎣d⎦}  =  F " { x | (c')Tx !⎣d'⎦}  (equality on  F)
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P

F

c
T
x ! d

c
T
x ! ⎣d⎦

P

F

(c')Tx ! d'

(c')Tx ! ⎣d'⎦

Proof

Let  w.o.l.g.  P = { x | A'x ! b',  A''x ! b'' }  with  A'', b'' integer.

Let  F := { x | A'x ! b',  A''x = b'' }  (equations  A''x = b'' describes  F)

Let  cTx !⎣d⎦be the given Gomory-Chvátal cut for  F   

and let w.o.l.g.  d = max { cTx | x ∈ F }  (deepest cut with  cTx;  it exists since  P  is a polytope).

Duality theorem  =>  the  dual LP has an optimal solution

=>  there are  y' " 0  and  y'' unconstrained with

(y')TA' + (y'')TA'' = cT      (*)
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(y')TA' + (y'')TA'' = cT      (*)

(y')Tb' + (y'')Tb'' = d      (**)

We now construct  c'  and  d'  from  y''

(c')T := cT - (⎣y''⎦)TA''  =  (y')TA' + (y'' - ⎣y''⎦)TA''   because of  (*)

                    integer " 0         " 0

d' := d - (⎣y''⎦)Tb''  =  (y')Tb' + (y'' - ⎣y''⎦)Tb''       because of  (**)

c  is integer as part of a  Gomory-Chvátal cut, (⎣y''⎦)TA'' is integer  =>  c' integer

(c')Tx ! d'  is a valid inequality for  P

because  (c')Tx  =  (y')TA'x  + (y'' - ⎣y''⎦)TA''x  !  (y')Tb' + (y'' - ⎣y''⎦)Tb''  =  d'

       " 0 " 0

Definition of d'  =>  d = d' +  (⎣y''⎦)Tb''

integer since  b''  is integer 

=>  ⎣d⎦ =  ⎣d'⎦+ (⎣y''⎦)Tb''

Equality on  F

F " { x | (c')Tx !⎣d'⎦}  

=  F " { x | (c')Tx !⎣d'⎦,        (⎣y''⎦)TA''x  = (⎣y''⎦)Tb'' }

         fulfilled in  F  because of  A''x = b''     
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         fulfilled in  F  because of  A''x = b''     

=  F " { x | (c' + (⎣y''⎦)TA'')Tx  !  (⎣d'⎦ + ⎣y''⎦)Tb'' }

=  F " { x | cTx  !  ⎣d⎦ }     !

Proof of Theorem 7.25  

(cutting plane proofs for rational polytopes  P = { x ∈ R! | Ax ! b }  without integer points)

Induction on dim(P)

Inductive base  

P = Ø 

=>  statement follows from Farkas' Lemma 7.21 (3)

dim(P) = 0

=>  P = {x*}  and  x*  is not integer. 

=>  there is an integer vector  w  such that  wTx*  is not an integer  (set wi := 1 for one non-integer entry 

of  x*  and  wi := 0  otherwise). 

Let  t  be such that the hyperplane  H = { x | wTx = t }  contains  x*  (can easily be achieved by 

translation).

wTx*  not integer  =>  t = wTx*  not integer
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wTx*  not integer  =>  t = wTx*  not integer

=>  wTx ! t  is  valid for  P,  but  P':= P " { x | wTx !⎣t⎦}  = Ø

Farkas Lemma 7.22  =>  there is cutting plane proof for  wTx !⎣t⎦ from  Ax ! b

P' = Ø  =>  (Farkas Lemma 7.21 (3))  there is cutting plane proof for  0Tx ! -1  from  Ax ! b  and  wTx 

!⎣t⎦

Inductive step to  dim(P) " 1

Let  wTx ! r,  w  integer, be an inequality that defines a proper face of  P.

Let  P':= { x ∈ P | wTx !⎣r⎦}

w
T
x !⎣r⎦

w
T
x ! r

Case 1:  P' = Ø

Farkas Lemma 7.22  =>  we can prove  wTx ! r  from  Ax ! b 

Farkas Lemma 7.21  =>  we can prove  0Tx ! -1  from  Ax ! b, wTx !⎣r⎦

Case 2:  P' $ Ø

Let  F := { x ∈ P' | wTx = ⎣r⎦}  =>  F  is a face of  P'
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Let  F := { x ∈ P' | wTx = ⎣r⎦}  =>  F  is a face of  P'

w
T
x =⎣r⎦F

Claim: dim(F) < dim(P)

because: 

either  F  is a proper face of  P  (if  r  is integral)

or  wTx  ! ⎣r⎦ cuts off something from  P, i.e.,  P  contains vectors that do not satisfy  wTx  = ⎣r⎦

=>  we have a lower dimension in both cases

FI  empty, inductive assumption 

=>  there is a cutting plane proof for  0Tx ! -1  from  Ax ! b, wTx !⎣r⎦, - wTx ! -⎣r⎦

Use the cutting plane  0Tx ! -1  for  F  several times and apply the  Rotation Lemma each time 
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P

F

P

F

P  polytope  =>  min { wTx | x ∈ P }  is finite  =>

Repeating the arguments with  P'' :=  { x ∈ P | wTx !⎣r⎦- 1 }  etc.  leads after finitely many steps to a 

cutting plane proof for an inequality  wTx ! t  with   { x ∈ P | wTx ! t }  = Ø

=>  have shown a reduction to Case 1   !

Proof of Theorem 7.24  (cutting plane proofs for rational polytopes)

Case 1:  PI = Ø

Theorem 7.25  =>  there is a cutting plane proof for  0Tx ! -1 

P  is a polytope  =>  r := max { wTx | x ∈ P }  is finite



7. Integer linear optimization
7.5 Cutting plane algorithms

46-21

P  is a polytope  =>  r := max { wTx | x ∈ P }  is finite

=>  wTx ! r  is a valid inequality for  P

Farkas' Lemma 7.22  =>  there is a cutting plane proof for  wTx ! r  

w  integer  =>  wTx !⎣r⎦  is Gomory-Chvátal cut

adding  wTx !⎣r⎦and  0Tx ! -1  gives  wTx ! ⎣r⎦-1

repeated addition of  0Tx ! -1  gives  wTx ! t' ! t  in finitely many steps

Case 2:  PI $ Ø

P  is a polytope  =>  r := max { wTx | x ∈ P }  is finite

w  integer  =>  wTx !⎣r⎦  is  a  Gomory-Chvátal cut for  P

let  P' :=  { x ∈ P | wTx !⎣r⎦} 

we are done if ⎣r⎦! t  

So assume ⎣r⎦ >  t

Let  F := { x ∈ P' | wTx =⎣r⎦}  =>  F  is a face of  P'

F  contains no integer points, as  wTx  !  t  is valid for  PI  and  t  < ⎣r⎦ 

Theorem 7.25  =>  for  F, there is a cutting plane proof of  0Tx ! -1  from  Ax ! b, wTx =⎣r⎦

Rotation Lemma  for  F  and  P' =>  there is a cutting plane proof of an inequality  cTx !⎣d⎦for  P  from  Ax ! 

b, wTx !⎣r⎦ such that  P' " { x | cTx !⎣d⎦, wTx =⎣r⎦}  =  Ø 
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b, wTx !⎣r⎦ such that  P' " { x | cTx !⎣d⎦, wTx =⎣r⎦}  =  Ø 

So, after applying this sequence of cuts to  P',  we have  wTx ! ⎣r⎦- 1.

Repeating this argument eventually gives  wTx ! t' ! t, completing the proof.    !

Chvátal closure and Chvátal rank

Cutting plane proofs may use already generated cutting planes. We consider now what happens, if one can only 

use the initially given cutting planes  Ax ! b

Let  P = { x ∈ R! | Ax ! b }  be a rational polytope.  If one adds to  P  all Gomory-Chvátal cuts  yTAx ! ⎣yTb⎦ 

with  y " 0,  yTA  integer, one obtains the  Chvátal closure  P'  of  P.

7.27 (Properties of the Chvátal closure)

The Chvátal closure of a rational polytope is again a rational polytope.  In particular,  it has a linear description 

using only the given inequalities  Ax ! b  and finitely many Gomory-Chvátal cuts.

Proof

Let  P = { x | Ax ! b }  with  A  and  b  integer

Set  P' :=  P " { x | yTAx ! ⎣yTb⎦ with  y " 0,  yTA integer }.  Then:
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Set  P' :=  P " { x | yTAx ! ⎣yTb⎦ with  y " 0,  yTA integer }.  Then:

(7.13) P' = P " { x | yTAx ! ⎣yTb⎦ with  y " 0,  yTA integer,  0 ! y < 1 } 

Proof of  (7.13):

Let  wTx  !⎣t⎦ be a  Gomory-Chvátal cut with  y " 0,  yTA = w,  yTb = t

Let  y' := y -⎣y⎦ be the fractional part of y. Then  0 ! y' < 1

Let  w' := (y')TA  =  yTA - (⎣y⎦)TA  =  w - (⎣y⎦)TA  

=>  w' is integer, as  w  and  A  are integer. 

Let  t' := (y')Tb  =  yTb - (⎣y⎦)Tb  =  t - (⎣y⎦)Tb

=>  t  and  t'  differ by an integer number, namely by  (⎣y⎦)Tb

=>  wTx  !⎣t⎦is obtained as sum of

(w')Tx        ! ⎣t'⎦ <--    formed according to (7.13)

   + (⎣y⎦)TAx  !  (⎣y⎦)Tb <--   redundant as

non-negative linear combination of the rows of Ax ! b

=>  the inequalities specified in (7.13) form the Chvátal closure

There are only finitely many inequalities of the form (7.13)

Denote the entries of matrix  A  by aij  and let  Aj  be the j-th column of A

0 ! y < 1  =>  yTAj  ∈  [ -%i |aij|, %i |aij| ] 
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0 ! y < 1  =>  yTAj  ∈  [ -%i |aij|, %i |aij| ] 

yTAj  integer   =>  there are only finitely many such  yTAj 

All inequalities of the form (7.13) have integer coefficients

=>  They are again rational  !

Iterating the Chvátal closure operation defines a sequence of Chvátal closures

P  =  P(0)  &  P(1)  &  P(2)  &  ...  &  PI    

7.28 Theorem (The Chvátal closure operation terminates)

Let  P  be a rational polytope. Then there is  k ∈ N  with  PI  = P(k).

In particular, cutting plane algorithms with a good choice of Gomory Chvátal cuts terminate after finitely many 

steps.

Proof

PI  is a polytope and can thus be described by finitely many inequalities (Minkowski's Theorem).

Each of these inequalities has a cutting plane proof of some finite length  r  with inequalities only from 

finitely many  P(i)  (i ! r)

=> the maximum of these  r  shows the statement  !
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Gomory has specified such a good choice of Gomory Chvátal cuts already in 1960.

The smallest  k  with  PI  = P(k)  is called the Chvátal rank of P.  It can be interpreted as a measure of complexity 

of the integer hull of polytopes.  Already in  R!  there are examples that the Chvátal rank can become 

arbitrarily large. For 0/1-polytopes in R! is is bounded by  6n3log n.

7.29 Example  (A polytope with Chvátal rank 2)

The initial polytope  P  

P  is given by

      - 2 x1 + x2  !  0 (1)

 2 x1 + x2  !  6 (2)

        - x2  ! -1 (3)
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P

The first Chvátal closure  P(1) 

yT = (0, 1/2, 1/2)   gives  x1  !  5/2  =>  x1  !  2

yT = (1/2, 0, 1/2)  gives  - x1  !  - 1/2  =>  - x1  !  - 1

yT = (5/6, 1/3, 1/6)  gives  - x1 + x2  !  11/6  =>  - x1 + x2  !  1

yT = (1/3, 5/6, 1/6)  gives  x1 + x2  !  29/6  =>    x1 + x2  !  4
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P(1)

x2  !  2  can not be derived from  Ax ! b

the general form of a Gomory-Chvátal cut is

(-2y1 + 2y2)x1 + (y1 + y2 - y3)x2  !⎣6y2 - y3⎦  

=>  -2y1 + 2y2 = 0,  y1 + y2 - y3 = 1, ⎣6y2 - y3⎦ = 2

=>  y1 = y2,  y3 = 2y2 - 1,  ⎣4y2 + 1⎦ = 2  <=>  1 ! 4y2 < 2

=> y2 < 1/2  => y3 < 0  =>  a contradiction

The second Chvátal closure  P(2) 

x2  !  2  is obtained from  - x1 + x2  !  1,  x1 + x2  !  4  with  yT = (1/2, 1/2)
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P(2)

Concluding remarks

All statements on cutting plane proofs and Chvátal rank hold also for arbitrary rational polyhedra (see Korte & 

Vygen), but in general not for non-rational polyhedra. 

Gomory-Chvátal cuts are a standard tool for solving IPs in CPLEX. They are generated automatically in the 

Branch & Bound algorithm. Some of them directly in the root node from the LP-relaxation. Others for the 

subproblems in nodes of the Branch & Bound tree. 

For many combinatorial optimization problems, there are results on the Chvátal rank of particular inequalities:

The odd-set inequalities of the matching polytopes have Chvátal Rang 1 w.r.t. the LP formulation consisting only 

of the degree constraints:
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of the degree constraints:

x(δ(v)) = 1  for all  v ∈ V      degree constraints

%e ! R  xe  ! r     for all sets  R ! V(G)  with  |R| = 2r+1    odd-set inequalities

x " 0

The comb-inequalities of the TSP have Chvátal Rang 1 w.r.t. the 2-matching polytope (see Section 8.2)
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Separation is the problem to compute for a given point  x*  and a given polyhedron  Q  a hyperplane  H  that 

separates  x*  from  Q. 

Separation is needed in cutting plane algorithms. Then  Q = PI  (integer hull of a rational polyhedron  P) and  x*  is 

the LP optimum over P.

There is a strong relationship between separation and optimization. We define:

Optimization (OPT)

Input:  

rational polyhedron  Q,

c ∈ R!  such that  cTx  is bounded from below on  P 

Output:  

x* ∈ Q  with  x* = min { cTx | x ∈ Q }

Separation (SEP)

Input:

rational polyhedron  Q, 

y ∈ R!  
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Output:

"Yes"  if  y ∈ Q

aTx ! d ∈ R!  with  aTx ! d  for  all  x ∈ Q   but  aTy > d  if  y ∉ Q  (a separating hyperplane)

7.30 Theorem (Polynomial equivalence of separation and optimization; Grötschel, Lovász, Schrijver 1984)

(OPT)  can be solved in polynomial time  <=>  (SEP)  can be solved in polynomial time.

This holds also for !-approximations.

Without proof.

The following techniques are used for full-dimensional polyhedra:

"<="  ellipsoid method and duality theorem

"=>"  antiblocking of polyhedra

For details see 

M.#Grötschel, L.#Lovász, and A.#Schrijver, 

Geometric Algorithms and Combinatorial Optimization, 

Springer, Berlin, 2nd#ed., 1993.  !
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Remarks

If (OPT) can be solved in polynomial time, then cutting planes can be found in polynomial time.

If (OPT)  is NP-hard, then we will (if P $ NP) not be able to find all cutting planes in polynomial time. But we may 

still be able to find many.

Therefore one uses in practice polynomial algorithms for constructing cutting planes until no more are found. 

Then one branches on fractional variables and looks again for cutting planes for the resulting subproblems, etc. 

This combination of Branch & Bound with cutting plane algorithms is called Branch & Cut. We will see examples in 

Chapter 8.

Instead of the ellipsoid method (which has proven to be inefficient in practice) one uses the dual simplex 

algorithm. The dual simplex algorithm can easily accommodate new cutting planes as additional constraints.
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49-1

Goal of this chapter

Develop an abstract view on combinatorial optimization problems in order to describe induced polytopes in a 

unified way.

An instance of an (abstract) combinatorial optimization problem is a triple  (E, F, c)  where

E  is a finite set, the ground set  (e.g. the set of edges of a graph)

F  is the set system of feasible solutions  F ! E  (e.g. the set system of all matchings  M ! E(G))

c : E -> R  with c(F) := %e # F c(e)  computes the value of feasible solution  F  (e.g. the weight of a matching M) 

The polytope  PF   induced by  (E, F c)  is obtained as follows.

For a set F ! E  we consider the incidence vector  xF ∈ R!   defined by 

!
"
# !"

�
# # ∈ "

$ # �∈ "

We interpret  c  as vector  c ∈ R!   with  ce := c(e)  

and write for arbitrary vectors  x ∈ R!  

x(F) := %e # F xe 

Then    PF  := conv { xF | F ∈ F }, 

i.e., it is the convex hull of all incidence vectors  xF  of feasible solutions  F ∈ F 
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Then    PF  := conv { xF | F ∈ F }, 

i.e., it is the convex hull of all incidence vectors  xF  of feasible solutions  F ∈ F 

Minkowski's Theorem yields:  

  PF  is a polytope, and the vertices of PF  are incidence vectors of feasible solutions

=>  there is a system of linear inequalities  Ax ! b, x " 0  whose set of solutions is  PF   

(the so-called linear description  of PF )    

=>  the optimum of  (E, F, c)  is attained in a vertex of Ax ! b, x " 0 

=>  we can solve (E, F, c)  with linear optimization, if we have a linear description  Ax ! b, x " 0  of  PF 

Problems:

How does one find linear descriptions? 

The proof of the Minkowski's Theorem is constructive, but "unsuited".

How large is the number of constraints? 

In general exponential, see the matching polytope,

but we only need a partial description for a vertex attaining the optimum

These questions are studied in combinatorial polyhedral theory (polyhedral combinatorics)
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Goal of this section

Illustration of some (partial) linear descriptions and of techniques how to prove them

The matching polytope

(E, F, c)  is given by 

E  =  edge set E(G) of an undirected graph

F  =  { M ! E | M is a matching } =: M   
c(e) =  non-negative edge weight of e

 PM   := conv { xM | M ∈ M }  is called the  matching polytope of graph  G

8.1 Theorem (linear description of the matching polytopes)

In bipartite graphs,  PM  has the linear description

x(δ(v))  !  1 for all vertices  v

x " 0

In arbitrary graphs,  PM  has the linear description

x(δ(v))  !  1 for all vertices  v

%e ! R  xe  ! r for all odd sets  R ! V(G)  with  |R| = 2r+1, r " 1
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%e ! R  xe  ! r for all odd sets  R ! V(G)  with  |R| = 2r+1, r " 1

x " 0

Example

G bipartite

 

2

1

3

M = { Ø, {1}, {2}, {3}, {2,3} }

we have variables  x1, x2, x3  for the edges  1, 2, 3

then   PM := conv { xM | M ∈ M }  is a tilted pyramid with quadratic ground set in the  x2-x3 plane
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then   PM := conv { xM | M ∈ M }  is a tilted pyramid with quadratic ground set in the  x2-x3 plane

x
1

x
2

x
3

A linear description of  PM  is obtained as  (redundant inequalities for vertices of degree  1  deleted)

x1 + x2  !  1

x1 + x3  !  1

xi " 0

G  not bipartite

2

1

3

M = { Ø, {1}, {2}, {3} }

we have variables  x1, x2, x3  for the edges  1, 2, 3



8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-4

we have variables  x1, x2, x3  for the edges  1, 2, 3

then   PM := conv { xM | M ∈ M }  is a tetrahedron

x
1

x
2

x
3

The inequalities for the bipartite case are fulfilled by x := (1/2, 1/2, 1/2)T, but  x ∉  PM   

So the additional inequalities for odd sets are needed, in this case

x1 + x2 + x3 !  1

The proof uses in both cases the following ideas

(1)  The inequalities are valid for PM, i.e.,   PM !  { x | Ax ! b, x " 0 }

(2)  The optimization problem

max  cTx  subject to inequalities  Ax ! b, x " 0

always attains its optimum in an incidence vector  xM, M ∈ M 

(this can e.g. by complementary slackness or the primal-dual algorithm)

(3)  Lemma 3.5  (for each vertex  x  there is an objective function  c  such that the optimum is obtained in  x  
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(3)  Lemma 3.5  (for each vertex  x  there is an objective function  c  such that the optimum is obtained in  x  

only)

(2), (3)  =>  every vertex of the linear description is an incidence vector  xM, M ∈ M  

=>  { x | Ax ! b, x " 0 }  !  PM
The polytope of antichains of a partial order

Basic facts about partial orders

A (finite) partial order  (E, <)  is given by 

a (finite) ground set  E  and 

a binary relation  <  on  E  with 

a < b  and  b < c  =>  a < c  (<  is transitive)

a < b  =>  a $ b  (<  is irreflexive)

We represent partial orders by edge diagrams

= acyclic digraph  G = (V, E)  with

E(G) = ground set of the partial order

e < e'  :<=>  there is a directed path from  head(e)  to  tail(e')

head(e) = head(e')  for all minimal elements  e, e' of the partial order  (E, <) 

tail(e) = tail(e')  for all maximal elements  e, e' of the partial order  (E, <) 
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tail(e) = tail(e')  for all maximal elements  e, e' of the partial order  (E, <) 

(every partial order is an induced suborder of an edge diagram)

Example:

1

2

3
4

5

E = { 1, 2, 3, 4, 5 }  and  1 < 4,  1 < 3 < 5,  2 < 5

a, b ∈ E  are called comparable  :<=>  a < b  or  b < a

chain  =  set of pairwise comparable elements

in the example,  Ø  {3}  {1, 5}  {1,4}  {1,3,5}  are chains,  the last two are maximal chains (i.e., !-maximal)

a, b ∈ E  are called incomparable  :<=>  a, b  are not comparable

antichain  =  set of pairwise incomparable elements

in the example,  Ø  {3}  {2, 3}  {4,5}  {2,3,4} are antichains, the last two are maximal antichains (i.e., !-maximal)

Combinatorial optimization problem:

Compute an antichain of maximum weight w.r.t. weights  c(e) " 0
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Compute an antichain of maximum weight w.r.t. weights  c(e) " 0

Application: project scheduling

partial order = processing structure of a construction project

chain = must be done sequentially

antichain = may be done simultaneously

weight of an antichain = amount of required resources if all jobs are processed simultaneously

maximum weight = maximum amount of required resources

(E, F, c)  is given by 

E = edge set  E(G)  of the edge diagram of the partial order

F  =  { A ! E | A is an antichain } =: A   
c(e) =  non-negative edge weights of  e

 PA := conv { xA | A ∈ A }  is called the  antichain polytope of the partial order

Example
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x1

x2

x3

"pyramid"
1

2
3

Linear description of PA 

Necessary condition: every chain contains at most one element of any antichain.

As inequality:   x(K) ! 1  for every chain  K

8.2 Theorem (Linear description of the antichain polytope)

PA  has the linear description

x(K) ! 1  for every chain  K

x " 0

Proof

(1)  all inequalities are valid for the antichain polytope

Let  x ∈ PA   and  K  be a chain

=>  x is a convex combination of vertices  of PA ,  i.e, of incidence vectors  xA  of antichains  A

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-9
Let  x ∈ PA   and  K  be a chain

=>  x is a convex combination of vertices  of PA ,  i.e, of incidence vectors  xA  of antichains  A

=>  each incidence vector xA  fulfills  xA(K) ! 1 

=>  the convex combination  x  fulfills  x(K) ! 1 

(2)  The LP given by the inequalities attains its optimum on incidence vectors of antichains

The LP is given by

(P) max  cTx  s.t.      x(K) ! 1  for every chain  K

x " 0

The dual LP is

(D) min 1Ty  =  %K yK  s.t. %K : e #K  yK  "  ce   for all  e ∈ E

yK  " 0    for all chains  K

Interpreting  yK  as  "multiple occurrences" of chain  K ,  the dual (D) says:

find as few as possible chains (multiple occurrences permitted)  such that each element e  is "covered" at 

least  ce  times

=>  consider only maximal chains

=>  %K yK  is a flow in the edge diagram  G  w.r.t. lower capacities  ce 

Example:

G with lower capacities
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G with lower capacities

2

1

2
1

1
c
e

a covering with chains

yK = 2 yK = 1

yK = 1

the interpretation of  %K yK  as flow

3

1

2
1

3

=>  we can apply the Min-Flow-Max-Cut Theorem

Similar to the Max-Flow-Min-Cut Theorem of ADM I:
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Similar to the Max-Flow-Min-Cut Theorem of ADM I:

The minimum flow value in an s,t-network with lower capacities ce and upper capacities ue 

equals the maximum capacity  cap(X)  of an s,t-cut  X

In this case, the capacity of an s,t-cut  X  with  s ∈ X  defined as

!"#!$" #
�

%∈&$!$"

!% !
�

%∈&!!$"

'%

In the edge diagram all upper capacities are  &  and the flow value is bounded from below

=>  the maximum capacity of a cut is finite

=>  a cut of maximum capacity has only forward edges, i.e.,  δ-(X) = Ø

=>  A := δ+(X)  is an antichain  (otherwise  δ-(X) $ Ø)  with weight =  maximum capacity of a cut

Conversely, every maximal antichain  A  defines a cut  X  as 

X := set of head vertices of edges in  A  and of all vertices of edges  e  with  e < a for some  a ∈ X.

Then  A := δ+(X)

So:

optimum value of (P)  =  optimum value of (D)

= minimum flow value = maximum capacity of an  s,t-cut

= maximum weight of an antichain
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= maximum weight of an antichain

=>  optimum of (P) is attained by an incidence vectors of an antichain

(1) and (2) prove Theorem 8.2 by the same arguments as for the matching polytope.  ! 

8.3 Remark

(P) and (D) correspond to a weighted version Dilworth's Theorem

Theorem of Dilworth:

minimum number of chains covering all elements of a partial order

= maximum cardinality of an antichain

The traveling salesman polytope in the symmetric, complete case

Consider the TSP on an undirected, w.o.l.g. complete graph  Kn  with edge costs  c(e) " 0.

Then  (E, F, c)  is given by 

E = edge set  E(Kn) 

F  =  { T ! E | T is a TSP-tour }    
c(e) =  non-negative edge weight of e

 PF := conv { xT | T is TSP-tour }  is called the  TSP polytope and is denoted by  Qn
TSP  
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 PF := conv { xT | T is TSP-tour }  is called the  TSP polytope and is denoted by  Qn
TSP  

The vertices must fulfill

x(δ(v))  =  2  for all vertices  v     (8.1)

!! "#$"%&
'()# ! $ " & !

&"& " $#

%    dim(Qn
TSP) = m − nOne can even show that

=>  (8.1) defines a linear system of maximum rank whose set of solutions contains  Qn
TSP 

Constraints (8.1) still permit subtours. 

These can be avoided by the subtour elimination constraints:

x(E(W))  !  |W| - 1   for all  Ø $ W % V     (8.2)

where  E(W)  = set of edges with both end points in  W

Furthermore (non-negativity constraints, upper bounds)

0 ! xe ! 1   for all edges  e      (8.3)

Qn
TSP  is contained in the following polytopes  (which are relaxations of Qn

TSP)
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Qn
TSP  is contained in the following polytopes  (which are relaxations of Qn

TSP)

in the 1-tree polytope  (= convex hull of the incidence vectors of 1-trees), see Section 7.4

in the 2-matching polytope  Qn
2M  (= convex hull of the incidence vectors of perfect 2-matchings)

perfect 2-matching  =  edge set  F  such that every vertex is incident to exactly 2 edges from  F

For the perfect 2-matching polytope, a linear description is known for arbitrary graphs (Edmonds 1965)

Qn
2M   =  { x ∈ R!  |  0 ! xe ! 1   for all  edges  e

  x(δ(v))  =  2  for all vertices  v

         

!�

"!"

##$#%"$ ! "%"" %
&

'
#! # &$ ! &'()*+,) #(-)$k  odd  (8.4)          

with  W0, W1, ..., Wk ! V 

|W0 " Wi | = 1 = |Wi - W0|,  

Wi " Wj = Ø  for i, j > 0       }
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W
0

W
1

W
2

W
k

The 2-matching inequalities can be generalized to comb inequalities for the TSP polytope

Let  G  be a complete graph, and  W0, W1, ..., Wk ! V  with

|W0 " Wi | " 1 i = 1, ..., k

|Wi - W0|   " 1 i = 1, ..., k

Wi " Wj = Ø  for i, j > 0  

k " 3, odd

Then
!�

"!"

##$#%"$ ! "%"" %
!�

"!"

#"%"" # &$ #
! % &

'
#(&)$

defines valid inequalities for the TSP polytope

The comb inequalities have Chvátal rank 1 w.r.t. the 2-matching polytope.
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8.4 Theorem (Inequalities for the TSP polytope, Chvátal 1973, Grötschel & Padberg 1979)

For the TSP polytope  Qn
TSP  the following statements hold for  n " 6

(a)  dim(Qn
TSP)  =  m - n

(b)  the inequalities (8.3) define facets for every edge  e

(c)  the subtour elimination constraints (8.3)  are facets if  3 ! |W| ! n-3

(d)  all comb inequalities (8.5) are facets

without proof  ! 

8.5 Remark

(a) - (d) do not constitute a linear description, and none is known.

for  Q10
TSP ,  more than 50 billion different facets are known, for  Q120

TSP   there are more than  10179 

=>  complete linear descriptions become too large to be solved by LP algorithms directly

But one can use partial linear descriptions in Branch & Cut. For a fixed objective function one needs only 

cutting planes that lead to an optimal vertex. Other parts of the polytope are then of no interest.
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Goal of this section

Discussion of a concrete branch & cut algorithm for the TSP problem

Examples for polynomial separation

Examples of how to show that inequalities define facets

A branch & cut algorithm for the TSP problem

The algorithm starts with the LP

(P) min cTx  s.t.   

x(δ(v))  =  2 for all vertices  v (8.1)

0 ! xe ! 1   for all edges  e (8.3)

and first adds subtour elimination inequalities and then comb inequalities 

(first with a fast heuristic, then with an exact algorithm).

When no more such inequalities are found, one switches to branch and bound  or a general cutting plane 

algorithm

A flow diagram of the algorithm



8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-2

take (P) as current LP

solve the current LP

solution x is a tour? stop
yes

find subtour- or comb-
inequalities with a heuristic

no

found a cut? add it to
the LP

yes

find subtour- or comb-
inequalities with an exact algo

no

found a cut?

use branch & bound or a general 
cutting plane algorithm

no

yes
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take (P) as current LP

solve the current LP

solution x is a tour? stop
yes

find subtour- or comb-
inequalities with a heuristic

no

found a cut? add it to
the LP

yes

find subtour- or comb-
inequalities with an exact algo

no

found a cut?

use branch & bound or a general 
cutting plane algorithm

no

yes

This principle is used recursively in the nodes of the B&B tree. When good lower bounds are available one usually 

needs only a few iterations in the final step.

This method can solve TSP problems with up to several thousands vertices exactly.

With additional techniques one can solve TSP problems with 100.000 and more vertices, see Concorde.

http://www.tsp.gatech.edu/concorde/index.html

Branch & Cut motivates

the construction of fast separation algorithms

the search for valid inequalities or facets

Designing fast separation algorithms

this often leads to other combinatorial optimization problems

Example 1: Chain inequalities for the antichain polytope
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Example 1: Chain inequalities for the antichain polytope

They have the form 

x(K) ! 1 for every chain  K

For a vector  x*,  the separation problem for chain inequalities can be solved as follows:

(1)  compute the longest chain  K*  w.r.t. weights given by  x*   

(2)  if  x*(K*) > 1,  then  x(K*) ! 1  is an  x* separating chain inequality

if  x*(K*) ! 1,  then  x*  fulfills all chain inequalities

The longest chain can be computed in the edge diagram as longest path  (this is  polynomial, as the edge 

diagram is acyclic)

Example 2: Subtour-elimination inequalities for the TSP polytope

we assume that the following inequalities are satisfied

x(δ(v))  =  2 for all vertices  v   degree constraints  (8.1)

0 ! x ! 1 non-negativity and upper bounds  (8.3)

(which can be checked efficiently)

8.6 Lemma (Separation of subtour elimination inequalities)
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8.6 Lemma (Separation of subtour elimination inequalities)

Assume that  x* fulfills inequalities  (8.1)  and  (8.3)

Then there is an  x* separating subtour inequality

<=>  there is a cut  δ(X)  with  x*(δ(X)) < 2

Proof

Let  X  be a vertex set,  Ø $ X $ V. Then

x*(δ(X))  =  %v # X  %e # δ(v) xe*  - 2 %e ! X  xe* 

  =  %v # X  2  - 2 %e ! X  xe*   because of   (8.1)

  =  2|X| - 2 %e ! X  xe*   =  2|X| - 2x*(E(X))

So  x*(δ(X))  +  2x*(E(X))  =  2|X|   (*)

"<=>"

x* violates the subtour inequality w.r.t.  X

<=>  x*(E(X))  > |X| - 1  <=>  2x*(E(X))  >  2|X| - 2  <=>  x*(δ(X))  <  2   with (*)   ! 

8.7 Consequence (Separation of subtour elimination inequalities)

Given (8.1), the separation problem for subtour-elimination inequalities leads to computing a cut  δ(X)  with 

minimum capacity. This can be done by solving a sequence of s,t-max-flow problems.
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Without proof   ! 

Searching for valid inequalities or facets

We demonstrate this for the antichain polytope

8.8 Theorem (Facets of the antichain polytope)

Consider the antichain polytope  PA.  Then:

xe = 0  defines a facet for every edge  e.

x(K) = 1  defines a facet  <=>  K  is a maximal chain.

Proof

(1)  dim(PA)  =  |E|, i.e.,  PA  has full dimension

The unit vectors correspond to singleton antichains and are linearly independent.

Because of  (1),  a facet is a supporting hyperplane  H whose cut with  PA  has dimension  |E| - 1 

=>  to show this dimension, one must find  m := |E|  vectors  x0, ..., xm-1  in  H " PA  such that  xi - x0  are 

linearly independent  (i = 1, ..., m-1)

(2)  xe = 0  defines a facet for every edge  e

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-7

set  x0 := 0,  xi := i-th unit vector except for  i = e

=>  all these vectors lie on the hyperplane   xe = 0 

and the  xi - x0  are linearly independent 

(3)  x(K) = 1  defines a facet  <=>  K  is a maximal chain

"<="

let  K = { e1, ..., ek }  and  E-K = { ek+1, ..., em } 

K  is maximal  =>  for every  ej ∈ E-K  there is  ei(j) ∈ K  such that  ej, ei(j)  are incomparable

=>  {e1}, ..., {ek}, {ek+1,ei(k+1)}, ..., {em,ei(m)}  are antichains 

and their incidence vectors  y0, ..., ym-1  lie on the hyperplane  x(K) = 1

y0, ..., ym-1  are obviously linearly independent

=>  yi - y0  are linearly independent  =>  x(K) = 1  is a facet

"=>"

Consider  a chain  K  such that  x(K) = 1  is facet, but  K  is not maximal.

Let  K'  be maximal chain  with  K % K',  and let  e' ∈ K'-K.

Claim: { x(K) = 1 } " PA   !  { x(K') = 1 } " PA 

let  x ∈ PA  and  x(K) = 1

K ! K'   =>   ( x(K) = 1  =>  x(K')  "  1 )
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K ! K'   =>   ( x(K) = 1  =>  x(K')  "  1 )

but since  x ∈ PA  we have  x(K') = 1  =>  x ∈ { x(K') = 1 } " PA  

Facets  H  define inclusions-maximal  sets  H " PA  among all faces of  PA
But the incidence vector of  {e'}  lies in  { x(K') = 1 } " PA  –  { x(K) = 1 } " PA , 

a contradiction  ! 
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Goals of this chapter

Demonstrate on 3 selected techniques that LP-theory provides advanced methods to design approximation 

algorithms

Please repeat the chapter on approximation algorithm from ADM I 

Goals of this section

Approximation algorithms based on solving an LP with subsequent rounding to an integer solution

Proving approximation guarantees by the use of LP-duality and dual solutions

As an example, we consider WEIGHTED VERTEX COVER (WVC)

Instance

an undirected graph G with vertex weights  wv " 0

Task

Determine a vertex cover  C  of G  with minimum weight  %v # C  wv   

Example
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2

1

3
1 = wv 

2
2 C = green vertices

Simple rounding (for a minimization problem)

Algorithm Simple Rounding

Formulate the given instance  I  as  an integer program  (IP)

solve the LP-relaxation  (LP)  of (IP)  in polynomial time

Recall that approximation algorithms must run in polynomial time (in the encoding length <I> of I)

If (LP) has only polynomially many variables and inequalities in the encoding length of I, then it can be solved 

in polynomial time with one of the known polynomial LP-algorithms (see Chapter 10).

However,  (LP) often has exponentially many inequalities. Then we must show that the separation problem for 

these inequalities is solvable in polynomial time. Theorem 7.26 then shows that (LP) can be solved in 

polynomial time.

Round the fractional optimal solution of (LP) to a feasible solution of (IP)

This rounding is problem dependent.  It need not work in general.
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9.1 Lemma (Approximation guarantee for simple rounding)

Let  A(I)  be the feasible solution of (IP)  obtained by rounding. 

Let  OPT(I)  be an optimal solution of the given instance  I   and let  LP(I)  be an optimal solution of the LP-

relaxation.

If  

A(I) !  ρ·LP(I)  for every instance  I,  

then algorithm "Simple Rounding" is a  ρ-approximation algorithm

Remark: it is common in the theory of approximation algorithms to use A(I), OPT(I)  both for the solution 

itself and for the value of that solution.

Proof

As (LP) is a relaxation of (IP), we have  LP(I) ! IP(I) = OPT(I)

=>  A(I) ! ρ·LP(I) ! ρ·OPT(I)  !  

 

Application to WVC

IP-formulation (IP)

Introduce 0/1-variables  xv  with  xv = 1  :<=>  v ∈ C
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Introduce 0/1-variables  xv  with  xv = 1  :<=>  v ∈ C

Then  WVC  is equivalent to the  IP

min   %v wvxv   

s.t. xu + xv  "  1  for every edge  e = (u,v)  of G

xv  ∈  { 0, 1 } for every vertex  v  of G

The LP-relaxation  (LP)  of (IP)

min   %v wvxv    

s.t. xu + xv  "  1  for every edge  e = (u,v)  of G

xv         " 0 for every vertex  v  of G

xv  " 0 is sufficient, since each optimal LP solution fulfills  xv ! 1  because of  wv " 0 

(LP) has only polynomially many inequalities and variables and can thus be solved in polynomial time with a 

polynomial LP-algorithm (see Chapter 10)

The rounding

let  x'  be an optimal solution of (LP)

round  x' to  x*  as follows: 
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Then:

x*  is feasible for (IP), i.e., a vertex cover

let  (u,v)  be an edge of G

=>  xu' + xv'  "  1   =>  xu' "  0.5  or  xv' "  0.5  =>  xu* =  1  or  xv* =  1

=>  the edge  (u,v)  is covered by  x* 

A(I) ! 2·LP(I)

xv* !  2xv'  =>  A(I)  !  2·LP(I)  as  wv " 0

So algorithm "Simple Rounding" is a 2-approximation algorithm for WVC

The use of dual solutions (for minimization problems)

9.2 Lemma (The use of dual solutions in approximation algorithms)

Let  (D)  be the dual LP of the LP-relaxation  (LP)  of (IP).

Let  dual(I)  be a feasible solution of (D)  for instance  I.

Let  A  be a polynomial algorithm that constructs a feasible solution  A(I)  of (IP)  with

A(I)  !  ρ·dual(I)  for every instance  I
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A(I)  !  ρ·dual(I)  for every instance  I

Then  A  is a  ρ-approximation algorithm

Proof:

weak duality theorem  =>  dual(I)  !  LP(I)

(LP)  is a relaxation of (IP)  =>  LP(I)  !  OPT(I)

So  A(I)  !  ρ·dual(I)  !  ρ·OPT(I)    !  

Remark

In contrast to Simple Rounding, the use of dual solutions need not solve an LP. It suffices that the algorithm 

constructs a feasible solution  A(I)  of (IP). The dual solution  dual(I)  is only needed in the proof of the 

inequality  

A(I)  !  ρ·dual(I) 

but not in the algorithm.

Application to WVC (Bar-Yehuda & Even 1981)

The LP-relaxation  (LP)  of WVC  (see above) is 

min   %v wvxv   
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min   %v wvxv   

s.t. xu + xv  "  1  for every edge  e = (u,v)  of G

xv         " 0 for all vertices  v  of G

The associated dual LP  (D)  has a variable  ye  for every edge  e  of G  and reads

max %e # E  ye   

s.t. %e # δ(v)  ye  !  wv  for every vertex  v  of  G

ye  " 0 for all edges  e  of  G

It computes edge weights  ye  " 0  such that the total weight in the graph gets as large as possible,  but the 

weight in every "star"  δ(v)  is at most  wv  (i.e. it computes a  w-packing  with maximum value)

The special case  wv = 1  for all vertices

Algorithm  G  (Gavril, 1974, see ADM I)

Input

an instance  I  of  VERTEX COVER

Output

a vertex cover  G(I)  with  G(I)  !  2·OPT(I)

Method

compute an  !-maximal matching  M  of  G
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compute an  !-maximal matching  M  of  G

set U := both endpoints of every matching edge from M 

return  U

Proving the approximation guarantee with the use of dual solutions

The set  U computed by the algorithm is a vertex cover

otherwise  M  would not be  !-maximal

M is a dual feasible solution,  M = dual(I)

clear, since every star  δ(v)  contains at most one matching edge

G(I)  =  |U| = 2|M| = 2·dual(I)  =>  G(I)  !  2·dual(I)  =>  approximation guarantee  2  with Lemma 9.2   !  

The general case with arbitrary weights  wv " 0

Call a vertex  v  saturated  if  %e # δ(v)  ye  =  wv  

Algorithm  PACK

Input

an instance  I  of  WVC  with  E $ Ø  and  w.o.l.g.  wv > 0 for all  v
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an instance  I  of  WVC  with  E $ Ø  and  w.o.l.g.  wv > 0 for all  v

// vertices  v  with wv = 0  will be taken and PACK is only applied to the graph induced by the remaining 

vertices

Output

a vertex cover  PACK(I)  with  PACK(I)  !  2·OPT(I)

Method

set  C := Ø  and  ye  =  0  for all edges  e

repeat

choose an edge  e 

increase the value of the dual variable  ye  until one (or both)  endpoints of  e  are saturated

add the saturated endpoint(s) of  e  to  C 

delete the saturated endpoint(s) of  e  and all incident edges

until  no edges are left

return  C

Proving the approximation guarantee with the use of dual solutions

The set  C  computed by the algorithm  is a vertex cover
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The set  C  computed by the algorithm  is a vertex cover

an edge  e  is only deleted if at least one of its endpoints  u  is saturated

=>  u ∈ C  and  u  covers edge  e

The edge weights at the end of the algorithm constitute a dual feasible solution  dual(I)

clear, since  ye  "  0  and   %e # δ(v)  ye  !  wv  throughout the algorithm 

PACK(I) = %v # C  wv  !  2·%e # E  ye  = 2·dual(I)

=>  approximation guarantee  2  with Lemma 9.2

interpret the increase of  ye  by  k  as  paying  k $  to each endpoint of  e

=>  a vertex  v  has been paid  wv  when it enters the set  C 

=>  %v # C  wv  !  total payment to all vertices  =  2 %e # E  ye   !  
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Goals of this section

Illustrate approximation algorithms based on solving an LP with subsequent randomized rounding,

i.e., rounding with probabilities obtained from the optimal LP solution

We take MAX SAT as illustrative example, see ADM I, Chapter 9.4

A trivial randomized rounding for MAX SAT (see ADM I, chapter 9.4)

Algorithm Randomize (Johnson 1974)

Input

an instance of MAX SAT 

at least  k  literals (k " 1) per clause  Z

weight  c(Z)  per clause  Z

Output

a random truth assignment with expected performance  

E[ %Z c(Z) ]  "  (1 - 1/2k)·OPT(I)

Method

toss a fair coin for every Boolean variable xj and set
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xj := TRUE if the coin shows head

xj := FALSE if the coin shows number

return  the resulting random truth assignment

This algorithm is good for  k " 2 (it gives at least 3/4 of the optimal weight), but is bad for  k = 1 (where it gives 

only  1/2 of the optimal weight).

Randomized rounding based on an LP relaxation

The general principle of randomized rounding (Raghavan & Thompson 1987)

1.  Model the problem as an IP variables  xj ∈ { 0, 1 }

2.  Relax the IP to an LP 0 ! xj ! 1

3.  Solve the LP optimally values  xj´

4.  Round randomized

set  xj = 1  with probability  xj´ 

5.  Show that the resulting vector  x

is feasible for the IP

has a good expected approximation guarantee
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has a good expected approximation guarantee

Randomized rounding based on an LP relaxation for  MAX SAT (Goemans & Williamson 1993)

The IP

0/1 variable  yi = truth value of Boolean variable  xi   

0/1 variable  zj = truth value of clause  Cj   

Tj  =  set of unnegated variables in clause  Cj  

Fj  =  set of negated variables in clause  Cj  

The IP then is

max  %j wjzj   

 
s.t. ∑

i∈Tj

yi + ∑
i∈Fj

(1 − yi) ≥ zj

     yi  ∈  { 0, 1 },   zj ∈  { 0, 1 }

Randomized rounding

Let  (y*,z*)  be an optimal solution of the LP relaxation of the IP

Use  y*  for randomized rounding, i.e., set  
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Use  y*  for randomized rounding, i.e., set  

xi := TRUE with probability  yi*  

xi := FALSE with probability  1-yi* 

This trivially produced a truth assignment of the given instance.

Of course,  not all clauses will be satisfied (i.e., evaluate to TRUE).

The performance guarantee

Consider  w.o.l.g. the clause  Cj  =  x1 v x2 v ... v xk  (it is similar for negated variables and other indices).

Then

Prob[Cj is satisfied] = 1 −
k

∏
i=1

(1 − y∗i )

≥ 1 −
�

1 − 1
k

k

∑
i=1

y∗i

�k

since geometric mean ≤ arithmetic mean

≥ 1 −
�

1 − 1
k

z∗j

�k
because of the LP inequality

Now set
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f (z) := 1 −
�

1 − 1
k

z
�k

concave in z

and  

!!"" #$

�
% !

�
% !

%

#

�#
�
" &'()*+ '( ,

Hence  f(z) " g(z)  on the interval  [0,1]  if  f(z) " g(z)  for the endpoints  z = 0  and  z = 1  of the interval

Checking  z = 0:  f(0) = 0,  g(0) = 0

Checking  z = 1:  f(1) = g(1)

So  

Prob[Cj satisfied] ≥
�

1 −
�

1 − 1
k

�k
�

z∗j

=>   E(total weight of all satisfied clauses) 

! !"#
!

�
$ "

�
$ "

$

!

�!
�

�

"

#"$
∗
" !

�
$ "

$

%

� �

"

#"$
∗
"
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≥
�

1 − 1
e

�
OPT(I) since z

∗ is an optimal solution of the LP-relaxation

! !!"#$ ""#$%%&

So this algorithm achieves in expectation a performance guarantee of at least 0,623 of the optimum weight 

also for instances with only one literal in some clauses.

Combining both algorithms for  MAX SAT  

Toss a coin to decide which algorithm to use (Johnson or Randomized Rounding) and run the chosen algorithm.

This is again a randomized algorithm with an expected approximation guarantee of  (3/4)

Proof:

Consider  a clause  Cj  with  k  literals

Then

 
Prob[Cj satisfied] ≥ 1

2

�
1 − 1

2k

�
+

1
2

�
1 −

�
1 − 1

k

�k
�

z∗j
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≥ 1

2

�
1 − 1

2k

�
z∗j +

1
2

�
1 −

�
1 − 1

k

�k
�

z∗j since 0 ≤ z∗j ≤ 1

= f (k) · z∗j with f (k) :=
1
2

�
1 − 1

2k

�
+

1
2

�
1 −

�
1 − 1

k

�k
�

Now  f(1) = 3/4  and  f(x) " 3/4  on the interval [2,&]  (calculus)

0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3

0,5

0,75

1

1,25

1,5

1,75

=>  E(total weight of all satisfied clauses)  " 3/4 %j wjzj*  "  3/4 OPT(I)  !  
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Goals of this section

Introduction of the primal-dual scheme for constructing approximation algorithms

We demonstrate this on the network design problem

The network design problem

Instance

an undirected graph  G = (V, E)

edge costs   ce " 0  

connection requirements  rij  for any 2 vertices  i, j

Wanted  

an edge set  F ! E  with minimal cost  %e # F ce   such that

G' := (V, F)  contains at least  rij  pairwise edge disjoint paths  between  i and j for any 2 vertices  i, j  

The network design problem is NP-hard  (Karp 1972).

It arises in designing low-cost networks that can survive edge failures
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Construction of a VPN as special case (see Section 4.4)

Example

given vertices with requirements    a solution of the 

rij = 3 between colored vertices    network design problem

rij = 2 otherwise

A

B

B

A

C

C

   A

B

B

A

C

C

The solution "survives" up to 2 edges failures on connections between colored vertices and one edge failure on 

connections to a black vertex. The solution was the example VPN for the disjoint path problem in Section 4.4.
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connections to a black vertex. The solution was the example VPN for the disjoint path problem in Section 4.4.

A

B

B

A

C

C

A formulation of the network design problem as IP

set  f(S) := max { rij | i ∈ S, j ∉ S }  for every vertex set  S $ Ø, V  (demand of  S)

introduce a  0/1 variable  xe  for choosing edge  e 

(IP):

min %e cexe   

%e # δ(S)  xe  " f(S)   for all  Ø $ S % V   (cut conditions)
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%e # δ(S)  xe  " f(S)   for all  Ø $ S % V   (cut conditions)

xe ∈ { 0, 1 }  for all edges e

x  is a solution of (IP)  <=>  F = { e ∈ E | xe = 1 }  is a solution of the network design problem

"<="

trivial

"=>"

Max Flow Min Cut Theorem (applied to any pair i, j  with edge capacities  1)  +  cut constraints 

=>  there is a flow from  i  to  j  with value  " rij 

=>  there is an integer flow from  i  to  j  with value  " rij 

=>  there are rij  pairwise edge disjoint paths from  i to j

=>  the conditions in the (IP) are also sufficient   !   

Some special cases

Shortest s,t-paths

rst  = 1,  rij = 0  otherwise

f(S) = 1  if  |S " { s, t }| = 1,  f(S) = 0  otherwise

Minimum spanning trees
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Minimum spanning trees

rij = 1  for all pairs i, j

f(S) = 1  for all  Ø $ S % V,  f(S) = 0  otherwise

Minimum Steiner tree

rij = 1  for all  i, j ∈ T  (T = set of terminals that need to be connected)

f(S) = 1  if  S " T $ Ø  and T - S $ Ø,  f(S) = 0  otherwise

Generalized Steiner tree problem

:<=>  f(S) ∈ { 0, 1 }

The primal-dual scheme

It uses complementary slackness similar to the primal-dual algorithm of Chapter 6.

We recall it below in the form needed here:

Starting point are an LP  

(P) min %j cjxj   s.t.  %j aijxj " bi  for all i,   xj " 0  for all  j  

and the associated dual  

(D) max %i biyi   s.t.  %i aijyi ! cj  for all j,   yi " 0  for all  i  

Complementary slackness conditions then read
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Complementary slackness conditions then read

xj > 0  =>  %i aijyi = cj   (primal slackness condition)

yi > 0  =>  %j aijxj = bi   (dual slackness condition)

A primal feasible  x  and a dual feasible  y  are optimal  

<=>  x  and  y  fulfill these conditions  (Theorem 4.4)

The primal dual algorithm of Chapter 6 then runs through the following loop

! x  s.t. 
x, y  fulfill 

complementary 
slackness 

y = 0 

no Get direction 
of increase 

for dual 

yes Stop. 
x, y  are 
optimal 

The primal-dual scheme for approximation algorithms

Model the problem as IP 

Relax the IP to an LP  
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Relax the IP to an LP  

Relax the dual slackness condition  (yi > 0  =>  %j aijxj = bi)

Use the loop to construct a feasible solution  x  for the IP  and a dual feasible solution  y

Show that  x  and  y  fulfill the inequality   %j cjxj  !  α·%i biyi  

=>  α-approximation because of  Lemma 9.2

The primal-dual pair for the network design problem with f(S) ∈ { 0, 1 }

IP:

min %e cexe   

%e # δ(S)  xe  " f(S)   for all  Ø $ S % V   (cut constraints)

xe ∈ { 0, 1 }  for all edges e

LP relaxation = primal LP

min %e cexe   

%e # δ(S)  xe  " f(S)   for all  S % V   with  f(S) = 1

xe " 0 for all edges e

The condition xe ! 1  may be dropped, as it will hold in the optimum because of  ce " 0  

Dual LP
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Dual LP

max  %S:f(S)=1 yS   

 %S:e#δ(S)  yS  ! ce   for all  edges  e

 yS " 0 for all variables  yS

Call an edge  e  saturated if  %S:e#δ(S)  yS  = ce 

The primal slackness condition then says:  xe > 0  =>  e  saturated

The primal dual algorithm for  f(S) ∈ { 0, 1 }

Input

Instance of the network design problem with  f(S) ∈ { 0, 1 }

Output

Feasible solution  (V, A)  of the network design problem with performance guarantee  2

Method

Initialize all dual variables  yS := 0

Initialize the primal solution (as edge set A)  A := Ø

while  A  is not a feasible solution  do

let  C  be the set of all connected components  S  in the graph  (V, A)  of the edges of A  with  f(S) = 1

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-9

let  C  be the set of all connected components  S  in the graph  (V, A)  of the edges of A  with  f(S) = 1

increase  yS  for all  S ∈ C  by the same amount until some edge  e ∉ A  becomes saturated

add all saturated edges to  A 

remove redundant edges from  A  (this makes A  !-minimal feasible) // cleanup step

return  A

Example for Euclidean distances

Dual variables are represented by moats around the connected components  S ∈ C 
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Dual variables are represented by moats around the connected components  S ∈ C 

Initialize: A := Ø,  yS := 0  for all  S 

 

a

a b

b

b

c
c

rij  = 1  for  i,j = a,  i,j = b  and i,j = c

=>  initially, all connected components  S ∈ C  are singletons

Iteration 1
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a

a b

b

b

c
c

Iteration 2
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a

a b

b

b

c
c

The newly created connected component S (the two c-vertices) has f(S) = 0, 

so the associated dual variable  yS  will not grow in the next iteration.

Iteration 3
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a

a b

b

b

c
c

The newly created connected component S (the two c-vertices and the b-vertex) has  f(S) = 0, 

so the associated dual variable  yS  will grow in the next iteration.

Iteration 4
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a

a b

b

b

c
c

Iteration 5
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a

a b

b

b

c
c

This last iteration added 2 saturated edges to  A.

Cleanup step

The edge between a and b is redundant and is removed.
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a

a b

b

b

c
c

Performance guarantees of the primal dual scheme for f(S) ∈ { 0, 1 }
9.3 Theorem (Performance guarantee and runtime of the primal dual algorithm, Agarwal, Klein & Ravi 1991, 

Goemans & Williamson 1992)

The primal dual algorithm  for  f(S) ∈ { 0, 1 }  can be implemented with a runtime of  O(n2 log n).

The computed primal solution  A  fulfills  %e # A  ce  !  2·OPT(I),  i.e., the algorithm is a 2-approximation 
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The computed primal solution  A  fulfills  %e # A  ce  !  2·OPT(I),  i.e., the algorithm is a 2-approximation 

algorithm.

Proof 

with Lemma 9.4 and 9.5   (only the performance guarantee, not the runtime)   !  

The essential combinatorial inequality

The algorithm runs through iterations  k = 1, 2, ..., K

In iteration  k,   let

Ak  be the edge set at the start of that iteration

Ck  be the set of connected components that grow in iteration  k  (i.e.  f(S) = 1)

!k  be the value by which all  yS  with S ∈ Ck  grow

9.4 Lemma (Combinatorial inequality giving the approximation guarantee)

The primal dual algorithm is an  α-approximation algorithm if, in each iteration  k,  the inequality

%S # Ck
  |δ(S) " D|  ! α·|Ck|   

 holds  for every !-minimal feasible solution  D  containing Ak  

Interpretation of the combinatorial inequality:
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Interpretation of the combinatorial inequality:

Every !-minimal feasible superset  D  of  Ak  must add some edges for every cut  δ(S)  with  S ∈ Ck. 

The inequality says that the number of these edges is bounded by  α  times the number of these sets  S. 

So every iteration  k  adds  "on average" at most  α  edges  to such a set  S. 

Proof for  f(S) ∈ { 0, 1 } :

Let  y  be the dual solution constructed by the algorithm.

Let  A  be the primal solution constructed by the algorithm.

cleanup  step  =>  A  is contained in a set  D  for which the combinatorial inequality holds by assumption.

=>  the combinatorial inequality is also true for  A

For the value of  A  we obtain:  

∑
e∈A

ce = ∑
e∈A

∑
S:e∈δ(S)

yS because of primal slackness

= ∑
S : δ(S)∩A �= ∅

|A ∩ δ(S)| · yS rearranging terms

= ∑
S : δ(S)∩A �= ∅

|A ∩ δ(S)| · ∑
k : S∈Ck

εk total growth of yS  
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= ∑
k

�

∑
S∈Ck

|A ∩ δ(S)|
�

εk rearranging terms

≤ ∑
k
(α · |Ck|) εk because of the combinatorial inequality

= α ∑
k
|Ck|εk = α ∑

S
yS

!  α·OPT(I)  because of  Lemma 9.2   !  

9.5 Lemma (Combinatorial inequality for  f(S) ∈ { 0, 1 })

For  f(S) ∈ { 0, 1 },  the primal dual algorithm fulfills the combinatorial inequality with  α = 2.

Proof:

Consider  iteration  k  and an  !-minimal feasible superset  D  of  Ak
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a

a b

b

b

c
c

Contract the connected components of  (V, Ak) to "super nodes"

D is  !-minimal feasible,  f(S) ∈ { 0, 1 }  =>  D  is a forest in the contracted graph

Color the super nodes corresponding to sets  S ∈ Ck  red, the others blue
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a

a b

b

c
c

Vertex  v = S ∈ Ck  =>   |δ(S) " D|  =  degree d(v)  

=>  the combinatorial inequality reduces to

     %v red d(v)  !  2·(# red vertices)  in the contracted graph

Claim: no blue vertex has degree 1

otherwise the corresponding edge would be necessary for feasibility

=>  the vertex should be red

Delete blue vertices with degree  0   (they do not influence the inequality that we must show).

The resulting subgraph (which still is a forest) fulfills:
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The resulting subgraph (which still is a forest) fulfills:

 %v red d(v)  =  %v red or blue d(v)  -  %v blue d(v) 

     !  2·(# red + # blue)  -  %v blue d(v)   because #edges ! #vertices in a forest, 

     !  2·(# red + # blue)  - 2·(# blue)   because of the claim

     =  2·(# red)   !  

Performance guarantees in the primal dual scheme for arbitrary values f(S)

Goemans, Mihail, Vazirani & Williamson 1993

Iteratively use a variation of the primal dual algorithm

This gives a  2·H(R)-approximation algorithm with 

R := maxij rij    and  

H(R) := 1 + 1/2 + 1/3 + ... + 1/R  ~ log R

Experience with the primal dual algorithm in practice

Steiner trees (Hall 1995)

60 instances from Beasley

500 - 1000 vertices, 600 - 60000 edges
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500 - 1000 vertices, 600 - 60000 edges

On average only  7%  deviation from the optimum

better than heuristics on large instances

Generalized Steiner tree problems (Hu & Wein 1995)

1000 randomly generated instances, 32 - 64 vertices

In general only  5%  deviation from the optimum

Network design (Mihail, Mostrel, Dean & Shallcross 1996)

Used in a software package at Bellcore

(ITP/INPLANS CCS Network Topology Analyzer)

Is reported to do well, but details are confidential

Jain's algorithm for network design

Is based on simple rounding, gives a 2-approximation for general  f(S)

9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)
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9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)

Every basic feasible solution  x  of the LP-relaxation of the general network design problem has an entry  e  

with  xe " 1/2

For a proof see Korte & Vygen   !   

Jain's Algorithm

Input

instance of the general network design problem

Output

a feasible solution of the network design problem with performance guarantee 2

Method

let  Q  be the LP-relaxation of the  IP formulation of the given instance

repeat  forever

compute a basic optimal solution  x  of  Q

if  all  xe  are  integer  then  return  x

round  xe  to  1  for all edges  e  with  xe "  1/2

modify  Q  as follows 
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modify  Q  as follows 

set the rounded variables  xe  to their new value  xe := 1

adapt the demands  f(S) := f(S) - %e # δ(S)  xe

9.7 Theorem (Performance guarantee of Jain's algorithm)

Jain's algorithm constructs a feasible solution  x  of the general network design problem with

%e # A  ce  !  2·OPT(I),  

i.e., the algorithm has a performance guarantee of 2.

Proof by induction on the number of iterations  !   

Remarks on Jain's algorithm

The LP-relaxation has exponentially many inequalities. It can be solved in polynomial time since

separation and optimization are polynomially equivalent (Theorem 7.26)

the separation problem for  %e # δ(S)  xe  "  f(S)  can be solved in polynomial time by a sequence of min cut 

problems

The algorithm is not so useful in practice since it must solve a sequence of LPs.

It is open if a "practical" 2-approximation algorithm exists.
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It is open if a "practical" 2-approximation algorithm exists.
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Most important statements of this chapter (all only with proof sketches)

Linear programming (LP)  is in  NP ∩ coNP. Therefore it was conjectured that there is a polynomial algorithm for 

LP.

All known variants of the simplex algorithm show an exponential worst-case runtime.  However, the average case 

analysis and the smoothed analysis show a polynomial runtime.

The ellipsoid method is the historically first method with a polynomial worst-case runtime for LP (Khachiyan 

1979). It is, however, not practically relevant.

Interior points methods have been developed shortly after the ellipsoid method (first by Karmarkar 1984). They 

also have a polynomial worst-case runtime. Today's variants (log barrier, primal-dual) are competitive with the 

simplex algorithm and even superior for very large and sparse problems. But they rather unsuited for solving a 

sequence of related optimization problems (which is important for many algorithms for integer optimization like 

branch and bound or cutting-plane-methods).

Encoding length of an LP

Let the LP be given by

min  cTx

s.t. Ax = b

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-2

s.t. Ax = b

  x " 0

with rational data  A, b, c

The encoding length (size) of LP w.r.t. to the standard encoding (see ADM I) is

<LP> = <A> + <b> + <c>

Another definition used with interior points methods is

L := <detmax> + <bmax> + <cmax> + m + n

with

detmax :=  max { |det A'| : A' is a quadratic submatrix of  A }

bmax :=  maxi  |bi| 

cmax :=  maxj  |cj| 

10.1 Lemma (Encoding length of LP)

L  !  <LP>

The proof is based on

|det A| = volume of the parallelepiped generated by the columns of A
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|det A| = volume of the parallelepiped generated by the columns of A

⇒ !!"#!! "
�

" �!"�
    !  

10.2 Lemma (Entries of basic solutions can be represented with  L  bits)

Let  x  be a basic solution of  LP in simplified form (gcd of at least one nominator and denominator is 1)
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Then   0 ! pi < 2
L  and  1 ! q < 2L

The proof is similar to that of Lemma 3.4  !  

10.3 Lemma (The objective values of two basic solutions differ sufficiently)

Let  x, y  be basic feasible solutions of LP  with  cTx $ cTy.

Then  |cTx - cTy|  >  1/22L

Proof

Let  p  be the least common multiple of the denominators  of  x,  q  that of  y
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" 1/pq   as  pq(cTx - cTy)  $  0  and  integer

> 1/(2L2L)  because of  Lemma 10.2  !  

10.4 Corollary (It suffices to compute objective values up to an additive error of 1/22L)

Let  z := min { cTx | x ∈ P }  with  P = { x ∈ R! | Ax = b, x " 0 }

Let  x ∈ P  with  cTx  !  z + 1/22L    

Then any basic feasible solution  x*  with  cTx*  !  cTx   is optimal

Proof

Suppose that  y  is a basic optimal solution and that  x*  is not optimal.

Lemma 10.3  =>  |cTx* - cTy|  >  1/22L    

=>  cTx*  >  cTy +  1/22L  =  z + 1/22L  "  cTx  "  cTx*,  a contradiction  !  

LP ∈ NP ∩ coNP

To this end we must formulate  LP as decision problem:

Input:  LP and a rational number  λ
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Input:  LP and a rational number  λ
Question:  Is min { cTx | Ax = b, x " 0 }  !  λ ?

10.5 Theorem

LP ∈ NP ∩ coNP

Proof

LP ∈ NP

We must provide a certificate of polynomial length for min { cTx | Ax = b, x " 0 }  !  λ
Case 1: LP has an optimal solution

=>  LP has a basic feasible solution  x'  with  cTx'  !  λ  

Lemma 10.2  =>  the entries of  x'  are polynomial in  L

Ax' = b, x' " 0  and  cTx'  !  λ  can be checked in polynomial time (in L) 

=>  x' is such a certificate

Case 2: LP has a feasible solution but the objective function is not bounded from below

=> the dual program  (D)  max { yTb | yTA ! cT,  y  unconstrained }  has no feasible solution

Farkas' Lemma for (D)  =>  there is  x* " 0  with  Ax* = 0,  cTx* = -1

Take as certificate 
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Take as certificate 

a basic feasible solution of  LP  to show feasibility

a basic feasible solution of  { Ax = b, x " 0, cTx = -1 } to show unboundedness of the primal objective

Both basic solutions are  polynomial in  L  because of Lemma 10.2

Case 3: LP has no feasible solution 

then the instance is not a "yes"-instance  =>  no certificate is required

LP ∈ coNP

We must provide a certificate of polynomial length for min { cTx | Ax = b, x " 0 }  >  λ
Case 1: LP has an optimal solution

duality theorem  =>  inequality is equivalent to  max { yTb | yTA ! cT, y unconstrained }  >  λ   

this can be certified as in Case 1 above by a basic feasible solution of  { yTA ! cT, y unconstrained } with 

value  >  λ 

Case 2: LP has a feasible solution but the objective function is not bounded from below

then the instance is not a "no"-instance  =>  no certificate is required

Case 3: LP has no feasible solution 

then the instance is a "yes"-instance, as min { cTx | Ax = b, x " 0 } = &   

Farkas' Lemma  =>  there is  y " 0  with  yTA = 0,  yTb = -1
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Farkas' Lemma  =>  there is  y " 0  with  yTA = 0,  yTb = -1

=>  take as certificate a basic feasible solution of  { y " 0  with  yTA = 0,  yTb = -1 }  !  
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Worst-case runtime of the simplex algorithm

The worst-case runtime of the simplex algorithm is exponential

The counterexamples are so-called Klee-Minty cubes, i.e., slightly distorted cubes on which the simplex 

algorithm traverses all vertices, although it could get to the optimal solution with one pivot.

http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html

Average runtime of the simplex algorithm

First results were obtained by Borgwardt 1982

Variant of the simplex algorithm: "Schattenecken" algorithm
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The pivot rule is based on a 2-dimensional projection of the polyhedron

Probabilistic assumptions  

b = 1 (w.o.l.g.)

c  and the rows of  A  are independent, identically distributed random vectors whose distribution is invariant 

under rotations around the origin

The expected number of pivot operations  is O( n4m ) 

Improvement by Haimovich 1983

O(n+m)  with the same algorithm and the same probabilistic assumptions 

Caveats for these results

The statement holds only for the arithmetic complexity model with  O(1)  per operation

No statement for the standard simplex algorithm

The instances generated from the probabilistic assumptions are not sparse LPs

For fixed  n, the probability that an instance has a feasible solution rapidly tends to 0  with increasing  m

Smoothed analysis of the simplex algorithm
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New complexity model introduced by Spielman & Teng 2002 and first applied to LP (95 page paper)

Consider for any instance  I  a neighborhood  N(I)  with a probability distribution on  N(I), and compute
sup { EI∗∈ N(I)[runtime(I∗)] | all instances I }

Special cases:

Worst case analysis:  N(I) = {I}

Average case:  N(I) = set of all instances with the same dimensions n and m

Smoothed analysis "interpolates" between these extremes
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© Spielman & Teng

Results of Spielman & Teng

Variant of the simplex algorithm: two-stage Schattenecken algorithm

Instances are normally distributed, i.e., the values of  A  and  b, that are $ 0,  are "perturbed" by a normal 

distribution N(0,σ)  

The neighborhood  N(I)  is given by the standard deviation  σ  of the normal distribution

The runtime in the smoothed analysis is polynomial in  n, m, and  1/σ  
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The runtime in the smoothed analysis is polynomial in  n, m, and  1/σ  

Caveats

no statement for the standard simplex algorithm

the model preserves sparseness, but not degeneracy
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The geometric intuition is simple, the technical details (and the proof of polynomial runtime) are difficult.

We will illustrate here only the geometric intuition.

Reducing linear optimization to finding a feasible point

One possibility: binary search w.r.t. the optimum d  with inequality  cx ! d

Another possibility: use duality

Use simultaneously the side constraints of the primal and the dual

and the constraint  cTx ! bTy

=>  the only feasible points are  (x,y)T  with  x  optimal in the primal,  y  optimal in the dual

The ellipsoid method computes a feasible point in a polytope  P

start with a ball  E  around the origin containing  P 

while  the  volume of  E  is not too small  do  // there is still a point in  E " P

if  the center  x  of  E  is in  P  then return  x

compute a hyperplane that separates  x  from  P,  let  H  be the halfspace containing  P 

compute the new ellipsoid  E  with smallest volume containing  H " E  and the intersection points of the 

hyperplane with the boundary of the previous ellipsoid
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hyperplane with the boundary of the previous ellipsoid

return  "there is no feasible solution"

P

E
1

E
2

Remarks on the ellipsoid method

there is an analytic formula for the new ellipsoid (efficient update)

the volume per iteration shrinks by the factor  exp(-1/2n)  <  1
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the volume per iteration shrinks by the factor  exp(-1/2n)  <  1

the volume check is done as follows for full dimensional polytopes  P

translate the inequalities of  P  by  1/22L+1, such that  P  contains a ball with radius  r = 1/22L

=>  one can stop if the volume of E is below that of  P

one need additional techniques for lower dimensional polytopes

the algorithm requires  O(n2L)  iterations with  O(n4L )  arithmetic operations with numbers of  O( L )  bits

more information about the ellipsoid method

M.#Grötschel, L.#Lovász, and A.#Schrijver

Geometric Algorithms and Combinatorial Optimization

Springer, Berlin, 2nd#ed., 1993
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Goal of this section

A sketch of the interior point algorithm by Ye with improvements by Freund (both published in Mathematical 

Programming 1991) 

Starting point and general idea

given are a primal LP and the associated dual in the form

(P) min  z = cTx

s.t.  Ax = b,  x " 0

(D) max  w = bTy

s.t.  ATy + s  =  c,  s " 0  (slack variables),  y unrestricted

The algorithm solves  (P)  and  (D)  simultaneously

It computes in each phase a primal solution  x* > 0  and dual slack variables  s* > 0

Basic idea:

Stay away from the boundary  xj = 0,  sj = 0,  i.e. ensure  xj > 0,  sj > 0

but make the duality gap  cTx* - bTy*  =  (ATy* + s)Tx* - (Ax*)Ty*  =  x*Ts* > 0  small
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The two main ingredients

Ingredient 1: scaling

Let  x* > 0  and  s* > 0  be given

Scaling is a function   R! → R!  with

! !
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Scaling in matrix form:

x� = (X∗)−1x with X∗ =




x∗1 . . . 0

. . .
0 . . . x∗n





With scaling we can write  (P)  in the transformed space as
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With scaling we can write  (P)  in the transformed space as

(P) min  z = cTX*x´ 

s.t.  AX*x´ = b,  x´ " 0 

Set  c* := X*c,  A* := X*A

=>  (P)  can be written as 

(P) min  z = c*Tx´ 

s.t.  A*x´ = b,  x´ " 0 

Similarly,  (D)  is written  in the transformed space as  

(D) max  w = bTy

s.t.  A*Ty + s´  =  c*,  s´ " 0   with  

!
�
!" "

∗
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!##
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$$$
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Observe:  xjsj = xj´sj´  =>  the duality gap is invariant under scaling

=>  one can do computations in the transformed space

Ingredient 2: potential function
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Ingredient 2: potential function

It measures the size of the duality gap. It is a logarithmic barrier function

G(x,s)  :=  q·ln(xTs) - %j ln(xj·sj) 

with a suitable parameter  q > 0  

Observe

q·ln(xTs)  →  -&   if the gap  xTs → 0

- %j ln(xj·sj)  →  +&   if  xj → 0  or  sj → 0, i.e., close to the boundary

Question: how to choose  q ?

A good choice of  q  is  

! !" " #
√
"

This choice leads to   O(
√

n · L)   iterations

where  L := encoding length of Section  10.1 

Stopping criterion

The potential function leads to a stopping criterion that is based on Lemma 10.2:    

Let  x, s  be primal-dual feasible with     for a constant  k
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Let  x, s  be primal-dual feasible with   G(x, s) ≤ −k
√

nL  for a constant  k

Then  xTs ! e-kL

So: stop when

!!"# $" ! "%
√
&'

with  k = 2

Observe: Scaling does not change the value of  G(x,s)

=>  one may do calculations in the original or in the transformed space

Ye's algorithm

Structure of Ye's algorithm

Input

Primal-dual pair of the form

(P) min  z = cTx

s.t.  Ax = b,  x " 0

(D) max  w = bTy

s.t.  ATy + s  =  c,  s " 0 (slack variables),  y unrestricted
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s.t.  ATy + s  =  c,  s " 0 (slack variables),  y unrestricted

Output

Primal dual pair  (x,s)  with  
G(x, s) ≤ −k

√
nL

Method

Initialization

i := 0  // counter

choose  x0, y0  primal-dual feasible with   
G(x

0, s
0) = O(

√
nL)

// idea: modify phase I of the simplex algorithm such that  x ~ 2L,  s ~ 2L

Iteration

!"#$% &!'#( )#" * !#
√
+, -.

do a primal step // change only  xi 

or a dual step  // change  si 

this gives  (xi+1, si+1)

i := i+1

Details of the iteration

Overview
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Overview

Scale the current pair  (xi, si)   →  (e, s´)  with  e = 1

=>  (e, s´)  is far from the boundary

the primal or dual step then computes  (!!, !!)  and reduces  G

the re-transformation of  (!!, !!)  into the original space gives  (xi+1, si+1)

Main property of the primal/dual step 

do it in such a way that  G(xi+1, si+1) - G(xi, si)  !  -7/120  < 0 
⇒ G(xN , sN) < −2

√
nL

   after  N  steps with
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Computing  (!!, !!)

Compute the x-gradient of  G  in the point  (e, s´) :
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Go into the direction  -g  to decrease  G,  but stay feasible  (i.e.,  A*·!! = b).

To this end, let  d  be the projection of  g  onto the subspace  { x | A*x = 0 }

=>   d = (I - A*(A*A*T)-1A*)g    (without proof)

Go into direction  -d

A possible problem: ||d|| is too small

=>  the primal step does not decrease  G  enough

Therefore: make a  primal step if  ||d|| " 0.4

a  dual step if  ||d|| < 0.4

Primal step

x̃ := e − 1
4�d�d, s̃ := s

After the primal step,    > 0  and  G( , ) - G(e, s´)  !  -7/120 
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After the primal step,  !!  > 0  and  G(!!, !!) - G(e, s´)  !  -7/120 

Dual step

compute the s-gradient of  G in the point  (e, s´) :
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=>  hj  = gj/sj    =>  h  and  g  show approximately into the same direction

go into direction  -(g-d)  and set

!!  := s´- (g-d)(  with  ( := eTs´/ q

After the dual step,

!! "
"#!�

$
#% $ "%& !' " '� " "

!!  > 0

G(!!, !!) - G(e, s´)  !  -1/6 

Analysis of Ye's algorithm
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Analysis of Ye's algorithm

Advance per iteration

G  decreases in every primal and dual step by a constant amount

⇒ O(
√

nL)  iterations until  
G(xi, si) < −2

√
nL

Runtime

Each iteration can be done with  O(n3)  operations 

the only expensive calculation is that of the projected gradient  d

=  solution of the linear system  (A*A*T)w = A*g

can be done by Gaussian elimination in  O(n3)  operations

=>  O(n3.5L)  operations in total

Problem: operations cannot be made exactly

||d|| may be irrational

=>  compute only with fixed number of  L  bits and round

=>  19/352  instead of  7/120  by rounding when calculating  ||d||
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The numbers the Gaussian elimination must not become too large

Use  <det B>  !  <A>  for every quadratic submatrix of  A

=>  (Cramers' Rule)  all numbers in Gaussian elimination can be represented with  L  bits

10.6 Theorem (Polynomial runtime of Ye's algorithm)

Ye's algorithm runs in  O(n3.5L)  time.

without proof  !


