© 1. Introduction
© 1.1 Algorithmic Discrete Mathematics (ADM) ...

© 1.2Content Of ADM Ilccoveveeveneenirrerir,
RO R 1o T = a1 1701 0 ST
© 2. Optimization problems
O 2.1 EXAMPIES oo
© 2.2 Neighborh00ds aNd 10CAI OPHIMIZALIONc..cv.cvweveeeeeeeeeeieeeeeeeeeaee e s eeeee s eesis s es e ese s s
O 2.3 CONVEX SES QNG fUNCHONS +-vrvrverereresiresiseararisisiststssasassssssssstssasasss s s sss s sss s s s s s as s s e s s s ss s s s b s et s s an et s s s e s s
© 2.4 ConVexX OPHMIZALION PrODIBIMSc.ovuvuceeiieeeee ettt
© 3. The Simplex algorithm
(9] 3.1 Forms of linear L0 = 1.
© 3.2 BASIC FOASIDIE SOIUHONS +.vvvevveveeerieseeeeieeieesseasseeseesevas st bbbttt
o 3.3 The geometry of linear 00 = .
© 3.4 Local search among basic feasible solutions
O 3.5 Organization iN tADIBAUSc.cucureurrueereieeieee ettt ettt
© 3.6 CROOSING @ PIOFItADIE COILMN -......oeeveeveiieeie ettt
© 3.7 Pivoting rules and cyclingc.........
© 3.8 Phase | of the simplex algorithm
© 3.9 GEOMEHIIC ASPECTS OF PIVOHNG ..cevoeeeveeeieeieee ettt
© 4. Duality
© 4.1 Duality of LPs and the duality theorem
O 4.2 Complementary slacknessc..c.......
© 4.3 The shortest path problem and its dual
O T Ll =Y, 11 V[OOSR

© 4.5 DUAI INOIMALON I THE TADIBAU .-+ veveveeeeereeseereissesees e es s es a5
© 4.6 The dUAI SIMPIEX AIGOTIAMc.eveeeorieeeee ettt
© 5. Computational aspects of the Simplex algorithm
© 5.1 The revised SIMPIEX AIGOMIAMcc.ccurvuremeeeieieeie et 29
O 5.2 Algorithmic consequences of the revised SIMPIEX AIGOITAMcvvvurreririerirerrteieiete ettt sttt 30

© 5.3 Solving the max-flow problem with the revised simplex algorithm and COIUMN GENEIALION ... v wrreerererrerereeriseraeseesssessenens 31

Contents 1-2

O 5.4 The simplex algorithm with IOWer and UDPPEI DOUNGSccccccururirieiterieisisisietseirisssis bttt sttt 32

O 5.5 A special case: the network SIMPIEX @IGOIEAM c.cucururiririeee ettt sttt 33
© 6. Primal-dual algorithms

© B.1 INHOGUCHON ..ttt sttt

O 6.2 The primal-dual algorithm
© 6.3 Remarks on the primal-dual algorithm
© 6.4 A primal-dual algorithm for the shortest path problem
© 6.5 A primal-dual algorithm for the transportation problem
© 6.6 A primal-dual algorithm for the weighted matching problem (8 SKECH)ccewewevueeueeeeeieieieiieiesissseesesieess e 40
© 7. Integer linear optimization
RO I 10 oo 1 e o IO
O 7.2 Totally unimodular matrices
© 7.3 Branch and bound algorithms
O 7.4 LAGIraNGIan FIAXALONcucvueueeeeeeeeeeeee ettt
© 7.5 Cutting plane algorithms
Q76 (@) 0) 1110174z 110 g 1= Vg o [Tz o L= 1o o
© 8. Polytopes induced by combinatorial optimization problems
RO I 10 oo 1 e o IO ST 49
o E 2 (ol Tl 1 T= T Tao (=X o g o) (o X PSS 50
083 Separation and BranNCh & CULcc.eoeoueiieieeeee et ettt ettt e et e et e et e et a e as e 51
© 9. LP-based approximation algorithms
© 9.1 Simple rounding and the use of dual solutions
© 9.2 Randomized roungingccccceceereeneneencescenerneen
© 9.3 Primal-dual approximation algorithms and network design
© 10. Complexity of linear optimization and interior point methods

© 0.7 LPUS TN NP 0 CONP oottt v sas s s s st s s sasss st s s s e s s s st s s s ansns et et s s s sansn s et s s s ansnsntatan s ensnsnsasasanananansnsas 57
© 10.2 Runtime Of the SIMPIEX @IGOHAMvucueeueieeee ettt 58
O 10.3 TNE EIlIDSOIE MEIAOC ..cvvcvoevieieieiiieie bbb bbb 59
© 10.4 Interior Jo T 0811 =1 1o o = U 60
1. Introduction 2
O 1.1 Algorithmic Discrete MathemMatics (ADM) ..ot e 3
© 1.2 Content Of ADM Ilooeeeeeeeeereeeeeeeeeeeeere.

O 1.3 Winter term 2010/11

1. Infroduction
1.1 Algorithmic Discrete Mathematics (ADM)

e
On the history of ADM

(C)
Young area, has its roots in

O
algebra, graph theory, combinatorics
O
computer science (algorithm design and complexity theory)
O

optimization

© Deals with optimization problems having a disrete structure
© graphs, networks
N finite solution space

© Applications
© telecommunication networks, traffic networks

O
logistics, production planning, location planning
O

(S
ADM at TU Berlin

1. Introduction
1.1 Algorithmic Discrete Mathematics (ADM)

@ .
Basic courses

© Graph and network algorithms (ADM I)
° Linear and integer optimization (ADM IT)
© Special courses (ADM III)
© Scheduling problems
Applied network optimization

O
Polyhedral theory
O

O
Seminar (partly parallel with ADM II or ADM III)

O
Bachelor thesis or master thesis

1. Introduction
1.2 Content of ADM Il

e
Linear optimization problems

Linear objective function, linear inequalities as side constraints

Tx subject to Ax<b, x>0

Linear optimization: minc
Simplex algorithm

(&}
Duality

Geometry of linear optimization problems

e
Ax < b, x > 0 define a polyhedron

1. Introduction
1.2 Content of ADM Il

&)

Optimum is attained in a vertex (corner point)

e
The simplex algorithm traverses vertices

1. Introduction
1.2 Content of ADM Il

(@)

Discrete problems as linear optimization problems
©

polyhedral theory

Discrete problems as geometric problems

Minimum spanning trees as vectors

e
Graph G

1. Introduction

1.2 Content of ADM Il
@)
3

1 2
Minimum spanning trees of G as vectors (incidence vectors)
©

3
1 1 3
= |1 = |0
1 2 0 1 1

Convex hull of incidence vectors = polytope (yellow set)
o

A

> polytope = yellow set

Computing a minimum spanning tree = linear optimization over this polytope

1. Introduction 4-5
1.2 Content of ADM Il

Integer linear optimization
variables may only attain integer values
© much more difficult problems
© Solution methods
Lagrangian relaxation
cutting plane algorithms

O
LP-based approximation algorithms

(@)

@)
Exercises with implementation assignments

1. Introduction 5-1
1.3 Winter term 2010/11

(@)
Torsten Gellert (Exercises)
(@)
Christoph Hansknecht (Tutorials)

e
Website

http://www.math.tu-berlin.de/coga/teaching/wt08/adm2/

http://www.math.tu-berlin.de/coga/teaching/wt10/adm2/

® ® ®
o @ ©

Notebook: http://www.math.tu-berlin.de/~moehring/adm2/

Literature
© C. H. Papadimitriou and K. Steiglitz
Combinatorial Optimization: Algorithms and Complexity
Prentice Hall, Englewood Cliffs, NJ, 1982
Pocket book - 512 pages - Dover Publications
First published: Juli 1998
Auflage: Unabridged
ISBN: 0486402584
© B. Korte, J. Vygen:

Combinatorial Optimization: Theory and Algorithms

1. Introduction
1.3 Winter term 2010/11

Springer, 2000/2002/2006/2008
Jetzt auch auf deutsch
© W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver
Combinatorial Optimization
Wiley 1998
© V. Chvdtal
Linear Programming
Freeman, New York, 1983
© 6. L. Nemhauser and L. A. Wolsey
Integer and Combinatorial Optimization
John Wiley & Sons, New York, 1988
© M. Grétschel, L. Lovdsz, and A. Schrijver
Geometric Algorithms and Combinatorial Optimization
Springer-Verlag, Berlin, 2nd ed., 1993
© D. S. Hochbaum, ed.

Approximation Algorithms for NP-hard problems

1. Introduction
1.3 Winter term 2010/11

PWS Publishing Company, Boston, MA, 1997

© H. M. Salkin and K. Mathur
Foundations of Integer Programming
North-Holland, Amsterdam, 1989.

© R. J. Vanderbei
Linear Programming: Foundations and Extensions
Kluwer Acad. Publ., Dordrecht, 2nd ed., 2001.
http://www.princeton.edu/~rvdb/LPbook/index.html

Encyclopedia

A. Schrijver:

Combinatorial Optimization: Polyhedra and Efficiency
Springer, 2003

3 volumes with 1881 Seiten, aso available as CD

52

5-3

2. Optimization problems 6

O 21 3z T o)L=
Qo2 Neighborhoods and 10Cal OPHIMIZALON --.-.e.eeeeeieeiee ettt e 8

Q) 2.3 CONVEX SIS AN FUNCHONS +..vvveeeeeeeeeeee ettt et ettt e et e et e et et et et e e et et e et e et e et s e et et et s ana et e eateat et e et s eet st astaanasnnansanesann 9
O 2.4 Convex 0010174 110 I o (0] 0] =] . 10
2. Optimization problems 7-1

2.1 Examples

© An (NP-) optimization problem Py is defined as follows
© Each instance I € P, has a feasibility domain S;. Its elements y € S; are called solutions
© Feasibility (y € Sg) can in be tested in polynomial time
© Task:
© Given an instance I and anobjective function ¢: S; -> Q (rational numbers), find an optimal solutiony =
OPT(T)
i.e.y€ Sy with OPT(I)=c(y) < c(x) forall xeS;
© OPT(I) denotes both, the optimal solution and the objective function value of the optimal solution
© such a solution is called a global optimum (global minimum) or optimum (minimum)

©
An algorithm that does this is called exact

e
2.1 Example: Traveling Salesman problem (TSP)
Instance
©
Complete Graph K, n>3
©
Rational edge weights c(e) > O

e
Task

2. Optimization problems
2.1 Examples

e
Compute a Hamiltonian cycle C with minimal length

O (€)= Cecrey cle)

C)
A concrete instance.

0
G = K,, in the plane with Euclidean distances

° g°° o ° o @ ° o9
00 ad @ ° ° o %0 °
%2 a s 2, o ° o :,
oo ¢°° oo aa P ° oo] °
Oooo oo % o :o ? .
o°° ° %
L ° o 2 @ @ 999,
@ ° . . o o . e o
L] @ @ LR
°o°°°° ° e @ L
° e y L ° e o ° o
° o ° ° @ ooooo e * e %o o °
° @ °* '
° 9 °o ¢ 'y @
o L] @ ooo] 2 ? L] °
e @ ? @ ° o
? ? ? e o°°
@ @ °o° @ ° e
° a a

O
Two feasible solutions

2. Optimization problems
2.2 Neighborhoods and local optimization

e
Neighborhoods

©
Neighborhoods are defined as €-niggarded (w.r.t. some norm) for continuous problems. How for discrete

problems?

© A neighborhood for a problem class P, is given by a mapping
Nr: Sp— 2%
for each instance T € P,
N;(y) is called the neighborhood of y € S;. We write N(y) of I is clear from the context
© 2.4 Example: TSP
© Define a neighborhood by a 2-exchange

N,(y) :={x € Sr | x results from y by exchanging < 2 edges fromy by other edges }

2. Optimization problems
2.2 Neighborhoods and local optimization

This generalizes to any k 2> 2 and yields the neighborhood N, (y)

e
2.5 Example: MST

Define a neighborhood by exchanging an edge on a fundamental cycle

8-2

N(y) :={x € S; | x results from y by adding an edge to y and deleting another edge on the resulting cycle}

2. Optimization problems
2.2 Neighborhoods and local optimization

® ®
G | | T
o —O
o—9© []

e
2.6 Example: LP
Define a neighborhood as e-neighborhood

Ne(y):={x | Ax=b,x20,||y-x |l <€}

8-3

2. Optimization problems 84
2.2 Neighborhoods and local optimization

e
Local and global optima
O
Consider a problem class P, with neighborhood N and let I €P

y € Sy is called locally optimal w.r.t. N if c(y) <c(x) for all x € N(y)

2.7 Example: local minima in calculus
O

® e ' S >

e
2.8 Example: TSP
O
Locally optimal solutions w.r.t. N, are called k-optimal or k-opt for short
e
exact neighborhood

O
A neighborhood N for a problem class P is called exact

2. Optimization problems 85
2.2 Neighborhoods and local optimization

«=> every local optimum w.r.t. N is a global optimum
More precisely, forall I € Py, every locally optimal y € S; w.r.t. N; is globally optimal
e
2.9 Example: TSP

N2 is not exact

©
Counter example :
(@)
cost a
cost b
cost ¢
a<b<c
(@]
tour y = "outer edges" has cost bb
Since both edges are adjacent, every 2-exchange can at most add one edge, thus at best one

and one red

The new touris worse if a+c>2b

2. Optimization problems 86
2.2 Neighborhoods and local optimization

=> y is locally optimal w.r.t. N,

Two successive 2-exchanges add both green edges to the four

This tour is better than y if 2a+c<3b
(@)
a<b<c and a+c>2b and 2a+c < 3b are fulfilledby a=1,b=4,c=8
N —is-exact

n

O
clear since Nn(y) =5; O

S)
2.10 Example: MST

The neighborhood of MST is exact

2. Optimization problems 87
2.2 Neighborhoods and local optimization

e
Proof :
e
Use a theorem from ADM I:
T is optimal <=> every non-tree-edge e is the most expensive edge in the cycle induced by e in T+e

©
a

S)
Neighborhoods motivate the principle of local search
e
Algorithm local search
e
Input
0- PP . .
instance I of an optimization problem P, with neighborhood N
&)
start solution y € S;
e
Output
© .
local optimum w.r.t. Np
S)
Method
iterative improvement
while there is a better solution x € Ni(y) do

O
choose better solution x € N(y)

2. Optimization problems 8-8
2.2 Neighborhoods and local optimization
0
Yy =X
O
return y

- 2.11 Theorem (local search for MST)
Local search w.r.t. the MST-neighborhood is a polynomial algorithm for computing a (globally) optimal MST if
(a) it always chooses a non-tree-edge f that is cheaper than the most expensive edge of the cycle K
induced by f
(b) it always deletes a most expensive tree-edge e from the cycle K induced by f

© Proof:

° 1. Since the neighborhood is exact, the algorithm has computed a globally optimal solution at termination
e

)
2. The algorithm terminates in polynomial time

' Claim 1: A delefed edge never returns into the tree
e
Proof by contradiction

O
Let K be the cycle when edge e is removed

2. Optimization problems 89
2.2 Neighborhoods and local optimization

Consider the first later point in time t at which e is chosen to enter the tree

=> e is currently a non-tree-edge and induces a cycle K'

=> K" results from K by the local search steps until time t
In every of these steps, e is a non-tree-edge and induces a cycle K(e) in the current tree

Claim 2: In every of these steps, c(e) 2 c(g) for all edges g € K(e)

~ Proof by induction along the sequence of cycles K =Ky, K5, K3, -

Base case: clear for K = K; by construction
e
Inductive step from K; to K4

2. Optimization problems 8-10
2.2 Neighborhoods and local optimization

~ clear for K. = K; 4
e
let K; # Ki,;
two cases are possible
e
Ki,; makes K; larger
O
=> Ki,1 = K; - (some edges including the currently deleted edge ¢') + P (P is part of the

current cycle from which we delete e')
O

O
=> c¢(e') 2 ¢(f) forall edges f €P because of (b)
(@)
c(e) 2 c(e") by the inductive assumption, (b) => c(e) 2 ¢(f) for all edges f e K;,;
©
K;,; makes K; smaller

O
=> K;,1 = K+ (some edges including the currently added edge ') - P (P is part of K;)

2. Optimization problems 811
2.2 Neighborhoods and local optimization
(@)

© => c(e") < c(fp) for the removed edge f, c(e) 2 c(f) for all edges f € P because of the
inductive assumption
© => c(e) 2 c(f) for all edges f €Ki,
© Claim 2 contradicts the choice of e specified in(a)

e
So there are at most m-n+1 exchanges (m = # edges, n = # vertices). Every exchange step can be done in

O(n) time

&)
determine the most expensive edge e in the cycle induced by the non-tree-edge f and compare c(e)
and ¢(f)

[by breadth first search in O(# edges in tree) = O(n)]
@)

exchange e and f if c(e)< c(f)

2. Optimization problems 812
2.2 Neighborhoods and local optimization

[O(n) if the tree is maintained as array of adjacency lists]

©
Thus O((m-n+1)n) = O(mn) altogether O
© 2
Remark: we have obtained better algorithms in ADM I: Kruskal O(m:log n) and Prim O(n%)

Exercises: Analyze local search for TSP with the k-opt neighborhood. Does it run-in-polynomial fime?

2. Optimization problems 9-1
2.3 Convex sets and functions

e
Convex combination of two vectors

O n .
Let x,y € R". Then every point
z=Ax+(I-A)y with O<A<1

is called a convex combination of x and y (a strictly convex combinationif 0<A<1)

the convex combinations of x and y are exactly the points on the line segment from x toy

X .\.
Y
Xy

>

points on this line segment are vectors of the form y + A(x-y)
Convex set
S CR" is called convex if S contains all convex combinations of any two points x,y € S

S)
2.12 Example:

2. Optimization problems
2.3 Convex sets and functions

R", @, {x}, x € R" are convex
O
The convex subsets of R are precisely the intervals

O
Convex sets in R? are those without "bays"

L

The intersection of (any number of) convex sets is convex

| 2.13 Lemma

C]
Proof:
O
Let S=Mer S;, S; convex
Letx,y € S, 0<A<l, z=Ax+(1-N)y
Def.of S => xye€ S; foralli => zeS, foralli =>zeS 1

—Lemma 2.13 is the basis for the definition of the convex hull of a set

2. Optimization problems
2.3 Convex sets and functions

O
The convex hull conv(S) of aset S is the smallest convex set containing S, i.e.,

conv(S) = ﬂ M

SCM, M konvex

This intersection exists, since R" is one of the sets M
O
An equivalent description is (exercise)
conv(S) = { >\1x1 + .+)\kxk | x e s, A 20, ¥\ =1, kfinite}

®)
Theorem of Caratheodory: in R" k< n+l suffices

- Convex function
O
Let SCR" bea convex set. A function c: S -> R! is called convex in S if
c(A-x + (1-A)y) < Ac(x) + (1-N)c(y)
forallx,ye S, all O«A¢l
e
2.14 Example
O
Every linear function is convex

O
Interpretation of convex functions c: R! - R!

9-2

9-3

2. Optimization problems
2.3 Convex sets and functions

cly)
A-c(x) + (1-N)-c(y)
c(x)

z:= X+ (1-A)y c(z) < A-c(x) + (1-A)-c(y)
~
- 2.15 Lemma
o)
Let ¢ be convex in S CR" Then, for every real number t, the level set
S, ={xes | e(x) <1}
is convex
©
Proof:
(O]
Consider z:=A-x+(I-A)y with x,y €5,, 0<A¢1
=> ¢(z) ¢ A-c(x) + (1-A)-c(y) since c is convex
< At + (1-A)+ since x,y € S,

=> zeSTD

2. Optimization problems
2.3 Convex sets and functions

Level sets of a convex function c: RZ > Rl

>

Concave function
¢ inSCR" is called concave if -c is convex

<> c(Nx+ (1-N)y) 2 Nc(x) + (I-N)c(y) forallx,ye S, allO<h<¢1

9-4

9-5

2. Optimization problems 10-1
2.4 Convex optimization problems
Convex optimization = minimizing a convex function on a convex set.

Important principle: local Optima are global Optima

N 2.16 Theorem (local - global)
- Consider an instance I of an optimization problem with S; C R" convex and ¢ convex in St.
=> The neighborhood
Ne(y):i={xe S; : [ly-x|l<€}
defined by the Euclidean distance is exact for every € > 0.
© Proof:
© Let €>0 andlet y be locally optimal w.r.t. Ng.
Consider x € S;. Show that c(y) < ¢(x).
This is trivial if x € N(y)
© So assume X & Ng(y)

=> then there is some A such that z:= A-x+(1-A)y € Ng(y) and zzy

2. Optimization problems 10-2
2.4 Convex optimization problems

c convex => c(z) ¢ A-c(x)+ (1-A)-c(y), moreover c(z)>c(y) since y is locally optimal

= c(x)2

(1= =(1=
c(2) (A Nely) | e - (A)c(y):c(y)

A

Hence c(x)2c(y) O

O
Observe: this holds without any further assumptions on c; in particular, ¢ need not be differentiable.

e
Historical definition of convex optimization problems
e
Aninstance I of an optimization problem is called a convex optimization problem if

2. Optimization problems

2.4 Convex optimization problems
O

10-3
~ Sp is specified as set of all x e R" fulfilling side constraints of the form:
gi(x) 2 0 i=1,..m
g;:R" - R! concave, i=1,.m
(@)

c is convex in SI

- 2.17 Lemma

The feasible set S; of aninstance I of a historically defined convex optimization problem is convex
©
Proof:
o

g; concave => -g. convex

= S.i={x [-gi(x)<0} ={x | g{(x)20} convex because of Lemma 2.15
=> S = N, S; is convex because of Lemma 2.13 O

- 2.18 Theorem

In a convex optimization problem, every local optimum is a global optimum

S
2.19 Remark

2. Optimization problems

2.4 Convex optimization problems

_ There can be many global optima
8)

104

Every instance of LP is a convex optimization problem

=> every local minimum is a global minimum
-

)
Calculus offers sufficient criteria for smooth functions to be convex:
e}

" DCR" open,c:D-> Rl is twice continuously differentiable,

Hessian matrix (= matrix of 2nd partial derivatives) of c is positive semidefinite

3. The Simplex algorithm 11

O 3.1 Forms of linear 60T = 11 12
Ol = LT o (= o) Xcre) L1 ¢ - o 13
© 3.3 The gEOMEIrY OF lNEAI PIOGIAMS -......vucuvaeeeeeeceeee ettt et es s 14
© 3.4 Local search among basic fEaSIDIE SOIUTIONSc..vwwrvwivisriiieiiieeiseiisiss s 15
Q35 Organization iN LADIEAUSc.ccuecuieuieiieiieiee ettt ettt ettt ettt b bbbt b b et b bbb 16
© 3.6 ChOOSING @ PrOfItADIE COIIMI ...t nes e 17
O 3.7 PIVOUNG FUIES NG CYCING -v.vvvrvviveievieieiieieeeeie s 18
© 3.8 Phase | 0f the SIMPIEX @IGOITHAMc.cc.cwucuiuieeeieeeeeeeie et 19
© 3.9 GEOMELHIC ASPECES OF DIVOHING ...veceececeea ettt en e nee s 20
3. The Simplex algorithm 12-1

3.1 Forms of linear programs

e
(3.1) General Form

minc'x xeR"ceR
O

such that aiTx = by ieM a; € R™
alx > by ieM
Xj > 0 jeN
Xj arbitrary j € N

° 3.1 Example: Diet problem (historically the oldest LP)
~n foods, j=1,.,n
m_nutrients (proteins, vitaminsetc.) i=1,.,m
a;; = amount of nutrient i per unit of food j,
r; = required amount of nutrient i per time period (week)
X = amount of food j per time period (week)
c; = cost per per unit of food j

J

O
X = (Xy, X5, ... X,)T models a weekly diet

feasible diet fulfills Axxr with A= (a;), r=(ry,rp, ... P’

O
(3.2) Computing a "cheapest" feasible diet is the LP

3. The Simplex algorithm 12:2
3.1 Forms of linear programs
min c'x
s.t. Ax>r
x20
e}
An LP of the form (3.2) is called in canonical form
0
An LP of the form
(3.3) min c¢'x
s.t. Ax=b
x20
is called in standard form

(@)
An LP of the form (3.1) is called in general form

" 3.2 Lemma (Equivalence of the three forms)
T All3 forms are equivalent
" in the sense that an instance I of one form can be transformed into an instance I' of any other form by a
simple transformation such that one can easily construct an optimal solution of I from an optimal solution of

Il

3. The Simplex algorithm 12-3
3.1 Forms of linear programs

e
Proof

it suffices to provide the following transformations:

~ general form -> canonical form
e
eliminate equality constraints and unrestricted variables

oy n cox: — b n s . n C s .
Z)’:] GL]X] = bl — Zj:] al)X] > b1 and Zj:] (11])(,] < bl

f——xf

o xj unrestricted ~— xj = X; i

X x5 >0

e
general form -> standard form
~eliminate ">" by introducing surplus variables s;2 0
27:1 ui]-x,- > bi — ;-1:1 LZ,‘]‘X]' — S5 = bi
e
eliminate "<" by introducing slack variables s; >0

Yiiaixi <b — Yiliaxj+si=b o

3. The Simplex algorithm 13-1
3.2 Basic feasible solutions

e

~ Goal: Develop an algorithm to solve LPs
O
Starting point: LP in standard form
min ¢'x
st. Ax=b
x20
with initial assumptions 3.1 - 3.3 (which we will get rid of later)

Assumption 3.1: A isan (mxn)-matrix with full row rank m

© 3.3 Example
@)
min 2xq +X4 +5%x7
st. x1 tx2 x3z x4 =4
X1 +X5
+X3 +X6
+3x2 +x3 +x7; =6
xpi 20 Y
3. The Simplex algorithm 132
3.2 Basic feasible solutions
6)
1111 | 4
1
(Alb) - 1 : :
31 1] 6

A has full row rank m = 4
~ Recall from linear algebra:

column rank = row rank = rank(A) = m

© A basis of A isaset of m linearly independent columns B = {Aj, A oons Ar}, and these columns are called basic
columns. The other columns are called non-basic columns.
We denote the submatrix of these columns by B (sometimes Ap) and the corresponding indices by B(1)...., B
(m).
So B= (AB(I)f AB(Z)' AB(m))' Sometimes we will identify B with the set of indices, i.e., B={B(1), ..., B(m)}.

AN denotes the submatrix of non-basic columns.

3. The Simplex algorithm 13-3
3.2 Basic feasible solutions

(@)

A has at most (,,) bases

e
3.3 Example (continued)

Basis 1:
(@)
1 1111 | -4
1 1 | 2
1 1 | 3
31)

B(1)=4,B(2)=5,B(3)=6,B(4)=7

@
Basis 2
®)
111 11 | -4
1 1 | 2
1 1 | 3
31 111 6
B(1)=2,B(2)=5,B(3)=6,B4)=7
- Basis 3
3. The Simplex algorithm 13-4
3.2 Basic feasible solutions
®)
oI A - | -4
1 1 | 2
1 1 | 3
31 11 6

B(1)=2,B(2)=1,B(3)=3,B(4)=7

© Every basis matrix is invertible and can be transformed into the identity matrix by elementary row operations
and column permutations (Gaussian elimination).

" If we transform the whole extended matrix (A|b) with these operations, we obtain a solution of Ax=b by
setting the basic variables to the (transformed) right hand side, and the non-basic variables to O. This solution
is called the basic solution for basis B.

O
The applet below can be used to carry out these operations

3. The Simplex algorithm 13-5
3.2 Basic feasible solutions

©
http://people hofstra.edu/faculty/Stefan Waner/RealWorld/tutorialsf1/scriptpivot2.himl

e
3.3 Example (continued)
Basis 1
no transformation needed since B = identity matrix

basic solution: Xg= 4, Xg = 2, X = 3, X7 = 6, xj = 0 otherwise

11l 1 1 | 4
1 1 | 2
= 1 T 3
3 +t-2 -3 11 -6

B(1)=2,B(2)=5,B(3)=6,B(4)=7

S
Basis 2

a w N D

basic solution: X5 = 4, Xg = 2, X = 3, X5 = -6, x. = 0 otherwise

J
Basis 3
3. The Simplex algorithm 13-6
3.2 Basic feasible solutions
(®)
| 4 -1 -1 | -1
1 | 2 1 | 2
1 | 3 1 | 3
I 6 3 2| 6

B(1)=2,B(2)=1,B(3)=3,B(4)=7

basic solution: X5 = -1, Xy = 2, X3 = 3, X7 = 6, xJ- = 0 otherwise

If we permute the columns of A and x such that A= (Ag, Ay) and x = (xp, xN)T, then the elementary
transformations correspond to multiplying the linear system (Ag, Ay) (Xp. xN)T = b from the left with the
inverse B! of the basis:

B (Ag. Ay (Xg. Xp)

<=> B'IABxB + B'IANXN

B lp
B lp

<=> Xg * B_IANXN = B_lb
If we set X = 0.in the basic solution, we obtain Xg = B lp

So if B isabasis of A, then we obtain the associated basic solution x = (xB, xN)T as

3. The Simplex algorithm 13-7
3.2 Basic feasible solutions

_p-l _
xB-B b, xN-O

e
3.3 Example (continued)
)
Basis 3

X2 1 -1 -1 -1

= xg=| ' |=8b=
X3 1

X7 -3 3 21

—
N w N D
n

O
A basic solution x is called a basic feasible solution (bfs for short) if x>0, i.e., x is a feasible solution of the
LP

2
3.3 Example (continued)

O
The basic solution of basis 1 is feasible, those of basis 2 and basis 3 are not.

3. The Simplex algorithm 13-8
3.2 Basic feasible solutions

_ The role of basic solutions for the simplex algorithm

~ From an algebraic view, the simplex algorithm will turn out to be a local search on the set of basic feasible
solutions

© To see this we need
§ a neighborhood (two basic feasible solutions are neighbors if they differ in at most one column)
__an algorithmic analysis how to go from one basic feasible solution to a neighbor (pivot operation, pivot step, or

simply pivot)

© we start with a few mathematical properties of (feasible) basic solutions

~ Some mathematical properties of (feasible) basic solutions
- 3.4 Lemma (The values of basic variables are bounded)
" Let the entries of A and b be integer numbers and let x be a basic solution of Ax = b.
Let o := max;; Iaijl and B := max; |b;|. Then
IxJ.I <mo™lg for all j

=
Proof:

3. The Simplex algorithm 13-9
3.2 Basic feasible solutions

- _ _1 . _
Let xp = B™'b with B = (AB(I)' AB(Z)' AB(m))‘

By Cramer's rule we obtain

xp(i) = B mit B = (Ag(1),..-yAB(i-1)y Dy AB(i41)y -+ -» AB(m))

)
A,b integer => det B integer => |det B|>1
(@) .
Expanding det B' along column b yields m summands of the form b; - [(m-1)x(m-1) sub-determinant of A].

Each such sub-determinant is the sum of (m-1)! products of (m-1) entries from A. Hence:
)

| det B : = =\
<|detB'l<m-p-(m-1-a™" = mla™
[derB] | | p-(m-1) p 3

IXB(i)l =

3.5 Lemma (Every basic feasible solution can be optimal, we cannot do with a subset)
Let x be a basic feasible solution of Ax=b, x>0 with basis B.

=> there is a cost vector c such that x is the only optimal solution of

min c'x
s.t. Ax=b
x20
3. The Simplex algorithm 13-10
3.2 Basic feasible solutions
©
Proof:
e
|0 ifjeB
Seth.—{ 1 lfng
(o)

=> ¢'x =0, as non-basic variables are 0O
=> x is optimal, as c"y >0 for every feasible solution y
(O]
let y be another optimal solution
=> yj=0 forall j& B
=> Ay =b reduces fo Byp=b => yp = Bl - Xp
=> x_is the only optimal solution
0
We will see later that basic feasible solutions also suffice, i.e., they constitute the smallest set of feasible
solutions on which the optimum is attained for all cost vectors ¢
(E)
Existence of basic feasible solutions

O
Question: does every LP have a basic feasible solution?

3. The Simplex algorithm 13-11
3.2 Basic feasible solutions

Assumption 3.2: The feasible domain Sy of an LP is non-empty
" 3.6 Theorem (Existence of basic feasible solutions)
~ With assumptions
3.1: rank(A)=m
32:. S; + @
there exists at least one basic feasible solution
© Proof:
© St # @ => there are feasible solutions

let x be a solution with the most O-entries and let w.o.l.g. Xy, ... X, > 0, X, 4, .., X, =0

=> Ax=b reducesto A;x;+ ..+ AX;=b (3.4)

Xy Xy xTO ..0

3. The Simplex algorithm 13-12
3.2 Basic feasible solutions

()
let A':=(A;...,A;) and r:=rank(A")

=> 0<r<min{t, m}

© .
case distinction
e
r=0
)
= AJ.=O for j=1,..,1 => (3.4) Ax=0
=> (choiceof x) x=0
=> x is a basic feasible solution for any basis, a particular basis exists because of assumption 3.1
e
O<r«<t
e

we generate a contradiction

_let B’ be a non-singular submatrix of A' with rank r, w.l.o.g.

Xy X oo X ooe Xy 0 ..0

B’

3. The Simplex algorithm 13-13

3.2 Basic feasible solutions
let BJ-' the columns of the first r entries of AJ- (j=1,...1) and let b’ be the vector of the first r
entries of b
© r<t => thelast m-r equations of (3.4) are redundant and we can write (3.4) as
By Xy +.+B.x, = b’

<> By'xg+.+B x = b -(B 4 X g+ BX)
X1 Xr+1
< (B,....BD)| : |=b-(Bly,....B}

Xp Xt

Multiplying from the left with (B) yields

X1 Xps+l
= (B)'b' - (B)" (Bl.y.....BY)
Xp Xt
X1 B1 Q041 oo R Xrt1
sl f=t : (+)
Xy Br [R Xt

for some humbers G and B,

3. The Simplex algorithm 13-14

3.2 Basic feasible solutions

i.., Xy, ... X, dependaffinely linearon x_ 4. ... X,

©
Use (*) to construct a new feasible solution with more O-entries
C)

there is a row i with o.

ire1 2 0 (otherwise we may choose x. ;= O which contradicts the choice of

X)

vary X4 such that one of x;, s X OF X g becomes O, but all stay >0
(@)

&; g <O => Xx; grows when x_, gets smaller => x;, .., x; stay 20

@}

& npg >0 => decreasing x

by 8>0 yields the condition x; - o .46 >0

r+1

. X;
choose 6 := min { x,,1, oY | @jpp1 >0}

andset y_ ,:=x -6 and Y= X; for j>r+l

= Yi. ..., are determined by (*) andare >0

2>y = (Vg yn)T is a feasible solution of the LP
C
2 cases:

O]
Yo =0 (occursif 8= x_,)

or _some yy, ... Y, become 0O

O
=> contradiction to the choice of x

3. The Simplex algorithm 13-15
3.2 Basic feasible solutions
e
O<r=t<m
0
A' has t columns, rank(A')=1t => the t columns of A' are linearly independent

=> (rank(A) = m) they can be augmented to a basis B of A by adding columns of A
=> x is a basic feasible solution for basis B U

(S
Boundedness of the feasible domain

" last assumption
~ Assumption 3.3: {c"x | Ax=b,x20} is bounded from below
© this will show that we can restrict ourselves to bounded feasibility domains Sy = {x|Ax=b,x20}
" 3.7 Theorem (The feasible domain can be assumed as being bounded)
Assume

3.1: rank(A)=m

32:5, 2 0
3.3:{c'x | Ax=b, x>0} is bounded from below
Then the LP
min {c'x | Ax=b, x30} (LP)
3. The Simplex algorithm 13-16

3.2 Basic feasible solutions

is equivalent to the LP
min {c'x | Ax=b, x>0, xJ.sM} (LP*)
with M= (m+1)l o™ B
o= max;s { laggl. le;l 3
B:=max; { |b;l, |z|}
z:=inf{c'x| Ax=b, x>0}
in the sense that the optimal values coincide and (LP) and (LP*) have a common optimal solution that is a basic
solution of (LP).
© Proof:
© let 6:={c"'x| Ax=b, x>0}C R = z:= inf G > - because of assumption (3.3)
G is closed (since defined by = and > and the linear function c'x) = z€6
= {xeR"|c'x =z, Ax=b, x20}is the set of optimal solutions of (LP) (3.5)
© Two cases
© rank {c'™x =z, Ax=b} = m+l

" Theorem 3.6 => (3.5) has a basic feasible solution x with basis B

Lemma 3.4 => x fulfills the bounds X< M

3. The Simplex algorithm 13-17
3.2 Basic feasible solutions

Moreover: x is feasible for (LP)
(3.5) => xis optimal for (LP) and this also for (LP*), as S px S Sp
rank = m+1 => B without the row for c"x =z contains m linearly independent columns from A

=> x is a basic solution of (LP)

®rank{ch =z, Ax=b} =m
© => ¢ is alinear combination of the rows a; of A, say c=3 dg;
= c'x = (£da)'x = Yda'x = ¥ db, = constant, independent of x
=> every such solution of (LP) is optimal, in particular a feasible basic solution.
This fulfills the bounds because of Lemma 3.4 O
3. The Simplex algorithm 14-1

3.3 The geometry of linear programs

e
Main statements of this chapter

O

The feasible domain of an LP in canonical form is a polyhedron
O

The basic feasible solutions of the associated LP in standard form correspond to vertices of this polyhedron
O

The optimum is attained in a vertex of the polyhedron / in a basic feasible solution of the associated LP in

standard form

e
Basic geometric facts
© d d
@+ SCR" isalinear subspace of R

_<=> S is closed under vector addition and scalar multiplication
O
<=> S is the set of solutions of a homogeneous linear system Ax =0

Then dim(S) + rank(A) = d

S

TCRY is an affine subspace of RY
o

<=> T is alinear subspace translated by some vector, i.e.,

T={u+x|xeS}, S Iinearsubspace,ueRd
(@)

<=> T is set of solutions of an inhomogeneous linear system Ax =b

@)
dimension dim(T) := dim(S)

3. The Simplex algorithm 14-2
3.3 The geometry of linear programs

Dimension of aset S C RY

O
= dimension of the smallest affine subspace containing S (affine hull of S)

e
Examples:

" a line has dimension 1

(8]
S| = k<d+l => dim(S) < k-1

2
The set of solutions S = { x| Ax=b, x>0} of an LP in standard form fulfills dim(S) < n-m
(@)

because:
rank(A)=m => { x| Ax =b } has dimension n-m (aslongas Ax=b is solvable)
the sign restrictions x. >0 can lower the dimension
eg., if {x]| Ax:b}ﬂ{szO}:{O}
© Hyperplane in R
= affine subspace of dimension d-1

= set of solutions of an equation a;x; +..+a x4 = b (notall a; = 0)
O

it defines two (closed) halfspaces
{x] QqXq* .t QXY 2 b} and {x | QgXq + ..+ QXY < b}

® d
Polyhedron in R

3. The Simplex algorithm 14-3
3.3 The geometry of linear programs

O

= non-empty intersection of finitely many halfspaces (generated by hyperplanes)
=> polyhedra are convex
- d
Polytope in R
©
= bounded polyhedron

Example: Platonic Solids

@ © http://www.3quarks.com/GIF-Animations/PlatonicSolids/index-de.html
° Geometric aspects of polytopes
Feasible domains S of LPs in canonical form are polyhedra. They are polytopes if S is bounded or can be
assumed fo be bounded.
o

e
3.8 Example

3. The Simplex algorithm 14-4
3.3 The geometry of linear programs

(1,0.3)
(2,0,2)
(2,0,0)
X1
(2,2,0)
©
The polytope is the intersection of the following halfspaces
Xp+ Xy + X3 ¢ 4 hyperplane H,
X4 <2 hyperplane H,
X3 ¢ 3 hyperplane Hy
3x,+ X3 ¢ 6 hyperplane H,
3. The Simplex algorithm 14-5

3.3 The geometry of linear programs

Xj 2 0 hyperplanes Hg, H¢, H-
e
A hyperplane H supports polyhedron P
O
«=> HNP ¢ @ and P is contained in one of the halfspaces defined by H
O
f:=HNP is then called a face of P, and H is called a P supporting hyperplane defining f

important: facet face of dimension d-1

vertex or extreme point face of dimension O (a point)

edge

face of dimension 1 (a line segment)
S
Some geometric facts (without proof)
©
(a) A facet defining hyperplane of P belongs fo one of the halfspaces that define P (i.e., deleting H
changes P)
S
(b) Face defining hyperplanes do generally not fulfill (a).
()
The halfspace x, < 2 in Example 3.8 defines aface ({ x, < 2}NP) that is an edge but not a facet).
This halfspace is redundant, its generating inequality is already implied by others:

x320, 3x2+x336 = 3x2g3x2+x336 > X5 ¢ 2

3. The Simplex algorithm 14-6
3.3 The geometry of linear programs

O
(c) Anedge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the

converse is not true)

- 3.9 Theorem (Minkowski 1896)
| (a) Every polytope is the convex hull of its vertices,
i.e., every point x of a polytope P can be represented as
=])\1x1 +)xkxk, x vertex of P, \20, Z\ =1, kfinite

(b) if vcrY is finite, then conv(V) is a polytope P and { verticesof P} C V
e
Proof
C)
partly an exercise
C)
(a) by induction on dimension d

()
In example 3.8 we have

1 2 0 0
tl=3l2 |3 alz]o
1 0] 3 0

o
(b) is infuitively clear geometrically, but more complicated to prove algebraically. O

3. The Simplex algorithm 14-7
3.3 The geometry of linear programs

C)
Consequence: There are fwo views on a polytope:
O
1. as convex hull of a finite set of points

(e.g., of the incidence vectors of solutions of a combinatorial optimization problem)
O
2. as the intersection of finitely many halfspaces (if this intersection is bounded)

(this is the natural view when the inequalities are explicitly given, e.g., as for LPs in canonical form)
O
A third, algebraic, will be derived in the sequel. Tt consists of a linear system Ax=b, x>0 whose basic

feasible solutions correspond to the vertices of P.

e
Algebraic interpretation of polytopes
e
From the polytope to the linear system
O
Let P be a polytope inR,"™ given by the n inequalities (3.6)

X; 2 0 i=1,..,nm

hi,lx1 + ot hi’n_mxn_m +9; <0 i=n-m+l, .., n
Let H be the coefficient matrix of inequalities i = n-m+1, .., n
O
Introduce slack variables x; for inequalities i=n-m+1,..,n (m many)

3. The Simplex algorithm 14-8
3.3 The geometry of linear programs

e

=> (3.6) becomes Ax=b, x>0, xeR" with A=(H|I), b= S I gn)T

i.e., the feasible domain S of an LP in standard form

O
This induces the following mapping (fransformation) f:P->S (3.7)

X1
x] :
x = eP Xn—m)
! .
Xn—m .
Xn
x! i=1,...,n—m
with x; = th]] i=n—m+1,...,n
_\/—/
slack

Observe: x is uniquely determined by x”,i.e., f isinjective

~ From the linear system fo the polytope

~Let Ax=b, x>0, x e R" be the feasible domain S of an LP in standard form (under assumptions 3.1 - 3.3).

Then there exists a basis B, and we consider the partition A = (AB,AN) and x = (xg, xN)T in basic and non-

basic variables.

3. The Simplex algorithm 14-9
3.3 The geometry of linear programs

W.o.lg. let B={n-m+l, .. n} (last m columns of A)

0
Multiplying Ax = b from the left by B! gives

B (Ag.Ap) (xg. X)) = xg + BA\ Xy = Blb = b’

With B'IA‘i = A,j we obtain
n-m

xB(i):bl{—Zal{jxj i:].,...,m
=

)
Hence Ax=b, x>0 is equivalent to (3.8)

Z“a 20 i=1,...,m
Xj >0 J€B

These are n inequalities in the variables x, ... which define a polytope P in R™™ (since S is bounded)

nm'

O
This construction defines the following mapping g: S ->P (for B={n-m+1,.n}) (3.9)

X1
X=| Xpem | €S +— X' =] epP

Xn

3. The Simplex algorithm
3.3 The geometry of linear programs

i x.” = X.
R with : :
~ Obviously, g is a linear function and injective, as x

j=1,...,n-m (we "forget" the slack of basic variables).

nemels e X Gre uniquely determined by Xps oo Xy

Moreover:
6)
X; = 0 forj=1,.. nm,ie. j&B, impliesthat x" lies ona "coordinate hyperplane" in P

X; = 0 for j=n-m+l,.. n, ie. jeB, implies that a P-defining inequality holds with equality
(basic variables "correspond" to slack variables, where this role is defined somewhat arbitrarily by the

choice of B)
©
3.8 Example (continued)

O

11 11 4

1 1 2
A= b=

1 1 3

31 1 6

3. The Simplex algorithm
3.3 The geometry of linear programs

1 & values of the
1 given variables
1 0 \
X=|1|er o x=|2]es %
0 1 values of the
. slack variables
3 \Y

o
Observe: f and g are bijections between P and S, where g depends on the choice of the basis and

determines P.

3.10 Theorem (Interpretation of vertices in the three views)

14-10

14-11

i Let P be apolytopeandlet S={x| Ax=b,x>0} be the associated feasible set of an LP in standard form.

Let y'=(yy s oot Yo)Y'e P andlet y= (7. yn)T € S be the associated vector according to (3.7)
Then the following statements are equivalent:
(1) y* isavertex of P

(2) y’ cannot be represented as a strict convex combination of other points from P

3. The Simplex algorithm 14-12
3.3 The geometry of linear programs

(3) y is a basic feasible solution of S
e
Proof
C)
(1 =>(2)
(@)
Assume thereare z',z"" € P, 0<h<1 with y ' =Az" + (1-N\)z"°
y’ is avertex => there is a halfspace HS ={ z | h'z < g} with HSNP={y"}
2,z € HS => h"z">g and h'z"">g => hT(A\z" + (I-N)z"") > g
=> y’ & HS, acontradiction
C)
(2)=>(3)
O]
Let y € S be constructed from y” according to (3.7) andlet B':={ | Yj> 0}
. Claim: the columns AJ. with j € B' are linearly independent
O
if not, there exist numbers dJ. (not all 0) with ZJ. cp dJ.AJ. =0 (3.10)
Definition of B' => Zicg VA= b (3.11)
(3.11) + 6-(3.10) and (3.11) - 8:(3.10) yield
. ZJ. cp (yJ. + edJ.)AJ =b and Zj cp (yJ. - edj)AJ. =b
. Y >0 for jeB' => 6>0 canbe chosen in such a way that Yj+ edj > 0 and Yj- edJ. > 0.

To this end we must have:

3. The Simplex algorithm 14-13
3.3 The geometry of linear programs

0 < yj/ldjl for negative and positive dJ.
=> this is possible for all j € B' simultaneously

define x! and x% from S by

1,]/]'—de jEBI 2=]/]‘—I—Gd]' jGB/
0 otherwise] 0 otherwise

> X, x% e S, different fromy, and

g: S ->P defined by (3.9) is linear and g(y) =y’

: ——1 1 1
=y =9(y)=9 (Exl * §x2> = 59(x1)+ 59(x2)

with g(xl), g(xz) € P => acontradiction to (2)
(8]
=> |B'| ¢m => (Assumption 3.1) B' can be augmented to a basis B

o
=> y is a basic feasible solution for B

©
(3)=>(1)
o

_let y be abasic feasible solution of Ax = b, x>0 with basis B

3. The Simplex algorithm 14-14
3.3 The geometry of linear programs

Lemma 3.5 => there is a cost vector c¢ such that y is the only optimal solution of the LP with cost vector
C.
In other words,
y is the only solution of (3.12)
c™x < cly =ibgy,
Ax=b, x>0

(8]
Transform (3.12) into standard form with a slack variable Xpe1 for ¢'x < by :

Ci ... Cn 1
X1
0 . —{ bo
A ... A ' b
0 Xn+l

=> BU{n+1} is abasis of (3.12)
(O]
Transform (3.12) according to transformation g defined by (3.9).

This yields a system of linear inequalities whose m last inequalities define the polytope P.

The first inequality is transformed into ¢, x;" +..+ ¢, "X~ < by" (3.13)

o
The transformation is a bijection

3. The Simplex algorithm 14-15
3.3 The geometry of linear programs

= y->y’,and y’ is the only point in P fulfilling (3.13) with equality

= cl’xl' +.+c X

n-m. Xn-m = Pg’is a supporting hyperplane H of P .and HNP = {y"}

=> y’ isvertexof P 0

o
There is a similar characterization for edges of the polytope (later)

Corollary (Feasible solutions are convex combinations of basic feasible solutions)

Under assumptions 3.1 - 3.3, every feasible solution in S is a convex combination of basic feasible solutions.
e

Proof:
()
Because of Theorem 3.7, we may assume that the feasible domain S is bounded

=> the associated polyhedron P is a polytope
O
Let x €S and let x' be the associated point in P

~ => (Minkowski's Theorem) x' is a convex combination of vertices x' of P

=> x_is a convex combination of the basic feasible solutions corresponding to these vertices
e

because:

[6) . .
let x' =3 Ax'" = z:=3Ax' €85, as Sis convex

3. The Simplex algorithm
3.3 The geometry of linear programs
(

0 . .

g linear => g(z2) =¥ Ag(x') = TAx" =x'
(O]

g injective, g(x)=x'=g(z) => x=z O

S
A more precise analysis of the correspondence "basic feasible solution <-> vertex"
@)
vertices x’,y’ are different <=> associated basic feasible solutions x,y are different
O

But: in general not the associated bases!
i.e., different bases 7 different associated basic solutions

©
Example 3.8 (continued)

(@)
11 1 1 4
1 1 2
A= b=
1 1 3
31 1 6

B={1,2,3,6} B'={1,2,4,6}

= Blp = (B')'lb' =(2,2,0,3)". Inboth cases the associated basic solutionis (2,2,0,0,0,3,0)"
>

Geometric view:

Non-basic variables in B are X4 X, Xz => X4 = Xg = Xg = 0

3. The Simplex algorithm
3.3 The geometry of linear programs

=> XI (S HlﬂHan4
Non-basic variables in B” are X3, Xg, Xz non-basic variables =» X3 = Xg = X5 = 0
=> X, (S H50H20H4
i.e., X" lies on more than 3 facets
in both cases, x’ is the same vertex (2,2,0)" and x=(2,2,0,0,0, 3,0)" is the same basic feasible
solution
S
degenerate basic feasible solution, degenerate vertex
= basic feasible solution (corresponding to a vertex) with more than n-m zero entries
3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices)
x is a basic feasible solution for several bases => x is degenerate
x” is a degenerate vertex <=> x lies in the intersection of more than n-m facets
~ Proof
o
Let B and B' be different bases for x
=> x. =0 for the n-m Indices j€ B and for the n-m Indices j€ B'

J
=> x is degenerate

14-16

14-17

3. The Simplex algorithm 14-18
3.3 The geometry of linear programs

e}
The statement for vertices is left as an exercise 1

_ The Fundamental Theorem of linear optimization
O
We are now prepared to show that the optimum of an LP is attained at a vertex / a basic feasible solution

(assuming 3.1 - 3.3).

Note that there can also be optima attained at other points (e.g., if c is constant on a face of the polytope)

3.12 Theorem (Fundamental Theorem of linear optimization)
Every instance of LP attains its optimum at a basic feasible solution.

Every convex combination of basic optimal feasible solutions is optimal.
© Proof
° First statement: geometrically with associated transformed objective function ¢'x -> d"x’
N Transformation of the objective function into the geometric view
© Let S; be given by { Ax=b, x>0} and let B be a basis for a basic feasible solution.

Consider the polytope P associated with basis B according to transformation (3.9)
=> P is defined via the non-basic variables xy, and xp = Bl - B'IAN XN

o
The objective function c¢'x is then transformed as follows:

3. The Simplex algorithm 14-19
3.3 The geometry of linear programs
T

cfx = clxp+clxy

= C};(Bilb — BflANxN) + C}\}XN
= B4 (o, = cEB AN) XN

N—_——
constant ar

=> min c¢"x (algebraic) corresponds to min dTXN (geometric)
e
Proof in the geometric view

0
P is closed and bounded, y -> d'y is continuous on P

=> optimum is attained on P

let yO be optimal and let yk, k=1,..,r bethevertices of P

Minkowski's Theorem = y* = ¥ \y¥ with A, 20, TA = 1

let j be an index for which dTyj is minimum among the vertices yk, k=1,..r

5 dY0 = dTEAYS = IAAYE > IAdY = dY s = dTY

=> y~i is optimal => optimum is attained at a vertex

correspondence vertices <-> basic feasible solutions => optimum is attained at a basic feasible solution

o
The second statement is easy to see

3. The Simplex algorithm 14-20
3.3 The geometry of linear programs

Corollary
| Every optimal solution is a convex combination of basic optimal feasible solutions
° Proof:
&)
Let x be an optimal solution of minc'x, Ax=b, x>0
© Corollary of Theorem 3.10 => x is a convex combination of basic feasible solutions
say X =)xlxl + o+)\kxk, with basic feasible solutions xi, A\ 20, ¥ A\ =1, kfinite
C=2cx = I\ X (%)
© Assume that x" is not optimal => ¢'x < ¢'x"
(*), \,20 = thereis some x° in the convex combination with ¢'x > c'x®
=> this contradicts the fact that x is optimal
= all basic solutions in the convex combination are optimal 1
e
Theorem 3.12 is the basis for the simplex algorithm

_ clever local search among the vertices (geometric view)

_clever local search among the basic feasible solutions (algebraic view)

3. The Simplex algorithm 15-1
3.4 Local search among basic feasible solutions

e
Main topics of this chapter

O
We consider the pivot operation that defines the neighborhood of basic feasible solutions
~ We analyze the underlying algebraic calculus

O
We will introduce the use of tableaus

° First thoughts on the pivot operation
© Let y be a basic feasible solution of Ax=0, x>0 with basis B
=> canwrite Ay=b as X -, AB(i)yB(i) = b (314)
© B basis => every column AJ- & B is a linear combination of basic columns

=> there are numbers Xij (i=1..,m) wth 3 _, AB(i)XiJ‘ = AJ. (3.15)

,,,,

.....

®

We will now change 6 in (3.16) to obtain another basic feasible solution.
We consider 3 cases:
© Case 1: y is not degenerate and not all X;j ¢ 0 (i=1,...m)

8 y not degenerate => all Ye()’ 0 (i=1,..,m)

transition from 8 =0 to 0 >0 corresponds to the transition from y to x(8) with

3. The Simplex algorithm 152
3.4 Local search among basic feasible solutions

ypiy —0x;j L=B(i),i=1,...,m
xp(6) =< 0 0=

0 otherwise

=> x(0) has m+l entrees >0 (for small 0)

- x(0) stays feasible as long as x(6) > 0

.....

" x(8)20 holds as longas 0< B¢ 6, with

8o=min {222 | x;>0,i=1,...,m} (317)
Y

* If the minimum of (3.17) is attained at k, then x(8,) is a basic feasible solution with basis B' = B - {B(k)}

U {j}
e
since
e
1. the columns AJ. with-j € B' are linearly independent
O
Suppose not. Then there exist numbers d; (notall 0) with X, _, ., diAB(i) + dJ.Aj =0
GI5) = Xioq mizk 9 * 4T AspXip) = O
3. The Simplex algorithm 15-3

3.4 Local search among basic feasible solutions

this is a linear combination of the columns of B that gives O.

So all coefficients in the linear combination must be O

= (d;+ dJ.xiJ.) =0 for i=1,..,m, izk and djxkj =0
. xkj determines 90 = ka. >0 = dy.| =0 = di =0 for alli, acontradiction
— 2. x(8p) = O by construction

e
3.3 Example (continued)

(@]
1 1@1 | 4 Ya 2
1 | 2 2
@ = yp= 1 =
1 | 3 Ye 1
31 @I 6 y7 4
0
1
As = 0 = Ap-Xg5+ Az - X5+ Ag - X35 + A7 - Xg5
0

=1A -1A;+ 1-A6 + 1~A7
=> (3.16) readsas (2-0)A;+(2+6)A3+(1- 6)-A6 +(4- 9)~A7 + 9~A5

3. The Simplex algorithm 15-4
3.4 Local search among basic feasible solutions

=> transition from y = x(0) to x(6) readsas

2 2—-0 1
0 0 0
2 2+0 3
y=10 | —x(0) = 0 -1 0 foro =1
0 0 1
1 1-6 0
4 4-90 3

x(1) is a basic feasible solution with basis B={3,1,5,7}
C)
Case 2:yis degenerate
e
so there is an index i with Yg(i) 0 and x;;>0
J
=> eo =0
=> no movement in R" and thus also not in R™™M
=> we stay in the same vertex / basic feasible solution, but obtain another basis, as AB(i) and AJ. are
exchanged
e
Case 3: dll Xjj ¢ 0 (i=1,... m)
—=> 0 can be made arbitrarily large and x(8) stays feasible

= Spis unbounded

3. The Simplex algorithm 15-5
3.4 Local search among basic feasible solutions

e

=> objective function is not bounded from below because of Theorem 3.7

Basis exchange

- 3.13 Theorem (basis exchange)

When computing 8, suppose that the minimum is attained at i =k, then x(6) is a basic feasible solution
with basis B, and

B()= { B0 17
J i=k

X(8g) is degenerate if k is not unique
(6}
Proof: this follows from the previous arguments

In the example we obtain k=3, B(3)=6, B*(3)=5 1

o
This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply

pivot)
We say that: AB(k) leaves the basis and A‘-| enters the basis

XB(k) leaves the basis and X; enters the basis

3. The Simplex algorithm

3.4 Local search among basic feasible solutions

3. The Simplex algorithm

3.5 Organization in tableaus

e

~ Goal: make the pivot operation efficient

O

=> _must get hold of the Xij

=>

this can be done by transforming the basis to an identity matrix

—An example

O
Let Ax=b be given as

3x1 + 2x2 + X3
5x1+ Xy + X3 *+ Xy =

2x1 + 5x2 + X3

+X5:

We write this down in a tableau:

X1 X2 X3 X4 Xs
3 2 1 0 O

3|5 1 1 1 0

412 5 1 01

with b as column O

B, is called the primal step length

a pivot operation. So pivot operations define a neighborhood on the set of basic feasible solutions.

must express non-basic columns as a linear combination of basic columns

—

3
4

15-6

Two basic feasible solutions with different bases are called neighbors, if one can be obtained from the other by

16-1

3. The Simplex algorithm 16-2
3.5 Organization in tableaus

(&)
We transform the linear system / the tableau w.r.t. a basis B is such a way that the basic columns form the

identity matrix.
For B={3, 4,5} this gives the following tableau

X1 X2 X3 Xz Xp

3 2 1 0 O

212 -1 O 1 0

3|]-1 3 0 0 1
=> xB(l) = x3 =1
Xp2) = X4 = 2

Xg(3) = X5 = 3
Moreover A; = 3Ap) + ZAB(Z) - 1AB(3)' The coefficients are obviously given by the column of x;

=> the numbers x;j are in column_j of the transformed tableau (fransformed such that B is the identity

matrix)
O
So if A; is fo enter the basis, then

6= min{yxB—i(;) | xi1>0,i=1,...,m}= min{%,§}= % und k=1
3. The Simplex algorithm 16-3

3.5 Organization in tableaus

The tableau for the new basis is then obtained by transforming it so that A; becomes the new unit vector in

the basis

X1 Xz X3 Xg Xs
1 2 1
3|1 5 35 00
4 7 2
3/0-35 -5 10
10 11 1
310 3 35 0 1

> Xpeqy T Xg = 1/3
Xg (o) = X4 * 4/3
Xg 3y = X5 = 10/3
In this basis exchange, ay; plays the role of the pivot element (as in Gaussian elimination)
© The pivoting rules
o Let (xij) be the tableau for basis B and let (x'iJ.) be the tableau for the new basis B', both with the right-

hand-side as column 0, i.e. (x;5) and. (x'io). Let Xy be the pivot element. Then the entries of the new tableau

3. The Simplex algorithm 16-4
3.5 Organization in tableaus

xl/<q = %q gq=0,...,n
(3.18) x;q = xiq—X,’(qxij i=1,...,m i#k qg=0,...,n
B'(i) = B(i) i=1,...,m i#k
are obtained by B'(i) = j i=k
Mnemonic:
q J

k Xkq @4— must become 1
i Xiq @ <—— must become 0

3. The Simplex algorithm 17-1
3.6 Choosing a profitable column

Goal: Understand the change of the objective function for a basis exchange
e
First thoughts on the change of the objective function
Let y be a basic feasible solution with basis B

=> y has the objective function value (cost) z, = Zio 1 m CaayYac)
v ©_
If A entfers the basis, then Ax(6) = >, _; AB(i) (YB(i)’ exl.J.) + eAJ. (=b)

J
8 = 1 => for every "unit" of variable X; entering the basis, Xij units of Ya(i) leave basis

.....

Seft
zj = Lil1 XijCh(i)

C_]' = C]' — Z]'
E.
J is called the reduced cost coefficient (or simply reduced cost) of X;

it describes the change in cost when X; is entering the basis with value X; = 1

Z; describes the change in cost contributed by the the basic variables of basis B when X; enters the basis with

value xj =1

We will show:
© Cj <0

3. The Simplex algorithm 17-2
3.6 Choosing a profitable column

=> we can improve the cost by letting X; enter the basis
C_.
750 for all non-basic variables X
=> current feasible basic solution is locally optimal w.r.t. the basis exchange neighborhood

=> we have a globally optimal feasible basic solution, i.e., the neighborhood w.r.t. basis exchange is exact

e
Notation
e
X = current tableau for basis B
A = initial matrix, b initial right hand side
Then
® -1
X = B7(b|A)
i.e., current tableau is obtained by multiplying (b|A) with B from the left
© 2T =¢IX=cIBA
i.e., this equation describes the change in cost z for the basic variables when X; = 1 enters the basis
O
because:
3. The Simplex algorithm 17-3

3.6 Choosing a profitable column

X1j

m
%= Z XijCa(y = (CB(1), ey CB(m))

i=1 me

= 2" = ¢gX=ciBlA

e
Optimality criterion
" 3.14 Theorem (Optimality Criterion)
" Let x be a basic feasible solution with basis B. Then

- (1) A pivot step at which X; enters the basis with value X; = 8, changes the cost by
eo(_:j = eo(CJ = Zj) (3.19)

@) If
c=c-z20 (3.20)

i.e., all reduced costs are non-negative, then x is optimal.
e
Proof
S)

~ Proof of (1) (intuitively clear from our first thoughts above, here is the precise derivation)

3. The Simplex algorithm
3.6 Choosing a profitable column

17-4

()
When X; enters the basis, the pivoting rules (3.18) yield the following new right hand side (= column O of

the tableaus)
Xi0 — 903(" i k X
D B B oL |
O i=k Ykj
(@]

Let z be the old objective function value function value and let z' be the new one

=> new objective function value is

m

— Z (xio = Goxi]')CB(i) + 90C]'
i=1, ik

I
B

m
Xioch(i) —00) Xije(i) — (Xro — O0Xkj)cp(x) + foc
i it

W_J
=z

m
=z+6 <xijB(k) ¢ —) Xijep(i) — XKk0CB(k)
i=1

=¢j =7

3. The Simplex algorithm
3.6 Choosing a profitable column

=z+6(cj—z) + 00X1jCB (k) — XKoCB(k)
v
= XkoC(k) as o=2Xko/ X
=Z+ eo(Cj - Zj)
=> (3.19)
C)
Proof of (2)
@}
Let y be a feasible solution of the LP,ie., Ay=b, y>0
€=c-220=c22z Together with y>0 we obtain
cTy>zTy=cIB 1Ay = LB~ 1b = clxp
So x is globally optimal (and in particular also a best basic feasible solution) 1
~ Tableau with reduced costs
O
The optimality criterion suggests o make the reduced costs available in the tableau.
=> add them as row O
Question: How to obtain the initial reduced costs from the given objective c?

O
Werite the cost as

17-5

3. The Simplex algorithm

17-6
3.6 Choosing a profitable column
0= -z5 + Xy + .+ C Xy
This can be seen as enlarging Ax=b to
1 7 T (-Z0) (0)
0o I A X b
O
For a basic variable X; we obtain
m
Cj=¢j-zj=¢j- injCB(i) =0
i=0 zr
since (xij) is-a unit vector
with 1 at entry iy with B(ig) = j
m
= Cj=) XijCe() = €}~ Cagio) = €= €; = 0
i=0
So Cj=0 for basic variables
for non-basic variables X; we obtain: (3.21)
L Tp-1 T
5]' =C—Zj=¢— injCB(i) =Cj— CBBf Aj =Cj— CBXj
i=1
3. The Simplex algorithm 17-7

3.6 Choosing a profitable column

C.
ie., /" is obtained from ¢ and X for non-basic variables
®)
for -z, we obtain: (3.22)

m
—20 = —), C(i)¥B(i) = —C5Xo
i=1

i.e., -2y is also obtained from ¢ and X

O
New enlarged tableau (in the following denoted as tableau)

=Zo | €1 ... Cj R o
T X10-| X1t v X1 oo Xin
Xg
$ Xmo | Xm1 ... Xmj ... Xmn
Bb BIA,

" 3.15 Theorem (Updating the reduced cost)

At a basis exchange, the reduced costs are updated by the same rules (3.18) as all other rows of the tableau
(3.18).

In other words: for column j entering the basis, row O is transformed so that xoj=¢; becomes 0. The

3. The Simplex algorithm 17-8
3.6 Choosing a profitable column

resulting changes in row O give the new reduced costs and the new -z,

O
Proof: checking 1

316 Corollary (Test for an unbounded objective function)

¢i<0, all X3 <0 (i=1,.m) = c"x is not bounded from below
e
Proof

O
0 and thus x(8) can then become arbitrarily large

=> the objective function decreasesby 6-¢; — o~ O
e
The basic version of the simplex algorithm

- Algorithm (Generic simplex algorithm)
e
Input

(@)
Tableau X of an LP in standard form with full row rank and with identity matrix as feasible basis
e
Output

O
At termination: an basic optimal feasible solution or the message that the objective function is unbounded

O
Termination is not guaranteed
[=

)
Method (iterative pivoting in the direction of decreasing cost)

3. The Simplex algorithm 17-9
3.6 Choosing a profitable column

_ while thereis acolumn j with ¢; <0 do
6]

choose column j with ¢; <0

o
if Xij-< O foralli then return "objective function is unbounded"

* determine 6, andindex k, for which the minimum in (3.17) is attained
* pivot with pivot entry Xy according to (3.18) (also for row 0)
~ return Xp
© Example
© min Xy + Xy, * X3 + X4 + Xg
s.t. 3xy + 2%, *+ X3 =1
OXp + Xy + X3 * X4 =3
2xy + DX, + X3 + Xg = 4
X; >0

O
Initial tableau (not yet with reduced costs and identity matrix as basis)

3. The Simplex algorithm
3.6 Choosing a profitable column

X1 X2 X3 Xz Xs

oj1 1 1 1 1
113 2 1 0 O
315 1 1 1 O
412 5 1 0 1

2
Transform it w.r.t. basis B={3,4,5}

i.e., columns 3, 4,5 change into unit vectors (including row O for the cost coefficients)

X{ Xz X3 X4 Xs
-z [-6[-3 -3 O
x3 |13 2 1
Xxg |2] 2 -1 0
xs [3-1 3 O

O ~ O|O
- O OO

e s .
A specific transformation:

1. subtracting row 1 from row 2 and from row 3 yields the identity matrix in rows 1-3;

2. subtracting rows 1-3 from row O correspond to (3.21) and (3.22)

Pivot operation:

3. The Simplex algorithm
3.6 Choosing a profitable column

Columns 1 and 2 have reduced costs <0, we choose X, toenter the basis.

Computing 8, yields 6, = min{1/2,3/3} = 1/2 with k=1. Hence Xp(1) = X3 leaves the basis.

X{ Xz X3 X4 X5
-z |-9/2 | 3/2 0 3/2
X2 1/2 3/2 1 1/2
Xqg | B/2 | 7/2 0 1/2
X5 3/2 |-11/2 0 =3/2

O -~ OO
- O O| O

All reduced costs > 0 => optimal solution reached

x=(0,1/2,0,5/2, 3/2) is as basic optimal solution with cost z=9/2

e
Applets for pivoting

e
Advanced Simplex Pivoting Tool
@

e
Advanced Simplex Pivot Tool
S

~ Matrix Row Operation Tool

O
http://people.hofstra.edu/faculty/Stefan Waner/RealWorld/tutorialsf1/scriptpivot2.html

17-10

17-11

3. The Simplex algorithm 18-1
3.7 Pivoting rules and cycling

e
Main topics of this chapter

O
Strategies for the choice of a column (pivoting rules)
@)
Strategies for the choice of a pivot element in a column if there are more than one
O
In particular: Ensure termination of the simplex algorithm

e
Strategies for the choice of a column (Pricing)
o
We have a choice if several &; <0, this choice influences the number of pivot operations.
S
There is no "best" choice. Commercial solves apply a wide selection of heuristics. Here are some of them:
=

(1) Steepest relative descent among the nhon-basic variables
| Among all columns j with ¢&; <0, choose j with maximum | ¢; |
© This column has the largest relative descent of cost in the direction of a hon-basic variable. However, since
B is not known yet, this choice does not necessarily lead to the largest descent.
° (2) Steepest absolute descent among the non-basic variables
- Among all columns j with ¢&; <0, choose j with maximum | 8¢; |
© This column has the largest absolute descent of cost in the direction of a non-basic variable. It generally

reduces the number of pivots, but at the price of an increase of computational effort by a factor of m per

3. The Simplex algorithm 18-2
3.7 Pivoting rules and cycling

pivot compared with (1)
e
(3) Largest relative descent in the whole feasible domain
| Among all columns j with ¢&; <0, choose j with maximum
g G :
= with 0 =1

SR O]

(O]
This column has the largest relative descent of cost in the direction of x(8) - x, but is computationally very

expensive

_ Strategies for the choice of the pivot element

o
This choice is not so important for termination of the simplex algorithm if 8, >0, because then the pivot

operation leads to a hew vertex / a new basic feasible solution with a better objective function value.

© It is however important if 6, = 0. In this case, the current basic solution is degenerate and the pivot operation
changes only the basis, but not the basic solution / vertex, see Theorem 3.13

© This may lead to cycling, i.e., starting from tableau X we arrive again at tableau X after several pivots
=> we have traversed a "cycle" of different bases with the same basic solution

=> the simplex algorithm does not terminate

3. The Simplex algorithm
3.7 Pivoting rules and cycling

e

3.15 Example (An example for cycling , Gass 1964)
O

min -3/4 Xy + 150 X, -1/50 X3 + 6x4

s.t. 1/4 Xy - 60 X, -1/25 X3 + Ix4 ¢ 0
1/2 Xy - 90 X, -1/50 X3 +3 X4 ¢ 0
X3 <1
5 xJ- >0
Initial tableau with a basis of slack variables
X1 X2 X3 X4 X5 Xeo X7
-z| 0[-3/4 150 -1/50 6 0O O O
xs| 0| 1/4 -60 -1/25 9 1 0 O
x| O 1/2 -90 -1/50 3 O 1 O
x7 | 1 0] 0 1 0 0 0 1

e

~ Choosing the sequence

X11 %22 X13 %24 X145 %24

of pivot element, we arrive again at the initial tableau

3. The Simplex algorithm
3.7 Pivoting rules and cycling

(S
Proof: check, e.g. with the Matrix Row Operation Tool

O]
http://people.hofstra.edu/faculty/Stefan Waner/RealWorld/tutorialsf1l/scriptpivot2.himl

Anti-cycling rules

" The lexicographic anti-cycling rule
N Divide every row i with X > 0 by Xij and choose the lexicographically smallest of them as pivot row
© Lexicographic rule:

Choose k such that

i-Xk,, :lex-min{l- li=1000m, Xij >0}

xk]- xi]-
where X; . = i-th row of tableau X and lex-min = lexicographic minimum
X
eo = ﬂ
Xj

" 3.16 Theorem (The lexicographic anti-cycling rule avoids cycling)

(@) Therows i=1,.. m of the current tableau can be made lexicographically positive.

18-3

18-4

3. The Simplex algorithm
3.7 Pivoting rules and cycling

(b) If therowsi=1,.., m of the current tableau are lexicographically positive, then the simplex

algorithm with lexicographic anti-cycling rule terminates after finitely many steps.

e
Proof

e
(1) The rows of the current tableau can be made lexicographically positive.
O

e.g. by permuting the basic columns to positions 1,2,....m
=> every row either starts with Xin>0 or with (0...0.1,..), where X; B(iy = 1

=> every row is lexicographically positive, i.e., (0,0...0)

>
lex

=)

S
(2) The lex-min is unique

O
Suppose hot => there are rows i, r with

1 1
P (Xio, Xit, ..., Xin) = o (Xr0, Xrt, ..., Xrn)

=> rows i and r are linearly dependent
=> this contradicts assumption 3.1 that rank(A) = m
© (3) All rows of the tableaus stay lexicographically positive after a pivot step
© if Xy is the pivot element, then the new rows after pivoting are

(@)
for i=k:

3. The Simplex algorithm
3.7 Pivoting rules and cycling

1
—(XK0, Xkt - - Xkn)
Xkj

Xyj > 0 => we stay lexicographically positive

O .
for iz k:
1
(X0, Xit, -+ -, Xin) = Xij=— (Xk0, XK1, - - - . Xkn)
Xkj

This is (0,0,..,0)

>
lex

1 1
& —(XK0, Xkt - - -, Xkn) <lex —(Xi0, Xit, .., Xin)
ij xij

This is the case since row k is the lex-min, and the lex-min is unique (equality cannot happen)

e
(4) Row O (the cost row) strictly increases lexicographically after every pivot step
O

if Xy is the pivot element, then the new row O after the pivot operation is obtained as

18-5

18-6

3. The Simplex algorithm

3.7 Pivoting rules and cycling

Quy

3. The Simplex algorithm
3.7 Pivoting rules and cycling

-z
X5
Xe
X7

O
The sequence

X11 X22 X23 X34 X35

18-7

_ _ 1
(-2,&4,...,Cn) - o (XK0, XK1, - -« + Xkn)
i —_—

J N~~~

—~—~
/ b\lex positive
>0as <0Oas

pivot element

(C)
(5) Termination

e
3.15 Example (continued)

reduced cost in
the pivot column

=> the new row is lexicographically larger

©
Every basis uniquely determines row O because of (3.21) and (3.22).
Row O grows lexicographically => corresponding basic solutions must be different

There are only finitely many basic solutions => termination

O
The initial tableau is already lexicographically positive

18-8

X1 X2 X3 X4 X5 Xg X7
0|-3/4 150 -1/50 6 0 0 O
0| 1/4 -60 -1/725 9 1 0 O
0| 172 -90 -1/50 3 O 1 O
1 0 0 10 0 0 1

of pivot elements fulfills the lexicographic anti-cycling rule and terminates with an optimal solution. The

initial degenerate basic solution is left after pivoting with xs,.

S
Proof: check, e.g. with the Matrix Row Operation Tool

O
http://people.hofstra.edu/faculty/Stefan Waner/RealWorld/tutorialsf1/scriptpivot2.html

~ Bland's anti-cycling rule

Among all columns j with &; <0 choose the one with smallest column index j

Among all rows i with 6, = xio/xij choose the one with smallest column index B(i)

(8]
Proof: Exercise O

3. The Simplex algorithm
3.7 Pivoting rules and cycling

o
Empirical tests show that Bland's rule needs many pivots

e

~_Anti-cycling in practice

18-9

()]
Experience shows that cycling is mostly already resolved by the rounding caused by floating point arithmetic.

Commercial solvers control the progress of the objective function and change their pivot rule if there is

evidence of cycling until they reach a different basic feasible solution.

3. The Simplex algorithm

3.8 Phase | of the simplex algorithm

e

_ Goal: Provide an initial tableau for the simplex algorithm, i.e., a tableau that is already transformed w.r.t. to the

basis of a basic feasible solution

19-1

O
This is easy if the LP is given in the form Ax<b, x>0 with b>0. Then we just infroduce slack variables s;, ...,

s, and the associated columns form a basis

m

Initial tableau

e

~_For general LP in standard form, this is done with the two-phase-method

-z
S1

Sm

X1 Xn S1 S2 Sm

0] ¢ ch 10 O 0
bi| an ap 11 0 0
IR 0

Bl Gt amn 10 O 1

O
Given: LP in standard form

and w.l.o.g. b >0 (otherwise multiply rows by -1)

min ¢'x

st. Ax=b

x>0

3. The Simplex algorithm 19-2
3.8 Phase | of the simplex algorithm

e
Phase T

O
Introduce artificial variables x° = (xla, xmc)T (® for artificial) and solve the LP

min ¢ = x{+...+ay
s.t. x4+ Ax=b (3.23)
X', x>0

with the simplex algorithm (the artificial variables form a basis and the cost coefficients w.r.t. € are in

reduced form (3.21))
S

There are 3 possible outcomes

C)
Case 1: The minimum of € is O andall xiCI are non-basic variables
(@)

~ = all x'.cI = 0 and we have a basic feasible solution for the initial problem
© Case 2: The minimum of € is O but some x.® are basic variables
© Let Xg(i) be an artificial variable.
€20 => xp;y=0
Try to eliminate Xg(i) from the basis.

To that end we nheed in tableau X a non-artificial non-basic column j with Xjj * 0

(since xpqy = 0, we can pivot with x;. (first multiply row i by -1 if x;. < 0)

3. The Simplex algorithm 19-3
3.8 Phase | of the simplex algorithm

e
Case 2a: There is such a non-artificial hon-basic column j with Xjj # 0

o .
Pivot with xiJ.
=> we have a basis with fewer artificial variables

i Fase 2b: There is ho non-artificial non-basic column j with Xjj * 0
© => xij =0 for j=1,..,n, ie. forall non-artificial variables
© clear from the above for non-basic variables X;
: © basic variables X; have a O in position i in their column because only Xp i) hasa 1 there
° rank(A) < m
=> assumption 3.1 violated
this implies that row i of A is a linear combination of the other rows of A and can be deleted
together with artificial variable xp
© We can therefore drop assumption 3.1, Phase I provides a test for rank(A) = m
© Repetition of these steps results in a basic feasible solution of the initial LP (possibly after deleting some
linearly dependent rows from A. The remaining rows have full rank.)
© Case 3: The minimum of € is >0

O
=> the initial LP has no feasible solution, ie., S=@

3. The Simplex algorithm 194
3.8 Phase | of the simplex algorithm

© We can therefore drop assumption 3.2, Phase I provides a test for Sz &
© Phase IT
Continue with the basic feasible solution from Phase I (if S # @)
© To this end, we must compute the reduced costs ¢; and the objective function value -z, of the original
objective ¢ for the current basis from Phase T
© either with (3.21) and (3.22)

_or by applying all transformations of Phase I also to the cost coefficients ¢

Theorem 3.15 => these transformations give the reduced costs ¢&; at the start of Phase IT

(C)
Algorithm (Two-Phase-Method)
C)
Input

()
LP in standard form
e
Output
At termination : basic optimal solution or the message that the objective function is unbounded or that S =
%)

(@)
Termination can be guaranteed by anti-cycling rules

3. The Simplex algorithm 19-5
3.8 Phase | of the simplex algorithm

&)
Method
e
Phase I

a

(@]
add artificial variables x,°, ..., X

(@)

call simplex algorithm with objective € = ¥ x.°
(@)

if Eop,r > O then return "there is no feasible solution"
e

if basis contains artificial variables

e

th

en
if one of these artificial variables cannot be removed from the basis
C)
then
(O]
delete the associated row
(@]
call Phase I for the resulting LP

e

_else // Eop‘r = 0 and the basis contains no artificial variables

(Dl

call Phase IT

~ Phase IT
[6)

call simplex algorithm with the original objective w.r.t. the basis from Phase I

3. The Simplex algorithm 19-6
3.8 Phase | of the simplex algorithm

- 3.17 Theorem (Two-Phase-Method)
The two-phase-method solves every LP in standard form. Assumption (3.1)-(3.3) can be dropped. They are

checked in the Two-Phase-Method.
©
Proof

(8]
clear from the above O

e

Example

o

min Xy * Xy + X3+ Xy + Xg

s.t. 3x1 + 2x2 + X3 =1
5x1+ Xy * X3 * Xg =3
2x1+5><2+x3 +x5=4
x. >0
J

O
Initial tableau for Phase I, we also keep track of the given objective function

3. The Simplex algorithm 19-7
3.8 Phase | of the simplex algorithm

X{ X5 X§ X1 X2 X3 Xa Xs
-=z(0|0 0 01 ¢t 1 1 1
-€{0|1 1 1}]0 0 0 O O
x(1)j1 0 0|3 2 1 0 O
x(3(0 1 0|5 1 1 1 O
x31410 0 12 5 1 0 1

To obtain the reduced costs w.r.t. € for Phase I, we must transform the costs of the artificial variables to O
(reduced costs are O for basic variables).

We achieve this by subtracting each row 1,...m from the E-row (the z-row has already reduced costs O in the
basic columns)

O
Start tableau for Phase T

3. The Simplex algorithm
3.8 Phase | of the simplex algorithm

O
Pivoting with the pivot elements marked by a red circle yields

-z

X1
a
X2
a
X3

X{ X5 X§ Xp Xz X3 Xg Xs
-z 00 0 O —1 111
-£€]/-8/0 0 0O0]|-10 -8 -3 -1 -1
x§ 1 0 O 2 1 0 O
x313/0 1 0 5 1 1 1 0
x§ 0 0 1 2 5 1 0 1

3. The Simplex algorithm

=z

X2
a
X2
a
X3

4

X2
X4

a
X3

X x5 x§ xq X2 X3 X4 Xs

/3| -1/3 0 0|0 /3 2/3 1 1
-14/3 |-10/3 0 0 |0 -4/3 1/3 -1 -1
1/3 /3 0 0|1 /3 0 O
4/3 |-5/3 1 0|0 -7/3 -2/3 1 O
10/3 | =2/3 0 1|0 11/3 1/3 0 1

3.8 Phase | of the simplex algorithm

x$ x§ x§ X1 Xz X3 X4 X5

/2| -1/2 0 O |-l/2 0 /2 1 1
-4 4 0 O 2 0 1 -1 -1
172 172 0 0|32 1 12 0 O
52 -1/2 1 0|72 0 12 (1)o0
3/2 |-15/6 0 1 |F11/2 0 =3/2 0 1
x§ x5 X§ X1 X2 X3 X4 Xs

-3 0 -1 0 =40 0 0 1
-3/2 | 7/2 1 0|1/2 0 3/2 0 -1
172|112 0 0| 32 1 12 0 O
5/2 |1-1/2 1 0| 7/2 0 12 1 O
3/2 |-5/2 0 1|-1/2 0 -3/2 0 (1)

19-8

19-9

3. The Simplex algorithm

3.8 Phase | of the simplex algorithm

4
=€
X2
X4
X5

x§ x5 x§ X{ Xz X3 Xa Xs
-9/215/2 -1 -1 3/2 0 3/2 0 O
0 1 1 1 0 0 0 0 0
/2 1/2 0 O 3/2 1 12 0 O
5/2(-1/2 1 0| 7/2 0 12 1 O
3/2|-5/2 0 1|-11/2 0 -3/2 0 1

19-10

We are lucky since the final tableau of Phase I is already optimal for Phase IT (all reduced costs w.r.t. ¢ are

> 0)

3. The Simplex algorithm

3.9 Geometric aspects of pivoting

e

~ Goal: Interpret the simplex algorithm geometrically

O
It walks from vertex fo vertex along edges of the polyhedron with occasional extra pivots in degenerate

vertices

e
3.8 Example (continued)

O
max

s.t.

O
After adding slack variables (= first basis) , the simplex algorithm yields the following tableaus:

Xq+ 14x2 + 6x3

X1+

X1

X2+ X3

X3

3x2 + X3

X.

J

<

A

O O w N b

A

2

=>

min - Xq- 14x2 - (:x3

20-1

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

@

Xy Xp X3 X4 X5 Xg— X7
-z10(-1-14 -6 0 0 0 O
X4 |41 11 1 0 0 O
x5 | 2 @ 0 00 1 0 O
X | 3]0 O 1 0 0o 1 O
x7 | 610 31 0 0 0 1
@ X1 Xz X3 X4 X5 Xg X7
-z (1410 -8 0 6 -5 0 O
x3 | 2|0 @ 1 1 -1 0 O
X1 211 0 0O O 1 O O
xe | 110 -1 0 -1 1 1 0
x7 |40 2 0 -1 1 0 1

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

@ X1 X2 X3 X4 X5 Xg X7
-z |30/ 0 0 -2/3 1 0O O 13/3
X2 20 1 1/3 0 0 0 1/3
x| 2 1 0 @ 1 0 0 -1/3
Xe 3 0 O 10 0 1 0
X5 ol o0 0 -2/3 -1 1 0 1/3

-z
X4
X1
Xe
X7

-z
X2
X1
Xe
X7

20-2
X1 Xo X3 X4 X5 Xg X7
2l0 <14 <6 0 1t 0 O
210 1 @ 1 -1 0 O
2|1 0 0 o 1t 0 O
3/!0 0 1 0 0 1 O
6/0 3 1 0 0 0 1
X| Xz X3 X4 X5 Xg X7
30/ 0 0 8 14 -13 0 O
2o 1 1 1 -1 0 O
2|1 0o 0o 0 1 0 O
3o o 1.0 0o 1 0
oo 0 -2-3 (3 0 1
20-3

@ X1 X2 X3 X4 X5 Xg X7

-z [32 1 0 O 2 0 0 4

x | 1] -1/2 1 0 -1/2 0 0 1/2

xs | 3] 3/2 0 1 3/2 0 0 -1/2

x¢ | 0] =372 0 0 =3/2 0 1 1/2

x5 | 2 1 00 0 1 0 o0

@)
This sequence corresponds to the following sequence of vertices in the associated polytope with variables x;,

Xo. X3

3. The Simplex algorithm 20-4
3.9 Geometric aspects of pivoting

: OO,
X2
We will analyze this observation now more closely.
(-:-) . 3 . 3 -
Adjacency of vertices and basic feasible solutions

O
Two vertices x*, y’ of a polyhedron P are called adjacent

3. The Simplex algorithm 20-5
3.9 Geometric aspects of pivoting

«=> the line segment [x",y’] is an edge of P
o 9 two basic feasible solutions x, y of Ax =b, x>0 are called adjacent

«=> if one obtains By from B, by a single pivot operation according to Theorem 3.16

© Observe:
(1) One then also obtains B, from By by a single pivot, i.e., the neighborhood is symmetric
(2) Then there are columns j and k with By = (B, - { AJ. NDU{A}
(3) This does not exclude that x =y, i.e., that the basic solution is degenerate

© According to this definition, the simplex algorithm traverses a sequence of pairwise adjacent basic feasible

solutions xl, xz, xN with

T T2 TN _
cC'X >2Cc'X >.2C'X -zoer

© 3.18 Theorem (Interpretation of edges in the three views)
" Let P bea polytope and let S={x| Ax=b, x>0} be the associated feasible set of an LP in standard form.
Let x" = (X", s X) Y 21 s Yy)| € P be different vertices and let x = (xy, .., X)), ¥ = (yy, ... ¥,)'
€ S be the associated basic feasible solutions according to (3.7).
Then the following statements are equivalent:

“(1) [x",y"] isanedge of P

3. The Simplex algorithm 20-6
3.9 Geometric aspects of pivoting

(2) If z’e[x’,y] is astrictly convex combination of pointsu’, v’ € P, then u’,v' e[x",y"]

(3) x,y are (different) adjacent basic feasible solutions of S
®

Proof
o Similar to Theorem 3.10, we use again the transformation P <-> S
"= @
© Let [x",y"] be anedge of P => there is a supporting hyperplane H with HNP=[x",y"], say H={w" |
hTw’= gl
Assume that (2) is wrong for z’e [x”, y"], and let w.o.lg. u” & [x",y"] and hTu’'<g.
Then h™v’<g, since P is contained in a halfspace induced by H
> g =h"z" = hTOW + (I-AW') = MhTu” +(I-Ah'v < g as A#0, acontradiction
" @0
© Assume that x“,y” fulfill (2) but not (3),i.e., x and y are not adjacent
Let M, My be the sets of columns Aj of A with X > 0 and Y2 0, respectively.
- Claim: there is a basic feasible solution w # x,y such thaft: w; >0 = AJ. EM U My
© Suppose not. Let w.o.l.g. y # O (possible since x % y). Then choose
3. The Simplex algorithm 20-7
3.9 Geometric aspects of pivoting
0 AjEM,
cji= 1 A]' € My — M,y

nM otherwise

with M large enough so that cuj > for every basic feasible solution u (such an M exists because of

Lemma 3.4).

© => y is the only optimal solution for ¢ and every basic feasible solution u with entries u;> 0 notin M,
U My has higher cost than x

© => if we start the simplex algorithm in x w.r.t. c, it would report that no improvement is possible (since
xand y are not adjacent) and thus claim that x is optimal, a contradiction

© Consider now the vertex w’e P corresponding to w. Since w” is a vertex, w’ ishotin [x",y"]

=> wisnotin[x,y]

Let z:=1/2 (x +y) => > 0 forall AJ. eEM U My => each entry of z can be decreased a little without

reaching O

Let di=z-w = dJ. # O-only for entriesin M U My

z >0 for all entriesin M, U My => thereis 6>0 with u:=z+6d, vi=z-6d > 0

With these definitions, Au=b and Av="b,ie., u,ves.

3. The Simplex algorithm 20-8
3.9 Geometric aspects of pivoting

Moreover: w notin[x,y] => u,v notin [x,y]

=> z=1/2 (u+v) is a convex combination of the feasible pointsu,vé& [x,y]
=> (transformation to P) z" =1/2 (u” +v’) is a convex combination of the points u’,v' €[x",y'], a
contradiction to (2)
©
(3)=>(1)
O .
Let B, By be the bases for x and y with By = (B, - {Aj HDU{A}

Define c by

3. The Simplex algorithm 20-9
3.9 Geometric aspects of pivoting

C"_{ 0 if Aj € ByUB,
o=

1 otherwise

Claim: x and y are the only basic optimal feasible solutions w.r.t. c
© clearly: x,y are optimal w.r.t. ¢
assume there is another basic optimal feasible solution z
construction of ¢ => z fulfills Z; >0 = AJ. €B U By
=> B,CB U By
AjeEBx => (with IBXUBy|=m+1, zZ%X) AJEBZ
> B,z (B, - (A D U{A])
=> there are single pivots that change x into y (AJ. enters, A, leaves) and to z (A‘.| enters, Aq

leaves), respectively. In both cases, A | enters the basis.

Let B (r)=k and B (s)=q

=> y = z, a contradiction

(@)
Claim => only convex combinations of x,y fulfill

3. The Simplex algorithm 20-10
3.9 Geometric aspects of pivoting

Aw=b

w20

c'wecTx
The transformation of S to P as in the proof of Theorem 3.10 yields:
Only points w” in [x",y"] fulfill the inequality d'w” <d"x” (d’ = transformed cost vector) in P
=> [x’,y"] is the intersection of a halfspace with P

= [x",y"] isanedge of P O

e
3.19 Remarks

o
(1) LP-is-a convex optimization problem. So the Euclidean neighborhood
Ne(y) :={xeS; : |lyx|l«e}
is-exact because of Theorem 2.16.
O
3. The Simplex algorithm 20-11

3.9 Geometric aspects of pivoting

Ne(y)

(2) The geometric interpretation of the simplex algorithm defines another neighborhood via adjacency of
vertices:

No(y) := {x | x vertex of P, x adjacent o y}
This heighborhood is also exact because of Theorem 3.18, Theorem 3.10 and Theorem 3.14. It corresponds to

the graph neighborhood in the skeleton graph of the polytopes.

3. The Simplex algorithm 20-12
3.9 Geometric aspects of pivoting
O

Np(y)
skeleton
graph
of P

(3) The algebraic interpretation of the simplex algorithm defines a third neighborhood via adjacency of basic
feasible solutions:

N, (y) = {x | x basic feasible solution, x adjacent to y}
This is also exact in the sense of Theorem 3.14 (ho negative reduced cost) and corresponds also to a graph
neighborhood. This graph G results from the skeleton graph by refining every polytope vertex by a set of graph

vertices (= all basic feasible solutions corresponding to the polytope vertex). G coincides with the skeleton graph

3. The Simplex algorithm 20-13
3.9 Geometric aspects of pivoting

iff P has no degenerate vertices.
O

3457 1357

1367
NAY)

1467 = unor'd.ered set
of basic columns

1256 1246

O
(4) So the simplex algorithm can be seen as a local search on the graph defined by neighborhood N,. Checking
for betfter neighbors can be done by checking the sign of the reduced costs and thus is very simple.

(B) Tt is not known if this local search is polynomial. There are counterexamples for all known pivot rules that

3. The Simplex algorithm 20-14
3.9 Geometric aspects of pivoting

require exponentially many pivots.
These counterexamples are in-most cases so-called Klee-Minty cubes, i.e., slightly distorted cubes on which

the simplex algorithm all visits all vertices, while it could reach the optimal vertex in one step.

=

'/':m

(@)
http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html

O
(6) Luckily, these counterexamples are not practically relevant. Empirically, the runtime of the simplex

algorithm is linear in the number of rows.

4. Duality 21
O 4.1 Duality Of LPS aNnd the QUAIIY tREOIEIMvuvueuevreieeeeeristististireise sttt sttt e s ittt 22
O 4.2 COMPIEMENIArY SIACKNESS ...c..voeeeveieeeieee ettt 23
O 4.3 The shortest path ProDIEIM NG IS QUAI ... e vvueueuerierereeieietei sttt ettt tese sttt s ettt s s s st ae b s s se st sasaesesennesessaeaenas 24
O 4.4 FAIKAS' LOMIMA ..ottt 25
O 4.5 DUAI INfOrMALON [N TE TADIGAU -...v.veveveeriereeeireistiesae sttt ettt 26

© 4.6 The dual SIMPIEX AIGOITEAIM ..ottt bbbt a e bbb bbbt 27

4. Duality 22-1

4.1 Duality of LPs and the duality theorem

~ The dual of an LP in general form

" Derivation of the dual

O
Consider an LP in general form: (4.1)

minc’x xe R, ceR"

s.t. aiTx = b ieM a; € R"
alx > b i€eM
xi >0 jEN
X; unconstrained j &€ N

O
we transform it to standard form according to Lemma 3.2 with
surplus variables xis for the inequalities

split variables — x. = x.* - x.~ with x.", xj 20

o J J J J
This gives
4. Duality 222
4.1 Duality of LPs and the duality theorem

min — ¢7#%

s.t At =b,2>0 with
A — 0, ieM
A = A],] eN (A], —Aj),j eN (4.2)

—I, ieM
— —\T

£ = <xj,j €N | (x;r,x].’),j €N |xiic M)
¢ = (¢ jeN|(cj—¢),jeN|0,ieM)

where, w.o.l.g., matrix A has full row rank, and where AJ. denotes the column of xJ. in (4.1)

o
The previous results on the simplex algorithm give:

If (4.2) has an optimal solution, then there is a basis B of A with
¢T-(]8 A0
N——
=T

i.e., reduced cost 30

O
Let m be the number of constraints in (4.1). Then

4. Duality 22-3
4.1 Duality of LPs and the duality theorem

nl = égB—l € R™

is a feasible solution for inequalities
afA<eél (4.3)

S
Inequalities (4.3) have 3 groups w.r.t. their columns:
O
Group 1
TTAj<c, JEN (44)
O
Group 2
TA. .
AL Gl TAj=¢;, JEN (45)
—TTTAJ £ =G
)
Group 3

-mi<0 < m20, ieM (4.6)

(S
Definition of the dual of LP

O
(4.4) - (4.6) define constraints for a new LP with variables T, ..., L These constraints, together with the

4. Duality 22-4
4.1 Duality of LPs and the duality theorem

objective function max 'b constitute the dual LP of (4.1). The initial problem (4.1) is called the primal LP.

Transformation rules primal -> dual (follow from (4.4) - (4.6))

primal dual
min ¢’ max 7Lb
aZTm =1 i€ M | 7; unconstrained
alz > b i€ M >0
z; >0 JEN T A <v¢;
z; unconstrained | j € N T Aj =c;

(&)
Observe: The dual LP is obtained from the optimality criterion of the primal. The variables Ty, ..., T

correspond to multipliers of the rows of A that fulfill the primal optimality criterion.

" 4.1 Theorem (dual dual = primal)
* The dudl of the dual is the primal.
©
We therefore speak of primal-dual pairs of LPs

(&)
Proof

4. Duality 225
4.1 Duality of LPs and the duality theorem

(@]
Werite the dual in primal form:

min 77 (—b) such that
(AT > —¢ JEN
(~A])r = - jEN
Ta— 0 J€ M
e unconstrained j € M

(@)
The transformation rules yield the following dual LP

max z1 (—c) such that
z; > 0 JEN
% unconstrained j € N
—alz < —b ieM
—alx = —b reM

which is the primal LP O

e
The Duality Theorem

" 4.2 Theorem (Weak and Strong Duality Theorem)

4. Duality 226
4.1 Duality of LPs and the duality theorem

Let x be aprimal feasible solutionand T be a dual feasible solution. Then (Weak Duality Theorem)

c'x>m'b (4.7)

If an LP has an optimal solution, so has its dual, and the optimal objective values are the same (Strong Duality

Theorem)
C]
Proof

(O]
Let x bea primal feasible solution-and T be a dual feasible solution. Then

7 dual feasible x primal feasible
e > (7TA)x = =7 (Ax) > 7’h

O
Assume w.o.l.g. that the LP is in primal form (4.2) and has an optimal solution
=> has an basic optimal feasible solution X with associated basis B and = 62371 is feasible for the
dual by construction

O
For this 1 we obtain

b = (GgB‘l)b = Eg(B‘lb) = 6;23 = ¢'R
So T and X have the same objective function value.

Weak Duality (4.7) then implies that T is a dual optimal solution

4. Duality

4.1 Duality of LPs and the duality theorem

" 4.3 Theorem (Possible primal-dual pairs)
Primal-dual pairs exist exactly in one of the following cases:
(1) both LPs have a finite optimal solution and their objective values are equal
(2) both LPs have no feasible solution

(3) one LP has an unbounded objective function and the other has no feasible solution

4. Duality

4.1 Duality of LPs and the duality theorem

\i(‘o(\‘ 2
dual &K 5 B &
KN \90 6{0 00(\6.40 (\OK \&\0
. <& @ ¢ & &
primal R Y
finite)
optimal solution
feasible solution,
unbounded (3)
objective
no feasible
solution 3) (2

)
Proof

O

~ Strong Duality Theorem => Case (1) occurs in row 1 and column 1 of the table, and this is the only table

entry in which it occurs

(@)

" Consider now row 2 of the table, i.e., x isa primal feasible solution but c¢'x unbounded from below.

If there is a dual feasible solution T, we obtain T'b < c'x with the Weak Duality Theorem

22-7

22-8

4. Duality 229
4.1 Duality of LPs and the duality theorem

=> ¢'x is bounded from below, a contradiction.
Therefore case (3) can only occur at positions (2,3) and (3,2)
© An example for (3)
(P) min x; st X +x, 21, SXgmXy 21, Xy, %, 20
=> (P) has no feasible solution

(D) max T+ T, st T -T, ¢ LTy -, 0 Ty T, 20

A T, m'b

= T'b is unbounded

So only entry (3,3) remains. This case can occur

4. Duality 22-10
4.1 Duality of LPs and the duality theorem

(@)
An example for (2)
(P) min Xp st Xxp+x, 2 L “Xp Xy 2 L Xy Xy unconstrained

A %,

\
N .

=> (P) has no feasible solutions
(D) max T+, St. T-T, =1, m-T, =0, T, 20

=> (D) has no feasible solution 1

The transportation problem and its dual

Hitchcock problem or transportation problem (Hitchcock 1941) is a special minimum cost flow problem, see ADM

4. Duality
4.1 Duality of LPs and the duality theorem

I
O

supply demand
in A in B

G "bipartite"

22-11

We want to transport a good (oil, grain, coal) at minimum cost from the supply locations to the demand

locations

Vertex i€ A (i=1,..,m) supplies a; units

Vertex jeB (j=1,..,n) demands bj units, total supply = total demand.

Edges (i.j) € A x B have cost ¢j per transported unit-and infinite capacity ujj

=)

~ An LP formulation for the transportation problem

O
Xij = number of units transported from i to j

min zi,j cijxij s.t.

I X = q foralli (pick up supply a; from vertex i)

4. Duality
4.1 Duality of LPs and the duality theorem

% X = bj forall j (deliver demand bj to vertex j)
Xij >0 forall i,

The associated matrix A of coefficients has the form

22-12

X1 Xtz ... Xin | Xat X2z ... Xon | .o | Xmi Xm2 Xmn
.t 1 .. 1[0 0 o0l [0 0 0
0 0 .. 0|1 1 .. 1.0 o 0

o0 .. 0fl0 0 ... 0.1 1 1

1 0 ..0|1 0 .. 0o.l1t o 0
S 0 1 .00 1 .. 0.]0 1 0
" : : :

0 0 ... 1[0 0 .. 1.0 o0 1

e
The dual of the fransportation problem
O
Introduce dual variables UiV, for the constraints as follows

u; 'Zj xij = -q foralli

Yi Z; Xij = bJ for-allj

The dual LP reads

4. Duality 22-13
4.1 Duality of LPs and the duality theorem
max X, -au; + ZJ. b.ivj s.t.
T forall i, j

i Vi unconstrained
C]
Interpretation of the dual LP

u

&)
"Dual" entrepreneur offers to do the transportation for pairs (i,j)

He can buy the supply q; at location i from the primal entrepreneur, transport it to j and sell it there

u; = price to buy a unit of the good at vertex i
Vi = refurns per unit at vertex |
v, -u. = profit per unit bought in i and sold in j

Vi-U £ dual entrepreneur must stay below primal fransportation cost in order to get the transport (i.j)
from the primal entrepreneur (otherwise primal entrepreneur will do-it himself)
Dual entrepreneur wants to maximize his total profit ZJ. ijj - 2, q;u; under these conditions

e
The dual of the diet problem

o
The primal problem (see example 3.1)
min ¢'x
st Ax2r
4. Duality 22-14

4.1 Duality of LPs and the duality theorem

x20
0
The associated dual problem

max T'r
st mA<ch
m >0

© Interpretation
© The dual entrepreneur makes nutrient pills for each of the m-ingredients (magnesium, vitamin C, ...)
He asks the price 11, per unit of nutrient i
nTAJ. T the total price of dll pills substituting one unit of food j must not exceed the price c; of one
unit of food j (pills will not be bought otherwise)

max T'r <=> maximizing total profit of the dual entrepreneur

Dual LPs often have a natural interpretation in practice

4. Duality 23-1
4.2 Complementary slackness

0
Complementary slackness provides simple necessary and sufficient conditions for optimality of a pair of primal

feasible and dual feasible solutions. They have far reaching consequences for the design of algorithms (primal-dual

algorithms, primal-dual approximation algorithms)

" 4.4 Theorem (Complementary slackness)

Let x be a primal feasible solution and Tt be a dual feasible solution. The following statements are equivalent:
X, Tt _are optimal (in the primal and the dual, respectively)

u; = me(a'x-b) = 0 forall i=1,.., m (4.8)

. P -
vy = (cJ. in AJ)xJ 0 forall j=1,..,n (4.9)

i.e.,: (slack of primal or dual constraint)-(value of associated dual or primal variable) = O
e

Proof
C)

al.Tx—bi =0 = u =0

a'x-b, 30 = m 20 = u 20

4. Duality 232
4.2 Complementary slackness

o .
since

X unconstrained => TrTAJ. =¢p vy = 0

.2 => T. . => V. 2>
xJ_O TrAJst vJ_O

vz zj Vi UV 0. Then

O
Set u:=2. u

[

u=0 <> (4.8) holds
v=0 <> (4.9) holds

O

Then
- T TaN

u+rv = 3. (g x-bl.)+Zj(cJ.-Tr Aj)xj
_ T T
= 'Zi ﬂibi+ZJ. CJXJ + Z‘. ma; X - ZJ.Tr ijj
= -mb+c'™x + (MAX - TT'(AX)
= -m'b+c'X

Hence: u+v = -T'b+c'x

O
Suppose (4.8) and (4.9) hold => u+v =0 => c'x=71'b

Weak Duality Theorem => x, T are optimal
0
Suppose that x and 1T are optimal

Strong Duality Theorem => ¢'x=Tt'b => u+v =0 => (4.8) and (4.9) 4

4. Duality 23-3
4.2 Complementary slackness

4. Duality 24-1
4.3 The shortest path problem and its dual

e
The shortest path problem as primal LP
]
Shortest Path Problem (SP)
Instance
O
Digraph G
(@]
Rational edge weights c(e), e € E(6)
O
Vertices s, t € V(6)
(S
Task

Determine an elementary s,t-path P of minimum weight c(P) (shortest s,t-path)
O (W)= D _ecEW) cle)e(W) = YecE(P) c(e)
(@)

)
(SP) is an instance of (LP)

4. Duality 24-2
4.3 The shortest path problem and its dual

The vertex-edge-incidence matrix A = (aiJ.) of G is defined as
(@]

A if (—»
e.

=9 -1 if ()

0 otherwise

where V(6)={1,..,n} and E(G)={e, .., em}

@]
Example

G /\7@\ A e; e, ez e, es
e, ey 1 10 0 0
0O 0 0 -1 -1

10
0 -1 -1 0 1

©
N
<+
©
ol
O o =+ un
!
-
o
—_

The vertex-edge-incidence matrix of a digraph has per column exactly one 1, exactly one -1, and O
otherwise

=>sum of rowsis O => rank(A)<n

4. Duality 24-3
4.3 The shortest path problem and its dual

Later: rank(A) = n-1 if G is connected (in the undirected sense)
O
Let f‘j be a variable representing the amount of flow on edge e, and let f:=(f, ... f)y
Flow conservation in node i is then expressed as ain =0
—~— v
3 4
—o =30
1
— 2 ~

inflowinv =5 = outflow from v

An s, t-path is a flow of flow value 1 from s to t (all fJ- =1 on the path and O otherwise)

=> every s,t-path is a solution of the linear system

*v row-s
-V row t
Af =bwith b= 0

flow conservation

with v=1

(@)
Of course, this linear system has also solutions that do not correspond to s,t-paths. But we have

4. Duality 24-4
4.3 The shortest path problem and its dual

4.6 Lemma

) If
min c'f
Af=b
f20

has an optimal solution, then also one with fj €{0,1}. Every such solution corresponds to an s,t-path
(2) The simplex algorithm finds such a solution
° Proof:
© (1) follows from the algorithm for minimum cost s, t-flows in ADM I
© (2) can easily be shown directly, but follows also from the fact that matrix A is totally unimodular and b
is integer. Then all basic feasible solutions of the LP are integer. We will show this more general result in

Chapter 7.2. 11

e
Solving (SP) with the simplex algorithm
6]
We formulate (SP) as (LP)

4. Duality 24-5
4.3 The shortest path problem and its dual

min c'f
Af = b (A = vertex-edge-incidence matrix)
f20
and solve it with the simplex algorithm.
Since rank(A) < n, we may delete a row
=> delete the row for vertex t, thisyields b>0
e

In the example we obtain the following tableau for cost vector c=(1,2, 2, 3, 1)

~ Initial fableau, not yet transformed w.r.t. a basis, and graph G with edge costs

fi fo fs fo fs G
1 2 2 3 1 1/‘7@\3
s[1]1 1 0 2 3

0
alOf-1 0 1 1
b{0{0 -1 -10

o o
n

/
@{4_

O
Choose {1,4,5} as basis and transform the tableau w.r.t. that basis.

Interpret the associated basic feasible solution in the graph.

4. Duality

4.3 The shortest path problem and its dual

fi fo f3 fa fs

40 -1 0 0 O
1101 1 0 0 0
f. | 1] 0 1 10
fs +0{ 0 =F-1 0 1

og

A

€

B0
/65’; =0
(b 57

The basic solution has n-1 = |V| - 1 variables, but not every s,t-path has so many edges

24-6

=> many basic feasible solutions are degenerate (a common phenomenon in combinatorial optimization problem
Y 9 P P P

O
Next tableau and basic feasible solution in the graph

fi fo f3 fa4 fs

3/0 0 1 1 0
1ot o -1 -1 o0
£, 1110 1t 1t 1 0
fs| 1|0 0 0 1 1

2 1

e, ~ es
()

=> optimal solution found, shortest path has length 3

e
The dual of the shortest path problem

4. Duality

4.3 The shortest path problem and its dual

O

We formulate it w.r.t. the full tableau containing also the row for vertex

¥o

=> dual variables Tr; correspond to a hode potential in graph 6

Tableau in the example:

e

fi fo f3 fa fs b
cl1 2 2 3 1
s 11 -0 0 0+
m |0 0 0 -1 -17]-1
m |-1 0 1 1 0|0
m [0 -1 -1 0 1|0
Dual LP:

max Tl's - T[‘I’

LI

T, unconstrained

Interpretation of the dual LP

O
Along any path

for all edges (i, j) € E(6)

24-7

4. Duality
4.3 The shortest path problem and its dual

O——® - @0

from i to t we have

24-8

(m-m) + (TTk-T[p) + .+ ('ITq-‘ITT) ST

<y < G < Cqt
T e length of the path from i to

Since this holds for every such path,
;- M, < length of a shortest path fromi to t
=> max T, - T, is equivalent to

finding the greatest lower bound for the length of a shortest path from s to +

Complementary slackness conditions

Path f and node potential 1T are primal-dual optimal <=>

(@)
(€))] fij >0 = 1'ri-1'r‘i = Cij

i.e., edge (i,j) lies on a shortest path => potential difference = cost

O -
@) m-m <y > ;=0

4. Duality

24-9
4.3 The shortest path problem and its dual

i.e., potential difference < cost => edge (i,j) does not lie ona shortest path

Interpretation:

the lower bounds 1, - 1, are tight along any shortest path

e
The cord model (for Cij 2 0)

©
edge (i, j) <> cord with length €ij
O

- T <-> pulling vertices i and j apart
=T £ G5 <->_pulling is bounded from above by length <ij
max T, - T, <> pull s and t apart as far as possible

complementary slackness: the cords on shortest paths are the tight ones

0
(2) >

4. Duality 24-10
4.3 The shortest path problem and its dual

Remarks

Deleting the row for vertex 1 => we have no variable 11, => the dual objective function is max T,

T
But: edges (i,t) yield the dual constraint T, < c,., so that 1 cannot get arbitrarily large.
We obtains the same dual constraint m; < ¢;. if we set . =0 (which we may do w.o.l.g. since we only have

potential differences in the dual).

O
Dijkstra's algorithm (ADM I) applied to the dual graph (in which the direction of all edges of & is reversed)

iteratively computes the 1, where T, is set to O.

4. Duality 25-1
4.4 Farkas'Lemma

o
This is a central and very useful lemma in duality theory. I't has several variants also known as Theorems of the

Alternative.

~ Cones and projections

The cone C(ay, ..., a,) generatedby ay, .., a,

Let ay, ..., a, € R" (e.g. the rows of matrix A). The cone C(al, am) generated by g, vy G IS defined as

m

m
Cay,....an) = {Xx €R" [x=) ma;, 120}
i=1

= set of non-negative linear combinations of a, ..., a,

C(aq.05)

N 4 .l;
\\ ‘\ .
. / vectors in the green angle

have a non-negative projection
., onto a; und a,

4. Duality
4.4 Farkas'Lemma

The projection of y onto a

(@)

P 4 yTa
! €oS O = T—————
. lIyll - llall
« I
> a
——
projection of y ontoa = |yl cos «

- 45 Theorem (Farkas' Lemma)

=> the projection of y onto a is non-negative <=> y'a is non-negative

Let a;,...a, € R" and c € R". The following are equivalent

(1) forall yeR": y'a. 20foralli=1,.m => y'c >0

i.e., forall y:

y_has a non-negative projection onto each a;

=> y has a non-negative projection onto ¢

(2) ce(ay, ..., am)

i.e., c liesin the cone generated by qy, ..., a

4. Duality
4.4 Farkas'Lemma

©

~ Proof

S
1) =>(2)

Consider the LP
min c'y
a'y 20 i=1..m

y_unconstrained

=> y = 0 is a feasible solution of the LP

m

25-2

25-3

The objective function is bounded from below since the constraints of the LP imply ¢y >0 because of (1)..

=> LP has a finite optimal solution

O
=> the dual LP

max 0

m>0

has a feasible solution

=> there are numbers LLPPIR 1 0 with c=1

= ce(ay, ... q,)

T

A = Zi T.a,

4. Duality 25-4
4.4 Farkas'Lemma

“@=q)
c € C(ay, ..., a,)) => there are numbers 1, >0 with c=3; ma
consider y with y'a. >0 foralli=1,.m
> y'c = ¥ myla >3m0 =0 0O
There are many equivalent formulations of Farkas' Lemma. Examples are
© (A) Yy (y'a, 20 Vi = y'b 20) «<=> 3 x20 with A'x =b (original version by Farkas 1894)
(B) Vy20 (y'a, 20 Vi => y'b 20) <> 3 x20 with ATx ¢ b
More in Chapter 7.5

An application of Farkas' Lemma: necessary conditions for the disjoint path problem
e
Disjoint Path Problem
Instance
&)
Undirected graph 6
@)
Pairs of vertices { sy 1y 3o { Sy ‘rk}
e
Task

(@)
Determine pairwise edge disjoint paths from s, to t; (i=1,..,Kk)
4. Duality 25-5
4.4 Farkas' Lemma

An example: minimum cost embeddings of VPNs info the base net of Telekom
(@)

4. Duality 25-6
4.4 Farkas'Lemma

© The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and
hopefully also sufficient criteria for the existence of a solution.
© Cut criterion
© Let H be the graph with V(H) = V(6) and E(H) := {{ s 1y }, .. { S Tie }}. A necessary condition for the
existence of a solution is the cut criterion

06(X)| > [61(X)] for all © # X C V(G)

i.e., there are at least as many edges leaving X in & as there are pairs in H to be connected

G | H
|
|
X V-X X V-X
@
The cut criterion is not sufficient
&)
4.6 Example
4. Duality 25-7
4.4 Farkas'Lemma
(6]

Cut criterion holds, but there is no solution
© Distance criterion
© Let disTG,z(s,‘r) be the length of a shortest path froms tot in G w.r.t. edge weights z(e) >0, e € E(G).
© An instance of the disjoint path problem fulfills the distance criterion
i«=> for any choice of edge weights z(e)>0, e € E(G),
> distga(s, 1)« Y z(e)

{s.1}eE(H) ecE(6)

O
The cut criterion reduces to the distance criterion for edge weights

©) ._{ 1 ife€d(X)

B 0 otherwise

4. Duality 25-8
4.4 Farkas'Lemma

4.7 Theorem (The distance criterion is necessary)
" The distance criterion is necessary and sufficient for the existence of a fractional solution of the disjoint
path problem.
T In particular, it is necessary for the existence of a solution of a disjoint path problem
© Proof
© Consider the disjoint path problem as a cycle packing problem
© cycles = all elementary cycles in G+ H that contain exactly one edge of H
k := number of these cycles
© intfeger cycle packing = union of pairwise edge disjoint cycles that contain every edge of H in exactly one
cycle
(existence <=> feasibility of the disjoint path problem)
© fractional cycle packing = non-negative linear combination (of incidence vectors) of all these cycles such
that the resulting vector has the value 1 at the entries corresponding to the edges of H, and is at most
1 at every entry corresponding to an edge of G.
(they contain integer cycle packings as special case)

o
Example 4.6 has the following cycles in the cycle packing problem

4. Duality 25-9
4.4 Farkas'Lemma

P e G
D> _p <>
<

A formulation of the fractional cycle packing

4. Duality 25-10
4.4 Farkas'Lemma

© Let M be the E(G)-cycle-incidence matrix, i.e.,
rows of M <> edges of 6
columns of M <-> incidence vectors of all cycles of 6 +H
Mec=1<>e lies on cycle C
© Let N be the E(H)-cycle-incidence matrix, i.e.,
rows of N <-> edges of H
columns of N <-> incidence vectors of all cycles of 6 +H
Necg=1>e lies on cycle C
Observe: every column of N contains exactly one 1
=> fractional cycle packing = ' e R¥ with '>0, M'<1, Nir'= 1
Add slack variables to obtain a linear system and denote the enlarged vector again by
=> fractional cycle packing = 1T e Rk+m (m = |[E(G)]) with 120, MTT=1, Nmr=1
Write it as

M| I
Anr =1, 1>0 with A =
N|O

i.e., the all ones vector 1 lies in the cone C(Al, Ak+m) generated by the columns A.l =of A

4. Duality 25-11
4.4 Farkas'Lemma

° Applying Farkas' Lemma gives condition (3)
© Farkas' Lemma yields: there is such a vector 1
<=> forall y e RIE@IEHI, yTAJ >0 forallj=1,. k:m => y™1 > 0
© Partition y into (z,v)", such that z corresponds to the rows of M (edges of G) and v to the rows of
N (edges of H).
We then get:
yTAJ 20 = 730 for columns A; of slack variables
yTAJ. >0 = ZTMJ- + vTNJ- > 0 for the other columns AJ
Let Cj be the cycle of column AJ.
=> Cj decomposes into a path Pj in 6 and an edge f from H
Then
zTMJ. = length z(Pj) of the path Pj w.r.t. edge weights z(e)
vTN~i = edge weight v(f), where f is the edge of H lying on cycle CJ.
Hence
yTAJ 20 = z(P;) +v(f) > O forall cycles C; containing edge f
So z(P j) +v(f)> O is equivalent to

4. Duality 25-12
4.4 Farkas'Lemma

dis‘relz(s,‘r) +v(f) > O with f={s, 1t} 1)
The constraint y'1 > O becomes
T2+ Tocpgye) 20 @)
Farkas' Lemma then yields for arbitrary (z,v) (3)
z(e) >0, diSTG,z(S'T) +v(f) > O foralledges f={s,t}inH
= Y. egey @)+ Lreggyv(f) 2 0
© Condition (3) is equivalent to the distance criterion is (by proving that their negations are equivalent)
© (3) violated => distance criterion violated
(3) violated => there are z,v with
z(e) 2 0,
dis‘rGlZ(s,‘r) +v(f) > O foralledges f={s,t}inH and
T ey @) * Tpegyyuf) < 0
2 0 ¢ Freggy distg (1) + Tpe gy UP) < Tpe gy dists,(s1) - T, e gy 2(e)
2 3 g6y A(e) < Zpe gy dist ,(s.h)
=> distance criterion violated

distance criterion violated => (3) violated

4. Duality 25-13
4.4 Farkas'Lemma

O
distance criterion violated

=> thereis z>0 with zeEE(G) z(e) < szE(H) disTGIZ(s,‘r)

choose v(f) := - dis‘rG’Z(s,‘r) for edge f={s, 1} in H

= dis’rGlz(s,T) +v(f) > O foralledges f={s,t}inH and

T ey 20) * Treppn) = Toege e) - Tieggydistg (51 <0
=> (3)is violated O

e
The distance criterion is stronger than the cut criterion

O
Example 4.6 does not fulfill the distance criterion

Set Z(e):l for‘ G” e in G = zfz{s,f}EE(H) dISTG,Z(S'*) = 8, ZEEE(G) Z(e) =6

4. Duality 25-14
4.4 Farkas' Lemma
©
The distance criterion is not sufficient for the existence of a solution of the disjoint path problem
e
The instance of the disjoint path problem
6)

61 2 H

2 1

e
A fractional cycle packing
(6]

(N[
+
(N[
+
(N[
+
(N[

O
So the distance criterion holds because of Theorem 4.7

@)
There is no solution for the disjoint path problem

4. Duality 26-1
4.5 Dual information in the tableau

e
How to get dual information from the optimal primal tableau?
O
Suppose w.o.l.g. that the initial tableau (possibly with artificial variables from Phase I) has columns 1,...m as

basic columns and that the tableau is transformed w.r.t. to this basis

©
Then the following properties hold in the optimal tableau with basis B
(@)
rows 1,..m are obtained from the initial tfableau by multiplying it with B! from the left

O
the reduced cost are obtained as
;= Cj—TrTAj >0 (4.10)
where 11 is an optimal solution of the dual problem (Proof of the Strong Duality Theorem)
e}
In columns 1,..m (which are unit vectors in the initial tableau) we get
éj = CJ"T(TAJ =€y (411)

Hence an optimal dual solution is obtained from the optimal tableau of the primal as

4. Duality

4.5 Dual information in the tableau

TTJ=CJ-(_ZJ (j=1,...,m)

Observe: this holds for the dual problem of the initial tableau (and not for dual versions of other, equivalent

primal formulations).

O
Moreover, the first m columns contain gl -plr

(4.12)

ny

o_ .
Initial tableau

4. Duality

4.5 Dual information in the tableau

(4.13)

e
4.8 Example (Example for the Two-Phase-Method continued)

X{ X§ X§ X1 X2 X3 X4 Xs
-z|0]J]0O O Of1 1 1 1 1
-£{0{1 1 1|0 0 0 O O
xXt|1-0 03 2 1 0 O
x313/0 1 0|5 1 1 1 O
x3/4(0 0 12 2 1 0 1
Optimal tableau
x§ X5 Xx§ X1 X2 X3 X4 Xsg
-z| -9/215/2 -1 -1} 3/2 0 3/2 0 O
-£ 0 1 1 1 0O O 0o 0 O
X2 72| 12 0 O 3/2 1 172 0 O
xq4| B/2(-1/2 1 0| 7/2 0 1/2 1 O
xs| 3/2|-5/2 0 1|-11/2 0 -1/2 0 1
(4.12) gives m=0-5/2 = -5/2

m,=0-(-1) =1
my=0-(-1) =1

26-2

26-3

4. Duality 26-4
4.5 Dual information in the tableau

for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with-artificial
variables x.°

o @
4.9 Example (Example for the shortest path problem continued)

®
Solving the primal problem
(&)
Initial tableau has no identity matrix, but 2 unit vectors

=>add one artificial variable in Phase I

x&—fr—f, f3 fg fs

=€ 170 0 0 0 O
-z 0 1 2 2 3 1
xX|1(1 1 1 0 O O
a f, {00 -1 0 1 1 O
b fs{0{0 0 -1 -1 0 1

O
Transform cost coefficients of € and z to reduced form (must become O for basic variables)

4. Duality 26-5
4.5 Dual information in the tableau

X fr f f3 fq fs

€|-1{0 -1 -1 0 0 O
-z|O0OlO 4 3 0 O O
s x@ [1)1 1 @ 0 0 O
a f, {Of0 -1 0 1 1 O
b f5 |[0]0 0 -1 -1 0 1
3
Pivot step
xt f1 fo fz3 fa fs
€l 0oll1 0 0 o0 0] =>%=0and x* is anon-basic variable
-z|-3]|-3] 1 0 O |0||0| => optimalw.r.t. z
s f; 1101 1 1 0 0.0
a fs | 00O -1 0 11 0 basic columns of the
b fs 11t 1 0 =1 o1 initial tableau

e
Primal-information (visualized in the graph)

4. Duality
4.5 Dual information in the tableau

o
ON
€4 ..

®'\622 16/3@
\@/5

the primal optimal solution displays the edges on the shortest path

Dual information (obtained from the primal optimal tableau and displayed in the graph)

O
Ms = Cxa-— Cxa = 0- ("3) = 3
Mg = C4-Cq4 = 3-0 = 3
My = C5=Cs = 1-0 =1
T+ = (6]
o
T, =0 since row t is notin the primal LP
4. Duality

4.5 Dual information in the tableau

3 1;@\3 0
e, | R
O

the dual solution displays the shortest distance from a vertex to t

26-6

26-7

4. Duality 27-1
4.6 The dual Simplex algorithm

O
Goal: use the primal tableau to solve the dual LP
© _—
Characteristics of the dual LP
O
The primal optimality condition €20 becomes a dual constraint
=> the primal simplex algorithm has a primal feasible solution
and fulfills the dual constraint €2 0-only at termination when the optimum-is reached
e
This suggests the following characteristics for the dual simplex algorithm
O
generate a sequence of dual feasible solutions
establish primal feasibility only at termination when the optimum is reached
e

~ Deriving the operations in the tableau

O
Tableau X with basic solution

4. Duality 272
4.6 The dual Simplex algorithm

fi fo f3 f4 fs5

-3 1 0 O O O | => dual feasible,i.e.,c>0
f» | 1{1 1 0 0 O
fq 1100 0 11
fs (=1t 0 1 0 -t

t primal infeasible, i.e., xg ¥0

o
Choose a pivot row r (instead of a pivot column) with x 5 < O (i.e., aninfeasible entry x < Oin the primal
basic solution)

e
Choose a pivot column inrow r the by considering entries Xpj ¢ O (as to obtain x4 > O after the pivot)

O
Pivoting with x . < O changes the cost row to

x'»-xo»—ﬁxo j=1 n
0j) Xps s seees

4. Duality 27-3
4.6 The dual Simplex algorithm

J S
0 X0 @ <+—— must become 0

r Xrj @4— must become 1

O
To stay feasible in the dual, XO\]I >0 forallj

X0j X
— 2B for Xpj <0
Xrj Xrs

=> choose column s is such a way that

Xos

ij
s max{— | %<0, j=1,...,n}
X,.j X,»j n J

O
Observe the symmetry with the primal simplex algorithm

in particular: all Xpj > 0 => dual LP has an unbounded objective function

" 410 Theorem (Interpretation of the dual simplex algorithm)

4. Duality 27-4
4.6 The dual Simplex algorithm

The dual simplex algorithm is the primal simplex algorithm applied to the primal formulation of the dual LP

0
Proof: Check 0

e
4.11 Example (Example for the shortest path problem continued)

8)
initial tableau, not yet transformed w.r.t. a basis and graph with costs

fi f2 f3 fa fs ‘

1 2 2 3 1 1/"@\3
s[1[1 1 0 0 O @< 2 >®
alol-1 0 1 1 0 2 yoo1
blolo -1 -1 0 1 \A@/

O

choose B={2,4,3} as basis and transform the tableau w.r.t. B, display the basic solution in the graph

4. Duality 275
4.6 The dual Simplex algorithm

fi fo f3 f4 f5

-3 1 0 0 O O = dudl feasible
f[11 1 0 0 O e e
1 AN
f,| 1{0 0 0 1 1 @< e 0
fs | -1{-1 0 1 0 -1 ot

e
"N 5
l?— primal infeasible @/

the basic solution corresponds to the s,t-cut X={s,a}
ADMT: s,t-cuts are "dual structures" of s,t-flows. This is confirmed here by LP duality
© Choosing the pivot element
r =3 is the pivot row

choosing the pivot column:

_ Xoj ‘ . _ 1 0, _
x_.nj"mGX{x_.njlx”(O’J"l "}'mOX{E'__l}“O

j=1 — 7 T~ =5

=> s=5 is the pivot column

4. Duality 276
4.6 The dual Simplex algorithm

-3|1 0 0 0 O
f| 11 1 0 0 O
fal 10 0 O 1 1
fs|-1|-t 0 1 0 (D)
O
pivot operation
fi fo f3 fa

f5 @\

-3 1 00
f| 1|1 1 0O
fa| O(-1 0 1
fs 111 0 -1

e, .
O
5

\A@/e

O - O|O
- O O|O
N
—_

=> primal and dual feasible => optimal

O
The dual optimal solution can be obtained from the inverse of the optimal basis as n' = ¢}B™ (Duality
Theorem).

The optimal basisis B ={2, 4,5} with inverse

4. Duality 27-7
4.6 The dual Simplex algorithm

B =

_ O -
O - O
= O O

So

1
n = ¢gBT = (2,3,1)] 0 = (3.3.1)
1

O |- O
- O O

O 1 : . .
Observe: in this case we could not obtain T and B directly from the optimal tableau, since the dual LP is not
the one constructed from the initial tableau with basis { 2,4, 3}, but the dual LP of Example 4.9.
5. Computational aspects of the Simplex algorithm 28
© 5.1 The revised SIMPIEX AIGOTIHAMc..curiurieiieetee ettt ettt 29
© 5.2 Algorithmic consequences of the revised SIMPIEX AIGOIAM ccccuii ettt 30
© 5.3 Solving the max-flow problem with the revised simplex algorithm and column generationc.ccccuceeocurnccencocuneecens 31
© 5.4 The simplex algorithm With IOWEr and UPPEr DOUNGS -..........c.c.ccuiuririeueieirisistetieieiessiet sttt sttt ettt 32
33

© 5.5 A special case: the NEWOrK SIMPIEX AIGOITAM v.vvuverreereesseeseass s e s e sis s es st

5. Computational aspects of the Simplex algorithm 29-1
5.1 The revised simplex algorithm

The full tableau is redundant (identity matrix!) and may contain very many non-basic columns (all of them are
stored at every pivot step, => much memory for every tableau). The revised simplex algorithm uses in every step
only essential information in a memory-efficient way.
The core of that information is the inverse B! of the current basis B, from which we can easily compute all
information needed for a pivot step
© The revised simplex algorithm-is used in-all commercial LP-codes
~ Main idea of the revised simplex algorithm: the CARRY matrix

&)
consider the initial tableau with identity matrix = initial basis on the left in the tableau

fe————=
CARRY©

because of (4.13), matrix I will change to the inverse B! of the current basis B in subsequent pivot steps

5. Computational aspects of the Simplex algorithm 29-2
5.1 The revised simplex algorithm

after iteration £ the tableau contains the following data in den first m+1 columns

-z’ -mt
b’ B—l
CARRY®
where
T' = dual solution because of (4.12), in general infeasible.

The numbers 11, are also called simplex multipliers.

" b’ = Blb is the current right hand side = current primal solution
o

.

z cBTB'lb is the current primal cost

Tt suffices to maintain the following data for the simplex algorithm

(S
1. initial tableau

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

O
2. current CARRY-matrix CARRY®

(@)
3. current basis by its column indices B(1),...,B(m)

From 1., 2., and 3., one can obtain all data required for a pivot step

e
(1) Pricing Operation (computing reduced costs)

iteratively compute

= - '_T'
Cj = ¢j—T Aj

for non-basic variables until some reduced cost &;<0 or €20 (=> termination with an optimal solution)

e

~ (2) Generation of the Pivot Column (transforming the pivot column w.r.t. the current basis)

O
compute

Xs = B1A,

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

= column s of the current tableau X
O

the pivot element x, . is obtained as
b/« inCARRY®

min - — .
i, xis >0 Xjs «— In Xs

or z isunbounded is (if all x; < 0)
(C)
(3) Pivot Operation (pivot step)
O
compute CARRY(**D

i.e., transform X, into the unit vector (with 1at the pivot element) and apply the corresponding row

operations to CARRY(®

b | B!

4
CARRY® X

e
(4) Basis Update

29-3

29-4

5. Computational aspects of the Simplex algorithm 29-5
5.1 The revised simplex algorithm

]
set B(r):=s

e
The Two-Phase-Method works similarly

onhe starts with the artificial cost vector
,..1,0,..,0

fe——

artificial variables

SRR xmCI form the initial basis

Transformation to reduced cost w.r.t. this basis changes the cost to
m
dj==)_aj
i=1

for each non-basic variable

At the end of Phase I we change over to the original cost vector

= compute - T = -c,"B and put it into CARRY(®
compute -z = -cp'b’ and put it into CARRY®)

The required data is available: cg is stored in the initial data, B is stored, and B! and b’ are stored in

5. Computational aspects of the Simplex algorithm 29-6
5.1 The revised simplex algorithm

CARRY®

5. Computational aspects of the Simplex algorithm 30-1
5.2 Algorithmic consequences of the revised simplex algorithm

e

(1) Do not look at every non-basic columns per iteration

ohe heeds all reduced costs

CJ' = Cj —TTTAJ'
only to prove optimality. At other steps, partial pricing is enough (in the primal simplex; it is not possible in the
dual simplex).

e

~ (2) Columns AJ. of hon-basic variables come from the initial tableau
O

this is of ten sparse (in particular with combinatorial problems, e.g. there are only 2 entries # 0 in a vertex-edge-
incidence matrix)
=> can exploit fechniques to save memory usage and runtime (data structures and algorithms for sparse

matrices)

° (3) Maintain CARRY® implicitly
© since CARRY® is obtained ina simple way from CARRY“? it is not necessary to store the complete matrix
CARRY®,
© CARRY(® = P, - CARRY(D

5. Computational aspects of the Simplex algorithm 30-2
5.2 Algorithmic consequences of the revised simplex algorithm

with

Pe = (e1,....er1,N,€r1,...,8m) models elementary row operations

e = i-th unit vector
_Xis
Xrs
ns= L <+ pivot row

=> store P, by its n-vector and position r

inductively
CARRY"Y) = p, y-Py_y-...-P;-CARRY"
()
if £ gets large, one can "re-invert" , i.e., the search for an equivalent but shorter sequence of n-vectors (£<m

suffice)

e
(4) Combine these techniques with methods for numerical stability

5. Computational aspects of the Simplex algorithm 30-3
5.2 Algorithmic consequences of the revised simplex algorithm

e
LU-partition, Cholesky-factorization

(Class on numerical methods)

© Every regular matrix B can be writtenas B =P-L-U with
P = permutation matrix (then P! = PT)
L = lower triangular matrix
U = upper triangular matrix

Linear systems Bx = b can then be easily solved:

Bx = b transforms to LUx =P'b
solve Ly =P™b
solve Ux =y

i.e., solve 2 linear systems in triangular form

e
Some quotations by Bob Bixby, the "father" of Cplex and Gurobi

5. Computational aspects of the Simplex algorithm 30-4
5.2 Algorithmic consequences of the revised simplex algorithm

Bixby
ISMP 2003

e
from Solving Real-World Linear Programs: A Decade and More of Progress, Operations Research (50) 2002, 3-15
O
It was thus around 1987 that I became seriously involved in the computational aspects of linear programming.
The first version of CPLEX, CPLEX 1.0, was released in 1988.

Advances in computing machinery

5. Computational aspects of the Simplex algorithm 30-5
5.2 Algorithmic consequences of the revised simplex algorithm

@)

Table 1: Machine improvements—Simplex algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50 Compaq Server ES40, 667 MHz 900
Sun 3/50 Pentium 4, 1.7 GHz 800
25 MHz Intel 386 Compaq Server ES40, 667 MHz 400
IBM 3090/108S Compaq Server ES40, 667 MHz 45
Cray X-MP/416 Compagq Server ES40, 667 MHz 10

Table 2: Machine improvements—Barrier algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50 Pentium 4, 1.7 GHz 13000
Sun 3/50 Compaq Server ES40, 667 MHz 12000
33 MHz Intel 386 Compaq Server ES40, 667 MHz 4000
IBM 3090,/108S Compaq Server ES40, 667 MHz 10
Cray X-MP/416 Compaq Server ES40, 667 MHz 5

© Algorithmic improvements
© The dual simplex algorithm with steepest edge.
The dual simplex algorithm was introduced by Lemke [1954]. It is not a hew algorithm. However, to my
knowledge, commercial implementations of this algorithm were not available in 1987 as full-fledged

alternatives to the primal simplex algorithm. [...]

5. Computational aspects of the Simplex algorithm 30-6
5.2 Algorithmic consequences of the revised simplex algorithm

All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed,
computational tests, some of which will be presented later in this paper, indicate that the overall
performance of the dual algorithm may be superior to that of the primal algorithm.

© There are a number of reasons why implementations of the dual simplex algorithm have become so
powerful. The most important is an idea introduced by Goldfarb and Forrest [1992], a so-called “steepest-
edge” rule for selecting the “leaving variable" at each dual simplex iteration. This method requires
relatively little additional computational effort per iteration and is far superior to "standard” dual
methods, in which the selection of the leaving variable is based only upon selecting a basic variable with
large primal infeasibility.

Linear algebra
Linear algebra improvements touch all the parts of simplex algorithms and are also crucial to good
implementations of barrier algorithms. Enumerating all such improvements is beyond the scope of this
paper. I will mention only a few. For simplex algorithms, two improvements stand out among the rest.

© The first of these to be introduced was dynamic LU-factorization using Markowitz threshold pivoting. This
approach was perfected by Suhl and Suhl [1990], and has become a standard part of modern codes. In

previous-generation codes, "preassigned pivot" sequences were used in the numerical factorization (see

5. Computational aspects of the Simplex algorithm 30-7
5.2 Algorithmic consequences of the revised simplex algorithm

Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred,
but encountered serious difficulties in the alternative case.
The second major linear algebra improvement is that LP codes now take advantage of certain ideas for
solving large, sparse linear systems, ideas that have been known in the linear-algebra community for
several years (see Gilbert and Peierls [1988]). At each major iteration of a simplex algorithm, several size-
able linear systems must be solved. The order of these systems is equal to the number of constraints in
the given LP. Typically these systems take as input a vector with a very small number of nonzero entries,
say between one and ten - independent of overall model size - and output a vector with only a few
additional nonzeros. Since it is unlikely that the sparsity of the output is due to cancellation during the
solve, it follows that only a small number of nonzeros in the LU-factorization (and update) of the basis
could have been touched during the solve. The trick then is to carry out the solve so that the work is linear
in this number of entries, and hence, in total, essentially a constant time operation, even as problem size
grows. The effect on large linear programs can be enormous.
© Presolve
© This idea is made up of a set of problem reductions: Removal of redundant constraints, fixed variables, and

other extraneous model elements. The seminal reference on this subject is Brearley et al [1975]. Presolve

5. Computational aspects of the Simplex algorithm 30-8
5.2 Algorithmic consequences of the revised simplex algorithm

was available in MPS III, but modern implementations include a much more extensive set of reductions,
including so-called aggregation (substituting out variables, such as free variables, the satisfaction of the
bounds of which are guaranteed by the satisfaction of the bounds on the variables that remain in the
model). The effects on problem size can be very significant, in some cases yielding reductions by factors
exceeding an order of magnitude. Modern presolve implementations are seamless in the sense that problem
input and solution output occur in terms of the original model.

e

~ Examples of performance improvements
5

Table 10: Solution times—Best simplex

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car 1555.0 701.1 275.8 120.6 primal
continent 364.7 110.5 104.4 46.7 primal
energyl 12174 275.0 260.5 22.6 dual
energy?2 10130.1 736.0 664.0 693.9 dual
energy3 21797.1 271.9 229.1 161.7 dual
fuel 5619.5 1123.2 698.6 675.0 primal
initial 3832.2 102.2 51.3 15.5 dual
schedule 152404.0 252.3 220.8 64.6 dual

@
full paper

5. Computational aspects of the Simplex algorithm 30-9
5.2 Algorithmic consequences of the revised simplex algorithm

@)

SOLVING REAL-WORLD LINEAR PROGRAMS:
A DECADE AND MORE OF PROGRESS

ROBERT E. BIXBY

ILOG, Inc. and Rice University, bixby@ilog.com or bixby@rice.edu

This paper is an invited contribution to the 50th anniversary issue of the journal Operations Research, published by the Institute of
Operations Research and Management Science (INFORMS). It describes one person’s perspective on the development of computational
tools for linear programming. The paper begins with a short personal history, followed by historical remarks covering the some 40 years of
linear-programming developments that predate my own involvement in this subject. It concludes with a more detailed look at the evolution

of computational linear programming since 1987.

1. INTRODUCTION

I am a relative newcomer to computation. For the first half
of my scientific career, my research focused exclusively on
the theoretical aspects of operations research and discrete
mathematics. That focus began to change in the early 1980s
with the appearance of personal computers.

My first PC was used primarily to implement elemen-
tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that T was teaching. As a result,
1 started writing my own code, initially a simple tableau
code.

At that time, in the early 1980s, I knew nothing about
the computational aspects of linear programming (LP). I
knew a great deal of theory, but numerical analysis and the
computational issues associated with numerical algorithms
were not subjects that were part of my graduate education.
I had no idea that tableaus were numerically unstable.

Fortunately for me, by the time my interests in compu-

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

tation had started, the Department of Industrial Engineer-
ing and Management Sciences at Northwestern University
had hired Bob Fourer, one of the creators of the AMPL
modeling language. Bob had worked for several years at
the National Bureau of Economic Research doing practi-
cal linear programming, followed by a graduate career at
Stanford. He knew a lot about the computational aspects of
mathematical programming, and he passed on a great deal
of that knowledge to me in informal conversations.

Linear programming become more central to what I
was doing when a friend of mine, Tom Baker, founded
Chesapeake Decision Sciences (now a part of Aspen Tech-
nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. I said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

Subject P
Area of review: ANNIVERSARY ISSUE (SPECIAL).

0030-364X/02/5001-0003 $05.00
1526-5463 electronic ISSN

bixby-or2002.pdf

To this day, I'm not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.

After the code was delivered to Chesapeake, there fol-
lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, 1
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib' testset my code was-indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.

Thin Anosensicoaa PO V4. ¥t T S U

LU COMPAIdULL W AT Wd> dal UUpuULtant pait or
what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.

This was the mid-1980s, and integer-programming com-
putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grétschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
tion, they did not deal well with issues such as degeneracy.
The situation at the time is well described by some remarks
of Grétschel and Holland (1991), commenting on-their use
of MPSX/370 in work on the traveling salesman problem:
They note that if the LP-package they were using had been

Operations Research © 2002 INFORMS
Vol. 50, No. 1, January-February 2002, pp. 3-15

30-10

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation
e
Goals of this chapter
O
Tllustrate the revised simplex algorithm
Tllustrate how to handle LPs with (exponentially) many columns: Column Generation

We use a path-based formulation of the max-flow problem

e
The max-flow problem (see ADM I)
C)
Maximum Flow problem (MFP)
Instance
O
network (G, u, s, t) where
G is a digraph
s, t are vertices of G, called the source and the sink, respectively
u(e) 2 0 is the capacity of edge e
e
Task
(@)
Find an s t-flow f with maximum flow value v(f)
s,t-flow f = edge weight f(e) for every edge with
0 < f(e) <u(e) forall edgese

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

flow conservation in all vertices vzs, t

flow value v(f) = net outflow out of s

Example: a flow f
(@)

3/3 2/3

6(111 ;@

2/3 3/3

f(e)/u(e) \A®/ v(f)=5

e
A formulation of the max-flow problem as LP with edge-variables (edge-based formulation)
we use the vertex-edge-incidence matrix as for the shortest path problem

max v (maximize the flow value v) such that

31-2

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

+v row s
-v row T (redundant)
Af=b withb= 0

flow conservation

f
f

A

u

0

1\

Here E(G)={ey, ..., en }and f=(fy .. fm)T, i.e.,, we have a variable per edge for the flow on that edge
A formulation of the max-flow problem as LP with path-variables (path-based formulation)
is based on the Flow Decomposition Theorem of ADM I
- ADM I, Theorem 5.2 (Flow Decomposition Theorem for s,t-flows, Ford-Fulkerson 1962)
- Let f20 bean st-flowin (G,u,s,t). Then
N f is a positive linear combination of (incidence vectors of) directed (elementary) s,t-paths and directed
(elementary) cycles

the number of these paths and cycles can is at most m

if f isinteger, then there is such a linear combination with integer coefficients

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

e
Example
e
s,t-flow
O
f
3 3
1
1
2 2

®
o]
=
e

e

corresponding linear combination

31-3

31-4

5. Computational aspects of the Simplex algorithm 31-5
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

(8]
s1 3 1 0 0
fs2 2 1o 1 0
1o 1 0 0 1
f= = 3 + 2 + 1
£ 3 1 0 0
¢ 1 10 0 1
el 2 0 1 0
foy - - -

© Observe: the s,t-paths determine the flow value, cycles play no role
© The path-based LP
© Let P1' Pp be all directed elementary s,t-pathsin & (Observe: p may be exponential in n).
The edge-path-incidence matrix D = (dij) is defined by

P 1 edgeeiliesonpathP]- i=1,...,m
v 0 otherwise ji=1...,p

f=(fy.. f,

along path Pj

)" is a flow vector that has an entry fj for s,t-path PJ. denoting the amount of flow that is sent

The capacity constraints read

5. Computational aspects of the Simplex algorithm 31-6
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

Df <u

% of flows on all paths containing e,
= flow in edge e,
for every row e,
Flow conservation holds trivially and the flow value v is obtained as
. vz
Then the path-based LP is
min c'f with ¢ = -1
Df < u
f20

O
We transform it into standard form by adding slack variables s;

5. Computational aspects of the Simplex algorithm

Qe

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

=> min ¢’ f* with f'=(f|s)", ¢’=(c|0)"
D'f'=u with D’=(D|I) (5.1)
f" >0

Slack variable s; represents the residual capacity on edge e,
e
Solving the path-based formulation with the revised simplex algorithm
_a basic feasible solution is givenby f=0 and s=u

=> Phase I is not necessary

O C:
column D;| of path PJ has (Pricing Rule) reduced cost %0
= Ej =G -T(TDJ <0

<=> ('TT)TDJ. < 1 because of Cj:‘l

Interpretation

-Tt_= vector of edge weights -1r, of edge e;

(-m)’ D; = length of the path P, w.r.f. edge weights -,
Idea

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation
Compute the shortest st-path P w.r.t. -m. Then (5.2)
" P has length > 1 => optimality criterion holds for all columns belonging to paths
" P has length < 1 => have found a column (path) to enter the basis

O
So it is not necessary to store all (exponentially many) columns of paths explicitly

O
In general, the idea

Find a column that violates the optimality criterion at most

is again an LP, whose solution is often much simpler than all generating all columns in the revised simplex

algorithm explicitly.
This idea is called Column Generation
- For the column of slack variable s; we obtain
- s; has negative reduced cost «=> -m, <0 (5.3)
© since:
~ reduced cost of column s, is 0-(m'I), = -m <0

" 5.1 Theorem (Solving the path-based max-flow problem with column generation)

31-8

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

A basic feasible solution of (5.1) fulfills the optimality criterion

<=> -1t >0 and the shortest s,t-path w.r.t. - has length >1

31-9

The pivot steps in the revised simplex algorithm are shortest-path computations with edge lengths -1t > O or

letting a slack variable s; enter the basis if -mm; < O

e
Proof

O
If -m < O forsomei, then s; is because of (5.3)anon-basic variables with negative reduced cost =>

optimality criterion violated

()
If -t > O, then pricing reduces because of (5.2) and (5.3) to computing a shortest s,t-path with non-

negative edge weights -11. [

e
Consequence

O
The revised simplex algorithm solves the max-flow problem (essentially) as a sequence of shortest path

problems

@)
Need only a (m+1)x(m+1) CARRY matrix in each iteration

C]
5.1 Example

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

Prepare data for the revised simplex algorithm

CARRY(©®

© /\7@\ ui=1 St
e €y S?

@< €3 :3@ S3

=> choose w.o.l.g. Py = { e e, e5} as entering column

—_ = = = =[O

-m" =0 => every s,t-path is a shortest path with cost 0 < 1

=TT

31-10

The associated column D, of the initial LPis (1,0,1,0, 1)" and we obtain the transformed column X, as

5. Computational aspects of the Simplex algorithm 31-11
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

_ pl _
X; = B™Dy = Dy
The reduced cost of column X; is then
¢ -T' Dy = -1 + length of the path = -1+0 =-1

Data for pivot operation:

0(0 0 00O -1
si| 1)1 @
S2 1 1 0
S3 1 1 1
sqf 1 1 0
S5 1 1 1
e
1st pivot
5. Computational aspects of the Simplex algorithm 31-12
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation
6]
CARRY® 1110000
11
f1 1 /V@\ 0
sz |1 1 e €4
ss| 01 1 oL G
3 e X
sa| 1 1 0 ¥ %0
ss| 0]-1 1 @/
& graph with-edge weights -1t
n-vector

and shortest path

The associated column D, of the initial LPis (0,1,0,0, 1)" and we obtain the transformed column X, as
X, = 8D, = D,
The reduced cost is ¢, + length shortest path = -1+0 = -1

Data for next pivot:

5. Computational aspects of the Simplex algorithm 31-13
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

1|1 000 0| |-1
f1 1 1 0
sa| 1 1 1
s3| 0]-1 1 0
sq4| 1 1 0
ss| O |-1 1 @
e
2nd pivot
O
CARRY® 110000 1
fil 1)1
s2| 1] 1 1 -1 0 o7 @\ e4\OA
s3| 0-1 1 @< 03 /V@
sa| 1 1 0 2 ¥ %
fol 01 1 Of

zE graph with-edge weights -1t
n-vector and shortest path

The associated column D of the initial LPis (1,0,0,1, 0)" and we obtain the transformed column X, as

Xy = BIDg = (1,1,-1,1,-)7

5. Computational aspects of the Simplex algorithm 31-14
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

The reduced cost is c5 + length shortest path = -1+0 = -1

O
Data for next pivot:

110000 1 -1
1)1 ©
s 111 -1 1
s3| 0]-1 1 -1
sq| 1 1 1
fa| 0|-1 1 -1
e
3rd pivot
O
CARRY® 2|1 00 0 1 @\
fa| 1] 1 LT el
s2|0[0 1 -1 @< €3
2 e 0 $ /V@
ss| 1|0 1 0 2~g %
S4 0|-1 1 @/
fal 110 1 length shortest path > 1

=>_have reached an optimal solution with maximum flow f5+f,

5. Computational aspects of the Simplex algorithm 31-15
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

1
@< 0% 4};@ maximum

e, \AQJ;)/ &5, flow

© Remarks
Column generation maintains only a (changing) subproblem of the initial problem (called the master problem) with
few columns. It generates new columns when needed for improvement by solving the pricing operation as a
separate optimization problem over all possible (and only implicitly represented) columns.
In the max-flow example, the pricing reduces to a simple shortest path problem. In general, the pricing will be
more difficult and often even NP-hard (e.g. if the flow carrying paths must respect additional constraints, e.g. in
traffic applications where routes must not be too long, or only main streets ...).

O
Column generation is one of the workhorses for solving complex network problems. More in ADM IIT

5. Computational aspects of the Simplex algorithm 32-1
5.4 The simplex algorithm with lower and upper bounds

e
Goal of this chapter
©
modify the simplex algorithm so that lower and upper bounds can be handled implicitly

serves as preparation for the network simplex (programming exercise)

©
lower bounds are easy

©
upper bounds need a modified definition of a basic feasible solution, this then leads to a more efficient and

rather easy variation of the simplex algorithm

© LP in standard form with lower and upper bounds
© minc'x st Ax=b, £<x<u
Gl
l = : >0 vector of lower bounds
ln
31
u= : >/ vector of upper bounds

5. Computational aspects of the Simplex algorithm 32-2
5.4 The simplex algorithm with lower and upper bounds

e
Approaches

(1) treat bounds as additional constraints and transform the resulting LP into standard form with slack
variables for the bound constraints
=> matrix A gets larger
unwanted, as bounds are very simple constraints
(2) treat bounds implicitly by a slight variation of the simplex algorithm
->_in this chapter
e

~ Treat lower bounds by substituting variables
o

Approach: Xj =Yyt

YR

=> write initial LP as
min c'y st. Ay=b", Oc<ycu’
with b"i=b - A€ and u"i= u-#£

Solution y of the modified LP yields a solution x of the initial LP by
X=y+#

5. Computational aspects of the Simplex algorithm 32-3
5.4 The simplex algorithm with lower and upper bounds

3l
=8

© So assume w.o.l.g. £=0 in the sequel
ie. min ¢'x
s.t. Ax=b (5.4)
O<xz<u
and w.o.l.g. rank(A) = m
° Basic feasible solutions for LPs with upper bounds
© Extended partition of the variables
© Instead of a partition of the variables/columns of A info B (basic variables) and N (non-basic variables) we
now consider an extended partition into
B basic variables
L non-basic variables with value = lower bound = O
U non-basic variables with value = upper bound = uj
for such a partition we want that
Bxg+Lx +Ux, = Bxg+ Uu, = b (5.5)
which gives

xg =B (b-Uu,) = B -BUy,

5. Computational aspects of the Simplex algorithm 32-4
5.4 The simplex algorithm with lower and upper bounds

@)
A basic feasible solution with basis B of an LP with upper bounds is every basic solution of the form (5.5)

" 5.2 Theorem (Fundamental Theorem for LPs with upper bounds)
CIfLP (5.4) has an optimal solution, then also an optimal solution that is a basic feasible solution of the form
(5.5).
~ Proof
G}
Model x < u with slack variables s as linear system x+s=u

Then we obtain the following large LP in standard form (LPSU)

min c'x

s.t. Ax=b
X+8=u
x20,s>0

Since A has full row rank, also (LPSU) has full row rank.
(@)
Let (x.,s)" be a basic feasible solution of (LPSU) with basis B’.

Set

5. Computational aspects of the Simplex algorithm 32-5
5.4 The simplex algorithm with lower and upper bounds

U:={je{l,.n} | xjeB' and sjeEB’} and q:= |U|

(@)
Identifying B= Ag and U= A, we can permute B" such that:

B B, 0
I, 0 I

PB'Q" = g ¢ rows for
0 Iq 0 T EEU
0 0 0 I

with permutation matrices P and Q
© Counting the rows of B” gives m+n = m+p+q+s
Counting the columns of B” gibes m+n = 2p+q+s
= p=m => Bisan mxm-matrix
© Laplace expansion of det(B”) = det(PB’Q) along the last n rows gives |det(B")| = |det(B)|
B’ is a basis of the large LP => det(B“)# 0 => det(B)z 0
=> B is basis of A
© Since B’(x,s)" = (b,u)", the permuted form of B’ transforms into (5.6)

BxB + UxU = b

5. Computational aspects of the Simplex algorithm

5.4 The simplex algorithm with lower and upper bounds
Xp *Sp = Ug

Xy

So the partition B, L, U defines a basic solution Bxy + Ux, = b of the form (5.5)

32-6

=> every basic feasible solution of the large LP corresponds to a basic feasible solution of (5.4) in the form

of (5.5)

=> statement with the Fundamental Theorem of linear optimization (Theorem 3.12) 0

e
Optimality criterion for LPs with upper bounds

" 5.3 Theorem (Optimality criterion for LPs with upper bounds)
- A basic feasible solution of the form (5.5) is optimal

<=> the reduced costs in the tableau fulfill

¢ = 0 for X € B
C_]' > 0 for Xj eL (5.7)
¢ < 0 for X € u

- Proof:

5. Computational aspects of the Simplex algorithm

Omy

5.4 The simplex algorithm with lower and upper bounds

O
By transforming the optimality conditions of the large LP 1

e
Choosing the pivot element for LPs with upper bounds

e
Choosing the pivot column

© Choose column AJ. with jelL and 0 or column AJ. with je U and < >0
© Choosing the pivot row
Xg €L => increase x, as much as possible
X, €U => decrease X as much as possible
Use the representation of x(8) according to (3.16)
Yai=Oxis £=B(i), i=1,...,m
xe(©)=4 6 L=s
0 sonst

and take into account that x, = u, is possible

Xis < 0 = xB(i) increases

Uj—=Xijo

= bound 0, = for 6

Xis

(5.8)

32-7

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

Xig >0 => Xp(i) decreases

— bound §; = 22 for g
Xis

(as in the ordinary simplex algorithm)

© Choose 6 as minimum of the 6, and u,. There are 2 cases
© The minimum is attained at u
© leave the basis unchanged, variable X, moves from Uto L or vice versa
" The minimum is attained at 6 =6
© pivot with x__
the new value of x_ is 8 (if x,=0) or u -6 (if x,=u,)
© Termination

__requires additional arguments

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

O]
A more detailed treatment of the network simplex algorithm will be done in the exercises

Here: a proof that it is a specialization of the simplex algorithm with upper bounds

© Network problem (Input for the network simplex)
min c'x st. Ax=b, O<xz<u
A = vertex-edge-incidence matrix of a digraph & = (V, E)
In the terminology of ADM I this is a Minimum Cost Flow Problem (MCFP)

e

_ Basic solutions of the network problem
O

we assume in the sequel that V={1,..n} and that G is connected.
rows of A add up to O
=> delete w.o.l.g. the row for vertex 1 and denote the resulting matrix again by A

=> A has n-1 rows

Consider a spanning tree T of G

=> T has n-1 edges

32-8

33-1

5. Computational aspects of the Simplex algorithm 33-2
5.5 A special case: the network simplex algorithm

Let B be the set of the associated columns of A

Example:

oy
® ® 5

1,2) (3.1 (3,5) (2.9)

Consider T as undirected tree with root 1

Order the vertices of T in preorder traversal (i.e., root-left-right recursively)

in the example: 1,3,5,2,4

Order the edges according to this vertex order,

i.e., for each vertex j#1 take the (un

ique) last edge on the path from 1 to j.

in the example: (3,1) (3,5) (1,2) (2,4)

consider the permuted matrix B’ according to these row and column orders

5. Computational aspects of the Simplex algorithm 33-3
5.5 A special case: the network simplex algorithm

3.1) 3,5 (1.2) (2.9

—
|
—
[aie

AN O W
|
—_
—

" 5.4 Lemma

The permuted matrix B’ obtained from the preorder traversal of the tree is (after deleting row 1) an upper

triangular matrix with entries z O on the diagonal.

2
Proof
(@]

Suppose that the preorder traversal just visits vertex i.

Let j be the father of i in T.

=> (i,j) or (j,i) is tree edge, say (i,j)

Permutation of the rows and columns => (i, (i,j)) is an entry on the diagonal of B’

Preorder traversal => j was visited from i

5. Computational aspects of the Simplex algorithm 33-4
5.5 A special case: the network simplex algorithm

=> column (i,j) contains
-1 inrow j
+1 inrow i
0 inall later rows 1
55 Consequence
The rows and columns of the vertex-edge-incidence matrix of a spanning trees of G can be permuted by a
preorder traversal so that the resulting matrix is non-singular and upper triangular.
The linear systems Bx=b and m'B = cBT of the revised simplex algorithm can easily be solved by exploiting
the upper triangular form and the fact that every column contains at most 2 entries z 0. This amounts to

simple iterative substitution along the triangular form.

" 5.6 Theorem (correspondence basis <-> spanning tree)
Every spanning tree of G defines a basis of the network problem (which need not be feasible w.r.t. 0 < x < u).
Every basis of the network problem defines a spanning tree of G.

C)
Proof

5. Computational aspects of the Simplex algorithm 33-5
5.5 A special case: the network simplex algorithm
&)
=>.
O
Lemma 5.4.

In particular, every basis has n-1 columns.

’ Let B be a basis of the network problem
=> the associated columns correspond to a subgraph G” with n-1 edges

~ Claim: 6 has no undirected cycles
© Assume that G’ has an undirected cycle C.
choose an orientation of C and let C* be the set of forward edges and €™ be the set of backward
edges of C w.r.t. the chosen orientation.
every vertex i in C is incident to exactly 2 edges from C

=) A —) A =0

ecCt ecC-

this confradicts the fact that B is a basis.

O
ADM I, Theorem 2.3 => every undirected graph with n vertices and n-1 edges and without cycles is a

tree O

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

~ Steps in the revised simplex algorithm

)
Basis B = tree together with partition B, L, U.

e
1. Computing the right hand side
O
It is the solution of
Bxg = b-Uu, =:b’
=> solve the linear system Bxp = b’
iteratively along the triangular form of B according o Consequence 5.4
2. Computing the simplex multipliers T,
O
They are the solution of
TR_o, T
mB=cp

> TG - = g for column/edge (i,j) € B

=> iteratively along the triangular form of B, T, of the last row can be read of directly, then iterate

backwards

C]
3. Optimality criterion

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

reduced cost of column/edge (i,j) is

= = T —
Cij = Cij-TT Aij = Cij"Tl'i*'Trj

Section 5.4 =>

Ayl
A%

0 for(i,j) €L
Eij < 0 for (l,]) el

~ 4. Computing the transformed column X
o

33-6

33-7

. -X.s corresponds fo the change of the basic variables when the value x . of the non-basic pivot column is set

to 1
so (r,s) enters the basis, B is a tree

=> B +(r,s) contains a unique cycle C

Orienting C according fo (r,s) partitions C into a set of forward edges and a set of backward edges.

Setting x., to 1 then impliesin C a change by
+1 on forward edges
-1 on backward edges

=> pivot operation corresponds exchanging edges on this cycle.

5. Computational aspects of the Simplex algorithm 33-8
5.5 A special case: the network simplex algorithm

If the non-basic variable X IS the "bottleneck”, then there it changes only from L to U or vice versa (see
Section 5.4).
@
5. Computing an initial basic feasible solution

= Phase I, see Exercises

e
6. Anti-cycling

by considering only strong tree solutions, see Exercises.

e
Literature on the network simplex algorithm

©
Chapter 11 in

K. Ahuja, T.L. Magnanti, J.B. Orlin
Network Flows: Theory, Algorithms, and Applications
Prentice Hall, 1993

6. Primal-dual algorithms 34

O [T ge o 1o 1o o IO TSRS
© 6.2 THE PrIMAI-GUAI QIGOITHAIMoveceeeeee et
© 6.3 Remarks on the o1 1072 Lo [7= =1 o o 1 g
© 6.4 A primal-dual algorithm for the shortest path problem
© 6.5 A primal-dual algorithm for the transportation problem
© 6.6 A primal-dual algorithm for the weighted matching Problem (8 SKEICH)woueeuerrririeieeieieieie sttt 40

6. Primal-dual algorithms
6.1 Introduction

e
Background

O
Primal-dual algorithms are based on complementary slackness.

©
They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956]

35-1

They provide a general method to derive "specialized" algorithms for combinatorial optimization problems, exact

and approximate.
©
Basic idea
O
Start with an LP in standard form
(P) minz=c"x
Ax=b20 (w.o.lg)
x>0
The associated dual LP is
(D) maxw=T'b
mA<c
T unrestricted

O
Complementary slackness yields

6. Primal-dual algorithms
6.1 Introduction

X € Sp, T € Sy are optimal
<> Tr(a;"x - b;) = 0 for all i (this holds since Ax = b)
(c; - T'rTAJ.)x~i =0 foral j (6.1)

So: (6.1) = is the only condition for optimality

e
Primal-dual algorithm

Given e Sy, find x € Sy such that x and T fulfill (6.1)

35-2

We search for such an x € Sy solving an auxiliary problem, called the restricted primal (RP), determined by

the given dual feasible solution 1€ Sy

O
If nosuch x exists, we use information from the dual (DRP) of the restricted primal (RP) in order to

construct a "better" dual solution e SD.

O
We iterate this process until we (hopefully) find an optimal pair x, Tt

6. Primal-dual algorithms 35-3
6.1 Introduction

primal dual
problem > problem F—— RP |—| DRP

P D
Tr‘[X ? .

improving Tt

O
Remark: this is essentially a dual algorithm, since we have a dual feasible solution T in every step and obtain
an optimal primal feasible solution x only at termination. It is nevertheless called primal-dual because of the

role of the complementary slackness conditions.

6. Primal-dual algorithms 36-1
6.2 The primal-dual algorithm

e
Constructing a dual feasible start solution T

©
All c\.| >0
=> =0 is dual feasible,as T A<c’
Some CJ <0

Use a trick:

o
Introduce another primal variable x ;>0

Introduce another primal constraint

Xy + X+ ¥ X = by

with b > nM (M from Lemma 3.4) and Criet = 0

m+l =

Lemma 3.4 => this constraint does not change S
©
The dual problem then is

gy
maxw=T'b+m b,

T o

Tr AJ. Ty $¢5 JF Loon
T <0

, unrestricted,i=1,..m

O
A feasible solution of this dual LP is given by

6. Primal-dual algorithms 36-2
6.2 The primal-dual algorithm

mel = minJ- ¢ < 0 (since at least one ¢ < 0)

=> a dual feasible solution can be constructed quite easily (much simpler than a primal with the Two-Phase-

i
method)

© The Restricted Primal (RP)
© Assume that we have a dual feasible solution 11 of (D)
© To fulfill (6.1), set
J={j ITrTAJ. =cj}
We call J the set of admissible columns
(6.1) => x €S, isoptimal <=> Xj = O forall j&J
© So we are looking for an x with
z JET ij‘.| =b
x20, X = 0 forall j&J
This search is a pure feasibility problem, which we will solve with Phase I of the simplex algorithm. The Phase I

problem is called the Restricted Primal (RP):

6. Primal-dual algorithms 36-3
6.2 The primal-dual algorithm

min €= Xt

unter 3 cpaigxij+xi = b i=1,.., m
x> 0 jed (RP)
xjp = 0 jgJ <— may delete
xt 2 0 i=1,..,m these x|

We can solve (RP) with the simplex algorithm. (RP) searches for a feasible solution of (P) without the columns A.i
with j& J. The artificial variables define the initial basis of (RP).

O
If € .= 0, then each artificial variable is O and x is a feasible solution of (RP)
=>_x is-an-optimal solution of (P)

O
If §
=>we investigate the dual LP-of (RP)

opt

opt > 0, then there is no x in (RP) fulfilling (6.1)

e
The dual (DRP) of the restricted primal
O
(DRP) reads

6. Primal-dual algorithms 36-4
6.2 The primal-dual algorithm

max w = 7'b (6.2)

s.t. ntA; < 0 € 6.3
i > je] (6:3) (DRP)

T < 1 i=1,....m (64)

TT; unrestricted i=1,...,m (6.5)

(C)
Let 71" be an optimal solution of (DRP) (it exists because of Strong Duality)
Idea: combine " with the original dual solution T to
™ = 1+ 01’ (6.6)

where 0-is chosen such that T stays feasible in (D) and the dual objective function of (D) strictly increases

Consequence for the dual objective function of (D):
(8]

(M)b =m'b +08(1m")"b
fe——=
= Eop* > 0 as (RP)and (DRP)

are a primal dual pair

Hence 6> 0 is required for a strict increase of the dual objective function
e
Consequences for dual feasibility in (D)

6. Primal-dual algorithms 36-5
6.2 The primal-dual algorithm

~ dual feasibility means

(1'r*)TA~i =1'rTAJ. +9(1'r')TAJ. <c for j=1,..,n

J
this is no problem if (TT’)TAJ. < O (this holds forall je J since m’e SDRP)
There are 2 cases
(@)
(n')TAJ- <0 forall j=1,..n
=> O can be made arbitrarily large
=> the dual objective function of (D) is unbounded
Theorem 4.3 => (P) has no feasible solution
(@)
(n’)TAJ. >0 for some j&J
Then we obtain a constraint for 6:
1'rTA‘j + 6(1'[')TAJ <
fe———
>0

S W
Cj 7'cA]

SO 9 S e S——
()T A;

O
We summarize

6. Primal-dual algorithms 36-6

6.2 The primal-dual algorithm

: 6.1 Theorem (Infeasibility of (P) in the primal-dual algorithm)
CIf E

no feasible solution.

i 0 in (RP) and (1'r')TA\i < 0 forall j=1,.., n wrt. the optimal solution T° of (DRP), then (P) has

O
Proof: clear from the above O

" 6.2 Theorem (Improvement of the dual solution in the primal-dual algorithm)
If Eop‘l‘> 0 in (RP) and (1'r')TAj > 0 forsome j&J, then

X Cj —nTAj
B; = min{

+ NTA s
W'JQJ, (m')'A;>0} 6.7)

is the largest 6, such that 1 := 7w+ 61" is dual feasible. Then

w* = ()b =T'b +8,(m)b > w (= T'b)

)
Proof: clear from the above O

e
The primal-dual algorithm

e
Algorithm (Primal-Dual)

6. Primal-dual algorithms 36-7

6.2 The primal-dual algorithm
e
Input
O
Primal LP (P) in standard form

(@)
Associated dual LP (D) with feasible solution Tt (possibly constructed by the above trick)
S
Output
0
At termination : an optimal solution or a message that (P) has no feasible solution
O
Termination can be guaranteed by anti-cycling rules

(C)
Method
(S

repeat
O
Construct (RP) by computing J :={j | TrTAJ. =¢;)

(&)
call Phase I with cost vector € = ¥ x.* for (RP)
e

if E,Op,r > 0 then
D

~

call dual Simplex for (DRP) and take the computed optimal solution T1°

©
if (1'r')TA‘-l <0 forall j=1,.,n
)

p=

then return "(P) has no feasible solution"
C]
else

Q

compute 6, according to (6.7)

6. Primal-dual algorithms 36-8
6.2 The primal-dual algorithm

O ’
set TI:= 1'r+911'r

e
until "’;opf =0

O
return solution x of (RP)

6. Primal-dual algorithms 37-1
6.3 Remarks on the primal-dual algorithm
e
(1) Restart: The basic optimal solution of the previous (RP) is a basic feasible solution for the new (RP)
" 6.3 Theorem (Keeping admissible basic columns)
- Every admissible column of the optimal basis of (RP) remains admissible at the start of the next iteration of
the primal-dual algorithm
®
Proof
O
Let AJ. be an admissible column of the optimal basis of (RP)
Definition of admissible column => Ay.| is a column of A, i.e., does not belong to an artificial variable

reduced cost of a basic column is O, T’ is a dual optimal solution of (RP)

= 0 = ¢ = CJ‘-(TII)TAJ = 0-(TI'I)TAJ
= (Tl',)TAJ =0
Then

Ta _ T NTg - T _ Ta _
(TI')AJ-TI'AJ+91(TI')AJ-TI'AJ+O-TI'AJ-Cj

since Aj is an admissible column w.r.t. T —[F

=> A.i remains admissible w.r.t. m*

(6)
An optimal basis of (RP) is composed of

6. Primal-dual algorithms 37-2
6.3 Remarks on the primal-dual algorithm

admissible columns => stay admissible because of Theorem 6.3
columns of artificial variables => stay in the new (RP)

=> Theoremand (1) QO

e
(2) (RP) can be solved with the revised simplex algorithm

~ this follows from Theorem 6.3. We only need fo update the set J for the non-basic columns

~ (3) Termination can be achieved by anti-cycling rules
" 6.4 Theorem (Termination of the primal-dual algorithm)

The primal-dual algorithm solves (P) in finitely many steps
e

Proof

(6]

~ Interpret (RP)as a sequence of pivots of variables x,°, ..., x,% Xy, ... X,

(possible since X; = 0 for j € J and thus can be interpreted as a non-basic variable)
=> (RP) traverses a sequence of basic feasible solutions of (I | A)

Claim: The objective function decreases monotonically along that sequence (not necessarily strictly)
@]

" this is clear within the repeat-loop, because then the algorithm is just the ordinary (revised) simplex

6. Primal-dual algorithms 37-3
6.3 Remarks on the primal-dual algorithm

algorithm.
6]

consider now a new entry into the repeat-loop
=> we compute 6,

Let r be the index at which the minimum is attained in the computation of 6,

Sub-Claim: column r is admissible and has negative reduced cost in the new (RP)
@)
Cr—TAr

ATA = T NTaA - T
(M)A = TA+0(')' Ar = T AL+ YA,

'(Tr,)TAr = Cr

=> A is admissible w.r.t. ™ => r admissible in the new (RP)
© in the new (RP) column r has reduced cost (see Proof of Theorem 6.3 in this subsection)
0-(m)'A, <0
as (m)TA_ > O by definition of 6,
© Sub-Claim => when entering the repeat-loop, we may choose column r as pivot column in the sense of the
ordinary simplex algorithm with monotonically decreasing cost
© Claim => adapting the lexicographic rule to the sequence of basic solutions of (I | A) yields termination O

6. Primal-dual algorithms 38-1
6.4 A primal-dual algorithm for the shortest path problem

° Deriving (P), (D), (RP), (DRP)
o 9 We consider the formulation of (SP) from Section 4.3
(P) min c'f
Af =b (A = vertex-edge-incidence matrix)
f20

where the row of vertex tis deleted

O
The dual LPis

(D) max T - TI,

- <G for all edges (i, j) € E(G)
e unrestricted

M, = 0 (corresponds to deleted row t)

(®)
The set of admissible columns is

IJ:{(i,j)EEITTi-WJ- = cij}

6. Primal-dual algorithms 38-2
6.4 A primal-dual algorithm for the shortest path problem

0
(RP) thenis
min &= g X

1| <— rows

x4+ Af = O
0
f.. >0 for all edges (i,j) € E(6)

iJ
fij =0 forall edges (i,j) € IJ

x4 20 fori=1, . n1

O
The associated dual (DRP) is

max w= Tr,
T =T < 0 forall edges (i, j)eIT

. <1 for i=1,..,n1 (obtained from the columns of the x.)
™y =0

— Interpretation of the primal-dual algorithm

6. Primal-dual algorithms 38-3
6.4 A primal-dual algorithm for the shortest path problem

- 1) E’opT: 0 in (RP) <=> there is a path from s to t using only edges from IJ.

Each such path is an optimal solution of (P), i.e., a shortest s,t-path
e
Proof
(i) " "
=>
6]
Let Eop‘r =0
=> every basic optimal solution of (RP) is an s,t-path with fij =0 forall edges (i,j) ¢ IJ

=> this path uses only edges from IJ.
C)

Il<:II

(@)
every s,t-path containing only edges from IJ is feasible in (RP)and has € = O

=>this path-is optimal for (P) because of the primal-dual method (is satisfies complementary slackness)

B (2) If thereis no path from s to t with edges only from IJ, then " with
.. 0 tcan be reached from i via edges from] ori =t
1 otherwise

is optimal for (DRP)

e

Proof
6. Primal-dual algorithms 38-4
6.4 A primal-dual algorithm for the shortest path problem
C)
1" is feasible for (DRP)
6]
m ¢ 1 and T, = O holds by definition
(@)

Assume that Tri' = TrJ-' ¢ O isviolated for edge (a,b) € IJ
T’ has only values 0 and 1 => T ~=1and T =0
Definition of ™° => 1 can be reached from b via edges from IJ
(a,b) € IJ => t can be reached from a via edges from IJ
= Trc' = 0, a contradiction
© " is optimal for (DRP)
© The objective function is max w = T
Constraint T, < 1 => every m with T, = 1 is optimal
=> 1’ is optimal
: (3) For E‘op'r> 0 and " defined in (2) we obtain

] 8, = min{cij-(ﬂi—nj) | (i,)& IT, Tril'TfJ" =1}
=)

" Proof
O
Let Eopf >-0-and " be defined as in (2), so in particularoptimal for (DRP).
(6.7) implies

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

6 = min{ ST AV |6 g TT, ()AL 5 0)
1 (')TAJ ij

(1'r')TAi~.| = -Trj' >0 <> 1’ =1 and U =0 = (M)TA

N (4) The primal-dual algorithm reduces (SP) to a sequence of reachability problems

Can 1 be reached from i via edges from IJ ?
or., after inverting the orientation of all edges,
Which vertices can be reached from t via edges from IJ ?
S)
Proof
(@]
Follows from (1)-(3) 4

e
6.5 Example
e
Input data

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

@”?H%

b

Cij 2 0 => =0 is feasible in (D)

e
Iteration 1

46 Ok @

Q!

@'

Blzmin{c - (- 1'r)|(| Nell, m —Tr =1} = 2 for edge (3,1)

> T =m+ 0 = (0,..,0)7+ 2-(1,1,1,1,1,0)T (222220
e
Iteration 2

2

a
.

38-5

38-6

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

T 2@ @22 ™ 1@—-3——>@\02
g P = © K

2@ @2 @ @

B, = min{3-(2-2),2-(2-2),5-(2-0)} = 2 for edge (4.3)
> = fm = (2,2,2,2,2,0)7+2:(1,1,1,0,1,0) = (4,4,4.2,40)"

e
Iteration 3
(@)
i 4@ ?\2 ’ 1@—-3——|>
2
21 = & 2 (M
4 0 1
4(2) é)4 1(@--1--

B, = min{3-(4-2),1-(4-4)} = 1 for edges (1,3)and (2,4)
D> =TT = (4442407 +1(1,11000)7=(5

/////

© .
Iteration 4

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

: ™ 5@—3—|> 2 ™ OV@_3_>
?2“ = C? %
o

111111111111111

5

5@—1—|>é4>4
8, = min{2-(5-5),1-(5-5)} =1 for edge (s.2)
>+ = (5

©
Iteration b
O
e) @— 3 —>?\
(X
6

optimum

1 reached

Ho=S *54)
m=1(655,24,0)" isdual optimal = vector of shortest distances to +

e
Detailed interpretation of the different steps
(@)
(1) Define W as

38-7

38-8

6. Primal-dual algorithms 38-9
6.4 A primal-dual algorithm for the shortest path problem

W= {ie V|t canbe reached from i viaedges fromIJ} = {ie V| m =0}

M, remains unchanged as soon as i € W, since Tri' = 0 afterwards

© (2) Whenanedge (i, j) enters IJ, it staysinIJ,
because T, and M, change by the same amount => T, - M, stays the same

= (3) ieW = m; =length of a shortest path from i to t
(inductive proof)
In every iteration of the algorithm, one adds those vertices from V-W to W that are closest to t
(inductive Proof)

© Consequence
© The primal-dual algorithm for (SP) with ¢ > O is essentially Dijkstra's algorithm, as in the chord model in

Section 4.3

6. Primal-dual algorithms 39-1
6.5 A primal-dual algorithm for the transportation problem

© Deriving (P), (D), (RP), (DRP)
© Primal LP (P) and dual LP (D)

o
We consider the formulation of the transportation problem from Section 4.1

(P) min zi,j Cijfij s.t.
Zj fij = q; foralli (pick up supply a; from vertex i)
Z; fij = bJ. for-all j—(deliver demand b‘j to vertex j)
f‘.y.| >0 forall i, j
with (w.o.l.g.) Z6 =%, b.
o 3
Introduce dual variables o, BJ- for the two groups of constraints
Q; Zj fl.‘.|
The dual (D) then is

q; foralli

bj forall

(D) max Z; aox; + ZJ. bij s.t.
°‘i+Bj £ G forall i,
o, Bj unconstrained

@)
A feasible solution of (D) is

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

«; =0 foralli

B:=min. c.: forall j does not require thatall c;; 2 0)
o R T J ij
~ Restricted primal (RP)

O
The set of admissible columns is

IT={(ij)eE| o<i+[3J- = Gjj }
© Restricted primal (RP)
min &= 3 i=1,...m#+n xla
z fij+xla =a fori=1,..,m
z; fij +xm+ja = bj for j=1,..,n

f'.'l >0 forall edges (i,j) € IT

fij =0 for all edges (i,j) & IJ

x>0 for i=1,.., mn

39-2

8
We modify (RP) by substituting the artificial variables x,* in the objective function and obtain (with fiJ. =0

for all edges (i,j) & IJ)

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

&= Lo+ xyby - 2 ey f

fe———>
constant

= minimizing § <> maximizing X, yery fi;
© Deleting the artificial variables then yields (because of x‘-a > 0)
(RPT)—max ¢ yerr fij
ZJ. fij < q for i=1,..,m
Z fij < bJ. for j=1,..n
fij >0 for all edges (i,j) € IJ
fij =0 forall edges (i,j) € IT

(@)
=> (RP') corresponds to a max-flow problem in the graph G of admissible edges

39-3

6. Primal-dual algorithms

39-4
6.5 A primal-dual algorithm for the transportation problem
=—capacities
l?— admissible edges
The primal-dual algorithm yields:
f is optimal in (P) <=> the maximum flow value fulfills v(f) = ¥.q, = ZJ bJ.
©
The dual (DRP) of (RP)
O
Introduce dual variables u;, Y, for the two groups of constraints
u; ZJ fl.\.| +xi° =aq fori=1.,m
a _ -
Y; Z; fij *Xpej = bJ- for j=1,..,n
The dual of (RP) is
(DRP) max w = X, aqu; + Zi b.‘vi s.t.
6. Primal-dual algorithms 39-5

6.5 A primal-dual algorithm for the transportation problem

=
+
<
A

PtV < 0 forall (ij)eIJ
u, v. <1
u., v. unrestricted
- 6.6 Lemma (Optimal solution of (DRP))
| ‘Le‘r EOPT>O in (RP) and let f be a maximum s,t-flow in 6.
Let I*C T be the set of vertices that can be reached from s in G, (i.e. there is a flow augmenting path

from s to these vertices).

Let J* C J be the set of vertices that can be reached from s in &, (i.e. there is a flow augmenting path

from s to these vertices).

‘Then
o =1 if ieI* o :=-1if ieI*
BJ. =-1if jeJ* BJ = 1if jeJ*

is an optimal solution of (DRP).

©
Proof

O
From ADM I we know that X :={s} UTI* U J* isa cut of minimum capacity of G, and that every max-flow

algorithm computes such a cut. Hence the sets I* and J* can be determined efficiently.

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

e
We analyze this cut of 6

no edges
from I* fo J-J*

saturated

edges

J‘*

? flow = O on the edges
from I-T* to J*

saturated
edges

o (1) thereis noedge (i,j) from I* to J-J*
otherwise j € J* because of the infinite capacity of (i)

© 2) fij =0 for all edges (i,j) from I-I* to J*

. otherwise (j,i) is a backward edge in G, implying i€ I*
(3) edges (s,i) from s to I-I* are saturated
otherwise ieI*

©
(4) the edges (j,t) from J* to t are saturated

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

otherwise there is a flow augmenting s,t-path
© (5) the flow valueis v(f)=%;cpxq; * Zj € I bj
since: v(f) = net outflow out of X ={s} UI*UJ* into V(G)- X
=> (5) follows from (1) - (4)
@)(()A) «; and Bj are feasible for (DRP)
Show that o, * BJ <0
If 0(i+BJ. >0 = ;=1 and BJ.: 1=>ieI* and jeJ-T*
=> a contradiction to (1)
© (B) &; and Bj are optimal for (DRP)
The objective function value for o, and BJ. is
W= Xao + ZJ. bij
= 2iep G - 2Zierp &~ Zjegx bj *2ieggr b,
Because of (DRP')and (5)
Eopr = Z;0 + I, by - 2u(F)
= 2o+ by -2Zjerpq t Tjegaby) = w
Weak duality => o and B.i are optimal

39-6

39-7

6. Primal-dual algorithms 39-8
6.5 A primal-dual algorithm for the transportation problem

e
Updating the dual solution

@)
Let o and B.i be a dual solution of (D) and let o;" and Bj “~be the optimal solution of (DRP)
o O
If §
=)

~Casel: & +B;" < O forall (ij)eld

opt > 0, then there are 2 cases in the primal-dual algorithm (Theorem 6.2)
© => (P) is infeasible by Theorem 6.2
this cannot happen as (P) has a feasible solution,
. e.g. ffJ = (/Zy ak)-ai-bJ.
Fase A Bj' > 0 for some (i,j) &€ IJ

O
So this case is the standard case. (6.7) yields

— cij=m Ay, NT
91—mln{ml(l,J)gI\J‘,(ﬂ)Aij>o}
=mm{m“i,j)gua{+ﬁj>0}
ai+ B

Ci"ai" i
min{JTbJIiEI*,jéJ*}

(@)
We summarize

6. Primal-dual algorithms 39-9
6.5 A primal-dual algorithm for the transportation problem

: 6.7 Lemma (Updating the dual solution)

Let € . >0 in(RP) and let f be a maximum s t-flow in G.

opt
Let I* C I be the set of vertices that can be reached from s in Gf

Let J* C J be the set of vertices that can be reached from s in Gf

Then

Ci._ai_ .

and the new dual solution is obtained as
a*=o+0 if iel* a*=a-6; if ieI”
s £ oo Tx Rrop. P
Bj 'Bj 8, if jeJ BJ [3J+91 if ied
Every optimal flow of the old (RP') stays feasible in the new (RP").

©

Proof

" The new dual solution is obtained as T := 11 + 61Tr'

Hence the values of o* and Bj* follow from the value of 8, and Lemma 6.6

o
It remains to show that the optimal flow stays feasible. This follows already from Theorem 6.3, since the

6. Primal-dual algorithms 39-10
6.5 A primal-dual algorithm for the transportation problem

optimal flow is a basic feasible solution of (RP*). We give a direct proof below.
N Claim: edges (i,j) with positive flow stay admissible in the new (RP)

C)
fij >0 => edge (i,j) is admissible inthe old (RP) => «; + BJ = ¢

J
analysis of the cut of G (Proof of Lemma 6.6) => two possible cases
2

Casel: ieI* and jeJ*
= (xi*+Bj* :(xi+91+Bj-61 = (xi+Bj = Cij

e
Case 2: i€ I-I* and je J-J*

(xi+B. -—c.

O
=> O(i*+Bj*=0(i_el+Bj+el]]

~ The primal-dual algorithm for the transportation problem
@
Algorithm alpha-beta
e
Input
O . . .
Instance of the transportation problem; i.e., numbers q; >0, bJ- >0, and <ij with 3,6, = X b;
e
Output
()]
A minimum cost transportation plan fiJ-

(5]
Method

6. Primal-dual algorithms 39-11
6.5 A primal-dual algorithm for the transportation problem

O
Determine a feasible solution of (D) by

®;:=0 forall i
BJ. ‘= min, Sij forall j
C)
repeat
O
construct graph 6 of admissible edges from IJ := {(ij)€E | o+ BJ- = G }
6]

compute a maximum s,t-flow f in 6 // warmstart with the flow from the previous iteration is possible
“if Wf)<zq then
© set T*:={i e I | there is a flow augmenting s,i-path in 6 }

set J*:={je€ J | there is a flow augmenting s.j-path in G}

O
set

91 = mm{JTthEI*,JQJ*}
and take as new dual solution
O(i2:0(i+91 if ieI* °‘i::°‘i'91 if i¢I*
—— _ H R *x o . 0 0 *
. BJ'_BJ 0, if jed Bj' [3J+91 if ieJ
—until v(f) =% q

6. Primal-dual algorithms 39-12
6.5 A primal-dual algorithm for the transportation problem

~ return flow f
©
Interpretation
O
For the transportation problem, the paradigm of the primal-dual algorithm leads to two nested loops of

reachability problems . The loops "combinatorialize" cost and capacities.

Transportation Problem
combinatorialize cost

Max-Flow-Problem
combinatorialize capacities

Reachability Problem
find a flow augmenting path

e
6.8 Example

e
Input data

6. Primal-dual algorithms 39-13
6.5 A primal-dual algorithm for the transportation problem

1 2 3 4
1 {2 1 3 4
a; bJ- 211 2 2 3
3|13 1 4 2
c.. matrix

1

(@)
Bj 1 1 2 2
&; 12 3 4
o012 @ 3 4 O=minicij
02 @ 2 @ 3 marks the admissible
033 @ 4 @ edges (i.j)
@
Iteration 1
@

~ Construct graph G of admissible edges and compute a maximum s,t-flow in & and the sets I* and J*

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

flow value v(f)=9 < ¥;q; =12 => update the dual solution

e
Updating the dual solution

© .
Determine 91
()

Ci.—ai— .
6y = min{JTbJ“GI*:\ng*}

6. Primal-dual algorithms

B, 1 1 2 2
& 1 2 3 4
o1{2 1 3 4
o021 2 2 3
033 1 4 2
Cii matrix

6.5 A primal-dual algorithm for the transportation problem

I*={1}, J*={2}
edge (11) - (2-0-1)/2 =1/2
edge(1,3) > (3-0-2)/2 =1/2
edge (14) > (4-0-2)/2 =1
Computing the new dual solution
© o= o+ 0 if ieI*
BJ.::BJ.-G1 if jeJ*
So «;=1/2 a,=-1/2 az=-1/2
B, =3/2 B,=1/2 B3 =5/2
° Iteration 2

e
Construct graph G of admissible edges

=> 91 =1/2

By =5/2

J

0(‘.::0(i-91 if i¢I*

Bj::Bj+el if i€J*

39-14

39-15

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem
@)

39-16

B;

&;

3
2
1

1/2 1

-1/2 2
3

55

2 2

3 4

8 4

3

-1/2 3 4 @
O marks admissible edges @\A

Compute a maximum s,t-flow in 6 and the sets I* and J*

1
2
2

&)
2
1

6. Primal-dual algorithms

39-17
6.5 A primal-dual algorithm for the transportation problem

previous flow new flow

flow value v(f)=11 < 3. a, =12 => update the dual solution
e
Updating the dual solution

© .
Determine 61

6. Primal-dual algorithms 39-18
6.5 A primal-dual algorithm for the transportation problem

(@)

5 3 155
2 2 2 2
(o4
o CymaimPy _ [1 2 3 4
6 ::mm{TlneI*,J¢J*} 72112 1 3 4
-1/722)11 2 2 3
-1/23 13 1 4 2
I*={1,2}, J*={123}
edge (14) > (4-1/2-5/2)/2 =1/2
edge (24) - (3+1/2-5/2)/2 =1/2 = 6, =1/2
- Compute the new dual solution
O
o =+ 0 if ieI* o = -0, if ieI*
— _ . H * - : . *
BJ..—BJ. 0, if jeJ Bj' [3»J+91 if ied
So oy=1 ;=0 o&3=-1
Bi=1 B,=0 B3=2 B,y=3
®
Iteration 3
e
Construct graph G of admissible edges
6. Primal-dual algorithms 39-19
6.5 A primal-dual algorithm for the transportation problem
(6]

B;

&;

11
02
-13

Compute a maximum s,t-flow in 6 and the sets I* and J*

6. Primal-dual algorithms 39-20
6.5 A primal-dual algorithm for the transportation problem

previous flow new flow

flow value v(f)=12 = %;q; =12 => have constructed an optimal solution

e
Runtime of the algorithm
O
Let w.olg. m<n => 6 has O(n) vertices and O(nz) edges
The primal objective of (RP") increases with every flow augmenting path and is bounded from above by ¥ a; .

=> fotal runtime for flow augmentations is (Z; q;)-O(breadth first search) = (Z; q;)O(nz)

6. Primal-dual algorithms 39-21
6.5 A primal-dual algorithm for the transportation problem

All other computations (constructing &6, 6;, the new dual solution) are in O(nz) and happen at most (Z; a;)
times
© => Total runtime of the primal-dual algorithm is (2, g,)O(nz)
=> the primal-dual algorithm is only pseudo-polynomial
© It can be improved by Capacity Scaling for the a; and bi (see ADM I, Section 6.4, for capacity scaling)
=> essentially only log(max { a;, bj }) many max-flow problems with runtime o)
An interesting special case is the assignment problem, which is defined by q; = bJ. =1 (then n=m)
=> %,6,=h = runtime O(n3)
© The alpha-beta algorithm was first developed for maximum weighted matching in bipartite graph (Paul Kuhn
1955) and is known as Hungarian method, see e.g.
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency
Volume 1, Chapter 17.2

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

_ Goal of this section
O
Sketch of a primal dual algorithm for weighted (perfect) matching.
This closes the gap from ADM I, Section 7.1

_ Matching
© Let G be an undirected graph. A matching of G is
© aset M C E(6) of edges such that ho 2 edges of M share an endpoint
N a matching M is called perfect if every vertex of G is incident to an edge of M
®

__agraph with a perfect matching (red edges)
6

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

e
Maximum weight matching problem (MWMP)
e
Instance
(@]
Undirected graph G, edge weights c(e)
e
Task
O
Find a matching M with maximum weight c(M)

cM)=> cle)

eeM

e
Minimum weight perfect matching problem (MWPMP)
e
Instance
(@]
Undirected graph G, edge weights c(e)
e
Task
6)
Find a perfect matching M with minimum weight c(M)
or report that there is no perfect matching

6.8 Lemma (Equivalence of matching problems)

40-1

40-2

6. Primal-dual algorithms 40-3
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

MWMP and MWPMP are equivalent in the sense that there is a simple transformation from one problem fo the
other such that one can construct from an optimal solution of one problem an optimal solution of the other.
e
Proof
(E) " "
=>
O]
Let (6,c) be aninstance of the minimum weight perfect matching problem.
Choose K large enough so that c'(e):= K- c(e) >0 for all edges e, and only maximum cardinality
matchings of G have maximum weight w.rt. ¢'. (Ki=1+3% oy |c(e)| suffices)
(@)
Let M be an optimal solution of the maximum weight matching problem for (G, c')
M has maximum cardinality => M is a perfect matching for (G,c) or there is no perfect matching in 6
o
If M is perfect, then c'(M) =Kn/2-% <y c(e). SoM has maximum weight w.r.t. c' iff M has

minimum weight w.r.t. c.
C)

<=
6]

Let (6,c) be aninstance of the maximum weight matching problem.
Add |V(G)| many new vertices to G and so many edges that the new graph G' is complete.
Set c'(e):=-c(e) if e E(6) and c'(e):=0 if e isahew edge.

(@)
Let M' be an optimal solution of the minimum weight perfect matching problem for (G', c')

6. Primal-dual algorithms 40-4
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

=> M:= M' N E(G) is an optimal solution of the maximum weight matching problem 1

e
The primal-dual algorithm for the minimum weight perfect matching problem

~ Primal LP (P)
© There is no obvious LP-formulation. The following theorem was one of the pioneering results of Edmonds.
Given an instance (G,c) with G = (V, E), he considers the LP (P)
min ¥, cg c(e)xe
x@®W)=1 foral veV
x(0(S))>1 for all odd vertex sets S of G
x>0
Here x(8(S)) := 2, e55) Xe
" 6.9 Theorem (Matching polytope Theorem, Edmonds 1965)
" Let (6,c) be an instance of the minimum weight perfect matching problem. Then:
| (1) G has a perfect matching <=> (P) has a feasible solution
- (2) In this case the minimum weight of a perfect matching of & is equal to the optimal value of (P).

e
Proof

6. Primal-dual algorithms 40-5
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

o <
The primal-dual algorithm constructs an optimal solution x of (P) (if there is one) that is a perfect

matching of 6.
=> Theorem 6.9 and Lemma 3.5 imply that all basic feasible solutions of (P) correspond to perfect

matchings. 1

© Dual LP (D)
© We do not transform (P) into standard form. The primal-dual algorithm can be adapted also to other forms of
(P).
© Let U be the set of all odd vertex sets of 6. The dual LP of (P)is (D)
max X (y,:veV)+3(Yg:SeU)
Yy * Yyt Z(Yg:eeSeU) ¢ c(e) foralledges e=vweE
Y5 2 0 foradl SeU
Y, unrestricted
© Complementary slackness conditions

O
x,>0 => c(e) - (y, +yw+Z(\/s:eeSeU)) =0

6. Primal-dual algorithms 40-6
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

Yg > 0 => x(3(S)) = 1
© If x is the incidence vector of a perfect matching M, then the complementary slackness conditions are
equivalent to
eeM => cle)-(y, +y,+Z(Ygs:eeSel) =0 (6.8)
Yg > 0 = [MNJ(S) =1 (6.9)

e

~ Remarks on the primal-dual algorithm

© (6.8) defines "admissible" edges for the matching that we look for in the (RP)
(6.9) corresponds to [M N 8(S)| = 1, if S has been shrunk to a pseudo-node v (a blossom)
=> a solution of (RP) corresponds essentially to searching a perfect (so a maximum cardinality) matching in the
graph of admissible edges in which all sets S with Y5 > O are shrunk
=> we can compute such a solution with the algorithm for a maximum cardinality matching (e.g. the one from
ADM I).

© An optimal solutions of (DRP) can (similar to the transportation problem) be obtained directly from the best

matching in (RP), but this is more complicated than for the transportation problem.

O
Altogether, the minimum weight perfect matching problem reduces to a sequence of maximum cardinality

6. Primal-dual algorithms 40-7
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

matching problems.
© The algorithm can be implemented to run in O(nzm) time. In particular, at most n variables Y4 > O
throughout the algorithm.
There are improvements for dense graphs (that work only on sparse subsets of the edges)
© For details see Chapter 5.3 in
W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver

Combinatorial Optimization

Wiley 1998
7. Integer linear optimization 41
O oY 0o o 111 o) J TS 42
O 72 F o] =1 T T o = Tl 4 = U g o= S 43
© 7.3 Branch and bound = 1o o111 1= 44
O 7.4 LAGrangian FQIAXALIONcc.cuiveeeieeee et 45
075 (@011 To I o =T =3 U o 1. 46

Q76 (@) 0) 11117411 1e]I Tg o [=T=] o L= 1) o OOt 47

7. Integer linear optimization
7.1 Introduction

42-1

Integer linear programs (Integer Linear Program, ILP, IP) require all variables to be integer, i.e., X; € Z forall j.

Mixed integer linear programs (Mixed Integer Linear Program, MILP, MIP) may require only some of them to be

integer.
e . .
In this section:
Integer variables add much modeling power. Many non-linear effects can be modeled by IPs.

(@)
The drawback is that IPs are NP-hard in general.

© LP relaxation of an IP
© standard form of an IP
min ¢'x
s.t. Ax=b
x > 0 and integer

Special case: 0/1 IP or Binary Integer Program

min c'x
st. Ax=b
X; € {0,1}

7. Integer linear optimization
7.1 Introduction

The LP relaxation of an IP is obtained be dropping the integrality constraints, i.e.,
min c'x
s.t. Ax=b
x20
in the general case, and
min c¢'x
s.t. Ax=b
O« X; < 1
in the 0/1 case.

e
Solving the LP relaxation and rounding
need not yield a feasible solution

may work when variables have large values, but even then large errors can occur.

42-2

7. Integer linear optimization 42-3
7.1 Introduction

(@)

7

objective function

[]
[] []
[@ @ L 4 L 4 L 4 *—>

O
If X € {0, 1} (decision variables)
e.g. the f(-J- in the shortest path problem
then rounding a fractional solution need not make sense

(we will use it nevertheless later with some care for approximation algorithms)

e
Modeling with IPs
e
(1) Fixed Charge Cost

7. Integer linear optimization 42-4
7.1 Introduction
®)
c(x)
ax+b if x>0
(x) = { /
x€eR!, a,b>0
0 > X

O
Introduce a 0/1-variable & and the constraint x < %-U,

where U is an upper bound for the values of x

- Claim: the cost function can now be modeled as c¢(x,d) = ax + bd

x>0 = 8=1= ¢(x)=ax+b

x=0 => §=0 inthe optimum,as a,b>0 => ¢(x)= 0 O

e

~ (2) Disjunctive constraints
0

x>a or y2b with a,b>0 andx,y>0
O
Introduce a 0/1-variable &

" Claim: The inequalities x >da and y > (1-8)b model the disjunctive constraint
(6)

clear since & isa 0/1 variable 1

7. Integer linear optimization 42-5
7.1 Introduction

S)
(3) Conditional constraints
O
if x<a then y>b else y>0 with a,b>0

Claim: A conditional constraint can be reduced to case (2)
O
the conditional constraint is equivalent to
y20

x2a or y2b O

©
(4) Discrete variables

" xe{s) .5}
- Claim: a discrete variable x € { Sps s sm} can be modeled as
X =80y +..+s.5 with SJE{O,I} and &; +..+d =1

~clear O

e
7.1 Example (Minimum weight perfect matching problem as IP)
O
Every solution of the IP

7. Integer linear optimization 42-6
7.1 Introduction

min X, eg c(e)x,
x(d(v))=1 forall veV
X, € {0,1}
is a perfect matching
© Complexity of ILPs
~ 7.2 Theorem (Complexity of ILPs)

Oy Q
(1) SATISFIABILITY (SAT) is reducible to ILP

(2) Deciding if an ILP has a feasible solution is an NP-hard problem

(3) Itis NP-hard to round a feasible solution of the LP relaxation of an ILP to a feasible solution of the ILP
e
Proof
(8]
Consider an instance of SAT given by m clauses Cioonns Cm with Boolean variables Xqo oy X

n
Introduce for every Boolean variable x; a O/1-variable z; with z, =1 if x;= TRUE

Satisfying a clause can then be written as a linear inequality, and the existence of a satisfying truth
assighment is equivalent to the existence of a feasible solution of the ILP.

(@)
Example:

7. Integer linear optimization 42-7
7.1 Introduction

X1V X2 V X3, w w M X1V X2 V X3
G C Cs Ca Cs
is equivalent to
z+2,+23 21
z;+(1-z,) 21
z,+(l-z3) 21
z3+(l-zy) 21
(1-z) + (1-2,) + (1-2,) 21
z,€{0,1 }
© If every clause has > 2 literals (this is the non-trivial case), then z,=1/2 is a feasible solution of the LP
relaxation. So rounding to a feasible solution of the ILP is as hard as finding a satisfying truth assignment
for the given SAT instance. O
© Remark:
© The proof does not show that testing for feasibility is NP-complete. To that end we need a certificate for

feasibility of polynomial length (see ADM I). It is not directly obvious if such a certificate exists.

7. Integer linear optimization 42-8
7.1 Introduction

O
One can, however, show that the entries X; of an integer feasible solution x are not too large (a statement
similar o Lemma 3.4). Thus x itself can serve as a certificate. So NP-hard can be replaced by NP-complete in

Theorem 7.2.

7. Integer linear optimization

43-1
7.2 Tolally unimodular matrices

e
Main question of this section

O
When does an LP have integer basic solutions?

=> Then the corresponding ILP can be solved by solving the LP relaxation with the simplex algorithm.

O
We consider here the following special case:

When does Ax = b have only integer basic solutions for an arbitrary choice of integer right hand side b?

This is then a property of the matrix A

o Totally unimodular matrices
A quadratic matrix B with integer entries is called unimodular
«=> detBe{-1,1}
© A matrix A with integer entries is called fotally unimodular (TUM)
i«=> every quadratic non-singular submatrix is unimodular
° First properties

@)
A TUM => A has only entries q;; € {-1,0,1}

@)
the smallest non-unimodular matrix is

7. Integer linear optimization
7.2 Tolally unimodular matrices

110
011
1 01

8
Given a basis B of A with B= (AB(I)' AB(Z)' AB(m))' Cramer's rule yields

43-2

detBl j
xB(i) = detB Wlth Bl — (AB(l)’ ey AB(Z'fl)’ b, AB(i+l)/ v /AB(TH))

= Xp;y is integer if A is TUM and b is integer

° Polyhedra of linear optimization problems with integer vertices
© Let RI(A) = {xeR"| Ax=b,x20} be the polyhedron of the standard form of the LP
Let Ry(A) = {xeR" | Ax<b, x>0} be the polyhedron of the canonical form of the LP
Remark:
© Both polyhedra are are defined here as subsets of R".
oy o

The definition of R5(A) follows the correspondence between geometric and algebraic interpretation of LPs in

Section 3.3. Thus the vertices of R,(A) correspond to the basic feasible solutions of the LP { Ax+s=b, x,s

> 0 } enhanced by slack variables s.

7. Integer linear optimization 43-3
7.2 Totally unimodular matrices

O
The vertices of R;(A) correspond also to the basic feasible solutions of the LP { Ax=b,x20}

because:

If x isabasic feasible solution with basis B, then x\ =0, i.e., x liesin the intersection of the n-m
hyperplanes x; =0 with i €N and the m hyperplanes ax=b;, i=1,.., m.

The opposite direction follows with-arguments similar to those in the proof of Theorem 3.6.

6]
Example:

Ry(A)
A=(1D)
(1.0)
>
X1
X2
Here x; takes the role of a slack variable for R5(A)
7. Integer linear optimization 43-4

7.2 Totally unimodular matrices

" 7.3 Theorem (Integrality of R;(A))
If A is totally unimodular, then all vertices of Ri(A) are integer for any integer right hand side b.
In particular, for an LP in standard form with totally unimodular matrix A and integer right hand side b, the
simplex algorithm always terminates with an integer optimal solution.
° Proof:

(@)
follows from section "first properties" 1

- 7.4 Theorem (Integrality of R,(A))
If A istotally unimodular, then all vertices of R,(A) are integer for any integer right hand side b.
" In particular, for an LP in canonical form with totally unimodular matrix A and integer right hand side b, the
simplex algorithm applied fo the corresponding standard form with slack variables always tferminates with an
integer optimal solution.

@
Proof:

)
—Adding slack variables gives the matrix (A|I).

Let C be a non-singular quadratic submatrix of (A|I)

7. Integer linear optimization 43-5
7.2 Totally unimodular matrices

=> after a suitable permutation of the rows, C has the form

(212)

with-— B =quadratic submatrix of A

I, = (k k)-identity matrix
=>|det(C)| = |det(B)| = 1, since A is TUM
= (A|I) is TUM

=> statement with Theorem 7.3 and Theorem 3.10 QO

O
So Theorems 7.3 and 7.4 say that the polyhedra R,(A) and R,(A) have integer vertices, if A is totally
unimodular-and the right hand side bisinteger.

e
Recognizing totally unimodular matrices

6]
The complexity of recognizing totally unimodular matrices has been open for a long time and was solved by

Seymour only in 1980. He proved a "Decomposition Theorem" stating that every fotally unimodular matrix can be

constructed from "simple" totally unimodular matrices by certain construction rules. His Decomposition
P Y Y p

7. Integer linear optimization 43-6
7.2 Totally unimodular matrices

Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)
4m).
For details see Chapters 19 and 20 in
A. Schrijver
Theory of Linear and Integer Programming
Wiley 1986

0
We will only show a sufficient criterion

" 7.5 Theorem (A sufficient criterion for total unimodularity)
TA matrix A with entries q;j € {-1,0,1} is totally unimodular if it fulfills (1) and (2) below:
(1) A has at most 2 entries z O per column
- (2) The rows of A can be partitioned into two disjoint sets I;, I, such that

for every column with 2 entries # O and the same sign, the associated rows lie in different sets Ij

for every column with 2 entries # O and different signs, the associated rows lie in the same set I.

= J
)

" Proof by induction on the size k of the quadratic submatrix

7. Integer linear optimization 43-7
7.2 Totally unimodular matrices
C)
Base case k= 1

O
obvious, as A has only entries aij e{-1,0,1}

C)
Inductive step to k
(@)
Let C be a quadratic non-singular (k k)-submatrix of A
=>—each columnof € has at least one entry z 0

e
Case 1: C has a column with exactly one entry a; # 0

&)
Laplace expansion of det(C) along this column yields

|det(C)] = lajl-|det(c")]
where C' is the submatrix of C after deleting row i and column
© C non-singular =>|det(C")| # 0
inductive assumption => |det(C')| = 1
g € {=1,1} => |det(C)| =1

=
Case 2: all columns of C have at least 2 entries z O

@)
(1) => all columns have exactly 2 entries z 0

consider the partition of the rows in I;, I, according to (2)

= Yier, Gij = Yicr, @j for every column |

7. Integer linear optimization 43-8
7.2 Totally unimodular matrices

=> Dier, G~ D ier, G = 0
i.e., a linear combination of the row vectors of C yields the null vector
=> this contradicts that € is non-singular
=> this case cannot occur 1
76 Corollary (Important classes of totally unimodular matrices)
Every LP in standard form or canonical form, whose matrix of coefficients is the
1. vertex-edge incidence matrix of a digraph
2. vertex-edge incidence matrix of a bipartite graph
has only integer basic optimal solutions (for an integer right hand side b).
This covers LP formulations of
shortest path problems
max-flow problems
transportation problems
° Proof

(=)
Case 1

7. Integer linear optimization
7.2 Tolally unimodular matrices

o
In this case, A contains exactly one +1 and one -1 per column
=> set I;=setofallrows, I,=0

Case 2
(@}
Let G be abipartite graph with bipartition A and B

]

=> the column of edge ij contains exactly 2 entries z 0, a +1 for vertex i, anda +1 for vertex j

=> set I;=A, IZ:B a

e
The Theorem of Birkhoff & von Neumann for doubly stochastic matrices

O
We show with our results a famous theorem on doubly stochastic matrices

O
An nxn-matrix with entries 0 < ai ¢ 1 is called doubly stochastic

7. Integer linear optimization
7.2 Tolally unimodular matrices

«=> each of its rows and columns sums to 1

8
An nxn-matrix with entries qjj € {0, 1} is called a permutation matrix

«=> each of its rows and columns contains exactly one 1

- 7.7 Theorem (Birkhoff 1946, von Neumann 1953)
| Every doubly stochastic nxn-matrix is a convex combination of nxn-permutation matrices

e
Proof
O
A doubly stochastic matrix M can be seen as a feasible solution of the assignment problem
min zi,j cl.J.fiJ. s.t.
ZJ. fij 1 foralli=1,..,n
Z; fi j
. fij >0 forall i,
Let A be the associated matrix of coefficients and let R;(A) be the associated polyhedron of the

1 forallj=1,.,n

standard form
=> Ry(A) is a polytope, as the feasibility domain is bounded because of 0 ¢ fij <1

Minkowski's Theorem (Theorem 3.9) => M is a convex combination of the vertices of R;(A)

43-9

43-10

7. Integer linear optimization 43-11
7.2 Tolally unimodular matrices

O
A _is the vertex-edge incidence matrix of the complete bipartite graph K,
=> A is fotally unimodular because of Corollary 7.6
=> The vertices von R;(A) are integer because of Theorem 7.3

O« f‘.j <1 => the vertices of R;(A) are permutation matrices O

7. Integer linear optimization 44-1
7.3 Branch and bound algorithms

e
Goal of this section
(@)

Introduction of Branch and Bound as a standard technique for solving NP-complete problems exactly, in
particular IPs.
Although quite simple, Branch and Bound is the basis and the workhorse for all commercial IP solvers, but of
course improved by quite a number of additional methods and tricks.

~ The basic idea of Branch and Bound

© Branch and Bound (B&B) = problem dependent, cleverly organized systematic search in the set of feasible

solutions for an optimal solution, or until termination with a "good" solution (i.e., one with an instance-dependent
performance guarantee)

The use of lower bounds for a minimization problem

7. Integer linear optimization 44-2
7.3 Branch and bound algorithms

O
cost

solution

gap

we do not know how good a feasible solution is, if it was computed with a heuristic (e.g. with local search)
(@)
cost

solution

£ap I lower bound

lower bounds for the optimal value narrow the "optimality gap"
(@)
So: If the optimum is unknown, then lower bounds yield quality guarantees for solutions of a hard optimization

problem

e
Branch & Bound

7. Integer linear optimization 44-3
7.3 Branch and bound algorithms

oy o
illustrated for the disjoint path problem (see Section 4.4)

We imagine the solution space (= set of feasible solutions) as a set of points

Every point represents a feasible solution

Branching = partition the current set of solutions into > 2 subsets (hot necessarily disjoint)

7. Integer linear optimization 44-4
7.3 Branch and bound algorithms

L L
I 2

branching is usually displayed in a tree (Branch and Bound Tree)

here: partition the set of solutions into 4 subsets depending on which red edge is used on a path between the

red terminals

7. Integer linear optimization 44-5
7.3 Branch and bound algorithms

.Q.

the subsets are displayed as children of the parent

branching is iterated, this generates the B&B tree
here: the choice of the topmost red edge generates the subproblem given by the graph below, which ho
longer contains the topmost red edge, as it is reserved for den path connecting the red terminals above. So

in the subproblem, the red terminal has been moved.

7. Integer linear optimization 44-6
7.3 Branch and bound algorithms

4

the set of feasible solutions of that subproblem can then be partitioned again w.r.t. to edges of the same or

another pair of terminals

4

here: choose the green terminals and partition the set of solutions into 2 subsets representing the 2 ways to

choose a green edge for the path

7. Integer linear optimization 44-7
7.3 Branch and bound algorithms

Bounding is used for pruning branches of the B&B tree with the use of lower bounds

7. Integer linear optimization 44-8
7.3 Branch and bound algorithms

Assumption 1: we know a feasible solution with cost k
Assumption 2: we know a lower bound s for the optimal value in L,

=> we need not search L, if s>k and thus may delete the subtree of the B&B tree rootedin L,

L | L
I 2

This way of deleting subtrees of the B&B free is called pruning, and is depicted here by brown (withered)

branches. The node (and its subtree) is then called fathomed.

7. Integer linear optimization 44-9
7.3 Branch and bound algorithms

Branching and Bounding is used together with
Good search strategies for choosing the next node (= subset of feasible solutions) in the B&B tree
depth-first search
breadth-first search
best-first-search (node with best (= smallest) lower bound)
combinations of the above
The tree is of course maintained implicitly and will never be generated explicitly

@)
Techniques for generating good lower bounds (next chapter)

7. Integer linear optimization 44-10
7.3 Branch and bound algorithms

Lagrangian relaxation
LP-relaxation (natural for IPs)

Techniques for constructing feasible solutions in tree nodes (they provide upper bounds on the optimum)

Runtime is exponential, depends very much on the quality of the lower bounds

7. Integer linear optimization 44-11
7.3 Branch and bound algorithms

good lower bounds bad lower bounds

small B&B tree huge B&B tree

Generic Branch and Bound Algorithm

7. Integer linear optimization 44-12

7.3 Branch and bound algorithms
e
Input
instance I of a problem
e
Output
(@)
feasible solution x € Sy with performance guarantee given by the objective function value c¢(x) and a lower
bound £ for the optimum
Ingredients
lower bounding strategy
(&)
branching strategy
search strategy
e
Method
e
1. Work in the root
&)
consider a slightly modified, easier to solve instance I' (a relaxation) for computing a lower bound for I;
compute the optimal solution x' of I', let z' be the objective function value;
if x' €Sy then return x' // x'is optimal
O
set £:=z' // initial global lower bound

O
// initialize data structure D for maintaining the already generated still unsearched nodes of the B&B tree

7. Integer linear optimization 44-13

7.3 Branch and bound algorithms
add I with £(I) :=£ to D
use heuristics to generate feasible solutions
set x* := best feasible solution found
set u:=¢(x*) //initial upper bound
© 2. Main loop
© while performance guarantee (u-£)/£ is not small enough and we have not run out of time or memory do
© choose next node v of the B&B tree from D for searching // search strategy
© if £2(v) > u then delete v from D // pruning

e
else

O
generated the children Viueens Ve of v // branching rule

// union of the feasibility domains of the children = feasibility domain of v
© for each child v; do
© compute the optimal solution x' of (the relaxation of) the associated subproblem, let z' be its
objective function value // bounding rule
if x'e€S; and z' <u then

&)
x* iz x' // update the best known feasible solution

7. Integer linear optimization
7.3 Branch and bound algorithms

u:=z' // update the global upper bound
e
else
(6)
if z' <u then add v; with £(v) :=2z' to D // new subproblem
O
delete v from D // v is fathomed
O
£:=min{€w) |winD} // update global lower bound

~ return x* and #

e
Branch and Bound for IPs
O
natural for bounding: LP relaxation

natural for branching: branch w.r.t. fractional variables in the LP relaxation

®
7.8 Example (The KNAPSACK problem, see ADM I)
®
KNAPSACK
C)
Instance
(O]
n_items with weight w; and profit c;

o
a knapsack with capacity (= total weight) W

7. Integer linear optimization
7.3 Branch and bound algorithms
C)
Task
C)
find a subset SC{1,...n} with

maximum value c(S):= 3 { o ljes}

O
capacity of the knapsack is respected, i.e., w(S):= ¥ { w; |jesS} <« W

e
An IP formulation of KNAPSACK
(O]
Introduce 0/1-variable X; with X; = 1 if item j is put into the knapsack
min ZJ- “CiX; s.t.

ZJ- wjxj «<W

Xj €{0,1}

- 7.9 Lemma (Optimal solutions of the LP relaxation of KNAPSACK)

An optimal solution of the LP-relaxation

min Zj _ijj

ZJ. WJXJ <W

Osxjsl

of the IP formulation of KNAPSACK is obtained as follows

44-14

44-15

7. Integer linear optimization 44-16
7.3 Branch and bound algorithms

sort and number the items is such a way that ¢;/wy > c;/w, 2 ... ¢ /w, (largest profit per unit weight
first)
compute in this order the smallest k, such that Wi+ W+t Wy g > w
set Xp= X5 ==X, =1
Xiop = (W-wy-wy - - w)/ w4
x. =0 otherwise
e J
_ Proof by checking complementary slackness

o
the primal dual pair is given by

€y Cp
u {wy Wn w
V1 1 1
n 1] 1
X1 xn

complementary slackness conditions give

O

0(1) X;>0 2> wu+vy = ¢

“(@ u>0 = T wx; =W (is satisfied by x from the lemma)

7. Integer linear optimization 44-17
7.3 Branch and bound algorithms

O 1
. 3 vj>0 = Xj =
_ Define a dual feasible solution that, together with x, satisfies conditions (1) and (3)
O

B) = V1= Vp=.=v, =0

=> (with (1) for j=k+l) wy qu = ¢ q => U=Cp /Wy

=> (with (1) for j=1,..k) WJ'(Ck+1/Wk+1) *Vj =G
SRR N WJ(Ck+1/Wk+1) for j=1,.k

J
=> we have defined values for all dual variables from observing conditions (1) and (3)
© show: this definhes a dual feasible solution
need only show Vi 2 0.ie., ¢~ Wj(ck+1/wk+1) 20 for j=1,..k
This follows from cJ./wJ. 2 Cpg/ Wy for j=1,..k 1
© Use the generic B&B algorithm with the following ingredients
_ lower bounding strategy = LP relaxation solved with Lemma 7.9

O
branching strategy = branch on fractional variables x,,

(@)
search strategy = best first

7. Integer linear optimization 44-18
7.3 Branch and bound algorithms

Instance
&)
iw o 5 W=35
1 16 112 7
2 15 90 6
33 155
4 3 12 4
5 3 9 3
6 4 12 3
7 13 26 2

heuristic solution x; = x, = x3 = 1, X; = 0 otherwise => upper bound u = -217

LP relaxation gives x; = x, = X3 = 1,x4 = 1/3, X; = 0 otherwise => lower bound ¢ = -221

Branch and Bound Tree

7. Integer linear optimization 44-19
7.3 Branch and bound algorithms
(6]

= order of
the search

Ib = lower bound

! } = not added
B to D

7. Integer linear optimization 44-20
7.3 Branch and bound algorithms

X7-l X7—U
/____1__(//'__:__J_____‘lx
/Xy =%y = VX EXpE X3
I]
| X, =2/5 || feasible ;

\

_ Using other relaxations than the LP-relaxation
O
This is possible, e.g. by deleting constraints

=> the feasibility domain gets larger => minimum gets smaller

©
7.10 Example (TSP in a digraph)

~ An IP formulation

(@]
Introduce 0/1-variable Xij with Xij = 1 «=> edge (i,j) is in the TSP tour

min Zij cijxi‘.|
ZJ. Xij = 1 forall i=1,..,n (7.1)
z; xij =1 forall j=1,...n (7.2)

Y ies X;j < ISI-1 forall @25C{1,..,n} (73)

7. Integer linear optimization 44-21
7.3 Branch and bound algorithms

x;€{0,1} (7.4)

© The Cycle Cover Relaxation of the TSP
© Is obtained by deleting constraints (7.3).
© The remaining constraints define an assignment problem in which edges (i,i) are not permitted. One can
model this in objective function with high costs c;;. Such assignment problems can be solved efficiently, e.g.
with the primal-dual method of Section 6.5.
© Using the cycle cover relaxation in a Branch and Bound algorithm
© Take the cycle cover relaxation as lower bounding strategy

e
The optimal assignment (xij) is a tour if it fulfills constraint (7.3). Otherwise branch as follows:
)

choose a cycle with smallest number of edges and branch by setting every edge to O

=> each edge of the cycle generates a child in the B&B tree

7. Integer linear optimization 45-1
7.4 Lagrangian relaxation

e

~ Main statements of this chapter

Lagrangian relaxation is an important technique to generate "good" lower bounds for IPs. It relaxes side
constraints, but punishes their violation in the objective function. By varying the penalty costs, the lower bound
can be improved.

© A systematic improvement of the penalty costs leads to subgradient optimization. This is a method to maximize
a non-differentiable concave function.

© The lower bound obtained in this way is at least as good as that obtained by LP relaxation, and both are equal
under certain conditions. The advantage of Lagrangian relaxation over LP relaxation is due to a quicker
(approximate) lower bound computation by combinatorial methods instead of solving an LP as in the LP-
relaxation.

O
Lagrangian relaxation is one of the workhorses in branch and bound algorithms

~ The basics of Lagrangian relaxation
O
Consider the integer linear program
(P) minc'x

s.t. Ax 2 b (k "difficult" side constraints)

7. Integer linear optimization 45-2
7.4 Lagrangian relaxation

Bx>d (m-k "easy" side constraints)

x—integer

© Relax the "difficult" side constraints Ax > b and punish their violation in the objective function.
To this end, introduce Lagrange multipliers Ay, ..., A, for the relaxed side constraints. They form a kind of dual
variable for these side constraints and must fulfill the conditions
ax2b; => A;20 (7.5)
a;x = b; => A, unrestricted (7.6)
© For fixed such A= (A, ...,)\k)T the Lagrangian relaxation (LR,) of (P) is defined as
(LR,) min c"x+AT(b - Ax) = L(\, X)
s.t. Bx>d
X _integer
L(A\x) is called the Lagrange function, A = (>\1,)\k)T is also called Lagrange vector and can be seen as
vector of penalty costs.
We denote the feasibility domains of (P) and (LR,) with S(P) and S(LR,) and the associated optimal values

with z(P) and z(LR,), respectively.

7. Integer linear optimization 45-3
7.4 Lagrangian relaxation

7.11 Lemma (Lagrangian relaxation yields lower bounds)
For every Lagrange vector A\:
(1) S(LRy) 2 S(P)
(2) z(LRy) < z(P)
e
Proof

(@]
(1) is trivial, as side constraints have been deleted

©
(2):
e}
Let x be optimal w.r.t. (P)
= bi -ax <0, or bl. -ax =0 for equality constraints
= AN(b;-ax) < 0 forall i => A'(b-Ax) <O

= 2(P) = ¢'x 2 ¢'x+A'(b- Ax) > z(LR,) as x € S(P) C S(LR,) 1

: 7.12 Lemma (Optimality criterion)
If x and A fulfill
(1) x is optimal w.r.t. (LR,)

7. Integer linear optimization 45-4
7.4 Lagrangian relaxation

(2) ax 2 b;, or ax=b; for equality constraints
(3) \NT(b-Ax) = 0
then x is optimal w.r.t. (P). If (3)is violated, then x is €-optimal with € = AT(b - Ax)
©
Proof
@)
D), (2) => xe s(P)
= 2(LR)) = ¢'x+A'(b- Ax) = c"x 2> 2z(P) because of (3) and x & S(P)
=> 2(LR,) = z(P) because of Lemma 7.11.

If x violates (3), then A'(b - Ax) is the error term 0

© The aim of Lagrangian relaxation
© Partition the constraints of (P) is such a way that (LR,) is much easier to solve than (P)
© Make z(P) - z(LR,) as small as possible (duality gap of Lagrangian relaxation)
i.e., make L(A) := z(LR,) as large as possible by varying the Lagrange multipliers
=> this leads to the optimization problem max, L(\)
© When used for B&B, it is not required to solve this optimization problem optimally. A good value of L(\) usually

suffices, as each such value provides a lower bound for z(P).

7. Integer linear optimization
7.4 Lagrangian relaxation

)
Lagrangian relaxation of the symmetric TSP via 1-trees

©
IP formulation of the symmetric TSP

O
Introduce 0/1-variable x, with x_ =1 <=> edge e isin the tour

(P) min 2, CX,
x(®(@i) =2 forall i=1,..,n (7.7)
x(S)¢<|S|-1forall @2S5C{2,..,n} (7.8)
observe: SC{ 2, ..., n}suffices to
exclude short cycles
x,€{0,1} (7.9)

Here x(S):=Z, . i ij€s e and-—x(d(i)) = X, e Xe

S
A variation of (P) gives (LR>\)

O
Partition (7.7) into

X, X, = n (7.10) redundant in (P)

x(8(i))=2 for i=2,..,n (.11

7. Integer linear optimization
7.4 Lagrangian relaxation

x(®(1)=2 (7.12)
(LR,) is defined by relaxing (7.11)
(LR min T, ey + Tiop o N2 - x(8(0)
s.t. (7.8),(7.9),(7.10),(7.12)
Observe: (7.10) is not redundant in (LR,)
© Combinatorial structure of the feasible solutions of (LR,)

- 7.13 Lemma (Feasible solutions von (LR,) are 1-trees)

x is a feasible solution von (LR,) <=> x isal-free,ie.,

X is a spanning tree on the vertex set {2,..,n}
with 2 additional edges out of vertex 1

)
Proof

O
let x be a feasible solution of (LRy)

(7.9), (7.10), (7.12) => x has n-2 edges on vertices 2, ..., n

(7.8) => x is connected

45-5

45-6

7. Integer linear optimization
7.4 Lagrangian relaxation

ADM I => aconnected graph with n-2 edges and n-1 vertices is a spanning free

(7.12) => 2 additional edges out of vertex 1

=> xisal-tree
(C)]

|I<:ll
O
every 1-tree fulfills conditions (7.8), (7.9), (7.10), (7.12) 1

e
The Lagrange function L(AX)
O
LAX) =X, ¢ X, + Zi-p n N(2-X(3(i)), A; unrestricted

e ee “TI=c,..

=> replace w.o.lg. A; by -A; (this gives a better combinatorial interpretation)

= LX) = T, e % + Tingp o NXBG)-2)

.....

with x(3(i)) - 2 = deviation from the desired degree 2 of vertex i
With A;:= 0 we obtain
LAX)=Z, X * Zioq n N(X(B() - 2)

e e e

= XX * o o MW - 204 o N

.....

|
™M
®
(g}
®
X
©
+
M
o
i
ot
~
=2
+
e
~—
X
®
|
n
m
[
—
S
>

.....

I
™M
(]
o,
T~
(g}
()
+
>
+
>
<
X
(]
N
™M
|
-
S
>

.....

7. Integer linear optimization
7.4 Lagrangian relaxation

This gives new edge costs ¢,” = ¢, + A+ 7\j for e =ij minus the constant term 2 3, _
e
Interpretation of the Lagrangian relaxation

O

Relaxed problem

= computing a 1-tree with minimum weight w.r.t. edge costs ¢, + A, + }\j for edge e = ij
)

Varying the Lagrange multipliers A

= varying the edge costs ¢, via node values A\

=1

This variation of edge costs has no influence on the optimality of a four, but may change the 1-tree

because:

.....

®)

~ If the minimum 1-tree is a tour, then this tour is optimal for (P) because of Lemma 7.12,as N'(b- Ax) = 0

for any tour
0
A minimum 1-tree can be constructed in polynomial time as follows:

(1) Compute a MST on the vertices 2, ..., nh with analgorithm from ADM I (Kruskal or Prim)

(2) Choose the two cheapest edges out of vertex 1

e
Algorithm for improving the lower bound (varying the \,)

45-7

45-8

7. Integer linear optimization
7.4 Lagrangian relaxation

e
Input
O
graph 6= (V,E) with V={1,.,n}
edge costs ¢,
e
Output
O
optimal four or 1-tree with "good" lower bound z(LR,)
e
Method
O
// initialize the A,
set A, :=0 for every vertex i
O
// initialize a step length w >0 for varying the A,
set w:=1
e
repeat
compute a minimum 1-tree x for edge costs Cij * A+)‘j
if x is four then return x // xis anoptimal tour
S)
// varying the X\
for all vertices i#1 do

determine the degree d; of vertex i

7. Integer linear optimization
7.4 Lagrangian relaxation

if d;#2 then A;:= A +(d, - 2w
©
vary the step length wif appropriate
O
until z(LR,) = z(x) is "good" enough

return best x found and the associated A

e
7.14 Example (1-tree relaxation of the symmetric TSP)
O
Step length wis-always 1

O
Graph with edge costs

s
1 f

2-@\c

e
Iteration 1

minimum 1 tree, varying the A, and new edge costs

45-9

45-10

7. Integer linear optimization 45-11
7.4 Lagrangian relaxation

©
Iteration 2

minimum 1 tree, varying the A, and new edge costs
-1 -1 /@ 1 @\
z=13 371 3.1
+1 +2 -1
1 3 6 8 2 5 3
D SO OSSORMOCROLEOSPO
2 4 4 3
jogRos

e
Iteration 3

minimum 1 tree, varying the A, and new edge costs

7. Integer linear optimization 45-12
7.4 Lagrangian relaxation

)
Iteration 4

minimum 1 tree is a tour => optimal tour constructed

e
7.15 Example (In general there is no A such that an optimal 1-tree is a tour)

7. Integer linear optimization 45-13
7.4 Lagrangian relaxation

O
Graph with edge costs and optimal tour

0 z=4

Claim: for every choice of A, (with A; = 0), there is no tour w.r.t. cij + A+)‘j that is a minimum 1-tree

(@]
Consider the 1-trees

T {9—3 T (@—4
(1) () (1) (6)
Omm©. 3—5

The values of these 1-trees w.r.t. edge costs T A+ >\J. is

value of Ty=3+ 2)\2 + 1)\3 + 2)\4 + 3}\5 + 2)\6 =zq

7. Integer linear optimization 45-14
7.4 Lagrangian relaxation

value of T, = 3+ 2N, + 33+ 2N, + INg + 2N, =: 2,
* The value of an optimal tour w.r.t. T N+)\J is
4+ 2N, + 2hg + 2Ny + 2Ng + 2N =t Z
> 25-2; = 1+N3-N5 and z5-2, = 1-A3+ 74
=> either z5>2z; or 25>z,
since z5< 2y and z5<z, imply that 1+A3-A; <0 and 1-Aj3+ N5 <0

=> A3 - A5 >1 and - A3+ Ag >l a contradiction 4

©
Observe: What we observe here for the TSP, viz. that max, L(A) # z(P), is generally the case. Lagrangian
relaxation provides in general only lower bounds for z(P). But these are very valuable in a Branch & Bound

algorithm.

O
For more information about Lagrangian relaxations of the TSP see
E. L. Lawler, J. K. Lenstra, A. H. 6. Rinnooy Kan, and D. B. Shmoys, eds.
The Traveling Salesman problem: A Guided tour of Combinatorial Optimization

John Wiley & Sons, New York, 1985.

7. Integer linear optimization 45-15
7.4 Lagrangian relaxation

e
Computing max, L(A) by subgradient optimization
O
maxy LV = maxy min, LO\X) = max, min{ LX) | x € S(LRy) }
Subgradient optimization uses the fact that S(LR,) is finite when S(LR,) is a polytope. This follows from the

integrality of x, and we will assume it in the sequel.

O
S(LR,) finite => we canwrite S(LR,) as S(LRy) = {x, %%, .., x"}
= LAY =min{cx"+\T(b-AX") | r=1,..,R}
=> L(\) is the minimum of finitely many affine linear functions c¢'x" + AT(b - AX") of A
=>-L(\) is piecewise linear-and concave, but-in-general not differentiable
(TeS
'™+ AT(b - AX")
> A
7. Integer linear optimization 45-16

7.4 Lagrangian relaxation

e
Subgradient optimization
~ gradient method for maximizing a concave continuously differentiable function f : R" — R!
~ Gradient and subgradient
e
Gradient of a continuously differentiable function in u

- = vector of partial derivatives in u:

of

Vf(u) = <b_x1

..., g(u))

From calculus we know:
f is concave <=>

f(v) - f(u) ¢ VF(u)"(v-u) forall v,u

7. Integer linear optimization 45-17
7.4 Lagrangian relaxation

Af

T -
) - f(u)I [Vf(u)"(v-u)

~ Subgradient of a continuous concave function in u
(@)
= vector d with f(v)-f(u) < d"(v-u) forall v
The set of subgradients in u is called the subdifferential of f in u and is denoted by of(u)

Then: f is differentiable inu => 3f(u) = { Vf(u) }

e
Conditions for the maximum of a concave function
S
The continuously differentiable case
O
From calculus we know:

f attains its maximum at A* <=> Vf(A*) =0

7. Integer linear optimization 45-18
7.4 Lagrangian relaxation

~ The non-differentiable case
- 7.16 Lemma (Condition for the maximum of a continuous concave function)
" Let f:R"—R!' be continuous and concave. Then
f attains its maximum at A* <=> 0 € of (A*)
© Proof

e

II<:||

O

let 0 € of(*)

= 0=0"(v-N*) > f(v) - f(*) forallv => f attains its maximum at A*
I|=>||

e}
let f attain its maximum at A*

> 0=0T(v-) 2 f(v) - FO*) forallv => 0 3f(*) 1

e
Generic subgradient optimization
e
Input

a continuous concave function f: R" — R!

7. Integer linear optimization 45-19

7.4 Lagrangian relaxation

e
Output
O
a point A* at which f attains its maximum, or a point A with a "good" value f(A)
e
Method
choose a starting point ug
initialize a counter i:=0
e
repeat
(@]
if 0€of(u;) then return u; // f attains its maximum at u;
/7-this step-my be skipped-if the test"0-€-df(u;)" -is computationally too-expensive
O
compute a subgradient d; € of(u;) and a step length w;>0
set u,q = U +wpid,
ii=i+l
(G I— B
until no more computing ftime or hardly any progress

return the best point of the sequence ug, ..., y;

e
A typical run of the algorithm

7. Integer linear optimization 45-20

7.4 Lagrangian relaxation
O

Af

iterations

| I >

100 200

The run shows that improvement need not be monotone

Main ingredients of the subgradient optimization

determine a step length w; >0

O
solved in theory by a theorem of Polyak, but still difficult in practice, usually requires experiments

" 7.17 Theorem (Polyak 1967)

Let f:R"— R! be concave and continuous and let f attain its maximum at A*.

7. Integer linear optimization 45-21
7.4 Lagrangian relaxation

Let (w); ey be asequence of step lengths with
(1) w; 20 foralli
(2) w); e N isa monotonically decreasing null sequence
(3) the series ¥ w; is divergent
Then the sequence of points u; generated by subgradient optimization fulfills
lim, _, , f(u) = f(A\%)
without proof

O

6]
This theorem ensures convergence under relatively weak conditions, which can easily be met in practice.

The only problem is to control the speed of convergence. But this is not that important for the use in
B&B.

e
Computing a subgradient d; € of(u;)

" This is simple, subgradients come for free in Lagrangian relaxation

7.18 Lemma (Subgradients in Lagrangian relaxation)

7. Integer linear optimization 45-22
7.4 Lagrangian relaxation

Let x* be an optimal solution of (LR,) in A=u.

Then b - Ax* is a subgradient of L(A) = min, L(AX) in A=u, ie., b-Ax* e of(u).
° Proof by checking the definition of subgradient

© L(v) - L(u) = min L(v.x) - min, L(ux)

min, L(v,x) - L(ux*) since x* is optimal for (LRU)

A

L(v.x*) = L(ux*) since x* is feasible for (LR))

(c™x* + V(b - Ax*)) - (c"x* + u"(b - Ax*))

(vT-uN)(b-Ax*) = (b-Ax*)(v-u) O

@)
Remark: In the 1-tree relaxation of the symmetric TSP, a transition of A; to -A; reveals x(5(i)) - 2 as

subgradient. The change of multipliers A, in this example are therefore an application of subgradient
optimization.
©
Lagrangian relaxation vs. LP relaxation
©
There is a relationship between the optimal value of a Lagrangian relaxation and the optimal value of the LP

relaxation of an IP.

7. Integer linear optimization 45-23
7.4 Lagrangian relaxation

We consider:

o
The initial problem

(P) min ¢'x
s.t. Ax2>b
Bx>d
X integer

we do not consider sign constraints for x, but assume that these are contained in Bx > d
The Lagrangian relaxation of (P)
(LR,) min c"x+AT(b - Ax) = min, L(A, x) = L(A)
s.t. Bx>d
X integer
O .
The LP relaxation of (P)

(LP) min ¢'x

s.t. Ax2b
Bx>d
7. Integer linear optimization 45-24

7.4 Lagrangian relaxation

X unconstrained

with optimal value z(LP)

719 Theorem (Relationship between Lagrangian relaxation and LP relaxation)

maxy LA 2 2(LP)

- Equality holds if the polyhedron defined by Bx > d is integer (so that the integrality condition in (LR,) may be
dropped).

e
Proof

~ we show this for side constraints of the form Ax2b (=>A > 0), the proof can easily be adapted to equations

(M unconstrained).
O

max LX) = max min LA X) = max min LA\ x)
A

A0 A0 x 50 X
Bx>d Bx>d
X gzz

holds if Bx > d induces an integer
polyhedron, otherwise we have >

7. Integer linear optimization 45-25
7.4 Lagrangian relaxation

= max min (c'x+A'(b - Ax))
A0 X
Bx>d

max [ATb + min (c"-ATA)x] = max [ATb + max d'y]
A20 X A20 y>0
Bx>d Bly=c-A"x

[i LPdudlity ——H

= max [b'A + d'y] = min c'x
A20 X unconstrained
y20 Ax2b
Bly=c-A"\ Bx:>d
[{ LP duality + !
= z(LP) O

e
7.20 Remark
O
The 1-tree relaxation bound is because of Theorem 7.19 just the LP-relaxation bound of the TSP-polytope.

7. Integer linear optimization 45-26
7.4 Lagrangian relaxation

O
Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-
relaxation should be preferred above the Lagrangian relaxation if Bx > d defines an integer polyhedron. But in
practice one very often favors subgradient optimization, since it is usually much faster (very often, L(A) con

be computed combinatorially), and since approximate values of max, L(A) are usually sufficient.

7. Integer linear optimization 46-1
7.5 Cutting plane algorithms

e
Main statements of this chapter

" We infroduce cutting plane algorithms as another method to solve IPs exactly.

@)
We show that that these are in principle finite methods.

O
From the proofs we learn more about integer polytopes (Gomory-Chvdtal-Cuts, Chvdtal Closure)

e
The integer hull of a polyhedron

6)
The integer hull P; of a polyhedron P is the convex hull of all its integer points.

[] ®
o o
e e
® (]
7. Integer linear optimization 46-2

7.5 Cutting plane algorithms

- A polyhedron P is called integer (or integral) if all its vertices are integer.
Then a polyhedron P fulfills:
(1) P isinteger <=> P= Pr
(2) integer optimization on P <=> linear optimization on Py
Therefore, one is interested in linear descriptions of Py (= description of Py by linear inequalities)
° One difficulty here is that P; need not be a polyhedron any more in general.

O
An example is given by

Pi={(y,x) eR?[L <2}

(exercise)
e
One can show, however, that P is a polyhedron when P is rational, and we will do this for rational polytopes P.

A polyhedron P={xeR" | Ax<b} is called rational, if all entries of A and b are rational nhumbers. We will
assume in this chapter that all polyhedra are rational. For the sake of completeness, we will mention this as an
assumption in all theorems.

e
Criteria for the existence of feasible points and valid inequalities

7. Integer linear optimization
7.5 Cutting plane algorithms

omp
These criteria are alternative formulations of Farkas' Lemma (Lemma 4.5).

An inequality w'x ¢t is called valid for polyhedron P, if all points x € P fulfill that inequality.

7.21 Lemma (Farkas' Lemma for the existence of feasible solutions)
Consider a polyhedron P={x e R" | Ax<b }. Then:
(1) P2@ <=> y'b 20 forall ye R™ with y>20and y'A=0
(2) P=@ <=> thereis ye R™,y>0 with y'A=0and y'b ¢ -1

46-3

(3) P=@ <=> the inequality 0'x ¢ -1 can be obtained as non-negative linear combination of the inequalities

in Ax<b
@
Proof
@
€]

e

=>
)
Consider the LP max {0"x | Ax<b}

Pz @ => every x P isan optimal solution of the LP
Duality theorem => the dual LP has an optimal solution and

0 =max{0'x|Ax<b} = min{y'b|y'A=0,y20}

7. Integer linear optimization
7.5 Cutting plane algorithms

= y'b>0 for all y>0 with yTA=0

(E) " "
<=
o
Consider the LP min{y'b|y'A=0,y20}
0 is a feasible solution of this LP
Assumption => the objective function y'b is bounded from below by O
Duality theorem => P has an optimal solution, so in particular a feasible solution
e
(2)
(@}

follows from the negation of (1)

P=@ <=> thereis y' € R™,y' >0 with (y')'A=0and (y')'b < O.

Let g:=(y")'b <0

With y:=y'/|g| we obtain

P=@ <= thereis yeR™ y30 with y'A=0 and y'b ¢ -1
"o

e

II<:II
O
clear

46-4

7. Integer linear optimization 46-5
7.5 Cutting plane algorithms

~take y from (2) and multiply Ax<b by y from the left =>
0'x = y"Ax < y'b ¢ -1 = 0'x¢-1 O

- 7.22 Lemma (Farkas' Lemma for valid inequalities)
" The following statements are equivalent for a non-empty polyhedron P={x e R" | Ax<b }:
(1) w'x <t is a valid inequality for P
(2) Thereis yeR™,y>0 with y'TA=w" and y'b<t
e
Proof
)
1 =(2)
(@]
Consider the LP max{w'x | Ax<b}
Pz @, w'x<t => the LP has an optimal solution
duality theorem => the dual LP has an optimal solution y* and
trmax{w'x|Ax<b} = min{y'b|y'A=w",y20} = (y)'b
= y* fulfills (2)
C)
@)=

(@)
Ax<b, y20 = w'x = (y'A)x = y"(Ax) < y'b < + O

7. Integer linear optimization 46-6
7.5 Cutting plane algorithms

e
Cutting planes and cutting plane algorithms

(@)
Idea: use hyperplanes to cut off parts of polyhedron P, but without cutting off points from P;. So these
hyperplanes are valid for P; (possibly even a supporting hyperplane or a facet). Such a hyperplane is called a
cutting plane. A cutting plane H that cuts off a point x* € P - P, is called an x* separating hyperplane.

e
Cutting plane algorithm (Idea)

7. Integer linear optimization 46-7
7.5 Cutting plane algorithms
e
Input
()
Integer linear program (IP)
min{c'x, x e Pr} with P = polyhedron of the LP relaxation of (IP)
e
Output
)
optimal solutionof (IP)

©
Method
e

repeat forever
O
solve the LP min{c'x, x €P}
let x* be the computed optimal solution of the LP

O
if x* isinteger then return x* // x* is an optimal solution of (IP)
6)

compute a cutting plane that cuts off x* from P and is valid for Py // x* separating hyperplane
let H be the associated halfspace containing Py
O
set P:=PNH
S
Obvious questions

(1) how does one prove that an inequality is a cutting plane?

7. Integer linear optimization 46-8
7.5 Cutting plane algorithms

(2) do cutting plane algorithms terminate?
(3) how does one compute an x* separating hyperplane for a given x* €P -P;?

© We will answer here only (1) and (2) and show that there are proof techniques for (1), and that thereisa
finite set of cutting planes of a special structure such that cutting plane algorithms using them terminate with
P=Pr.

0
(3) depends very much on the specific problem, we will show some examples in Chapter 8.

e
Cutting plane proofs

&
For a polytope P={x € R" | Ax<b}, the validity of an inequality w'x <t can be shown by Farkas' Lemma

(Lemma 7.22). This is more complicated for cutting planes.

e
7.23 Example (Example of a cutting plane proof)

O
Consider the system of linear inequalities

2x +3x, ¢ 27 ¢))
2x=2%x, ¢ 7 ()
-6x;-2X, ¢ -9 3)

7. Integer linear optimization
7.5 Cutting plane algorithms

22X -6x, <11 (4)
-6 x; +8x, < 21 B)

(&)

The associated polytope P and its integer hull

7. Integer linear optimization
7.5 Cutting plane algorithms

g

O
X, ¢« 5 is avalid inequality for P;

how can we derive it from the given inequalities for P ?

46-9

46-10

7. Integer linear optimization 46-11
7.5 Cutting plane algorithms
O
Multiply (5) with 1/2

=> -3x1+4x2 < 21/2

A

= -3x;+4x, ¢« [21/2] = 10 isvalid for P; (as there are only integer coefficients on the left hand side)
=> this gives the new inequality -3x; +4x, < 10 (6) for P
© Multiply (6) with 2, (1) with 3 and add the resulting inequalities
= -6x,+8x, < 20
6x;+9 x, < 81
= 17 x, < 101
=> we obtain the wanted inequality x, < [101/17] = 5 by rounding down the right hand side
© In general, these inequalities have the form
y'Ax < Ly'b] with y>0 and y'A integer
where Ax <b is the system of inequalities after the "previous" step.
This observation leads to the general definition of a cutting plane proof.
° General definition

O
Let Ax<b be asystem of m linear inequalities.

7. Integer linear optimization 46-12
7.5 Cutting plane algorithms

A cutting plane proof for the inequality w'x <t with integer w and t starting from Ax<b is a finite
sequence of inequalities of the form

araX € bk (k=1,...,M)

together with non-negative numbers
Yk, (L<k<M, T<jem+k-1)

such that, for each k=1, .., M, the inequality

Ay X < b

is obtained as non-negative linear combination
QX1+ ...+ QX b:
(Vkior e Yiepuaes) : < LVkire e Yiguer) :]
Qrmek-1.1X1 *+ -+« * Qmek=1 nXn Brek-t

of the previous inequalities (initial and already generated), where
- the coefficients of the variables on the left hand side are integer
-the right hand side is not integer is and is rounded down
- the last inequality of the sequence is the inequality w'x <+

O
Inequalities of the form

7. Integer linear optimization 46-13
7.5 Cutting plane algorithms

y'Ax < Ly'b] with y>0 and y'A integer
are called Gomory-Chvatal cuts.
Gomory has shown in 1960 that these cuts lead to finite cutting plane algorithms.

Chvdtal has introduced cutting plane proofs in 1973. These proofs are similar to Farkas' Lemma in the variants

Lemma 7.21(2) and 7.22.

~ 7.24 Theorem (Cutting plane proofs for rational polytopes, Chvatal 1973)
Let P={xeR"| Ax<b} be arational polytope and let w'x <t be an inequality with integer w and t that
is valid for Pp. Then there exists a cutting plane proof of w'x <t from Ax<b, for some t'<t.

@)
Proof: see below. 4

~ 7.25 Theorem (Cutting plane proofs for rational polytopes without integer points, Chvdtal 1973)
" Llet P= {xeR"| Ax<b} be arational polytope without integer points. Then there exists cutting plane
proof of 0'x<-1 from Ax<b.

O
Proof: see below. QO

7. Integer linear optimization 46-14
7.5 Cutting plane algorithms

0
For the proof we need a lemma that enables an inductive argument on the dimension of P. It shows that

Gomory-Chvdtal cuts for a face of a rational polyhedron can be lifted to the the polyhedron itself "by rotation".

- 7.26 Lemma (Rotation of Gomory-Chvdtal cuts)
Let F be a non-empty face of a rational polytope P. Assume that F is given by a linear system and that
c'x < L.d] isa Gomory-Chvdtal cut for F.
Then there exists a Gomory-Chvdtal cut (c')'x < Ld'] for P with
FA{x|cxcldl} = Fn{x|(c')x<lLd]} (equality on F)

7. Integer linear optimization 46-15
7.5 Cutting plane algorithms

O
~ Proof
© Let wolg P={x]|A'x¢<b', A"x<b" } with A"',b"" integer.
Let Fi={x|A'x¢b", A"x=b"} (equations A" x =b"" describes F)
Let c"x < [.d] be the given Gomory-Chvdtal cut for F
and let w.o.l.g. d=max{c'x | x € F} (deepest cut with c'x; it exists since P is a polytope).
Duality theorem => the dual LP has an optimal solution
=> thereare y' >0 and y'' unconstrained with
7. Integer linear optimization 46-16

7.5 Cutting plane algorithms
')A+ () A =T (%)
y)'b' + (') =d ()
© We now construct ¢' and d" from y"'
() i=c"-(Ly"1)TA" = (y)TA" +(y'' - Ly'""J)TA"" because of (*)
integer 20 20
d=d-(Ly")" = (y)b' +(y"' - Ly" 1) because of (**)
c is integer as part of a Gomory-Chvétal cut, (Ly'' 1)TA'" isinteger => c'integer
© (c")x ¢ d' is a valid inequality for P
because (c')'x = (y)TA'x +(y'"' - Ly"J)A"x ¢« (y)'b' +(y'"' - Ly"J)b" = d'
20 20
© Definition of d' => d=d'+ (Ly''])"b"
integer since b'' is integer
> Ld) = Ld'J+(Ly"])b"
© Equality on F
FA{x|(c)x<lLd 1}
= FNn{x|(c)x<lLd"], (Ly"J)TA"x =(Ly"])b"}

7. Integer linear optimization 46-17
7.5 Cutting plane algorithms

fulfilled in F because of A''x=b"'
FA{x|(c' +(Ly"1)"A")Yx ¢« (Ld'l + Ly" 1)}
FN{x|c'x< Ld]} O

C)
Proof of Theorem 7.25

(cutting plane proofs for rational polytopes P={ x € R" | Ax < b} without integer points)
C)
Induction on dim(P)

~ Inductive base
C)

P=g@
- => statement follows from Farkas' Lemma 7.21 (3)
© dim(P)=0
© = P={x*} and x* is not integer.
=> there is an integer vector w such that w'x* is not an integer (set w; := 1 for one non-integer entry
of x* and w;:= 0 otherwise).
Let t be such that the hyperplane H={x [w'x =t} contains x* (can easily be achieved by
translation).
7. Integer linear optimization 46-18

7.5 Cutting plane algorithms
w'x* not integer => t=w'x* not integer
=> w'x <t is valid for P, but P=PN{x|wx<|lt]} =0
Farkas Lemma 7.22 => there is cutting plane proof for w'x < Lt] from Ax<b
P =@ => (Farkas Lemma 7.21(3)) there is cutting plane proof for 0'x<-1 from Ax<b and w'x
<Lt
e
Inductive step to dim(P) > 1
(@)

Let w'x <r, w integer, be an inequality that defines a proper face of P.

Let Pi={xeP|w'x<lrl}

e
Casel: P' =@
)
Farkas Lemma 7.22 => we can prove w'x<r from Ax<b
Farkas Lemma 7.21 => we can prove 0'x < -1 from Ax<b,w'x < Lr]

e
Case 2: Pz @

7. Integer linear optimization 46-19
7.5 Cutting plane algorithms

O
Let F:={xeP' |w'x= Lrl} = F isafaceof P'

LF EWTX:LT‘J
(] (] []

" Claim: dim(F) < dim(P)
O
because:
either F is a proper face of P (if r is integral)
or w'x ¢ Lr] cuts off something from P, ie., P contains vectors that do not satisfy w'x = Lr]
=> we have a lower dimension in both cases
F; empty, inductive assumption

=> there is a cutting plane proof for 0Tx <=1 from Ax<b,w'x<Lrl, -w'x<-Lr]

e
Use the cutting plane 0"x < -1 for F several times and apply the Rotation Lemma each time

7. Integer linear optimization 46-20
7.5 Cutting plane algorithms

'

P polytope => min{w'x | x € P} is finite =>
Repeating the arguments with P'':= {xeP |w'x< Lr] -1} efc. leads after finitely many steps to a
cutting plane proof for an inequality w'x <t with {xeP|w'x<t} =@

=> have shown a reduction to Case 1 O

e
Proof of Theorem 7.24 (cutting plane proofs for rational polytopes)
e
Casel: Pr=0@

O
Theorem 7.25 => there is a cutting plane proof for 07x < -1

7. Integer linear optimization 46-21
7.5 Cutting plane algorithms

P isapolytope => r:=max{w'x | x e P} is finite

=> w'x < r is a valid inequality for P

Farkas' Lemma 7.22 => there is a cutting plane proof for w'x < r

w infeger => w'x < Lrl is Gomory-Chvdtal cut

adding w'x < Lr]and 0™x<-1 gives w'x¢ Lr]-1

repeated addition of O"x ¢ -1 gives w'x <t' <t in finitely many steps

- Case 2: Pr# @

7 P is apolytope => r:=max{w'x | x e P} is finite

w integer => w'x < Lrl is a Gomory-Chvdtal cut for P

let P':= {xeP|w'x<lrl}

we are done if Lr]<t
© Soassume Lr] > t

Let F:={xeP' |w'x=Lrl} => F isaface of P'

Fcontains no integer points, as w'x ¢ 1 is valid for Py and + < Lr]
© Theorem 7.25 => for F, there is a cutting plane proof of 0'x < -1 from Ax<b,w'x= Lr]

(@)
Rotation Lemma for F and P'=> there is a cutting plane proof of an inequality ¢'x < LdJ for P from Ax¢

7. Integer linear optimization 46-22
7.5 Cutting plane algorithms

b,w'x<lr] suchthat P'N{x|c™x<ld] wx=1lr]l}=g@
&)
So, after applying this sequence of cuts to P', we have w'x< Lr]-1.

(

)
Repeating this argument eventually gives w'x < t' < ¥, completing the proof. O

(=

—Chvétal closure and Chvétal rank

&)
Cutting plane proofs may use already generated cutting planes. We consider now what happens, if one can only

use the initially given cutting planes Ax < b

(@)
Let P={xeR"| Ax<b} be arational polytope. If oneaddsto P all Gomory-Chvdtal cuts y'Ax< Ly'b]

with-y 20, yTA integer, one obtains the Chvdtal closure P'of P.

= 7.27 (Properties of the Chvdtal closure)
- The Chvdtal closure of a rational polytope is again a rational polytope. In particular, it has a linear description
using only the given inequalities Ax < b and finitely many Gomory-Chvdtal cuts.
° Proof

©
Let P={x| Ax<b} with A and b integer

7. Integer linear optimization 46-23
7.5 Cutting plane algorithms

Set P':= PN{x|y"Ax< Ly'b] with y20, y"A integer }. Then:
(713) P'=PN{x|y'Ax< Ly'b] with y20, y'A integer, O<y<1}
8 Proof of (7.13):
© Let w'x < | t] bea Gomory-Chvdtal cut with y20, y"TA=w, y'b=t
Let y':=y - Lyl be the fractional part of y. Then O <y' <1
Let w' = (y)'A = yTA-(Lyl) A = w-(Lyl)'A
=> w' is integer,as w and A are integer.
Let t:=(y")b = y'b-(Ly])™ = +-(Lyl)™

=> t and t' differ by an integer number, namely by (Ly])™b
o

=> w'x ¢ Lt is obtained as sum of
(w")x < Lt] <--formed according to (7.13)
+ (LyJ)TAx < (LyJ)™d <- redundant as
non-negative linear combination of the rows of Ax<b
=> the inequalities specified in (7.13) form the Chvdtal closure
° There are only finitely many inequalities of the form (7.13)

O
Denote the entries of matrix A by aj; and let A; be the j-th column of A

7. Integer linear optimization 46-24
7.5 Cutting plane algorithms

Ocy<l = y'A; € [-Z; lal, T layl]
- \,/TA\.l integer => there are only finitely many such yTAJ.
All inequalities of the form (7.13) have integer coefficients
=>They are again rational 3
o
Iterating the Chvdtal closure operation defines a sequence of Chvdtal closures
P=POOPHSPA > DP
: 7.28 Theorem (The Chvdtal closure operation terminates)
Let P be arational polytope. Then there is ke N with Py = pl,
In particular, cutting plane algorithms with a good choice of Gomory Chvdtal cuts terminate after finitely many
steps.
C)
Proof
© Pr is a polytope and can thus be described by finitely many inequalities (Minkowski's Theorem).
Each of these inequalities has a cutting plane proof of some finite length r with inequalities only from
finitely many PO (i<r)

=> the maximum of these r shows the statement

7. Integer linear optimization 46-25
7.5 Cutting plane algorithms

()
Gomory has specified such a good choice of Gomory Chvdtal cuts already in 1960.

 The smallest k with P; = P® is called the Chvdtal rank of P. Tt can be inferpreted as a measure of complexity
of the integer hull of polytopes. Already in R? there are examples that the Chvdtal rank can become
arbitrarily large. For 0/1-polytopes in R" is is bounded by 6n3|og n.
© 7.29 Example (A polytope with Chvdtal rank 2)
© The initial polytope P
© P is given by
-2X+ X, ¢ 0 1
2x1+%x, ¢ 6 (2)

- Xy <=1 (3)
7. Integer linear optimization 46-26
7.5 Cutting plane algorithms
6]
i e ())
®)
® [
P
———8——8—8h

©) , 1
The first Chvétal closure PO
O

y'=(0,1/2,1/2) gives x; < 5/2 => x; ¢ 2
y'=(1/2,0,1/2) gives - x; ¢ -1/2 = -x; ¢ -1

yT= (5/6,1/3,1/6) gives =Xyt Xy £ 11/6 => =X+ Xy <1
y'=(1/3,5/6,1/6) gives X{+ Xy £ 29/6 => X +X, ¢ 4

7. Integer linear optimization 46-27
7.5 Cutting plane algorithms

g :

p(1)

*e—0 — 0 0

e

X, ¢ 2 can hot be derived from Ax<b
e}

the general form of a Gomory-Chvatal cut is
(-2y1 + 2y,)%; + (g + Yo - ¥Y3)%p < L6y, - y3d
= -2y;+2y,=0, yy*y,-y3=1, Léy,-y;1 =2
YT Ye Y3T 2y, -1 LAy, + 1) =2 > ledy, <2
=>y,<1/2 =>y;<0 => acontradiction

e

~ The second Chvdétal closure P@

X, < 2 is obtained from - x; +x, < 1, x;+x, < 4 with y'=(1/2,1/2)

7. Integer linear optimization 46-28
7.5 Cutting plane algorithms
(@)

)
®)
® ¢ _)

p(2)

*————0 — 0 — 0 >

Concluding remarks

© All statements on cutting plane proofs and Chvdtal rank hold also for arbitrary rational polyhedra (see Korte &
Vygen), but-in general not for non-rational polyhedra:

© Gomory-Chvdtal cuts are a standard tool for solving IPs in CPLEX. They are generated automatically in the
Branch & Bound algorithm. Some of them directly in the root node from the LP-relaxation. Others for the
subproblems in nodes of the Branch & Bound tree.

° For many combinatorial optimization problems, there are results on the Chvadtal rank of particular inequalities:

o>
The odd-set inequalities of the matching polytopes have Chvédtal Rang 1 w.r.t. the LP formulation consisting only

7. Integer linear optimization 46-29
7.5 Cutting plane algorithms

of the degree constraints:
x(d(v)) =1 forall veV — degree constraints
Y.cp X, <r forallsets RCV(6) with |R| =2r+1 odd-set inequalities
x20

O
The comb-inequalities of the TSP have Chvdtal Rang 1 w.r.t. the 2-matching polytope (see Section 8.2)

7. Integer linear optimization 47-1
7.6 Optimization and separation

O]
Separation is the problem to compute for a given point x* and a given polyhedron Q a hyperplane H that

separates x* from Q.
Separation is needed in cutting plane algorithms. Then Q =Py (integer hull of a rational polyhedron P)and x* is
the LP optimum over P.

There is a strong relationship between separation and optimization. We define:

)
Optimization (OPT)
®
Input:
O
rational polyhedron Q,
c € R" such that c¢'x is bounded from below on P
e
Output:
© . T
x*e Q with x*=min{c'x | xeQ}
S)
Separation (SEP)
e
Input:
O
rational polyhedron Q,
y eR"

7. Integer linear optimization 47-2
7.6 Optimization and separation

S
Output:
@ iyest if yEQ
a'x¢<deR" with a'x<d for all xeQ but a'y>d if y& Q (aseparating hyperplane)
~ 7.30 Theorem (Polynomial equivalence of separation and optimization; Grétschel, Lovdsz, Schrijver 1984)
(OPT) can be solved in polynomial time <=> (SEP) can be solved in polynomial time.
This holds also for €-approximations.
© Without proof.
The following techniques are used for full-dimensional polyhedra:

|I<:II

ellipsoid method and duality theorem

"=>" antiblocking of polyhedra

For details see

M. Grotschel, L. Lovdsz, and A. Schrijver,

Geometric Algorithms and Combinatorial Optimization,

Springer, Berlin, 2nd ed., 1993. O

7. Integer linear optimization 47-3
7.6 Optimization and separation

e
Remarks

’ If (OPT) can be solved in polynomial time, then cutting planes can be found in polynomial time.

© If (OPT) is NP-hard, then we will (if P 2 NP) not be able to find all cutting planes in polynomial time. But we may
still be able to find many.

© Therefore one uses in practice polynomial algorithms for constructing cutting planes until ho more are found.
Then one branches on fractional variables and looks again for cutting planes for the resulting subproblems, etc.
This combination of Branch & Bound with cutting plane algorithms is called Branch & Cut. We will see examples in
Chapter 8.

© Instead of the ellipsoid method (which has proven to be inefficient in practice) one uses the dual simplex

algorithm. The dual simplex algorithm can easily accommodate new cutting planes as additional constraints.

8. Polytopes induced by combinatorial optimization problems 48

O I e e 1 e o ¢ ISR OSOOESUUTESUUSTTS 49

082 0Ll QL= Lo [o)1 (o 1 S 50

© 8.3 86PArAtON NG DrANCH & CULE ...ttt nees 51
8. Polytopes induced by combinatorial optimization problems 49-1

8.1 Introduction

© Goal of this chapter
Develop an abstract view on combinatorial optimization problems in order to describe induced polytopes in a
unified way.
An instance of an (abstract) combinatorial optimization problem is a triple (E, F, c) where
© E is a finite set, the ground set (e.g. the set of edges of a graph)
© F is the set system of feasible solutions F C E (e.g. the set system of all matchings M C E(G))

O
c:E->R withc(F):= 3, g c(e) computes the value of feasible solution F (e.g. the weight of a matching M)

e
The polytope Pq__ induced by (E, F c) is obtained as follows.

©
For a set F C E we consider the incidence vector x© € RE defined by

XF'_ 1 ecF
€710 e¢F

We interpret c asvector ce RE with ¢, = c(e)
and write for arbitrary vectors x € RE
x(F) := ze eFXe

© F
Then Pq:' =conv{x |FeF},

8. Polytopes induced by combinatorial optimization problems 49-2
8.1 Introduction

i.e., it is the convex hull of all incidence vectors x of feasible solutions F € F
© Minkowski's Theorem yields:
Pf}-" is a polytope, and the vertices of PT are incidence vectors of feasible solutions
=> there is a system of linear inequalities Ax < b, x >0 whose set of solutions is P{F

(the so-called linear description of Pr)

=> the optimum of (E, F, c) is attained in a vertex of Ax<b, x>0
=> we can solve (E, F, c) with linear optimization, if we have a linear description Ax<b, x>0 of P,F
- Problems:
How does one find linear descriptions?
The proof of the Minkowski's Theorem is constructive, but "unsuited".
© How large is the number of constraints?
In general exponential, see the matching polytope,
but we only need a partial description for a vertex attaining the optimum

These questions are studied in combinatorial polyhedral theory (polyhedral combinatorics)

8. Polytopes induced by combinatorial optimization problems 50-1
8.2 Some linear descriptions
C)
Goal of this section

©
Tllustration of some (partial) linear descriptions and of techniques how to prove them

© The matching polytope
© (E,F,c) is given by
E = edge set E(G) of an undirected graph
F = {MCE | Misamatching}=:'M
c(e) = non-negative edge weight of e

Pay = conv{ x| M e M} is called the matching polytope of graph 6

T 81 Theorem (linear description of the matching polytopes)
T In bipartite graphs, Py, has the linear description
x(®(v)) ¢ 1 for all vertices v
x20
- Inarbitrary graphs, Py, has the linear description

x(d(v)) < 1 for all vertices v

8. Polytopes induced by combinatorial optimization problems 50-2
8.2 Some linear descriptions

Y,cp X, ¢r forallodd sets RC V(6) with |R|=2r+l,r21
x20
Example

e
G bipartite

0<2 —0
1
o 3
© M= (2, 1,(2).(3.2.3))

we have variables X1, X, X3 for the edges 1, 2, 3

then Py, = conv{ x| M € M} is a tilted pyramid with quadratic ground set in the X,-X3 plane

8. Polytopes induced by combinatorial optimization problems 50-3
8.2 Some linear descriptions

A linear description of P, is obtaihed as (redundant inequalities for vertices of degree 1 deleted)
Xp* Xy, <1
Xp*+x3 <1
X; 20

© S
G not bipartite

A

2

3
1%

o
M={2.{1}.{2}.{3} }

8. Polytopes induced by combinatorial optimization problems 50-4
8.2 Some linear descriptions

we have variables X1, X5, X3 for the edges 1, 2, 3

then PM = conv{ x" | M € M} is a tetrahedron

© The inequalities for the bipartite case are fulfilled by x := (1/2,1/2, 1/2)7, but x & Pt
So the additional inequalities for odd sets are needed, in this case
Xp*+ X, + X3 ¢ 1
© The proof uses in both cases the following ideas

© (1) The inequalities are valid for Py, ie., Py, C {x | Ax<b, x>0}

© (2) The optimization problem
max c'x subject to inequalities Ax<b, x>0

always attains its optimum in an incidence vector x™, M € M

(this can e.g. by complementary slackness or the primal-dual algorithm)

8. Polytopes induced by combinatorial optimization problems 50-5
8.2 Some linear descriptions

o
(3) Lemma 3.5 (for each vertex x there is an objective function ¢ such that the optimum is obtained in x

only)
(2), (3) => every vertex of the linear description is an incidence vector x™, M € M
= {x|Ax<b, x>0} C Py,
© The polytope of antichains of a partial order
© Basic facts about partial orders
© A (finite) partial order (E, <) is given by
a (finite) ground set E and
a binary relation < on E with
a<b and b<c => a<c (< is transitive)
a<b => azb (< isirreflexive)
° We represent partial orders by edge diagrams
= acyclic digraph 6 = (V, E) with
E(G) = ground set of the partial order

e<e' «=> there is a directed path from head(e) to tail(e')

head(e) = head(e') for all minimal elements e, e' of the partial order (E, <)

8. Polytopes induced by combinatorial optimization problems 50-6
8.2 Some linear descriptions

tail(e) = tail(e') for all maximal elements e, e’ of the partial order (E, <)
(every partial order is an induced suborder of an edge diagram)

~ Example:

174
<, 3

AN

E={1,2,3,4,5} and 1<4, 1<3<5, 2<5

a,b € E are called comparable «<=> a<b or b<a

chain = set of pairwise comparable elements

in the example, @ {3} {1,5} {1,4} {1,3,5} are chains, the last two are maximal chains (i.e., C-maximal)
~a,beE are called incomparable <=> a, b are not comparable

antichain = set of pairwise incomparable elements

in the example, @ {3} {2, 3} {45} {2,3,4} are antichains, the last two are maximal antichains (i.e., C-maximal)

Combinatorial optimization problem:

8. Polytopes induced by combinatorial optimization problems 50-7
8.2 Some linear descriptions

Compute an antichain of maximum weight w.r.t. weights c(e)>0
Application: project scheduling
© partial order = processing structure of a construction project
chain = must be done sequentially
antichain = may be done simultaneously

weight of an antichain = amount of required resources if all jobs are processed simultaneously

maximum weight = maximum amount of required resources

© (E.F,c) is given by
E = edge set E(G) of the edge diagram of the partial order
F = {ACE | Aisanantichain}=: 4
c(e) = non-negative edge weights of e
P := conv { xA | Ae A} is called the antichain polytope of the partial order

e

~ Example

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

"pyramid"

Linear description of P

Necessary condition: every chain contains at most one element of any antichain.

As

(=)

inequality: x(K)<1 for every chain K

| 8.2 Theorem (Linear description of the antichain polytope)

P4 has the linear description

x(K)<1 for every chain K

x>0

S)
Proof

(1) all inequalities are valid for the antichain polytope

O
Let x e P,[7l and K be a chain

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

=> X is a convex combination of vertices of Pﬂ . i.e, of incidence vectors x* of antichains A

=> each incidence vector x* fulfills x*(K) <1
=> the convex combination x fulfills x(K)< 1
(2) The LP given by the inequalities attains its optimum on incidence vectors of antichains
© The LP is given by
(P) max c'x st. x(K)<1 for every chain K
x20
© The dual LP is
(D) min1ly = Ty st T, e Y2 ¢ foral ecE
yg 20 for all chains K

Interpreting y, as "multiple occurrences" of chain K, the dual (D) says:

50-8

50-9

find as few as possible chains (multiple occurrences permitted) such that each element e is "covered" at

least ¢, times
=> consider only maximal chains
=> Y, Yg is aflow in the edge diagram G w.r.t. lower capacities c,

Example:

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

G with lower capacities

2*"2\1\A
.<1\J7 ;0
o

a covering with chains

L .\.
Tt

the interpretation of ¥y, as flow

3’7?\1
2 \A.
7

I\Ai/S

o«

e
=> we can apply the Min-Flow-Max-Cut Theorem

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

O
Similar to the Max-Flow-Min-Cut Theorem of ADM I:
The minimum flow value in an s,t-network with lower capacities c, and upper capacities u,

equals the maximum capacity cap(X) of ans,t-cut X

O
In this case, the capacity of ans,t-cut X with s € X defined as

cap(X)= Y Cem Y. U

eed*(X) eed (X)

In the edge diagram all upper capacities are « and the flow value is bounded from below

=> the maximum capacity of a cut is finite

=> a cut of maximum capacity has only forward edges, i.e., 8 (X) =&

=> A:=8%(X) is an antichain (otherwise 57 (X) # @) with weight = maximum capacity of a cut

Conversely, every maximal antichain A defines a cut X as

X := set of head vertices of edges in A and of all vertices of edges e with e <a for some a e X.

Then A :=8%(X)

So:

optimum value of (P) = optimum value of (D)

= minimum flow value = maximum capacity of an s,t-cut

50-10

50-11

8. Polytopes induced by combinatorial optimization problems 50-12
8.2 Some linear descriptions

= maximum weight of an antichain
=> optimum of (P) is attained by an incidence vectors of an antichain

()
(1) and (2) prove Theorem 8.2 by the same arguments as for the matching polytope. 1

C)
8.3 Remark
O
(P) and (D) correspond to a weighted version Dilworth's Theorem

e
Theorem of Dilworth:
(@)

minimum number of chains covering all elements of a partial order
= maximum cardinality of an antichain
" The traveling salesman polytope in the symmetric, complete case
© Consider the TSP on an undirected, w.o.l.g. complete graph K, with edge costs c(e)2 0.
Then (E, F, c) is given by
E = edge set E(K,)
F = {TCE| Tisa TSP-tour}

c(e) = non-negative edge weight of e

8. Polytopes induced by combinatorial optimization problems 50-13
8.2 Some linear descriptions

P = conv { x" | Tis TSP-tour } is called the TSP polytope and is denoted by QnTsP

The vertices must fulfill

x(®(v)) = 2 forall vertices v (8.1)

n(n=3)
2

= dim(Qfgp) ¢ M-n = One can even show that dim(Qfgp) = m—n

=> (8.1) defines a linear system of maximum rank whose set of solutions contains Q"TSP

© Constraints (8.1) still permit subtours.
These can be avoided by the subtour elimination constraints:
x(EW)) <« [W|-1 forall @zWCV (8.2)
where E(W) = set of edges with both end points in W

o
Furthermore (non-negativity constraints, upper bounds)

O¢x,<1 foralledges e (8.3)

8. Polytopes induced by combinatorial optimization problems 50-14

8.2 Some linear descriptions
e

Q"TSP is contained in the following polytopes (which are relaxations of Q"TSP)

O
in the 1-free polytope (= convex hull of the incidence vectors of 1-trees), see Section 7.4

O
in the 2-matching polytope Qn2M (= convex hull of the incidence vectors of perfect 2-matchings)

perfect 2-matching = edge set F such that every vertex is incident to exactly 2 edges from F

S
For the perfect 2-matching polytope, a linear description is known for arbitrary graphs (Edmonds 1965)

“QHZM = {xeRE | O¢x,<1 forall edges e

x(®(v)) = 2 forall vertices v

K
Zx(E(W;) < IWoI+%(k—1) k odd (8.4)

i=0
with Wo, Wy, ..., W, C V
IWOﬁWi|:1= |Wi-WOI’

W, W;=@ fori,j>0 }

8. Polytopes induced by combinatorial optimization problems 50-15

8.2 Some linear descriptions

© The 2-matching inequalities can be generalized to comb inequalities for the TSP polytope
© Let G be a complete graph, and W, Wy, ..., W, C V with
IWog N W; |21 i=1,.,k
IW;-Wgl 21 i=1,..,k
WiﬂWj=Z fori, j>0

k3, 0dd
Then

k k k+1

D_XEW) < IWol + > (Wil -1)-—= (85)

i=0 i=0

defines valid inequalities for the TSP polytope

O
The comb inequalities have Chvdtal rank 1 w.r.t. the 2-matching polytope.

8. Polytopes induced by combinatorial optimization problems 50-16
8.2 Some linear descriptions

" 8.4 Theorem (Inequalities for the TSP polytope, Chvdtal 1973, Grotschel & Padberg 1979)
" For the TSP polytope Q"TSP the following statements hold for n > 6
(a) dim(Q"rgp) = M-
(b) the inequalities (8.3) define facets for every edge e
(c) the subtour elimination constraints (8.3) are facets if 3 < |W| <n-3
(d) all comb inequalities (8.5) are facets

O
without proof 0

e
8.5 Remark
O
(a) - (d) do not constitute a linear description, and none is known.
O
for QloTSP ,_more than 50 billion different facets are known, for QIZOTSP there are more than 1017°

O
=> complete linear descriptions become too large to be solved by LP algorithms directly
@)
But one can use partial linear descriptions in Branch & Cut. For a fixed objective function one needs only

cutting planes that lead to an optimal vertex. Other parts of the polytope are then of no interest.

8. Polytopes induced by combinatorial optimization problems 51-1
8.3 Separation and branch & cut

e

~ Goal of this section
O
Discussion of a concrete branch & cut algorithm for the TSP problem
O
Examples for polynomial separation

O
Examples of how to show that inequalities define facets

© A branch & cut algorithm for the TSP problem
© The algorithm starts with the LP

(P) minc'x s.t.
x(®(v)) = 2 forall vertices v (8.1)
O¢<x, <1 foralledges e (8.3)

and first adds subtour elimination inequalities and then comb inequalities

(first with a fast heuristic, then with an exact algorithm).

When no more such inequalities are found, one switches to branch and bound or a general cutting plane

algorithm

0
A flow diagram of the algorithm

8. Polytopes induced by combinatorial optimization problems 51-2
8.3 Separation and branch & cut

take (P) as current LP

v

solve the current LP D EEEE—

v

solution x is a tour?

find subtour- or comb-
inequalities with a heuristic

Yes | additto

the LP
no a2
V
find subtour- or comb-
inequalities with an exact algo
yes
8. Polytopes induced by combinatorial optimization problems 51-3

8.3 Separation and branch & cut

Jzno

use branch & bound or a general
cutting plane algorithm

This principle is used recursively in the nodes of the B&B tree. When good lower bounds are available one usually
needs only a few iterations in the final step.

This method can solve TSP problems with up to several thousands vertices exactly.

With additional techniques one can solve TSP problems with 100.000 and more vertices, see Concorde.

@)
http://www.tsp.gatech.edu/concorde/index.html

(@)
Branch & Cut motivates
the construction of fast separation algorithms

the search for valid inequalities or facets

Designing fast separation algorithms

this often leads to other combinatorial optimization problems

8. Polytopes induced by combinatorial optimization problems 51-4

8.3 Separation and branch & cut
“ Example 1: Chain inequalities for the antichain polytope
© They have the form

x(K)<1 for every chain K

For a vector x*, the separation problem for chain inequalities can be solved as follows:
(1) compute the longest chain K* w.r.t. weights given by x*
(2) if x*(K*)>1, then x(K*)<1 isan x* separating chain inequality

if x*(K*)<1, then x* fulfills all chain inequalities
The longest chain can be computed in the edge diagram as longest path (this is polynomial, as the edge

diagram is acyclic)

© Example 2: Subtour-elimination inequalities for the TSP polytope
© we assume that the following inequalities are satisfied
x(d(v)) = 2 forall vertices v degree constraints (8.1)
O<¢xz<l non-negativity and upper bounds (8.3)

(which can be checked efficiently)

8. Polytopes induced by combinatorial optimization problems 51-5

8.3 Separation and branch & cut
" 8.6 Lemma (Separation of subtour elimination inequalities)
| ‘Assume that x* fulfills inequalities (8.1) and (8.3)
Then there is an x* separating subtour inequality
<=> there is a cut §(X) with x*(d(X)) <« 2
° Proof
© Let X beavertexset, @z XzV. Then
XX = Tyex TeesmXe” "2 Lecx Xe*
=Y, ex 2 -2Y,cx X,* because of (8.1)
2IX| =23, cy x,* = 2|X| - 2x*(E(X))

So x*(3(X)) + 2x*(E(X)) = 2|X| (*)
=

"e=>

O
x* violates the subtour inequality w.r.t. X
<=> x*(E(X)) > |X| -1 <=> 2x*(E(X)) > 2|X| -2 <=> x*(8(X)) < 2 with(*) QO
- 8.7 Consequence (Separation of subtour elimination inequalities)
- Given (8.1), the separation problem for subtour-elimination inequalities leads to computing a cut d(X) with

minimum capacity. This can be done by solving a sequence of s,t-max-flow problems.

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

O
Without proof 0O
)
Searching for valid inequalities or facets

O
We demonstrate this for the antichain polytope

" 8.8 Theorem (Facets of the antichain polytope)
" Consider the antichain polytope P. Then:
X, =0 defines a facet for every edge e.
x(K) =1 defines a facet <=> K is a maximal chain.
© Proof

)
(1) dim(Py) = |E|, i.e., Pz has full dimension

O]
The unit vectors correspond to singleton antichains and are linearly independent.

(@)
Because of (1), a facet is a supporting hyperplane H whose cut with P4 has dimension |E| -1

=> to show this dimension, one must find m := |E| vectors x

linearly independent (i=1, ..., m-1)
e

~(2) x,=0 defines a facet for every edge e

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

© .
set x9:= 0, x iz i-th unit vector except for i=e

=> _all these vectors lie on the hyperplane x, =0

0

and the x' - x0 are linearly independent

C)
(3) x(K)=1 defines a facet <=> K is a maximal chain
e

|I<:ll

let K={ey, ...} and E-K={e, 4, ...}

K is maximal => for every e € E-K there is ei(j) € K such that ej. e

= {eg ... {ed {epar @iy - {8 8igmy} are antichains

i

y are incomparable

and their incidence vectors yo, ym‘1 lie on the hyperplane x(K) =1

yo, ym_1 are obviously linearly independent

= yl -y0 are linearly independent => x(K) = 1 is a facet

e

II:>II

O
Consider a chain K such that x(K) =1 is facet, but K is not maximal.

Let K' be maximal chain with KC K', and let e' € K'-K.

®Claim:{x(K)=1}ﬂPﬂ C{x(K)=1}NnPyq

O
let x € Py and x(K)=1

51-6

in HN Py such that x' - x° are

51-7

8. Polytopes induced by combinatorial optimization problems 51-8
8.3 Separation and branch & cut

KCK' = (x(K)=1=> x(K') >1)

but since x € P4 we have x(K')=1 => xe{x(K')=1}NPgy

o .
Facets H define inclusions-maximal sets HN Py among all facesof P,

But the incidence vector of {e'} liesin {x(K')=1}NPz - {x(K)=1}NPgy

a contradiction O

O 9.1 Simple rounding and the USE OF QUAI SOIULIONS -.......c.cuvvvurireeeirireiristeriseatie ittt sttt sttt sttt sna s 53
© 9.2 Randomized (010 oo N 54
© 9.3 Primal-dual approximation algorithms and NEIWOIK QESIGIcwwwwwureurrerreirteereertissasesssstissssstinsissae st sisessississasens 55

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

e
Goals of this chapter
Demonstrate on 3 selected techniques that LP-theory provides advanced methods to desigh approximation
algorithms

o
Please repeat the chapter on approximation algorithm from ADM I

e

_ Goals of this section
O
Approximation algorithms based on solving an LP with subsequent rounding to an integer solution
O
Proving approximation guarantees by the use of LP-duality and dual solutions
e .
As an example, we consider WEIGHTED VERTEX COVER (WVC)
e
Instance
an undirected graph & with vertex weights w, >0
©
Task
© . . - .
Determine a vertex cover C of G with minimum weight ¥ <. w,

0
Example

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

3
1 “ 1= W,
SN S
2 2 = green vertices
©

~ Simple rounding (for a minimization problem)
© Algorithm Simple Rounding
© Formulate the given instance I as an integer program (IP)
© solve the LP-relaxation (LP) of (IP) in polynomial time

O
Recall that approximation algorithms must run in polynomial time (in the encoding length <I> of T)

53-1

53-2

O
If (LP) has only polynomially many variables and inequalities in the encoding length of I, then it can be solved

in polynomial time with one of the known polynomial LP-algorithms (see Chapter 10).

(@)
However, (LP) often has exponentially many inequalities. Then we must show that the separation problem for

these inequalities is solvable in polynomial time. Theorem 7.26 then shows that (LP) can be solved in
polynomial time.
®
Round the fractional optimal solution of (LP) to a feasible solution of (IP)

(@)
This rounding is problem dependent. It need not work in general.

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

9.1 Lemma (Approximation guarantee for simple rounding)

Let A(I) be the feasible solution of (IP) obtained by rounding.
Let OPT(I) be an optimal solution of the given instance I and let LP(I) be an optimal solution of the LP-

relaxation.
If
A(T) < p-LP(I) for every instance I,

then algorithm "Simple Rounding" is a p-approximation algorithm

O
Remark: it is common in the theory of approximation algorithms to use A(I), OPT(I) both for the solution

itself and for the value of that solution.

e
Proof

(@)
As (LP) is a relaxation of (IP), we have LP(I)< IP(I)= OPT(I)

=> A(I) < p-LP(I) < p-OPT(I) O

e
Application to WVC
e
IP-formulation (IP)

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

(8]
Introduce O/1-variables X, with X, = 1 «x=>velC
Then WVC is equivalent to the IP

min Zv WX,

s.t. X, + X, 21 for every edge e = (u,v) of 6

x, € {0,1} for every vertex v of G

&)
The LP-relaxation (LP) of (IP)

min_ > w X,
s.t. X, *x, 21 for every edge e = (u,v) of G
X, >0 for every vertex v of 6

x, 20 is sufficient, since each optimal LP solution fulfills x, <1 because of w, >0

(LP) has only polynomially many inequalities and variables and can thus be solved in polynomial time with a

polynomial LP-algorithm (see Chapter 10)
®
The rounding
@)
let x' be an optimal solution of (LP)

round x' to x* as follows:

53-3

53-4

9. LP-based approximation algorithms 53-5
9.1 Simple rounding and the use of dual solutions

o= 1 if x{,>05
v 0 otherwise

Then:

© x* is feasible for (IP), i.e., a vertex cover
© let (u,v) be anedge of G
> x+x) 21 = x"205 0 x,'205 = x*=1or x>*=1
=> the edge (u,v) is covered by x*
© A(T) < 2-LP(T)
© X< 2x, = A(I) < 2LP(I) as w20

(&)
So algorithm "Simple Rounding" is a 2-approximation algorithm for WVC
" The use of dual solutions (for minimization problems)
" 9.2 Lemma (The use of dual solutions in approximation algorithms)
" Let (D) be the dual LP of the LP-relaxation (LP) of (IP).
Let dual(I) be a feasible solution of (D) for instance I.

Let A be a polynomial algorithm that constructs a feasible solution A(I) of (IP) with

9. LP-based approximation algorithms 53-6
9.1 Simple rounding and the use of dual solutions

A(T) < p-dual(TI) for every instance I
Then A isa p-approximation algorithm
©
Proof:
()
weak duality theorem => dual(T) ¢ LP(I)
(LP) is a relaxation of (IP) => LP(I) < OPT(I)
So A(I) ¢ p-dual(I) ¢ p-OPT(I) 0O

© Remark
© In contrast to Simple Rounding, the use of dual solutions need not solve an LP. It suffices that the algorithm
constructs a feasible solution A(I) of (IP). The dual solution dual(I) is only needed in the proof of the
inequality
A(T) < p-dual(T)
but not in the algorithm.
© Application to WVC (Bar-Yehuda & Even 1981)
© The LP-relaxation (LP) of WVC (see above) is

9. LP-based approximation algorithms 53-7

9.1 Simple rounding and the use of dual solutions
min_ >, w X,

s.t. X, X, 21 for every edge e = (uyv) of G

X, >0 for all vertices v of G

O
The associated dual LP (D) has a variable y, for every edge e of G and reads

max >, cg Ye
s.t. Zoesw) Ye £ Wy for every vertex v of 6
Y 20 for all edges e of G
It computes edge weights y, >0 such that the total weight in the graph gets as large as possible, but the

weight in every "star" d(v) is at most w, (i.e.it computes a w-packing with maximum value)

e

_ The special case w, =1 for all vertices

C)
Algorithm G (Gavril, 1974, see ADM I)
C)

Input

O
an instance I of VERTEX COVER

C)
Output

O
a vertex cover G(I) with 6(I) < 2-OPT(I)

e
Method

9. LP-based approximation algorithms 53-8
9.1 Simple rounding and the use of dual solutions

O

compute an C-maximal matching M of G

O
set U := both endpoints of every matching edge from M

O
return U

e

~ Proving the approximation guarantee with the use of dual solutions

e

~ The set U computed by the algorithm is a vertex cover
© otherwise M would not be C-maximal
© M is a dual feasible solution, M = dual(T)
© clear, since every star d(v) contains at most one matching edge

(@)
6(I) = |U| =2|M] = 2-dudal(T) => 6(I) < 2-dual(I) => approximation guarantee 2 with Lemma 9.2 O

_The general case with arbitrary weights w, 20

(@]
Call a vertex v saturated if Zeea(v) Yo = W,

[S)
Algorithm PACK
(=)

Input

9. LP-based approximation algorithms

53-9
9.1 Simple rounding and the use of dual solutions
o
aninstance I of WVC with Ez @ and w.o.lg. w, >0 forall v

// vertices v withw, = 0 will be taken and PACK is only applied to the graph induced by the remaining
vertices

e
Output
O
a vertex cover PACK(I) with PACK(I) ¢ 2-OPT(I)

e
Method

set C:=@ and y, = O foralledges e

repeat

e

choose an edge e

increase the value of the dual variable y, until one (or both) endpoints of e are saturated

add the saturated endpoint(s) of e to C
O

delete the saturated endpoint(s) of e and all incident edges

©

until no edges are left

return C

e

_ Proving the approximation guarantee with the use of dual solutions

9. LP-based approximation algorithms 53-10
9.1 Simple rounding and the use of dual solutions

The set C computed by the algorithm is a vertex cover

an edge e is only deleted if at least one of its endpoints u is saturated

=> ue C and u covers edge e

" The edge weights at the end of the algorithm constitute a dual feasible solution dual(T)
O

clear, since y, > 0 and Zoesn) Ye £ Wy throughout the algorithm

e
PACKI) =2, c¢ W, ¢ 2% cg Y, = 2-dual(I)

=>_approximation guarantee 2 with Lemma 9.2
O

interpret the increase of y, by k as paying k$ to each endpoint of e

=> avertex v has been paid w, when it enters the set C

= ¥, ec W, ¢ fotal payment fo all vertices = 23 gy, W

9. LP-based approximation algorithms 54-1
9.2 Randomized rounding

e

~ Goals of this section

Tllustrate approximation algorithms based on solving an LP with subsequent randomized rounding,
i.e., rounding with probabilities obtained from the optimal LP solution

o>
We take MAX SAT as illustrative example, see ADM I, Chapter 9.4

° A-trivial randomized rounding for MAX SAT (see ADM I, chapter 9.4)
© Algorithm Randomize (Johnson 1974)

o Input
__an instance of MAX SAT
" at least k literals (k > 1) per clause Z
© weight c(Z) per clause Z

° Output
~arandom truth assignment with expected performance

EL3,c2)] 2 (1-1/2%0PT(T)

®
Method
@ . . .
toss a fair coin for every Boolean variable x, and set

9. LP-based approximation algorithms 54-2
9.2 Randomized rounding

X := TRUE if the coin shows head
- X = FALSE —if the coin shows number

~ return the resulting random truth assignment

O
This algorithm is good for k> 2 (it gives at least 3/4 of the optimal weight), but is bad for k =1 (where it gives
only 1/2 of the optimal weight).

Randomized rounding based on an LP relaxation

" The general principle of randomized rounding (Raghavan & Thompson 1987)

© 1. Model the problem as an IP variables X € {0,1}
© 2. Relax the IP to an LP Ost-sl

© 3. Solve the LP optimally values x.”

© 4. Round randomized

. set x;= 1 with probability xJ.’

5. Show that the resulting vector x

is feasible for the IP

9. LP-based approximation algorithms 54-3
9.2 Randomized rounding

has a good expected approximation guarantee

~ Randomized rounding based on an LP relaxation for MAX SAT (Goemans & Williamson 1993)

e
The IP
(@]

0/1 variable y; = truth value of Boolean variable x;
0/1 variable z;= truth value of clause CJ.

TJ. = set of unnegated variables in clause CJ.

J
The IP thenis

F. = set of negated variables in clause CJ.

max ZJ. WJ'ZJ
s.t. Z Yi+ 2(1 —y) > Zj

y; € {0,1}, zje {0,1}
©
Randomized rounding

(@]
Let (y*,z*) be an optimal solution of the LP relaxation of the IP

9. LP-based approximation algorithms 54-4
9.2 Randomized rounding

Use y* for randomized rounding, i.e., set
X;:= TRUE with probability y;*
x; += FALSE ~with probability 1-y*
This trivially produced a truth assignment of the given instance.

Of course, not all clauses will be satisfied (i.e., evaluate Yo TRUE).

The performance guarantee

~ Consider w.o.l.g. the clause CJ. = Xy VX5 Vv Xy (it is similar for negated variables and other indices).
Then

k
Prob|C; is satisfied] = 1 — H(l - i)
i=1

k
1 & : : : :
> 1-— (1 % E vr) since geometric mean < arithmetic mean

k
:) because of the LP inequality

9. LP-based approximation algorithms 54-5
9.2 Randomized rounding

k
1
flz) =1~ (1 — kZ> concave in z
and

k
g(z) := (1— <1 - i)) z linear in z

Hence f(z)2g(z) on the interval [0,1] if f(z)2g(z) for the endpoints z=0 and z=1 of the interval
Checking z=0: f(0)=0, g(0)=0
Checking z=1: f(1)=g(1)

(@]

So
1 k
Prob|C; satisfied] > | 1— <1 — k) z;
=> E(total weight of all satisfied clauses)
_ 1\ N 1 .
> min (1— (1_E>) ?wjzj 2 (1- E) JZWJZJ»
9. LP-based approximation algorithms 54-6

9.2 Randomized rounding

v

1
<1 — e) OPT(I) since z* is an optimal solution of the LP-relaxation

0,623 -OPT(I)

23

O
So this algorithm achieves in expectation a performance guarantee of at least 0,623 of the optimum weight

also for instances with only one literal in some clauses.

° Combining both algorithms for MAX SAT

Toss a coin to decide which algorithm to use (Johnson or Randomized Rounding) and run the chosenalgorithm:
" Thisis again a randomized algorithm with an expected approximation guarantee of (3/4)
= Proof:

O
Consider a clause CJ. with k literals

Then

- Lo 1) 1 oRE
Prob|C; satisfied] > 5 (1 — 2k> + 5 <1 - <1 - k)) Z;j

9. LP-based approximation algorithms

(1

9.2 Randomized rounding

1 1\

= flk)-z} with f(k):= 5

1

(1

k
* . *
1—k)>z]- smceOSzjgl

1
ok

)

1
2

(-

1
1=z

(@)
Now f(1)=3/4 and f(x) 2> 3/4 on the interval [2,2] (calculus)

))

Q5|

=> E(fotal weight of all satisfied clauses) > 3/4 Zj WJ'ZJ* > 3/40PT(I) O

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

Goals of this section

Introduction of the primal-dual scheme for constructing approximation algorithms

We demonstrate this on the network design problem

The network design problem

Instance

O
an undirected graph G = (V,

edge costs ¢, 20
(@)

E)

connection requirements Pij for any 2 vertices i, j

e
Wanted

an edge set F CE with minimal cost ¥, ¢, such that

G' := (V, F) contains at least Fij pairwise edge disjoint paths between iand j for any 2 vertices i, j

O
The network desigh problem is NP-hard (Karp 1972).

It arises in designing low-cost networks that can survive edge failures

54-7

55-1

9. LP-based approximation algorithms 55-2
9.3 Primal-dual approximation algorithms and network design

o
Construction of a VPN as special case (see Section 4.4)
Example
O .
given vertices with requirements a solution of the
M= 3 between colored vertices network design problem
P = 2 otherwise
)
A, A
o B B
B e e C B C
°
°
°
C C
(o) 0
A A
The solution "survives" up to 2 edges failures on connections between colored vertices and one edge failure on
9. LP-based approximation algorithms 55-3

9.3 Primal-dual approximation algorithms and network design

connections to a black vertex. The solution was the example VPN for the disjoint path problem in Section 4.4.
O

A

C
A

A formulation of the network desigh problem as IP

© set f(S) := max { Fij |ieS,j&S) for every vertex set Sz @,V (demand of S)
infroduce a 0/1 variable x, for choosing edge e
(IP):

min Ze CoX,

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

2, e5(s) Xe 2 f(S) forall @2SCV (cut conditions)

x,€{0,1} for all edges e
x_is a solution of (IP) <=> F={ee€E | x, =1} is asolution of the network design problem
e
ll<:||
(@)
trivial
e

=>

Max Flow Min Cut Theorem (applied to any pair i, j with edge capacities 1) + cut constraints

=> there is a flow from i to j with value > M

=> there is an integer flow from i to j with value > M

=> there are M pairwise edge disjoint paths from i to j

=> the conditions in the (IP) are also sufficient O

e
Some special cases
e
Shortest s,t-paths
(6]

Pt = 1, r'iJ. = 0 otherwise

f(S)=1if |SN{s,t} =1, f(S)=0 otherwise

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

e
Minimum spanning trees
. P = 1 for all pairs i, j

f(S)=1 forall @zSCV, f(S)=0 otherwise

Minimum Steiner tree

) "ij =1 forall i,je T (T = set of terminals that need o be connected)

f(S)=1if SNT2@ and T-Szd, f(S)=0 otherwise

e
Generalized Steiner tree problem

6
=> f(5)e{0,1}

_ The primal-dual scheme

e
It uses complementary slackness similar to the primal-dual algorithm of Chapter 6.

We recall it below in the form needed here:
e
Starting point are an LP
(P) min Zj CiX; s.t. ZJ. aijszbi for all i, X >0 forall j
and the associated dual

(D) max 3, by, st. ¥, Qij¥; £ € forallj, y;20 forall i

55-4

55-5

9. LP-based approximation algorithms 55-6
9.3 Primal-dual approximation algorithms and network design

Complementary slackness conditions then read

xj >0 => Zi aijyi = Cj

y;>0 => ZJ. a;X; = b; (dual slackness condition)

0
A primal feasible x and a dual feasible y are optimal

(primal slackness condition)

«<=> x and y fulfill these conditions (Theorem 4.4)

O
The primal dual algorithm of Chapter 6 then runs through the following loop

Jx st Sto
_ x, y fulfill p-
y=0 coml;lementary %) are
slackness optimal

Get direction
of increase
for dual

e

_ The primal-dual scheme for approximation algorithms

©
Model the problem as IP

9. LP-based approximation algorithms 55-7
9.3 Primal-dual approximation algorithms and network design

N Relax the IP to an LP
© Relax the dual slackness condition (y;>0 => ZJ. a;{X; = b,

Use the loop to construct a feasible solution x for the IP and a dual feasible solution y
N Show that x and y fulfill the inequality ZJ. CiX; £ X, by,

=> «x-approximation because of Lemma 9.2

e
The primal-dual pair for the network design problem with f(S) e {0, 1}

C)
IP:
_min X, c.x,
 .e 8(S) Xe 2 f(S) forall @zSCV (cutconstraints)
X, € {0,1} for all edges e
LP relaxation = primal LP
()

~ min 2, C X,
2. 8(s) Xe 2 f(S) forall SCV with f(S)=1
X, 20 for all edges e

The condition x, <1 may be dropped, as it will hold in the optimum because of ¢, >0

9. LP-based approximation algorithms 55-8
9.3 Primal-dual approximation algorithms and network design

©
Dual LP
6
max 2 s.¢(s)-1Ys

Zsecs(s) Vs <C. forall edges e
Y520 for all variables yq
O
Call an edge e saturated if 25:666(5) Ys =€,

The primal slackness condition then says: x, >0 => e saturated

e
The primal dual algorithm for f(S)e{0,1}
©
Input
()]
Instance of the network design problem with f(S)e{0,1}

Output
(@)
Feasible solution (V, A) of the network design problem with performance guarantee 2
e
Method
)
Initialize all dual variables yg := 0

O
Initialize the primal solution (as edge set A) A = @
e

while A is not a feasible solution do

9. LP-based approximation algorithms 55-9
9.3 Primal-dual approximation algorithms and network design

O]
let C be the set of all connected components S in the graph (V, A) of the edges of A with f(S)=1
6)

increase yg forall SeC by the same amount until some edge e & A becomes saturated
(O]
add all saturated edges to A
__remove redundant edges from A (this makes A C-minimal feasible) // cleanup step

(@]
return A

©
Example for Euclidean distances

9. LP-based approximation algorithms 55-10
9.3 Primal-dual approximation algorithms and network design

Dual variables are represented by moats around the connected components S € C
e

Initialize: A:= @, y5:=0 forall S

o

c
L c

a
[]

i =1 for ij=a,ij=b andij=c

=>_initially, all connected components S € C are singletons

Iteration 1
9. LP-based approximation algorithms 55-11
9.3 Primal-dual approximation algorithms and network design
(@)
c
. c.
a b

e
Iteration 2

9. LP-based approximation algorithms 55-12
9.3 Primal-dual approximation algorithms and network design

o

The newly created connected component S (the two c-vertices) has f(S) = O,
so the associated dual variable yg will not grow in the next iteration.

e
Iteration 3

9. LP-based approximation algorithms 55-13
9.3 Primal-dual approximation algorithms and network design
o

The newly created connected component S (the two c-vertices and the b-vertex) has f(S) =0,
so the associated dual variable yg will grow in the next iteration.

e
Iteration 4

9. LP-based approximation algorithms 55-14
9.3 Primal-dual approximation algorithms and network design

o

S)
Iteration 5

9. LP-based approximation algorithms 55-15
9.3 Primal-dual approximation algorithms and network design
O

This last iteration added 2 saturated edges to A.
e
Cleanup step

The edge between a and b is redundant and is removed.

9. LP-based approximation algorithms 55-16
9.3 Primal-dual approximation algorithms and network design

Performance guarantees of the primal dual scheme for f(S) e { 0, 1}

(=)
9.3 Theorem (Performance guarantee and runtime of the primal dual algorithm, Agarwal, Klein & Ravi 1991,
Goemans & Williamson 1992)

O

_ The primal dual algorithm for f(S)e{0,1} can be implemented with a runtime of O(n? log n).

9. LP-based approximation algorithms 55-17
9.3 Primal-dual approximation algorithms and network design

The computed primal solution A fulfills ¥, <, ¢, < 2:OPT(I), i.e., the algorithm is a 2-approximation

e
algorithm.

e
Proof

with Lemma 9.4 and 9.5 (only the performance guarantee, not the runtime) O

The essential combinatorial inequality
© The algorithm runs through iterations k=1,2, ..., K
Initeration k, let
A, be the edge set at the start of that iteration
C, be the set of connected components that grow in iteration k (i.e. f(S)=1)
g, be the value by which all yg with S € C, grow
e
9.4 Lemma (Combinatorial inequality giving the approximation guarantee)
N The primal dual algorithm is an o-approximation algorithm if, in each iteration k, the inequality
Zseck 15(S) N DI < o|C|

holds for every C-minimal feasible solution D containing A,

9. LP-based approximation algorithms 55-18
9.3 Primal-dual approximation algorithms and network design
C)

_ Interpretation of the combinatorial inequality:
© Every C-minimal feasible superset D of A, must add some edges for every cut 3(S) with Se€(,.
The inequality says that the number of these edges is bounded by o times the number of these sets S.
So every iteration k adds "on average" at most o edges to such aset S.
© Proof for f(S)e{0,1}:
© Let y be the dual solution constructed by the algorithm.
Let A be the primal solution constructed by the algorithm.
cleanup step => A is contained in a set D for which the combinatorial inequality holds by assumption.

=> the combinatorial inequality is also true for A

(@]
For the value of A we obtain:

Y. ce =),). Vs because of primal slackness
ecA ecA Secé(S)

=) [ANd(S)|-ys rearranging terms
S:8(S)NA £ @

= Y [ANS(S)[-) e total growth of Ys
S:6(S)NA # @ k:SeCy

9. LP-based approximation algorithms 55-19
9.3 Primal-dual approximation algorithms and network design

=Y (Y |A ﬂ5(8)|> € rearranging terms

k \SECy

<Y (a-|Ckl)ex because of the combinatorial inequality
k

= a) [Celex = a) ys
X S

< oOPT(I) because of Lemma 9.2 O

N 9.5 Lemma (Combinatorial inequality for f(S)e{0,1})

For f(S)e€{ 0,1}, the primal dual algorithm fulfills the combinatorial inequality with o = 2.
C)
Proof:
(@)
Consider iteration k and an C-minimal feasible superset D of A,

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

Contract the connected components of (V, A,) to "super nodes"
D is C-minimal feasible, f(S)€{0,1} => D isa forest in the contracted graph

Color the super nodes corresponding to sets S € C, red, the others blue

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

Vertex v=SeC, => [5(S)ND| = degree d(v)
=> the combinatorial inequality reduces to
Y, oq d(v) < 2:(# red vertices) in the contracted graph
N Claim: no blue vertex has degree 1

otherwise the corresponding edge would be necessary for feasibility

=> the vertex should be red

Delete blue vertices with degree O (they do not influence the inequality that we must show).

55-20

55-21

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

The resulting subgraph (which still is a forest) fulfills:

zv red d(v) = Zv red or blue dv) - zv blue d(v)

A

A

2:(#red) O

e

_ Performance guarantees in the primal dual scheme for arbitrary values f(S)

O
Goemans, Mihail, Vazirani & Williamson 1993
Iteratively use a variation of the primal dual algorithm
This gives a 2-H(R)-approximation algorithm with

R := maxij rij and

HR):=1+1/2+1/3+..+1/R ~logR

e
Experience with the primal dual algorithm in practice
e
Steiner trees (Hall 1995)

O
60 instances from Beasley

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

500 - 1000 vertices, 600 - 60000 edges
On average only 7% deviation from the optimum

better than heuristics on large instances

_ Generalized Steiner tree problems (Hu & Wein 1995)
O
1000 randomly generated instances, 32 - 64 vertices

In general only 5% deviation from the optimum

© Network designh (Mihail, Mostrel, Dean & Shallcross 1996)
~ Used in a software package at Bellcore
(ITP/INPLANS CCS Network Topology Analyzer)
Is reported to do well, but details are confidential

e
Jain's algorithm for network design

~ Is based on simple rounding, gives a 2-approximation for general f(S)

2:(#red+#blue) - ¥ ., d(v) because #edges < #vertices in a forest,
2:(# red + # blue) - 2-(# blue) because of the claim

55-22

55-23

9. LP-based approximation algorithms 55-24
9.3 Primal-dual approximation algorithms and network design

9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)
Every basic feasible solution x of the LP-relaxation of the general network design problem has an entry e

with Xy 2 1/2
.

)
For a proof see Korte & Vygen O

©
Jain's Algorithm
e
Input
(@]
instance of the general network design problem
®

Output

_ a feasible solution of the network design problem with performance guarantee 2
e

~ Method
(@)
let Q be the LP-relaxation of the IP formulation of the given instance
C)
repeat forever
6]
compute a basic optimal solution x of Q
()
if all x, are integer then return x
(O]
round x, to 1 forall edges e with x, > 1/2
9. LP-based approximation algorithms 55-25

9.3 Primal-dual approximation algorithms and network design
e
modify Q as follows
o

set the rounded variables X, to their new value X, = 1

O
adapt the demands £(S) = (S) - T, < 55y Xe

97 Theorem (Performance guarantee of Jain's algorithm)
Jain's algorithm constructs a feasible solution x of the general nhetwork design problem with
Y,ea C ¢ 2:0PT(D),
i.e., the algorithm has a performance guarantee of 2.

@)
Proof by induction on the number of iterations O

e
Remarks on Jain's algorithm
e
The LP-relaxation has exponentially many inequalities. It can be solved in polynomial time since

(@}
separation and optimization are polynomially equivalent (Theorem 7.26)
G}
the separation problem for ¥ < 5(5) Xe 2 f(S) can be solved in polynomial time by a sequence of min cut
problems
O

_The algorithm is not so useful in practice since it must solve a sequence of LPs.

9. LP-based approximation algorithms 55-26
9.3 Primal-dual approximation algorithms and network design

It is open if a "practical" 2-approximation algorithm exists

O 101 LPUSINNP 0 CONP v 57
© 10.2 RUNME Of the SIMPIEX QIGOITHAMcv..veeiveeeiee ettt 58
O 10.3 THE @lIDSOIT MEINOM ...ttt 59

O 10.4 INtEHIOF POINt MEINOMS ...t

10. Complexity of linear optimization and interior point methods 57-1
10.1 LP is in NP n coNP
e . . .
Most important statements of this chapter (all only with proof sketches)
Linear programming (LP) is in NP n coNP. Therefore it was conjectured that there is a polynomial algorithm for
LP.
© . . .
All known variants of the simplex algorithm show an exponential worst-case runtime. However, the average case
analysis and the smoothed analysis show a polynomial runtime.
(@)
The ellipsoid method is the historically first method with a polynomial worst-case runtime for LP (Khachiyan
1979). It is, however, not practically relevant.
(@)
Interior points methods have been developed shortly after the ellipsoid method (first by Karmarkar 1984). They
also have a polynomial worst-case runtime. Today's variants (log barrier, primal-dual) are competitive with the
simplex algorithm and even superior for very large and sparse problems. But they rather unsuited for solving a
sequence of related optimization problems (which is important for many algorithms for integer optimization like

branch and bound or cutting-plane-methods).

e
Encoding length of an LP
O
Let the LP be given by

min c'x

10. Complexity of linear optimization and interior point methods 57-2
10.1 LP is in NP n coNP

s.t. Ax=b
x20
with rational data A, b, ¢
o O
The encoding length (size) of LP w.r.t. to the standard encoding (see ADM I) is

<LP> = <A> + + <>

@)
Another definition used with interior points methods is

=< >+ < >+ < >
L de*max : meX z Cmax *m=+n

with
de‘rmax = max { |det A'| : A" is a quadratic submatrix of A}
brax = max; |b]
Crax = Max; |cJ-|

T 101 Lemma (Encoding length of LP)
L dp

The proof is based on

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP n coNP

|det A| = volume of the parallelepiped generated by the columns of A

= |det Al <TT; l|A;ll

" 10.2 Lemma (Entries of basic solutions can be represented with L bits)

" Let x be a basic solution of LP in simplified form (gcd of at least one nominator and denominator is 1)

s (P, P
q q

Then O<p.<2" and 1¢q<2"-

oy O S
The proof is similar to that of Lemma 3.4 1

- 10.3 Lemma (The objective values of two basic solutions differ sufficiently)
" Let x, y be basic feasible solutions of LP with ¢'x # cy.
Then |c™x-cly| > 1/2%
C)
Proof

()]
Let p be the least common multiple of the denominators of x, q that of y

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP n coNP

pc’x qcly

= |c™x-cly| =
Y p q

_|pacex-cTy)
Pq

>1/pq as pq(c'x-c'y) z O and integer
>1/(2"2%) because of Lemma 10.2 O
104 Corollary (It suffices to compute objective values up to an additive error of 1/22%)
| ‘Le‘r z:=min{c'x| xeP} with P={xeR"| Ax=b,x2>0}
Let xeP with ¢'x ¢ z+1/2%
Then any basic feasible solution x* with ¢"™x* ¢ c¢'x is optimal

2
Proof
(8

Suppose that y is a basic optimal solution and that x* is not optimal.
Lemma 10.3 => |c"x* - cTy| > 1/2%

= ¢"x* > cly+ 1/2% = z2+1/2% > ¢"x > ¢"x*, a contradiction O

e
LP € NP n coNP

O
To this end we must formulate LP as decision problem:

57-3

57-4

10. Complexity of linear optimization and interior point methods 57-5
10.1 LP is in NP n coNP

Input: LP and a rational number A

Question: Ismin{c'x | Ax=b, x>0} ¢ A?

- 10.5 Theorem
" LP e NP N coNP
&)
Proof
e
LP € NP

O]
We must provide a certificate of polynomial length for min{c'x | Ax=b, x>0} < A
=)

€
Case 1: LP has an optimal solution
o

=> LP has a basic feasible solution x' with ¢'x' ¢ A

Lemma 10.2 => the entries of x' are polynomial in L

Ax'=b,x'20 and c"x' ¢ \ can be checked in polynomial time (in L)

=> x' is such a certificate

© Case 2: LP has a feasible solution but the objective function is not bounded from below
©

~ => the dual program (D) max{y'b | y"A<c', y unconstrained } has no feasible solution

Farkas' Lemma for (D) => thereis x* >0 with Ax*=0, ¢'x*=-1

10. Complexity of linear optimization and interior point methods 57-6
10.1 LP is in NP n coNP

Take as certificate
0

a basic feasible solution of LP tfo show feasibility
" a basic feasible solution of { Ax=b, x>0, c'x = -1} to show unboundedness of the primal objective
© Both basic solutions are polynomial in L because of Lemma 10.2
° Case 3: LP has no feasible solution
© then the instance is not a "yes"-instance => no certificate is required
© LP € coNP

o
We must provide a certificate of polynomial length for min { ¢'x | Ax=b, x>0} > A

© Case 1: LP has an optimal solution
© duality theorem => inequality is equivalent o max{y'b | y'A < c”,y unconstrained} > A
this can be certified as in Case 1 above by a basic feasible solution of {y'A < c',y unconstrained } with
value > A
" Case 2: LP has a feasible solution but the objective function is not bounded from below
© then the instance is not a "no"-instance => no certificate is required
© Case 3: LP has no feasible solution

(@)
then the instance is a "yes"-instance, as min { ¢'x | Ax = b, x20} = o

10. Complexity of linear optimization and interior point methods 57-7
10.1 LP isin NP n coNP

Farkas' Lemma => thereis y >0 with y'A=0, y'b=-1

=> take as certificate a basic feasible solution of {y>0 with y'A=0, y'b=-1} O

10. Complexity of linear optimization and interior point methods 58-1
10.2 Runtime of the simplex algorithm

Worst-case runtime of the simplex algorithm
©
The worst-case runtime of the simplex algorithm is exponential
The counterexamples are so-called Klee-Minty cubes, i.e., slightly distorted cubes on which the simplex

algorithm traverses all vertices, although it could get to the optimal solution with one pivot.

o

.- /':m

1

@

e
Average runtime of the simplex algorithm

e
First results were obtained by Borgwardt 1982

e
Variant of the simplex algorithm: "Schattenecken" algorithm

10. Complexity of linear optimization and interior point methods 58-2
10.2 Runtime of the simplex algorithm

© The pivot rule is based on a 2-dimensional projection of the polyhedron
" Probabilistic assumptions
© b=1 (w.o.lg.)
¢ and the rows of A are independent, identically distributed random vectors whose distribution is invariant
under rotations around the origin
© The expected number of pivot operations is O(n*m)
© Improvement by Haimovich 1983

O
O(h+m) with the same algorithm and the same probabilistic assumptions

Caveats for these results

©
The statement holds only for the arithmetic complexity model with O(1) per operation
No statement for the standard simplex algorithm

©
The instances generated from the probabilistic assumptions are not sparse LPs

O
For fixed n, the probability that an instance has a feasible solution rapidly tends to O with increasing m

)
Smoothed analysis of the simplex algorithm

10. Complexity of linear optimization and interior point methods 58-3
10.2 Runtime of the simplex algorithm

©

~ New complexity model introduced by Spielman & Teng 2002 and first applied to LP (95 page paper)
© Consider for any instance I a neighborhood N(I) with a probability distribution on N(I), and compute
sup { E ¢ y(p)[runtime(] *)? | all instances I }
Special cases:
Worst case analysis: N(I) = {T}
Average case: N(I) = set of all instances with the same dimensions n and m

Smoothed analysis "interpolates" between these extremes

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

(@)

250
A
200

worst case

——
150 3

100

run time

50

average o

case

input space

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

250

smoothed
complexity

80 70

input s@e

© Spielman & Teng

e
Results of Spielman & Teng

(@)
Variant of the simplex algorithm: two-stage Schattenecken algorithm

Instances are normally distributed, i.e., the values of A and b, that are # O, are "perturbed" by a normal

distribution N(0,0)

&)
The neighborhood N(I) is given by the standard deviation o of the normal distribution

58-4

58-5

10. Complexity of linear optimization and interior point methods 58-6

10.2 Runtime of the simplex algorithm
©
The runtime in the smoothed analysis is polynomial in n, m, and 1/c

)
Caveats

O
no statement for the standard simplex algorithm

o
the model preserves sparseness, but not degeneracy

10. Complexity of linear optimization and interior point methods 59-1

10.3 The ellipsoid method
O]
The geometric intuition is simple, the technical details (and the proof of polynomial runtime) are difficult.

We will illustrate here only the geometric intuition.

e
Reducing linear optimization to finding a feasible point
©
One possibility: binary search w.r.t. the optimum d with inequality cx <d

e
Another possibility: use duality

0
Use simultaneously the side constraints of the primal and the dual

and the constraint c¢'x<b'y

=> the only feasible points are (x,y)" with x optimal in the primal, y optimal in the dual

e
The ellipsoid method computes a feasible point in a polytope P
©
start with a ball E around the origin containing P

e
while the volume of E is not too small do // there is still a point in E NP

o

if the center x of E isin P then return x

(@]

compute a hyperplane that separates x from P, let H be the halfspace containing P

o

compute the new ellipsoid E with smallest volume containing H N E and the intersection points of the

10. Complexity of linear optimization and interior point methods 59-2
10.3 The ellipsoid method

hyperplane with the boundary of the previous ellipsoid

return "there is no feasible solution"

v
\v,

e
Remarks on the ellipsoid method

there is an analytic formula for the new ellipsoid (efficient update)

10. Complexity of linear optimization and interior point methods 59-3
10.3 The ellipsoid method

© the volume per iteration shrinks by the factor exp(-1/2n) < 1
© the volume check is done as follows for full dimensional polytopes P
© translate the inequalities of P by 1/2%!, such that P contains a ball with radius r = 1/2%"
=> one can stop if the volume of E is below that of P
one need additional techniques for lower dimensional polytopes
© the algorithm requires O(n?L) iterations with O(n*L) arithmetic operations with numbers of O(L) bits
more information about the ellipsoid method
M. Grétschel, L. Lovdsz, and A. Schrijver
Geometric Algorithms and Combinatorial Optimization

Springer, Berlin, 2nd ed., 1993

10. Complexity of linear optimization and interior point methods

10.4 Interior point methods

Goal of this section

©
A sketch of the interior point algorithm by Ye with improvements by Freund (both published in Mathematical

Programming 1991)

Starting point and general idea
© given are a primal LP and the associated dual in the form
(P) min z=c"x
s.t. Ax=b, x20
(D) max w=b'y

s.t. ATy +s = ¢, s>0 (slack variables), y unrestricted

e
The algorithm solves (P) and (D) simultaneously

It computes in each phase a primal solution x* >0 and dual slack variables s* >0

Basic idea:

@)
Stay away from the boundary X; = 0, S = 0, i.e. ensure X;> 0,s.>0

but make the duality gap ¢'x* - bTy* = (ATy* + s)Tx* - (Ax*)'y* = x*Ts* >0 small

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

e
The two main ingredients
e
Ingredient 1: scaling
Let x*>0 and s*>0 be given

Scaling is a function R" — R" with

X1 X
X = — X' = :
Xn
Observe.
1
x* — .
1

Scaling in matrix form:

X = (X*)"lx with X* =

60-1

60-2

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

© With scaling we can write (P) in the transformed space as
(P) min z=c'X*x’
st. AX*x” =b, x" >0
Set c* = X*c, A* = X*A
=> (P) can be written as
(P) min z=c*"x’
st. A*x” =b, x" 20
Similarly, (D) is written in the transformed space as
(D) max w = bTy

s.t. A*Ty+s’ = ¢*, 8" >0 with

S]XT
SnXp
Observe: x:s.=x."s.” => the duality gap is invariant under scaling

JJy
=> one can do computations in the transformed space

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

Ingredient 2: potential function
It measures the size of the duality gap. It is a logarithmic barrier function
6(x,s) := qIn(x's) - Z; In(x;s;)
with a suitable parameter q >0
Observe
qIn(x"s) — -« if thegap x's —»0
- Zj ln(xj'sj) — +oo jif X; = 0 or s;— 0, i.e., close to the boundary

Question: how to choose q?

©
A good choice of q is
gi=h+ \/ﬁ
This choice leads to O(y/n - L) iterations

where L := encoding length of Section 10.1

- Stopping criterion

o O
The potential function leads to a stopping criterion that is based on Lemma 10.2:

60-3

60-4

10. Complexity of linear optimization and interior point methods 60-5
10.4 Interior point methods

o)

Let x,s be primal-dual feasible with G(x,s) < —k+/nL for a constant k

Then x's et

So: stop when
6(x,s) < -ky/nL

with k=2

Observe: Scaling does not change the value of G(x,s)

=> one may do calculations in the original or in the transformed space

e
Ye's algorithm
Structure of Ye's algorithm
e
Input
e . .
Primal-dual pair of the form
(P) min z=c'x
st. Ax=b, x>0

(D) max w = bTy

10. Complexity of linear optimization and interior point methods 60-6
10.4 Interior point methods

st. Aly+s = ¢, 520 (slack variables), y unrestricted
° Output
© Primal dual pair (x,s) with G(x,5) < —kv/nL
© Method
Initialization
i:=0 // counter

0 .0
= L
choose x°,y° primal-dual feasible with GxsT) O(vinL)

// idea: modify phase I of the simplex algorithm such that x ~ 2%, s~ 2"
Iteration
© while 6(x,s') > -2v/nL do
do a primal step // change only x!
or adual step // change s'

this gives (x'*!, s'*!)

e .
iz i+l

C]
Details of the iteration

10. Complexity of linear optimization and interior point methods 60-7
10.4 Interior point methods

Overview
O . P N
Scale the current pair (x',s') — (e,s”) with e=1
=> (e,s”) is far from the boundary

the primal or dual step then computes (X, 3) and reduces G

the re-transformation of (%, %) into the original space gives (x*!, s™)
e
Main property of the primal/dual step
() . . o
do it in such a way that 6(x™!, s™) - 6(x', s') ¢ -7/120 <0
(¥%,s7) < vn after N steps with
kvl = N—— < 2./nL
% 6(x0,s9)
120
e . o
Computing (X, 3)
()]
Compute the x-gradient of & in the point (e,s”):
10. Complexity of linear optimization and interior point methods 60-8
10.4 Interior point methods
1
q ! q
= Vx6(X,8)|(esy = —S - = s -
9 X ()l(S') xTs 1 xTs’
xn 7 les)

Go into the direction -g to decrease G, but stay feasible (i.e., A*-X =Db).
@)
To this end, let d be the projection of g onto the subspace { x| A*x=0}
= d=(I-A*(A*A*T)1A*)g (without proof)

Go into direction -d

A possible problem: ||d|| is too small

=> the primal step does not decrease G enough

Therefore: make a primal step if ||d|| >0.4
a dual step if ||d]|<0.4

Primal step
O
L

d, §:=s
4|d]]

X = e—

10. Complexity of linear optimization and interior point methods 60-9
10.4 Interior point methods

(@)
After the primal step, X >0 and 6(X, 3) - G(e,s”) ¢« -7/120

[S)
Dual step

@}
compute the s-gradient of G in the point (e, s”):

q °
xTg’

h:= Vs6(x,5)|es) = e -

=> hJ. = gj/sj => h and g show approximately intfo the same direction
go into direction -(g-d) and set
§ :=s"-(g-d)u with y:=e's’/q

© After the dual step,

Te’
eqs d+e) R=x -e

(%Y

5§50
G6(X,3)-6(e,s") < -1/6

10. Complexity of linear optimization and interior point methods 60-10
10.4 Interior point methods

__Analysis of Ye's algorithm
Advance per iteration
G decreases in every primal and dual step by a constant amount
= O(y/nL) iterations until G(x,s) < —2vnL
© Runtime
© Each iteration can be done with O(n?) operations
© the only expensive calculation is that of the projected gradient d
= solution of the linear system (A*A*Tw = A*g

can be done by Gaussian elimination in O(n) operations

e 3.5 L
=> O(n>-°L) operations in total

Problem: operations cannot be made exactly

[1d|| may be irrational

O
=> compute only with fixed humber of L bits and round

=> 19/352 instead of 7/120 by rounding when calculating ||d||

10. Complexity of linear optimization and interior point methods 60-11
10.4 Interior point methods

e
The numbers the Gaussian elimination must not become too large
&)
Use <det B> < <A> for every quadratic submatrix of A
=> (Cramers' Rule) all numbers in Gaussian elimination can be represented with L bits
" 10.6 Theorem (Polynomial runtime of Ye's algorithm)
Ye's algorithm runs in o(n3>L) time.

©
without proof 1

