

Contents

😑 1. Introduction	
♦ 1.1 Algorithmic Discrete Mathematics (ADM)	
♦ 1.3 Winter term 2010/11	
♦ 2.1 Examples	7
♦ 2.2 Neighborhoods and local optimization	
♦ 2.3 Convex sets and functions	
2.4 Convex optimization problems	10
[●] 3. The Simplex algorithm	
♦ 3.1 Forms of linear programs	12
♦ 3.2 Basic feasible solutions	13
♦ 3.3 The geometry of linear programs	
♦ 3.4 Local search among basic feasible solutions	15
♦ 3.5 Organization in tableaus	16
3.6 Choosing a profitable column	17
3.7 Pivoting rules and cycling	
♦ 3.8 Phase I of the simplex algorithm	19
_ ♥ 3.9 Geometric aspects of pivoting	
🖻 4. Duality	
♦ 4.1 Duality of LPs and the duality theorem	
4.2 Complementary slackness	
\diamond 4.3 The shortest path problem and its dual	
🛇 4.4 Farkas' Lemma	
4.5 Dual information in the tableau	
_ 🛛 4.6 The dual Simplex algorithm	
5. Computational aspects of the Simplex algorithm	
♦ 5.1 The revised simplex algorithm	
♦ 5.2 Algorithmic consequences of the revised simplex algorithm	30
\odot 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation	

	32
\odot 5.5 A special case: the network simplex algorithm \odot	33
^e 6. Primal-dual algorithms	
♦ 6.1 Introduction	35
\odot 6.2 The primal-dual algorithm	36
♦ 6.3 Remarks on the primal-dual algorithm	37
\bigcirc 6.4 A primal-dual algorithm for the shortest path problem \ldots	38
\bigcirc 6.5 A primal-dual algorithm for the transportation problem	39
$_{\odot}$ 6.6 A primal-dual algorithm for the weighted matching problem (a sketch)	40
9 7. Integer linear optimization	
♦ 7.1 Introduction	42
🔍 7.2 Totally unimodular matrices	43
🔮 7.3 Branch and bound algorithms	44
🛇 7.4 Lagrangian relaxation	45
7.5 Cutting plane algorithms	46
♥ 7.6 Optimization and separation	47
8. Polytopes induced by combinatorial optimization problems	
🖉 8.1 Introduction	49
8.2 Some linear descriptions	50
♥ 8.3 Separation and branch & cut	51
9. LP-based approximation algorithms	
♦ 9.1 Simple rounding and the use of dual solutions	53
🛇 9.2 Randomized rounding	54
● 9.3 Primal-dual approximation algorithms and network design	55
I0. Complexity of linear optimization and interior point methods	
\bigcirc 10.1 LP is in NP $_{\cap}$ coNP	57
♦ 10.2 Runtime of the simplex algorithm	58
♦ 10.3 The ellipsoid method	59
📀 10.4 Interior point methods	60

1. Introduction

\bigcirc	1.1 Algorithmic Discrete Mathematics (ADM)	. 3
\bigcirc	1.2 Content of ADM II	. 4
\bigcirc	1.3 Winter term 2010/11	. 5

2

1. Introduction

1.1 Algorithmic Discrete Mathematics (ADM)

⊖ On the history of ADM
Young area, has its roots in
algebra, graph theory, combinatorics
computer science (algorithm design and complexity theory)
optimization
Deals with optimization problems having a disrete structure
graphs, networks
finite solution space
Applications
telecommunication networks, traffic networks
Iogistics, production planning, location planning
0
ADM at TU Berlin

1. Introduction

Basic courses Graph and network algorithms (ADM I) Linear and integer optimization (ADM II)
Basic courses Graph and network algorithms (ADM I) Linear and integer optimization (ADM II)
Graph and network algorithms (ADM I) Linear and integer optimization (ADM II)
Linear and integer optimization (ADM II)
Special courses (ADM III)
Scheduling problems
Applied network optimization
Polyhedral theory
Seminar (partly parallel with ADM II or ADM III)
Bachelor thesis or master thesis

1. Introduction 1.2 Content of ADM II

Linear optimization problems
Linear objective function, linear inequalities as side constraints
• Linear optimization: min $c^T x$ subject to $Ax \le b, x \ge 0$
Simplex algorithm
Duality
Geometry of linear optimization problems
Ax ≤ b, x ≥ 0 define a polyhedron

1. Introduction 1.2 Content of ADM II

1. Introduction 1.2 Content of ADM II	4-3
0	
\mathcal{A}	
Discrete problems as linear optimization problems	
polyhedral theory	
Discrete problems as geometric problems	
Minimum spanning trees as vectors	
eraph G	

1. Introduction 1.2 Content of ADM II

1. Introduction 1.2 Content of ADM II

T

■ Integer linear optimization
e variables may only attain integer values
much more difficult problems
Solution methods
Lagrangian relaxation
cutting plane algorithms
LP-based approximation algorithms
Θ
Exercises with implementation assignments

1. Introduction 1.3 Winter term 2010/11

• Torsten Gellert (Exercises)
O Christoph Hansknecht (Tutorials)
• Website
http://www.math.tu-berlin.de/coga/teaching/wt08/adm2/
<pre>@ 0 http://www.math.tu-berlin.de/coga/teaching/wt10/adm2/</pre>
O Notebook: http://www.math.tu-berlin.de/~moehring/adm2/
Eliterature
C. H. Papadimitriou and K. Steiglitz
Combinatorial Optimization: Algorithms and Complexity
Prentice Hall, Englewood Cliffs, NJ, 1982
Pocket book - 512 pages - Dover Publications
First published: Juli 1998
Auflage: Unabridged
ISBN: 0486402584
B. Korte, J. Vygen:
Combinatorial Optimization: Theory and Algorithms

1. Introduction 1.3 Winter term 2010/11

Springer, 2000/2002/2006/2008
jetzt auch auf deutsch
W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver
Combinatorial Optimization
Wiley 1998
V. Chvátal
Linear Programming
Freeman, New York, 1983
G. L. Nemhauser and L. A. Wolsey
Integer and Combinatorial Optimization
John Wiley & Sons, New York, 1988
 M. Grötschel, L. Lovász, and A. Schrijver
Geometric Algorithms and Combinatorial Optimization
Springer-Verlag, Berlin, 2nd ed., 1993
D. S. Hochbaum, ed.
Approximation Algorithms for NP-hard problems

1. Introduction

1.3 Winter term 2010/11
PWS Publishing Company, Boston, MA, 1997
H. M. Salkin and K. Mathur
Foundations of Integer Programming
North-Holland, Amsterdam, 1989.
R. J. Vanderbei
Linear Programming: Foundations and Extensions
Kluwer Acad. Publ., Dordrecht, 2nd ed., 2001.
http://www.princeton.edu/~rvdb/LPbook/index.html
Encyclopedia
A. Schrijver:
Combinatorial Optimization: Polyhedra and Efficiency
Springer, 2003
3 volumes with 1881 Seiten, aso available as CD

♦ 2.1 Examples	. 7
© 2.2 Neighborhoods and local optimization	. 8
♦ 2.3 Convex sets and functions	. 9
♦ 2.4 Convex optimization problems	10

2. Optimization problems 2.1 Examples

An (NP-) optimization problem P _o is defined as follows
Each instance $I \in P_0$ has a feasibility domain S_T . Its elements $y \in S_T$ are called solutions
Feasibility ($y \in S_{\tau}$) can in be tested in polynomial time
⊖ Task:
Given an instance I and an objective function $c: S_T \rightarrow Q$ (rational numbers), find an optimal solution y =
OPT(I)
i.e., $y \in S_T$ with OPT(I) = $c(y) < c(x)$ for all $x \in S_T$
OPT(I) denotes both, the optimal solution and the objective function value of the optimal solution
such a solution is called a global optimum (global minimum) or optimum (minimum)
• An algorithm that does this is called exact
2.1 Example: Traveling Salesman problem (TSP)
Instance
Complete Graph K, n≥3
Rational edge weights $c(e) \ge 0$
⊖ Task

2. Optimization problems 2.1 Examples

2. Optimization problems

2.2 Neighborhoods and local optimization

_	⊖ Natahi sukasala
_	Neighbornoods
_	Neighborhoods are defined as ε-niggarded (w.r.t. some norm) for continuous problems. How for discrete
_	probleme
_	problems?
	A neighborhood for a problem class P ₂ is given by a mapping
	$N_{I}: S_{I} \rightarrow 2^{S_{I}}$
1	for each instance $I \in P_0$
_	N (v) is called the neighborhood of $v \in S$. We write N(v) of T is clean from the context
_	$N_{I}(y)$ is called the heighborhood of $y \in S_{I}$. We write $N(y)$ of I is clear from the context
_	2.4 Example: TSP
_	0
_	Define a neighborhood by a 2-exchange
_	$N_2(y) := \{ x \in S_T \mid x \text{ results from } y \text{ by exchanging } \le 2 \text{ edges from } y \text{ by other edges } \}$

2. Optimization problems 2.2 Neighborhoods and local optimization

2. Optimization problems 2.2 Neighborhoods and local optimization

Local and alobal antima
Consider a problem class P_0 with neighborhood N and let $I \in P_0$
$y \in S_{I}$ is called locally optimal w.r.t. N if $c(y) \le c(x)$ for all $x \in N_{I}(y)$
2.7 Example: local minima in calculus
Ŭ
2.8 Example: TSP
Locally optimal solutions w.r.t. N _k are called k-optimal or k-opt for short
Θ
exact neighborhood
A neighborhood N for a problem class P is called exact
A heighborhood is for a problem class i 0 is called exact

2. Optimization problems 2.2 Neighborhoods and local optimization

:<=> every local optimum w.r.t. N is a global optimum
More precisely, for all $I \in P_0$, every locally optimal $y \in S_I$ w.r.t. N_I is globally optimal
2.9 Example: TSP
N ₂ is not exact
⊖ Counter example :
0
(1)
cost a
(5) cost b
cost c
a < b < c
0
tour y = "outer edges" has cost 5b
Since both green edges are adjacent, every 2-exchange can at most add one green edge, thus at best one
green and one red
The new tour is worse if a+c > 2b

8-4

2.2 Neighborhoods and local optimization

2. Optimization problems

2.2 Neighborhoods and local optimization

Θ Proof : Θ Use a theorem from ADM I: T is optimal <=> every non-tree-edge e is the most expensive edge in the cycle induced by e in T + e 0 Neighborhoods motivate the principle of local search Θ Algorithm local search Θ Input 0 instance I of an optimization problem ${\rm P}_{\rm O}$ with neighborhood ${\rm N}_{\rm I}$ 0 start solution $y \in S_T$ Output local optimum w.r.t. N_I Method Θ iterative improvement Θ <u>while</u> there is a better solution $x \in N_{\tau}(y)$ <u>do</u> \odot choose better solution $x \in N_T(y)$

2.2 Neighborhoods and local optimization

0 v := x <u>return</u> y 2.11 Theorem (local search for MST) Local search w.r.t. the MST-neighborhood is a polynomial algorithm for computing a (globally) optimal MST if (a) it always chooses a non-tree-edge f that is cheaper than the most expensive edge of the cycle K induced by f (b) it always deletes a most expensive tree-edge e from the cycle K induced by f Θ Proof: 0 1. Since the neighborhood is exact, the algorithm has computed a globally optimal solution at termination 2. The algorithm terminates in polynomial time Claim 1: A deleted edge never returns into the tree Proof by contradiction 0 Let K be the cycle when edge e is removed

2. Optimization problems

2.2 Neighborhoods and local optimization

2. Optimization problems

8-10

2. Optimization problems 2.2 Neighborhoods and local optimization

	[O(n) if the tree is maintained as array of adjacency lists]
	Thus O((m-n+1)n) = O(mn) altogether 🗆
	0
	Remark: we have obtained better algorithms in ADM I: Kruskal $O(m \log n)$ and Prim $O(n^2)$
(Currentees Analyze local seconds for TCD with the k out weight where A Need it was in advanced time?
	Exercises: Analyze local search for 15P with the K-opt neighborhood. Does it run in polynomial time?

2. Optimization problems

2.3 Convex sets and functions

	Convex combination of two vectors
	Let x, $y \in \mathbb{R}^{n}$. Then every point
	$z = \lambda \cdot x + (1 - \lambda) \cdot y$ with $0 \le \lambda \le 1$
	is called a convex combination of x and y (a strictly convex combination if $0 < \lambda < 1$)
-	$^{\odot}$ the convex combinations of x and y are exactly the points on the line segment from x to y
-	
	x-y
_	points on this line segment are vectors of the form $y + \lambda(x-y)$
_	
	Θ
_	Convex set
	\bigcirc S \subseteq R ⁿ is called convex if S contains all convex combinations of any two points x, y \in S
	[⊖] 2.12 Example:

2. Optimization problems 2.3 Convex sets and functions

The convex hull conv(5) of a set S is the smallest convex set containing S, i.e.,
$conv(S) = \bigcap_{S \subseteq M, M \text{ konvex}} M$
This intersection exists, since R^n is one of the sets M
O An equivalent description is (exercise)
$conv(S) = \{ \lambda_1 x^1 + + \lambda_k x^k \mid x^i \in S, \lambda_i \ge 0, \Sigma \lambda_i = 1, k \text{ finite } \}$
Theorem of Caratheodory: in R ⁿ , k ≤ n+1 suffices
Convex function
Let $S \subseteq R^n$ be a convex set. A function $c: S \rightarrow R^1$ is called convex in S if
$c(\lambda \cdot x + (1-\lambda) \cdot y) \leq \lambda \cdot c(x) + (1-\lambda) \cdot c(y)$
for all $x, y \in S$, all $0 \le \lambda \le 1$
⊖ 2.14 Example
Every linear function is convex
Interpretation of convex functions $c: R^1 \rightarrow R^1$

9-2

2. Optimization problems

2.4 Convex optimization problems

2.4 Convex optimization problems

\circ S _T is specified as set of all $x \in \mathbb{R}^n$ fulfilling side constraints of the form:
$q_i(x) \ge 0$ $i = 1,,m$
$a: R^n \rightarrow R^1$ concave. $i = 1m$
c is convex in S_{-}
⊖ 2.17 Lemma
The feasible set S _T of an instance I of a historically defined convex optimization problem is convex
Proof:
g; concave => -g; convex
=> S _i := { x -g _i (x) ≤ 0 } = { x g _i (x) ≥ 0 } convex because of Lemma 2.15
=> S _T = ∩, S, is convex because of Lemma 2.13 □
⊖ 2.18 Theorem
In a convex optimization problem, every local optimum is a global optimum
[☉] 2.19 Remark

2. Optimization problems 2.4 Convex optimization problems There can be many global optima Every instance of LP is a convex optimization problem ⇒ every local minimum is a global minimum Calculus offers sufficient criteria for smooth functions to be convex: D ⊆ Rⁿ open, c : D → R¹ is twice continuously differentiable, Hessian matrix (= matrix of 2nd partial derivatives) of c is positive semidefinite

♦ 3.1 Forms of linear programs	12
♦ 3.2 Basic feasible solutions	13
3.3 The geometry of linear programs	14
♦ 3.4 Local search among basic feasible solutions	15
♦ 3.5 Organization in tableaus	16
3.6 Choosing a profitable column	17
♦ 3.7 Pivoting rules and cycling	18
♦ 3.8 Phase I of the simplex algorithm	19
♦ 3.9 Geometric aspects of pivoting	20

3. The Simplex algorithm

3.1 Forms of linear programs

	⊖ (3.1) General Form
	$\bigoplus_{n \in \mathbb{Z}} \min c^{T} x \qquad x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}$
	such that $a_i x = b_i$ $i \in M$ $a_i \in \mathbb{R}^n$
	$a_i^{\dagger}x \geq b_i$ $i \in M$
	$x_j \ge 0 \qquad j \in N$
	$x_j \qquad {\rm arbitrary} j \in \overline{N}$
	■ 3.1 Example: Diet problem (historically the oldest LP)
	n foods, j = 1,, n
	m nutrients (proteins, vitamins etc.) i = 1,, m
	a _{ii} = amount of nutrient i per unit of food j,
	r; = required amount of nutrient i per time period (week)
	x = amount of food j per time period (week)
	c = cost per per unit of food i
	$x = (x_1, x_2,, x_n)^T \text{ models a weekly diet}$
_	feasible diet fulfills $Ax \ge r$ with $A = (a_1), r = (r_1, r_2,, r_m)^T$
	(3.2) Computing a "cheapest" feasible diet is the LP

3. The Simplex algorithm 3.1 Forms of linear programs

o. Tomis of mear programs
min c ^T x
st. Ax>r
An LP of the form (3.2) is called in canonical form
An LP of the form
$(3.3) \min \ c^{T} \mathbf{x}$
s.t. Ax = b
× 2 0
is called in standard form
• An LP of the form (3.1) is called in general form
3.2 Lemma (Equivalence of the three forms)
⊖ All 3 forms are equivalent
in the sense that an instance I of one form can be transformed into an instance I' of any other form by a
simple transformation such that one can easily construct an optimal solution of I from an optimal solution of
т'

3. The Simplex algorithm 3.1 Forms of linear programs

Proof
it suffices to provide the following transformations:
general form
$$\rightarrow$$
 canonical form
eliminate equality constraints and unrestricted variables
 $\sum_{j=1}^{n} a_{ij}x_j = b_i \rightarrow \sum_{j=1}^{n} a_{ij}x_j \ge b_i$ and $\sum_{j=1}^{n} a_{ij}x_j \le b_i$
 x_j unrestricted $\rightarrow x_j = x_j^+ - x_j^-, x_j^+, x_j^- \ge 0$
general form \rightarrow standard form
eliminate "2" by introducing surplus variables $s_i \ge 0$
 $\sum_{j=1}^{n} a_{ij}x_j \ge b_i \rightarrow \sum_{j=1}^{n} a_{ij}x_j - s_i = b_i$
eliminate "s" by introducing slack variables $s_i \ge 0$
 $\sum_{j=1}^{n} a_{ij}x_j \le b_i \rightarrow \sum_{j=1}^{n} a_{ij}x_j + s_i = b_i$

⊖ Goal: Develop an algorithm to solve LPs
0
Starting point: LP in standard form
min c ^T x
s.t. Ax = b
x ≥ 0
with initial assumptions 3.1 - 3.3 (which we will get rid of later)
Assumption 3.1: A is an (m×n)-matrix with full row rank m
S.3 Example
0
$\min 2x_1 + x_4 + 5x_7$
s.t. $x_1 + x_2 + x_3 + x_4 = 4$
$x_1 + x_5 = 2$
$+x_3 +x_6 = 3$
$+3x_2 + x_3 + x_7 = 6$
$x_j \geq 0 \forall j$

3. The Simplex algorithm 3.2 Basic feasible solutions

Θ	
(A b	$) = \begin{pmatrix} 1 & 1 & 1 & 1 & & 4 \\ 1 & & 1 & & 2 \\ & 1 & 1 & & 3 \\ & 3 & 1 & & 1 & 6 \end{pmatrix} $
A ho	as full row rank m = 4
Recall fr	rom linear algebra: rank = row rank = rank(A) = m
A basis columr We de	s of A is a set of m linearly independent columns $B = \{A_j, A_k,, A_r\}$, and these columns are called basic s. The other columns are called non-basic columns. note the submatrix of these columns by B (sometimes A_B) and the corresponding indices by B(1),, B
(m). So B =	$(A_{B(1)}, A_{B(2)},, A_{B(m)})$. Sometimes we will identify B with the set of indices, i.e., B = { B(1),, B(m) }.
A _N de	notes the submatrix of non-basic columns.

3. The Simplex algorithm

3. The Simplex algorithm 3.2 Basic feasible solutions

1	

B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7

	1			
B =	1			
3	1 1)			

Every basis matrix is invertible and can be transformed into the identity matrix by elementary row operations and column permutations (Gaussian elimination).

 $\stackrel{\scriptsize{\scriptsize{ o}}}{=}$ If we transform the whole extended matrix (A|b) with these operations, we obtain a solution of Ax = b by

setting the basic variables to the (transformed) right hand side, and the non-basic variables to 0. This solution

is called the basic solution for basis B.

0

The applet below can be used to carry out these operations

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html
[⊖] 3.3 Example (continued)
Basis 1
no transformation needed since B = identity matrix
basic solution: $x_A = 4$, $x_5 = 2$, $x_6 = 3$, $x_7 = 6$, $x_1 = 0$ otherwise
Basis 2
0
$ \begin{pmatrix} 1 & 1 & 1 & 1 & & 4 \\ 1 & 1 & & 2 \\ & 1 & 1 & & 3 \\ & 3 & 1 & 1 & & 6 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & & & 4 \\ 1 & 1 & 1 & & & 2 \\ & 1 & 1 & & & 2 \\ & 1 & 1 & & & 3 \\ -3 & -2 & -3 & & 1 & & -6 \end{pmatrix} $
B(1) = 2, B(2) = 5, B(3) = 6, B(4) = 7
basic solution: $x_2 = 4$, $x_5 = 2$, $x_6 = 3$, $x_7 = -6$, $x_1 = 0$ otherwise
Basis 3

3. The Simplex algorithm 3.2 Basic feasible solutions

3.2 Dasic leasible solutions
0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7
basic solution: x ₂ = -1, x ₁ = 2, x ₃ = 3, x ₇ = 6, x _j = 0 otherwise
If we permute the columns of A and x such that $A = (A_B, A_N)$ and $x = (x_B, x_N)^T$, then the elementary transformations correspond to multiplying the linear system $(A_B, A_N)(x_B, x_N)^T = b$ from the left with the
inverse B ⁻¹ of the basis:
$B^{-1}(A_{B}, A_{N})(x_{B}, x_{N})^{T} = B^{-1}b$
$\ll B^{-1}A_{B}X_{B} + B^{-1}A_{N}X_{N} = B^{-1}b$
$x_{\rm B} + {\rm B}^{-1} {\rm A}_{\rm N} {\rm x}_{\rm N} = {\rm B}^{-1} {\rm B}^$
If we set $x_N = 0$ in the basic solution, we obtain $x_B = B^{-1}b$
So if B is a basis of A, then we obtain the associated basic solution $x = (x_B, x_N)^T$ as

$x_{p} = B^{-1}b_{r} x_{N} = 0$
⊖ 3.3 Example (continued)
Basis 3
0
$\begin{pmatrix} 1 & 1 & 1 \\ & & & \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 & -1 \\ & & & \end{pmatrix}$
$B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow B^{-1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
$\begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} -3 \\ 3 \\ 2 \\ 1 \end{pmatrix}$
$\begin{pmatrix} x_2 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$ $\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$
$\Rightarrow x_{B} = \begin{vmatrix} x_{1} \\ x_{2} \end{vmatrix} = B^{-1}b = \begin{vmatrix} 1 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 3 \end{vmatrix} = \begin{vmatrix} 2 \\ 3 \end{vmatrix}$
$\begin{pmatrix} x_3 \\ x_7 \end{pmatrix} \begin{pmatrix} -3 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -3 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \end{pmatrix}$
• A basic solution x is called a basic feasible solution (bfs for short) if $x \ge 0$ i.e. x is a feasible solution of the
● 3.3 Example (continued)
 The basic solution of basis 1 is feasible, those of basis 2 and basis 3 are not.

3. The Simplex algorithm 3.2 Basic feasible solutions

The role of basic solutions for the simplex aborithm
igsim From an algebraic view, the simplex algorithm will turn out to be a local search on the set of basic feasible
solutions
To see this we need
a neighborhood (two basic feasible solutions are neighbors if they differ in at most one column)
Θ
an algorithmic analysis how to go from one basic teasible solution to a neighbor (pivot operation, pivot step, or
simply pivot)
we start with a few mathematical properties of (feasible) basic solutions
Some mathematical properties of (teasible) basic solutions
3.4 Lemma (The values of basic variables are bounded)
Let the entries of A and b be integer numbers and let x be a basic solution of Ax = b.
Let $\alpha := \max_{ij} a_{ij} $ and $\beta := \max_{ij} b_{ij} $. Then
$ x_i \leq m! \alpha^{m-1} \beta$ for all j
Proof:

Let x _B = B ⁻¹ b with B = (A _{B(1)} , A _{B(2)} ,, A _{B(m)}).
By Cramer's rule we obtain
$x_{B(\mathfrak{i})} = \frac{\det B^{\mathfrak{i}}}{\det B} \text{mit } B^{\mathfrak{i}} = (A_{B(1)}, \dots, A_{B(\mathfrak{i}-1)}, \mathfrak{b}, A_{B(\mathfrak{i}+1)}, \dots, A_{B(\mathfrak{m})})$
● A, b integer => det B integer => det B ≥ 1
Expanding det B ⁱ along column b yields m summands of the form b _i · [(m-1)×(m-1) sub-determinant of A].
Each such sub-determinant is the sum of (m-1)! products of (m-1) entries from A. Hence:
$ $ $ $ $det B^i$ $ $ $ $ $det B^i$ $ $ de
$ \mathbf{x}_{B(i)} = \frac{1}{ \det B } \leq \det B' \leq m \cdot \beta \cdot (m - 1)! \cdot \alpha^{m-1} = m! \alpha^{m-1} \beta$
[©] 3.5 Lemma (Every basic feasible solution can be optimal, we cannot do with a subset)
Let x be a basic feasible solution of Ax = b, x≥0 with basis B.
=> there is a cost vector c such that x is the only optimal solution of
min $c^{T} \times$
s.t. Ax = b
x > 0

3. The Simplex algorithm

	3.2 Basic feasible solutions
l	● Proof:
	Set $c_j := \begin{cases} 0 & \text{if } j \in B \\ 1 & \text{if } j \notin B \end{cases}$
	$^{\odot}$ => c ^T x = 0, as non-basic variables are 0
	=> x is optimal, as $c^T y \ge 0$ for every feasible solution y
	let y be another optimal solution
	=> y _i = 0 for all j ∉ B
	=> Ay = b reduces to $By_B = b \Rightarrow y_B = B^{-1}b = x_B$
	\Rightarrow x is the only optimal solution \Box
	We will see later that basic feasible solutions also suffice, i.e., they constitute the smallest set of feasible
	solutions on which the optimum is attained for all cost vectors c
	⊖ Existence of basic feasible solutions
	Question: does every LP have a basic feasible solution?

13-9

Assumption 3.2: The feasible domain S _I of an LP is non-empty			
3.6 Theorem (Existence of basic feasible solutions)			
• With assumptions			
31: rank(A) = m			
$32.5 \neq 0$			
$J_{I} \neq 0$			
Proof:			
0			
$S_{I} \neq \emptyset$ => there are feasible solutions			
let x be a solution with the most 0-entries and let w.o.l.g. $x_1, \dots, x_1 > 0$, $x_{1+1}, \dots, x_n = 0$			
\Rightarrow Ax = b reduces to A.x. + + A.x. = b (3.4)			
x ₁ x ₁ x _t 0 0			
A			

3. The Simplex algorithm 3.2 Basic feasible solutions

let A' := (A ₁ ,, A _t) and r := rank(A')
=> 0≤r≤min{t, m}
⊖ case distinction
[⊖] r = 0
• $A_j = 0$ for $j = 1,, t \Rightarrow (3.4)$ $Ax = 0$
=> (choice of x) x = 0
=> x is a basic feasible solution for any basis, a particular basis exists because of assumption 3.1
⊖O <r<t< th=""></r<t<>
Sequence a contradiction
let B´ be a non-singular submatrix of A' with rank r, w.l.o.g.
$x_1 x_2 \dots x_r \dots x_t 0 \dots 0$
$B' = \begin{pmatrix} a_{11} & \cdots & a_{1r} \\ \vdots & \ddots & \vdots \end{pmatrix} B'$
(a _{r1} a _{rr})

3. The Simplex algorithm

		0	
3.2	Basic	feasible	solutions

	i.e.,, x1,, xn depend affinely linear on xn1,, x1
	Θ
	there is a row i with $\alpha_{i,r+1} \neq 0$ (otherwise we may choose $x_{r+1} = 0$ which contradicts the choice of
	x)
	vary x_{r+1} such that one of $x_1,, x_r$ or x_{r+1} becomes 0, but all stay ≥ 0
_	α _{i r+1} < 0 => x _i grows when x _{r+1} gets smaller => x ₁ ,, x ₊ stay ≥ 0
	$\alpha \rightarrow 0$ => decreasing x by $\beta > 0$ yields the condition x = $\alpha \rightarrow \beta > 0$
	\bigcirc
	$\text{choose } \theta := \min \left\{ \left. x_{r+1}, \frac{x_i}{\alpha_{i,r+1}} \right \alpha_{i,r+1} > 0 \right. \right\}$
_	and set $y_{r+1} := x_{r+1} - \theta$ and $y_i := x_i$ for $j > r+1$
_	=> $y_1,, y_r$ are determined by (*) and are ≥ 0
_	=> $y = (y_1,, y_n)^T$ is a feasible solution of the LP
	⊖ 2 cases:
	$y_{n,1} = 0$ (occurs if $\theta = x_{n,1}$)
	or some y_1, \dots, y_n become 0
	$ \sim $ contradiction to the choice of x

[⊖] 0 < r = t ≤ m
A' has t columns, rank(A') = t => the t columns of A' are linearly independent
=> (rank(A) = m) they can be augmented to a basis B of A by adding columns of A
=> x is a basic feasible solution for basis B 🗳
⊖ Boundedness of the feasible domain
last assumption
Sumption 3.3: $\{c^T x \mid Ax = b, x \ge 0\}$ is bounded from below
• this will show that we can restrict ourselves to bounded feasibility domains $S_T = \{x \mid Ax = b, x \ge 0\}$
3.7 Theorem (The feasible domain can be assumed as being bounded)
Assume
3.1: rank(A) = m
3.2: $S_{\tau} \neq \emptyset$
$3.3: \{c^T \times A \times = b, \times > 0\}$ is bounded from below
Then the LP
$\min \{c^{T} x \mid A x = b \mid x \ge O \} $ (LP)

3. The Simplex algorithm

		-	
3.2 Bas	sic fea	asible	solutions

	is equivalent to the LP
	min { $c^T x \mid Ax = b, x \ge 0, x_i \le M$ } (LP*)
	with $M := (m+1)! \alpha^m \beta$
	$\alpha := \max \{ \alpha_1 , \alpha_2 \}$
	$\beta := \max\{\{b, z \}\}$
	$z := \inf \{ c^T x \mid A x = b \mid x \ge 0 \}$
	in the sense that the optimal values coincide and (IP) and (IP*) have a common optimal solution that is a basic
	solution of (LP).
	Proof:
	et $G := \{ c^T x \mid Ax = b, x \ge 0 \} \subseteq \mathbb{R}^1 \Rightarrow z := \inf G > -\infty$ because of assumption (3.3)
	G is closed (since defined by = and \ge and the linear function $c^{T} x$) => $z \in G$
	=> { $x \in \mathbb{R}^n \mid c^T x = z$ Ax = b x > 0 } is the set of optimal solutions of (LP) (3.5)
	$rank\{c^{T}x = z, Ax = b\} = m+1$
	Theorem 3.6 => (3.5) has a basic feasible solution x with basis B
	Lemma 3.4 => x fulfills the bounds x.< M
1	

Moreover: x is feasible for (LP)
(3.5) => x is optimal for (LP) and this also for (LP*), as $S_{LP*} \subseteq S_{LP}$
rank = m+1 => B without the row for $c^{T}x = z$ contains m linearly independent columns from A
=> x is a basic solution of (LP)
$rank\{c^{T}x = z, Ax = b\} = m$
=> c is a linear combination of the rows a; of A, say $c = \sum d_i a_i$
=> $c^T x = (\sum d_i a_i)^T x = \sum d_i a_i^T x = \sum d_i b_i = constant, independent of x$
=> every such solution of (LP) is optimal, in particular a feasible basic solution.
This fulfills the bounds because of Lemma 3.4 📮

3. The Simplex algorithm 3.3 The geometry of linear programs

3. The Simplex algorithm 3.3 The geometry of linear programs

3.3 The geometry of linear programs
\bigcirc Dimension of a set $S \subseteq R^d$
= dimension of the smallest affine subspace containing 5 (affine hull of 5)
Examples:
a line has dimension 1
S = k < d+1 => dim(S) < k-1
Θ The set of solutions $S = \{x \mid Ax = b \mid x \ge 0\}$ of an LP in standard form fulfills $\dim(S) \le n-m$
because:
rank(A) = m => { x Ax = b } has dimension n-m (as long as Ax = b is solvable)
the sign restrictions $x \ge 0$ can lower the dimension
e_a , if $\{x \mid Ax = b\} \cap \{x > 0\} = \{0\}$
\bigcirc Hyperplane in \mathbb{R}^d
= affine subspace of dimension d-1
= arrive subspace of animetricity $a = 1$ = set of solutions of an equation $a = 1 + a = b$ (not all $a = 0$)
it defines two (closed) halfspaces
$\begin{cases} x \mid a \times b \end{pmatrix} and \begin{cases} x \mid a \times b \end{pmatrix}$
$ (\land \land $
Polynearon in K

3. The Simplex algorithm

	3.3 The geometry of linear programs
	 non-empty intersection of finitely many halfspaces (generated by hyperplanes)
	=> polyhedra are convex
	Polytope in R ^d
	= bounded polyhedron
	Example: Platonic Solids
@	http://www.3quarks.com/GIF-Animations/PlatonicSolids/index-de.html
	Geometric aspects of polytopes
	Feasible domains S of LPs in canonical form are polyhedra. They are polytopes if S is bounded or can be
	assumed to be bounded.
	⊖ 3.8 Example

14-2

3. The Simplex algorithm

3. The Simplex algorithm

3.3 The geometry of linear programs

× _j ≥ 0	hyperplanes H ₅ , H ₆ , H ₇
A hyperplane H supports	polyhedron P
● :<=> H∩P≠Ø and P is	s contained in one of the halfspaces defined by H
f := $H \cap P$ is then called	a face of P, and H is called a P supporting hyperplane defining f
important: facet	:= face of dimension d-1
vertex or ex	<pre>ktreme point := face of dimension 0 (a point)</pre>
edae	:= face of dimension 1 (a line segment)
⊖ Some geometric facts (wit	hout proof)
(a) A facet defining hype	erplane of P belongs to one of the halfspaces that define P (i.e., deleting H
(b) Face defining hypern	lanes do generally not fulfill (g)
The halfspace $x_2 \leq 2$	in Example 3.8 defines a face ({ $x_2 \le 2$ } \cap P) that is an edge but not a facet).
This halfspace is redun	idant, its generating inequality is already implied by others:
x ₃ ≥ 0, 3x ₂ + x ₃ ≤ 6	=> $3x_2 \le 3x_2 + x_3 \le 6 => x_2 \le 2$

3. The Simplex algorithm 3.3 The geometry of linear programs

	igodol (c) An edge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the
	converse is not true)
	S.9 Theorem (Minkowski 1896)
	(a) Every polytope is the convex hull of its vertices,
	i.e., every point x of a polytope P can be represented as
	x = $\lambda_1 x^1 + + \lambda_k x^k$, x ⁱ vertex of P, $\lambda_i \ge 0$, $\sum \lambda_i = 1$, k finite
	(b) if $V \subseteq R^d$ is finite, then conv(V) is a polytope P and {vertices of P} $\subseteq V$
	● Proof
	e partly an exercise
	(a) by induction on dimension d
	In example 3.8 we have
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	$\begin{pmatrix} 1 \end{pmatrix}^{2} \begin{pmatrix} 0 \end{pmatrix}^{3} \begin{pmatrix} 3 \end{pmatrix}^{6} \begin{pmatrix} 0 \end{pmatrix}$
	(b) is intuitively clear geometrically, but more complicated to prove algebraically.
1	

3. The Simplex algorithm

		-	
3.3 The	aeome	trv of linear	proarams
		· / · · · · · ·	

Operation ce: There are two views on a polytope:
Consequence: There are two views on a polytope.
1. as convex hull of a finite set of points
(e.g. of the incidence vectors of solutions of a combinatorial antimization problem)
2. as the intersection of finitely many halfspaces (if this intersection is bounded)
(this is the natural view when the inequalities are explicitly given a cut for LPs in consticut form)
(This is the natural view when the inequalities are explicitly given, e.g., as for LPS in canonical form)
A third, algebraic, will be derived in the seguel. It consists of a linear system Ax = b, x ≥ 0 whose basic
feasible solutions correspond to the vertices of P.
Θ
Algebraic interpretation of polytopes
Erom the polytope to the linear system
Let P be a polytope in R ^{n-m} given by the n inequalities (3.6)
$x_i \ge 0$ $i = 1,, n-m$
$h_{i,1}x_1 + + h_{i,n} x_{n,m} + q_i \le 0$ $i = n-m+1,, n$
Let H be the coefficient matrix of inequalities i = n-m+1,, n
Therefore slock variables x for inequalities i = n-m+1 n (m many)
In ouce such valuables x, for nequalities 1 - n-niti,, n (n niany)

3. The Simplex algorithm

3.3 The geometry of linear programs

3. The Simplex algorithm

3.3 The geometry of linear programs

3. The Simplex algorithm 3.3 The geometry of linear programs

with $x_j' := x_j$ j = 1,, n-m (we "forget" the slack of basic variables).
Obviously, g is a linear function and injective, as $x_{n-m+1},, x_n$ are uniquely determined by $x_1,, x_{n-m}$.
Moreover:
$x_j = 0$ for j = 1,, n-m, i.e. j \in B, implies that x' lies on a "coordinate hyperplane" in P
$x_{j} = 0$ for j = n-m+1,, n, i.e. j \in B, implies that a P-defining inequality holds with equality
(basic variables "correspond" to slack variables, where this role is defined somewhat arbitrarily by the
choice of B)
 3.8 Example (continued)
$ \begin{array}{c} A = \\ 1 \vdots \\ 1 \end{array} \qquad \begin{array}{c} b = \\ 3 \end{array} $

3. The Simplex algorithm

3.3 The geometry of linear programs

3. The Simplex algorithm

(3) y is a basic feasible solution of S
Proof
Assume there are $z', z'' \in P, 0 < \lambda < 1$ with $y' = \lambda z' + (1-\lambda)z''$
y' is a vertex => there is a halfspace HS = { $z \mid h^T z \le g$ } with HS $\cap P$ = {y'}
$z', z'' \in HS \Rightarrow h^T z' > g$ and $h^T z'' > g \Rightarrow h^T (\lambda z' + (1-\lambda)z'') > g$
=> y′ ∉ HS, a contradiction
$(2) \Rightarrow (3)$
Let $y \in S$ be constructed from y' according to (3.7) and let $B' := \{j \mid y_i > 0\}$
Claim: the columns A_i , with $j \in B'$ are linearly independent
if not, there exist numbers d_i (not all 0) with $\sum_{i \in B'} d_i A_i = 0$ (3.10)
Definition of B' => $\sum_{i \in B'} y_i A_i = b$ (3.11)
(3.11) + θ·(3.10) and (3.11) - θ·(3.10) yield
$\Sigma_i \in B'$ $(Y_i + \theta d_i)A_i = b$ and $\Sigma_i \in B'$ $(Y_i - \theta d_i)A_i = b$
$y_i > 0$ for $j \in B' \Rightarrow 0 > 0$ can be chosen in such a way that $y_i + \theta d_i \ge 0$ and $y_i - \theta d_i \ge 0$.
To this end we must have:

3. The Simplex algorithm

14-13

3.3 The geometry of linear programs

 $\theta \leq y_j / |d_j|$ for negative and positive d_j => this is possible for all $j \in B'$ simultaneously 0 define x^1 and x^2 from S by $x_j^1 := \begin{cases} y_j - \theta d_j & j \in B' \\ 0 & \text{otherwise} \end{cases} \quad x_j^2 := \begin{cases} y_j + \theta d_j & j \in B' \\ 0 & \text{otherwise} \end{cases}$ => x^1 , $x^2 \in S$, different from y, and $y = \frac{1}{2}x^1 + \frac{1}{2}x^2$ $g: S \rightarrow P$ defined by (3.9) is linear and g(y) = y' $\Rightarrow y' = g(y) = g\left(\frac{1}{2}x^{1} + \frac{1}{2}x^{2}\right) = \frac{1}{2}g(x^{1}) + \frac{1}{2}g(x^{2})$ with $g(x^1)$, $g(x^2) \in P \Rightarrow$ a contradiction to (2) ● => |B'| ≤ m => (Assumption 3.1) B' can be augmented to a basis B 0 => y is a basic feasible solution for B Θ (3) => (1) \bigcirc let y be a basic feasible solution of $Ax = b, x \ge 0$ with basis B
3. The Simplex algorithm 3.3 The geometry of linear program

3.3 The geometry of linear programs
Lemma 3.5 => there is a cost vector c such that y is the only optimal solution of the LP with cost vector
с.
In other words,
y is the only solution of (3.12)
c ^T x ≤ c ^T y =: b ₀ ,
$Ax = b, x \ge 0$
Transform (3.12) into standard form with a slack variable x _{n+1} for c ^T x ≤ b ₀ :
$\begin{pmatrix} c_1 & \dots & c_n & 1 \\ & & & 0 \\ A_1 & \dots & A_n & \vdots \\ & & & & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} b_0 \\ b \end{pmatrix}$
=> B ∪ {n+1} is a basis of (3.12)
Transform (3.12) according to transformation g defined by (3.9).
This yields a system of linear inequalities whose m last inequalities define the polytope P.
The first inequality is transformed into c1´x1´ + + cn m´xn m´ ≤ b0´ (3.13)
The transformation is a bijection
3. The Simplex algorithm 3.3 The geometry of linear programs => y -> y', and y' is the only point in P fulfilling (3.13) with equality
=> $c_1 x_1 + + c_n x_n = b_n$ is a supporting hyperplane H of P and $H \cap P = \{y'\}$
=> y' is vertex of P []
There is a similar characterization for edges of the polytope (later)
Corollary (Feasible solutions are convex combinations of basic feasible solutions)
Under assumptions 3.1 - 3.3, every feasible solution in S is a convex combination of basic feasible solutions.
Proof:
Decayse of Theorem 2.7 we may accure that the feasible demain S is bounded

Because of Theorem 3.7, we may assume that the feasible domain S is bound

=> the associated polyhedron P is a polytope

• Let $x \in S$ and let x' be the associated point in P

• => (Minkowski's Theorem) x' is a convex combination of vertices x^{i} of P

=> x is a convex combination of the basic feasible solutions corresponding to these vertices

ecause:

et x' = $\sum \lambda_i x^{i}$ => z := $\sum \lambda_i x^i \in S$, as S is convex

3.3 The geometry of linear programs		
$ g \text{ linear } = g(z) = \sum \lambda_i g(x^i) = \sum \lambda_i x'^i = x' $		
g injective, g(x) = x' = g(z) => x = z □		
A more precise analysis of the correspondence "basic feasible solution <-> vertex"		
vertices x', y' are different <=> associated basic feasible solutions x, y are different		
But: in general not the associated bases!		
i.e., different bases \land different associated basic solutions		
Example 3.8 (continued)		
$A = \begin{pmatrix} 1 & 1 & 1 & \vdots & 1 \\ 1 & \vdots & 1 \\ & 1 & \vdots & 1 \\ & & & & \\ & & & & \\ & & & & & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 4 \\ 2 \\ 3 \\ 6 \end{pmatrix}$		
B = { 1, 2, 3, 6 } B' = { 1, 2, 4, 6 }		
=> $B^{-1}b = (B')^{-1}b' = (2, 2, 0, 3)^{T}$. In both cases the associated basic solution is $(2, 2, 0, 0, 0, 3, 0)^{T}$		
Geometric view:		
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$		
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x = (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x = (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible solution	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x = (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible solution edgenerate basic feasible solution, degenerate vertex	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 \equiv x_5 \equiv x_7 \equiv 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 \equiv x_5 \equiv x_7 \equiv 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x \equiv (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible solution e degenerate basic feasible solution, degenerate vertex e = basic feasible solution (corresponding to a vertex) with more than n-m zero entries	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \implies x_4 \equiv x_5 \equiv x_7 \equiv 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\implies x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\implies x_3 \equiv x_5 \equiv x_7 \equiv 0$ $\implies x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x \equiv (2,2,0,0,0,3,0)^T$ is the same basic feasible solution $\stackrel{\Theta}{=}$ degenerate basic feasible solution, degenerate vertex $\stackrel{\Theta}{=}$ basic feasible solution (corresponding to a vertex) with more than n-m zero entries	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \implies x_4 \equiv x_5 \equiv x_7 \equiv 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\implies x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\implies x_3 \equiv x_5 \equiv x_7 \equiv 0$ $\implies x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x \equiv (2,2,0,0,0,3,0)^T$ is the same basic feasible solution degenerate basic feasible solution, degenerate vertex = basic feasible solution (corresponding to a vertex) with more than n-m zero entries 3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices)	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \Rightarrow x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x = (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible solution e degenerate basic feasible solution, degenerate vertex = basic feasible solution (corresponding to a vertex) with more than n-m zero entries a 3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices) x is a basic feasible solution for several bases $\Rightarrow x$ is degenerate	14-17	
Non-basic variables in B are $x_4, x_5, x_7 \implies x_4 = x_5 = x_7 = 0$ 3. The Simplex algorithm 3.3 The geometry of linear programs $\Rightarrow x' \in H_1 \cap H_2 \cap H_4$ Non-basic variables in B' are x_3, x_5, x_7 non-basic variables $\Rightarrow x_3 = x_5 = x_7 = 0$ $\Rightarrow x' \in H_5 \cap H_2 \cap H_4$ i.e., x' lies on more than 3 facets in both cases, x' is the same vertex $(2,2,0)^T$ and $x = (2, 2, 0, 0, 0, 3, 0)^T$ is the same basic feasible solution $\textcircled{\ }$ degenerate basic feasible solution, degenerate vertex $\textcircled{\ }$ = basic feasible solution (corresponding to a vertex) with more than n-m zero entries $\textcircled{\ }$ 3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices) $\textcircled{\ }$ x is a basic feasible solution for several bases \Rightarrow x is degenerate $\textcircled{\ }$ x' is a degenerate vertex \iff x' lies in the intersection of more than n-m facets	14-17	

14-16

Proof Let B and B' be different bases for x

=> x_j = 0 for the n-m Indices $j \in B$ and for the n-m Indices $j \in B'$

=> x is degenerate

3.3 The geometry of linear programs

3. The Simplex algorithm

3.3 The geometry of linear programs

$c^T x = c_B^T x_B + c_N^T x_N$
$= c_B^T (B^{-1}b - B^{-1}A_N x_N) + c_N^T x_N$
$= c_{P}^{T}B^{-1}b + (c_{N}^{T} - c_{P}^{T}B^{-1}A_{N})x_{N}$
$\frac{D}{constant}$ $\frac{1}{d^T}$
=> min c ^T x (algebraic) corresponds to min d ^T x _N (geometric)
Proof in the geometric view
P is closed and bounded, y -> d ^T y is continuous on P
=> optimum is attained on P
let y^0 be optimal and let y^k , k = 1,, r be the vertices of P
Minkowski's Theorem => $y^0 = \sum \lambda_k y^k$ with $\lambda_k \ge 0$, $\sum \lambda_k = 1$
let j be an index for which $d^{T}y^{j}$ is minimum among the vertices y^{k} , $k = 1,, r$
=> $d^{T}y^{O} = d^{T} \sum \lambda_{k}y^{k} = \sum \lambda_{k}d^{T}y^{k} \geq \sum \lambda_{k}d^{T}y^{j} = d^{T}y^{j} \sum \lambda_{k} = d^{T}y^{j}$
=> x ^j is optimal => optimum is attained at a vertex
, correspondence vertices <-> basic feasible solutions => optimum is attained at a basic feasible solution
The second statement is easy to see

3.3 The geometry of linear programs

Î	Garallen
	Every optimal solution is a convex combination of basic optimal feasible solutions
	 Proof:
	Let x be an optimal solution of min $c^T x$, $A x = b$, $x \ge 0$
	Corollary of Theorem 3.10 => x is a convex combination of basic feasible solutions
	say $x = \lambda_1 x^1 + + \lambda_k x^k$, with basic feasible solutions x^i , $\lambda_i \ge 0$, $\sum \lambda_i = 1$, k finite
	$ = c^{T} \mathbf{x} = \sum \lambda_i c^{T} \mathbf{x}^i (*) $
	Assume that x^r is not optimal => $c^T x < c^T x^r$
	(*), $\lambda_i \ge 0$ => there is some x^s in the convex combination with $c^T x > c^T x^s$
	=> this contradicts the fact that x is optimal
	=> all basic solutions in the convex combination are optimal 🗅
	Theorem 3.12 is the basis for the simplex algorithm
	clever local search among the vertices (geometric view)
_	clever local search among the basic feasible solutions (algebraic view)

3. The Simplex algorithm

3.4 Local search among basic feasible solutions

	Main topics of this chapter
_	We consider the pivot operation that defines the neighborhood of basic feasible solutions
	We analyze the underlying cleabraic calculus
	we analyze the underlying algebraic calculus
	We will introduce the use of tableaus
	First thoughts on the pivot operation
	Let y be a basic feasible solution of Ax = 0 x>0 with basis B
	=> can write Ay = b as $\sum_{i \in B} A_{B(i)} Y_{B(i)}$ = b (3.14)
	B basis => every column A, ∉ B is a linear combination of basic columns
_	
	=> there are numbers x_{ij} (i = 1,, m) with $\sum_{i=1,,m} A_{B(i)} x_{ij} = A_j$ (3.15)
	$(3.14) - \theta \cdot (3.15) \implies \sum_{i=1, \dots, M} A_{P(i)} (y_{P(i)} - \theta x_{ii}) + \theta A_i = b$ (3.16)
	$\Theta = \frac{1}{1 - 1, \dots, 1} \Theta(1) \circ \Theta(1) (1 - 1) \circ \Theta(1) = 1$
	We will now change 0 in (3.16) to obtain another basic feasible solution.
	We consider 3 cases:
	Case 1: y is not degenerate and not all $x_{ij} \le 0$ (i = 1,, m)
	y not degenerate => all y _{R(i)} >0 (i = 1,, m)
	$ransition$ from $\theta = 0$ to $\theta > 0$ corresponds to the transition from y to x(θ) with

3. The Simplex algorithm 3.4 Local search among basic feasible solutions

3. The Simplex algorithm

3.4 Local search among basic feasible solutions

3.4 Local search among basic feasible solutions

=> transition from y = $x(0)$ to $x(\theta)$ reads as		
$y = \begin{pmatrix} 2\\0\\2\\0\\0\\1\\4 \end{pmatrix} \rightarrow x(\theta) = \begin{pmatrix} 2-\theta\\0\\0\\2+\theta\\0\\0\\1\\1\\4 \end{pmatrix} \qquad $		
x(1) is a basic feasible solution with basis B = { 3, 1, 5, 7 }		
Case 2: y is degenerate so there is an index i with y _{B(i)} = 0 and x _{ii} > 0		
$\Rightarrow \theta_0 = 0$		
=> no movement in R ⁿ and thus also not in R ^{n-m}		
=> we stay in the same vertex / basic feasible solution, but obtain another basis, as $A_{B(i)}$ and A_j are		
exchanged		
Case 3: all x _{ij} ≤ 0 (i = 1,, m)		
\odot => θ can be made arbitrarily large and $x(\theta)$ stays feasible		
=> SI is unbounded		

3. The Simplex algorithm

h

3.4 Local search among basic feasible solutions

 Basis exchange 3.13 Theorem (basis exchange) When computing θ₀, suppose that the minimum is attained at i = k, then x(θ₀) is a basic feasible solution with basis B', and B'(i) = { B(i) i = k / j		-> objective function is not bounded from below because of Theorem 5.7
Basis exchange 3.13 Theorem (basis exchange) When computing θ_0 , suppose that the minimum is attained at $i = k$, then $x(\theta_0)$ is a basic feasible solution with basis B', and B'(i) = $\begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0)$ is degenerate if k is not unique Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis	9	
■ 3.13 Theorem (basis exchange) ■ When computing θ_0 , suppose that the minimum is attained at $i = k$, then $x(\theta_0)$ is a basic feasible solution with basis B', and $B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0)$ is degenerate if k is not unique ■ Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ □ ■ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis $x = larges$ the basis and x_j enters the basis	В	asis exchange
Shis relation (basis exchange) When computing θ_0 , suppose that the minimum is attained at $i = k$, then $x(\theta_0)$ is a basic feasible solution with basis B', and B'(i) = $\begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0)$ is degenerate if k is not unique Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis $x = leaves the basis and A_j$ enters the basis	Θ	313 Theorem (hosis exchange)
When computing θ_0 , suppose that the minimum is attained at $i = k$, then $x(\theta_0)$ is a basic feasible solution with basis B', and $B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0)$ is degenerate if k is not unique Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis		
with basis B', and $B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0) \text{ is degenerate if } k \text{ is not unique}$ Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis		When computing θ_{α} , suppose that the minimum is attained at i = k, then $x(\theta_{\alpha})$ is a basic feasible solution
with basis B', and $B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0) \text{ is degenerate if } k \text{ is not unique}$ Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis x = leaves the basis and x = anters the basis		
$B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0) \text{ is degenerate if } k \text{ is not unique}$ Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis		with basis B', and
$B'(i) = \begin{cases} B(i) & i \neq k \\ j & i = k \end{cases}$ $x(\theta_0) \text{ is degenerate if } k \text{ is not unique}$ Proof: this follows from the previous arguments In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis $x = leaves the basis and x = anters the basis$		
$\begin{array}{c} (\mathbf{j} \mathbf{i} = \mathbf{k} \\ \mathbf{x}(\theta_0) \text{ is degenerate if } \mathbf{k} \text{ is not unique} \\ \hline \mathbf{Proof: this follows from the previous arguments} \\ \hline \mathbf{In the example we obtain } \mathbf{k} = 3, \ \mathbf{B}(3) = 6, \ \mathbf{B}'(3) = 5 \ \Box \\ \hline \end{array}$ $\begin{array}{c} \hline \\ \mathbf{This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) \\ \hline \\ \mathbf{We say that: } A_{\mathbf{B}(\mathbf{k})} \text{ leaves the basis and } A_{\mathbf{j}} \text{ enters the basis} \\ \hline \\ \mathbf{x} = \text{ leaves the basis and } \mathbf{x} \text{ enters the basis} \\ \hline \end{array}$		$B'(i) = \begin{cases} B(i) & i \neq k \end{cases}$
 x(θ₀) is degenerate if k is not unique Proof: this follows from the previous arguments In the example we obtain k = 3, B(3) = 6, B'(3) = 5 □ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis 		j i=k
 x(θ₀) is degenerate if k is not unique Proof: this follows from the previous arguments In the example we obtain k = 3, B(3) = 6, B'(3) = 5 □ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis 		、
 Proof: this follows from the previous arguments In the example we obtain k = 3, B(3) = 6, B'(3) = 5 □ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis x leaves the basis and x enters the basis		$x(\theta_{0})$ is degenerate if k is not unique
 Proof: this follows from the previous arguments In the example we obtain k = 3, B(3) = 6, B'(3) = 5 □ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis 		
In the example we obtain $k = 3$, $B(3) = 6$, $B'(3) = 5$ This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis x = leaves the basis and x enters the basis		Proof: this follows from the previous arguments
 This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis 		In the example we obtain k = 3, B(3) = 6, B´(3) = 5 🗳
 This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply pivot) We say that: A_{B(k)} leaves the basis and A_j enters the basis 	0	
pivot) We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis		This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply
We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis		pivot)
x leaves the basis and x enters the basis		We say that: $A_{B(k)}$ leaves the basis and A_j enters the basis
		x leaves the basis and x enters the basis

3.4 Local search among basic feasible solutions

	θ_0 is called the primal step length
	• Two basic feasible solutions with different bases are called neighbors, if one can be obtained from the other by
l	a pivot operation. So pivot operations define a neighborhood on the set of basic feasible solutions.

3. The Simplex algorithm

3.5 Organization in tableaus

⊖ Goal: make the pivot operation efficient
=> must get hold of the x _{ii}
=> must express non-basic columns as a linear combination of basic columns
this can be done by transforming the basis to an identity matrix
An example
Let Ax = b be given as
$3x_1 + 2x_2 + x_3 = 1$
$3x_1 + x_2 + x_3 + x_4 = 5$
$2x_1 + 5x_2 + x_3 + x_5 = 4$
We write this down in a tableau:
we write this down in a tablead.
$x_1 x_2 x_3 x_4 x_5$
4 2 5 1 0 1
with b as column U

3. The Simplex algorithm 3.5 Organization in tableaus

• We transform the linear system / the tableau w.r.t. a basis B is such a way that the basic columns form the
identity matrix.
For B = { 3, 4, 5 } this gives the following tableau
$x_1 x_2 x_3 x_4 x_5$
$\Rightarrow x_{B(1)} = x_3 = 1$
$x_{B(2)} = x_4 = 2$
$x_{B(3)} = x_5 = 3$
Moreover $A_1 = 3A_{B(1)} + 2A_{B(2)} - 1A_{B(3)}$. The coefficients are obviously given by the column of x_1
=> the numbers x _{ij} are in column j of the transformed tableau (transformed such that B is the identity
matrix)
So if A ₁ is to enter the basis, then
$\Theta_0 = \min \{ \frac{\gamma_{B(i)}}{x_{i1}} \mid x_{i1} > 0, i = 1,, m \} = \min \{ \frac{1}{3}, \frac{2}{2} \} = \frac{1}{3} \text{ und } k = 1$

3. The Simplex algorithm 3.5 Organization in tableaus

The table	au for the new basis is then obtained by transforming it so that A_1 becomes the new unit vector in
the basis	
	$-x_1 x_2 x_3 x_4 x_5$
<u>1</u> 3	$1 \frac{2}{3} \frac{1}{3} 0 0$
<u>4</u> 3	$0 - \frac{7}{3} - \frac{2}{3} = 1 = 0$
<u>10</u> 3	$0 \frac{11}{3} \frac{1}{3} 0 1$
=> × _{B'(1)}	$x_1 = 1/3$
× _{B′} (2	$_{)} = x_{4} = 4/3$
× _{B´(3}	$_{)} = x_{5} = 10/3$
In this bo	isis exchange, a_{11} plays the role of the pivot element (as in Gaussian elimination)
-	
The pivotin	g rules
Eet (x _{ii})	be the tableau for basis B and let (x'_{ij}) be the tableau for the new basis B', both with the right-
hand-side	as column 0, i.e. (x_{i0}) and (x'_{i0}) . Let x_{ki} be the pivot element. Then the entries of the new tableau

3. The Simplex algorithm 3.5 Organization in tableaus

(3.18)	$\begin{cases} x'_{kq} = \frac{x_{kq}}{x_{kj}} & q = 0, \dots, n \\ x'_{iq} = x_{iq} - x'_{kq} x_{ij} & i = 1, \dots, m, \ i \neq k; \ q = 0, \dots, n \\ B'(i) = B(i) & i = 1, \dots, m, \ i \neq k \end{cases}$
are obtained by	$ (B'(i) = j \qquad i = k $
Mnemonic:	
q	j
k × _{kq}	xkj must become 1
i × _{iq}	x _{ij} must become 0
L	

3. The Simplex algorithm

=> we can improve the cost by letting x; enter the basis
$\overline{c}_{j} \geq 0$ for all non-basic variables x.
=> current feasible basic solution is locally optimal w.r.t. the basis exchange heighborhood
=> we have a globally optimal feasible basic solution, i.e., the neighborhood w.r.t. basis exchange is exact
Notation
X = current tableau for basis B
A = initial matrix, b initial right hand side
Then
(b A)
i.e., current tableau is obtained by multiplying (b A) with B^{-1} from the left
$ \stackrel{\Theta}{=} z^{T} = c^{T}_{B} X = c^{T}_{B} B^{-1} A $
i.e., this equation describes the change in cost z_{1} for the basic variables when $x_{1} = 1$ enters the basis
because:

3.6 Choosing a profitable column

3. The Simplex algorithm 3.6 Choosing a profitable column

When x _j enters the basis, the pivoting rules (3.18) yield the following new right hand side (= column 0 of
the tableaus)
$x'_{i0} = \begin{cases} x_{i0} - \theta_0 x_{ij} & i \neq k \\ \text{with } \theta_0 = \frac{x_{k0}}{2} \end{cases}$
$\theta_0 \qquad i=k \qquad x_{kj}$
Let z be the old objective function value function value and let z' be the new one
=> new objective function value is
$z' = \sum_{i=1}^{m} (x_{i0} - \theta_0 x_{ij}) c_{B(i)} + \theta_0 c_j$
$i=1, i\neq k$
m
$=\sum_{i=1}^{}x_{i0}c_{B(i)}-\theta_{0}\sum_{i=1}^{}x_{ij}c_{B(i)}-(x_{k0}-\theta_{0}x_{kj})c_{B(k)}+\theta_{0}c_{j}$
$= z + \theta_0 \left(x_{kj} c_{B(k)} + c_j - \sum_{i=1}^{j} x_{ij} c_{B(i)} \right) - x_{k0} c_{B(k)}$
$=c_j-z_j$

3. The Simplex algorithm

3.6 Choosing a profitable column

$=z+ heta_0(c_j-z_j)$ + $ heta_0x_{kj}c_{B(k)}$ - $x_{k0}c_{B(k)}$
$= x_{k0}c_{B(k)} \operatorname{as} \theta_0 = x_{k0}/x_{kj}$
$= z + \Theta_0(c_j - z_j)$
=> (3.19)
Proof of (2)
Let y be a feasible solution of the LP, i.e., $Ay = b$, $y \ge 0$
$\bar{c} = c - z \ge 0 \Rightarrow c \ge z$. Together with $y \ge 0$ we obtain
$c^T y \ge z^T y = c_B^T B^{-1} A y = c_B^T B^{-1} b = c_B^T x_B$
So x is globally optimal (and in particular also a best basic feasible solution) 🖵
⊖ Tableau with reduced costs
The optimality criterion suggests to make the reduced costs available in the tableau.
=> add them as row 0
Question: How to obtain the initial reduced costs from the given objective c?
Write the cost as

3. The Simplex algorithm 3.6 Choosing a profitable column

$$0 = -z_0 + c_1 x_1 + \dots + c_n x_n$$
This can be seen as enlarging $Ax = b$ to
$$\begin{pmatrix} 1 & \vdots & c^T \\ \cdots & \cdots & \cdots \\ 0 & \vdots & A \end{pmatrix} \begin{pmatrix} -z_0 \\ \cdots \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ \cdots \\ b \end{pmatrix}$$
For a basic variable x_j we obtain
$$\bar{c}_j = c_j - z_j = c_j - \sum_{i=0}^{m} x_{ij} c_{B(i)} = 0$$
since (x_{ij}) is a unit vector
with 1 at entry i_0 with $B(i_0) = j$

$$\Rightarrow c_j - \sum_{i=0}^{m} x_{ij} c_{B(i)} = c_j - c_j = 0$$
So $\bar{c}_j = 0$ for basic variables
$$\Phi$$
 for non-basic variables
$$\Phi$$
 for non-basic variables x_j we obtain: (3.21)
$$\bar{c}_j = c_j - z_j = c_j - \sum_{i=1}^{m} x_{ij} c_{B(i)} = c_j - c_B^T B^{-1} A_j = c_j - c_B^T X_j$$

3. The Simplex algorithm 3.6 Choosing a profitable column

1

i.e., $\overline{c_j}$ is obtained from c and X for non-basic variables
for -z ₀ we obtain: (3.22)
m
$-z_0 = -\sum_{i=1}^{} c_{B(i)} x_{B(i)} = -c_B^T X_0$
i.e., $-z_0$ is also obtained from c and X
New enlarged tableau (in the following denoted as tableau)
$-\mathbf{z}_0$ $\bar{\mathbf{c}}_1$ $\bar{\mathbf{c}}_j$ $\bar{\mathbf{c}}_n$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{1}{\sqrt{1-1}} \frac{1}{\sqrt{1-1}} 1$
$B^{-1}b$ $B^{-1}A_j$
3.15 Theorem (Updating the reduced cost)
At a basis exchange, the reduced costs are updated by the same rules (3.18) as all other rows of the tableau
(3.18).
In other words: for column j entering the basis, row 0 is transformed so that $x_{0j} = \bar{c}_j$ becomes 0. The

3. The Simplex algorithm 3.6 Choosing a profitable column

I	$$ while there is a column j with $\overline{c_j}$ < 0 do
	[●] choose column j with ēi < 0
	if x < 0 for all i then return "objective function is unbounded"
<	\Leftrightarrow determine θ_{a} and index k for which the minimum in (3.17) is attained
<	\sim pivot with pivot entry x = according to (3.18) (also for row 0)
T	
+	reidin x _B
-	⊖ Fxample
	$\bigcup_{m \in \mathbb{N}} x_1 + x_2 + x_3 + x_4 + x_5$
	1 2 3 4 5 st $3x_1 + 2x_2 + x_2 = 1$
	$5x_1 + x_2 + x_3 = 3$
T	2x + 5x + x = 4
+	$2^{1} + 3^{2} + 3^{3} + 5^{-1}$
+	$x_j \ge 0$
+	Initial tableau (not yet with reduced costs and identity matrix as basis)

3. The Simplex algorithm 3.6 Choosing a profitable column

$x_1 x_2 x_3 x_4 x_5$	7	
0 1 1 1 1 1		
1 3 2 1 0 0		
3 5 1 1 1 0		
4 2 5 1 0 1		
Transform it w.r.t. basis B = { 3	3, 4, 5 }	
i.e., columns 3, 4, 5 change into	unit vectors (including row U for the cost coefficients)	
	V-	
-7 -6 -3 -3 -3 -3 -3	^>	
	<u> </u>	
	0	
$x_4 2 2 -1 0 1$		
x ₅ 3 -1 3 0 0	1	
~~ .		
A specific transformation:		
1. subtracting row 1 from row	v 2 and from row 3 vields the identity matrix in rows 1-3:	
2. subtracting rows 1-3 from r	row 0 correspond to (3.21) and (3.22)	
Pivot operation:		
•		

3. The Simplex algorithm 3.6 Choosing a profitable column

Columns 1 and 2 have reduced costs < 0, we choose x_2 to enter the basis.		
Computing θ_0 yields $\theta_0 = \min\{1/2, 3/3\} = 1/2$ with $k = 1$. Hence $x_{0(1)} = x_0$ leaves the basis.		
$x_1 x_2 x_3 x_4 x_5$		
-2 -9/2 -9/2 -9/2 -9/2 -9/2 -9/2 -9/2 -9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
x ₅ 3/2 -11/2 0 -3/2 0 1		
All reduced costs ≥ 0 => optimal solution reached		
x = (0, 1/2, 0, 5/2, 3/2) is as basic optimal solution with cost $z = 9/2$		
Applets for nivoting		
 Advanced Simplex Pivoting Tool 		
Advanced Simplex Pivot Tool		
Matrix Row Operation Tool		
Matrix Kew Operation Foor		
<u>mip//people.notsina.edu/facuity/oteran_waner/kediwona/futohaisri/scriptpivotz.mm</u>		

	Main topics of this chapter
	Strategies for the choice of a column (pivoting rules)
	Strategies for the choice of a pivot element in a column if there are more than one
	In particular: Ensure termination of the simplex algorithm
	Strategies for the choice of a column (Pricing)
	• We have a choice if several $\bar{c}_i < 0$, this choice influences the number of pivot operations.
	There is no "best" choice. Commercial solves apply a wide selection of heuristics. Here are some of them:
- T	

(1) Steepest relative descent among the non-basic variables

Among all columns j with $\bar{c}_i < 0$, choose j with maximum $|\bar{c}_i|$

This column has the largest relative descent of cost in the direction of a non-basic variable. However, since

 θ_0 is not known yet, this choice does not necessarily lead to the largest descent.

(2) Steepest absolute descent among the non-basic variables

Among all columns j with $\bar{c}_j < 0$, choose j with maximum $|\theta_0 \bar{c}_j|$

This column has the largest absolute descent of cost in the direction of a non-basic variable. It generally

reduces the number of pivots, but at the price of an increase of computational effort by a factor of m per

3. The Simplex algorithm

 \bigcirc

3.7 Pivoting rules and cycling

pivot compared with (1)		
(3) Largest relative descent in the whole feasible domain		
Among all columns j with $\overline{c}_j < 0$, choose j with maximum		
$\frac{c_j}{c_j} = \frac{c_j}{1 + c_j} \text{ with } \theta = 1$		
$\sqrt{1 + \sum_{i=1}^{m} x_{ij}^2} x(\theta) - x $		
This column has the largest relative descent of cost in the direction of $x(\theta) - x$, but is computationally very		
expensive		
Strategies for the choice of the pivot element		
This choice is not so important for termination of the simplex algorithm if θ_0 > 0, because then the pivot		
operation leads to a new vertex / a new basic feasible solution with a better objective function value.		
Tt is however important if $\theta_0 = 0$. In this case, the current basic solution is degenerate and the pivot operation		
changes only the basis, but not the basic solution / vertex, see Theorem 3.13		
This may lead to cycling, i.e., starting from tableau X we arrive again at tableau X after several pivots		
=> we have traversed a "cycle" of different bases with the same basic solution		
=> the simplex algorithm does not terminate		

S.15 Example (An example for cycling , Gass 1964)
min $-3/4 x_1 + 150 x_2 - 1/50 x_3 + 6 x_4$
s.t. $1/4 x_1 - 60 x_2 - 1/25 x_3 + 9 x_4 \le 0$
$1/2 \times_1 - 90 \times_2 -1/50 \times_3 + 3 \times_4 \le 0$
×_3 ≤ 1
x; ≥0
Initial tableau with a basis of slack variables
X1 X2 X3 X4 X5 X6 X7
-z 0 -3/4 150 -1/50 6 0 0 0
x ₅ 0 1/4 -60 -1/25 9 1 0 0
x ₆ 0 1/2 -90 -1/50 3 0 1 0
x ₇ 1 0 0 1 0 0 1
Choosing the sequence
×11 X22 X13 X24 X15 X26
of pivot element, we arrive again at the initial tableau

3. The Simplex algorithm 3.7 Pivoting rules and cycling

	(b) If the rows i = 1,, m of the current tableau are lexicographically positive, then the simplex
	algorithm with lexicographic anti-cycling rule terminates after finitely many steps.
	Proof
	○ (1) The rows of the current tableau can be made lexicographically positive
	<pre></pre>
T	
+	=> every row either starts with $x_{i0} > 0$ or with $(0,,0,1,)$, where $x_{i,B(i)} = 1$
+	=> every row is lexicographically positive, i.e., > _{lex} (0,0,,0)
	🖻 (2) The lex-min is unique
	Suppose not => there are rows i, r with
	$\frac{1}{x_{ij}}(x_{i0}, x_{i1}, \dots, x_{in}) = \frac{1}{x_{rj}}(x_{r0}, x_{r1}, \dots, x_{rn})$
	=> rows i and r are linearly dependent
	=> this contradicts assumption 3.1 that rank(A) = m
	○ (3) All rows of the tableaus stay lexicographically positive after a pivot step
	e if x, is the nivet element, then the new rows after niveting are
1	
+	tor 1 = K:

3. The Simplex algorithm 3.7 Pivoting rules and cycling

$$\frac{1}{x_{kj}}(x_{k0}, x_{k1}, \dots, x_{kn})$$

$$x_{kj} \ge 0 \implies \text{we stay lexicographically positive}$$
for $i \neq k$:
$$(x_{i0}, x_{i1}, \dots, x_{in}) - x_{ij} \frac{1}{x_{kj}}(x_{k0}, x_{k1}, \dots, x_{kn})$$
This is $\ge_{lex} (0, 0, \dots, 0)$

$$\Leftrightarrow \frac{1}{x_{kj}}(x_{k0}, x_{k1}, \dots, x_{kn}) <_{lex} \frac{1}{x_{ij}}(x_{i0}, x_{i1}, \dots, x_{in})$$
This is the case since row k is the lex-min, and the lex-min is unique (equality cannot happen)
$$\stackrel{\odot}{=} (4) \text{ Row 0 (the cost row) strictly increases lexicographically after every pivot step}$$
if x_{kj} is the pivot element, then the new row 0 after the pivot operation is obtained as

3.7 Pivoting rules and c	cycling
--------------------------	---------

$(-z, \bar{c}_1, \dots, \bar{c}_n) - \frac{-}{x_{kj}} (\bar{c}_j) (x_{k0}, x_{k1}, \dots, x_{kn})$	
lex nositive	
→ 0 as < < 0 as	
pivot element reduced cost in	
the pivot column	
=> the new row is lexicographically larger	
⊖ (5) Termination	
Every basis uniquely determines row 0 because of (3.21) and (3.22).	
Row 0 grows lexicographically => corresponding basic solutions must be differen	†
There are only finitely many basic solutions => termination 🛛	
⊖ 3.15 Example (continued)	
The initial tableau is already lexicographically positive.	
······································	

3. The Simplex algorithm

18-8

3.7 Pivoting rules and cycling

			x ₁	X 2	X 3	X 4	x 5	x 6	X 7		
		0	-3/4	150	-1/50	6	0	0	0		
	×5	0	1/4	-60	-1/25	9	1	0	0		
	×6	0	1/2	-90	-1/50	3	0	1	0		
	X 7	1	0	0	1	0	0	0	1		
	O The sequ	ience	2								
	× ₁₁	×22	x ₂₃ x ₃	4 ×35							
	of nivet elements fulfills the lexicographic anti-excline rule and terminates with an entimal solution. The										
_	of pivol elements fulfills the lexicographic anti-cycling rule and terminates with an optimal solution. The										
	initial degenerate basic solution is left after pivoting with x_{34} .										
	Proof: check, e.g. with the Matrix Row Operation Tool										
@	O http://	(boo)			du /£aau	L+. / C		10		»/DeelW/end/tuteniela£1/appintniuct2.html	
	<u>http://</u>	peo	<u>pie.not</u>	stra.e	<u>au/ tacu</u>	<u>ity/ :</u>	oteto	<u>in v</u>	ane	r/RealWorld/Tutorialst1/scriptplvot2.ntml	
	Bland's anti-c	yclin	g rule								
	Among all co	lumn	is j wi	th ī _j	< 0 cho	ose	the c	one w	/ith	smallest column index j	
	Among all rows i with $\theta_0 = x_{i0}/x_{i1}$ choose the one with smallest column index B(i)										
	Proof: Exercised	ise		Ŭ	.o 'j						

Empirical tests show that Bland's rule needs many pivots
Anti-cycling in practice
Experience shows that cycling is mostly already resolved by the rounding caused by floating point arithmetic.
Commercial solvers control the progress of the objective function and change their pivot rule if there is
evidence of cycling until they reach a different basic feasible solution.

3.8 Phase I of the simplex algorithm

Goal: Provide an initial tableau for the simplex algorithm, i.e., a tableau that is already transformed w.r.t. to the								
basis of a basic feasible solution								
O This is easy if the LP is given in the form Ax≤b, x≥0 with b≥0. Then we just introduce slack variables s ₁ ,,								
s _m and the associated columns form a basis								
	$x_1 \ldots x_n s_1 s_2 \ldots s_m$							
	$-z$ 0 c_1 c_n 0 0 0							
	s_1 b_1 a_{11} a_{1n} 1 0 0							
Initial tableau								
	$S_m \begin{bmatrix} D_m & a_{m1} & \dots & a_{mn} \end{bmatrix} \cup \bigcup & \dots & I \end{bmatrix}$							
⊖ For general LP in sto	andard form, this is done with the two-phase-method							
Given: LP in standard form								
min c ^T ×								
st Ax=b								
	× > 0							
and w.l.o.g. b≥0 (otherwise multiply rows by -1)								

θ
Phase I
Introduce artificial variables $x^{a} = (x_{1}^{a},, x_{m}^{a})^{T}$ (^a for artificial) and solve the LP
$\min \xi = x_1^a + \ldots + x_m^a$
s.t. $x^a + Ax = b$ (3.23)
$x^a > 0$
$\lambda, \lambda \geq 0$
with the simplex algorithm (the artificial variables form a basis and the cost coefficients w.r.t. ξ are in
reduced form (3.21)
There are 3 possible outcomes
Case 1: The minimum of ξ is 0 and all x_i^a are non-basic variables
=> all x; ^a = 0 and we have a basic feasible solution for the initial problem
^Θ Case 2: The minimum of ξ is 0 but some x_i^a are basic variables
Et x _{B(i)} be an artificial variable.
$\xi = 0 \Rightarrow x_{B(i)} = 0$
Try to eliminate x _{B(i)} from the basis.
To that end we need in tableau X a non-artificial non-basic column j with x _{ii} ≠ 0
(since $x_{B(i)} = 0$, we can pivot with x_{ij} (first multiply row i by -1 if $x_{ij} < 0$)

3. The Simplex algorithm 3.8 Phase I of the simplex algorithm

5.6 Friase For the simplex algorithm
Case 2a: There is such a non-artificial non-basic column j with x _{ii} ≠ 0
Pivot with x _{ii}
=> we have a basis with fewer artificial variables
\bigcirc Case 2b: There is no non-artificial non-basic column j with $x_{ii} \neq 0$
=> x _{ii} = 0 for j = 1,, n, i.e. for all non-artificial variables
clear from the above for non-basic variables x _i
basic variables x_i have a 0 in position i in their column because only $x_{B(i)}$ has a 1 there
=> rank(A) < m
=> assumption 3.1 violated
this implies that row i of A is a linear combination of the other rows of A and can be deleted
together with artificial variable × _{B(i)}
We can therefore drop assumption 3.1, Phase I provides a test for rank(A) = m
Repetition of these steps results in a basic feasible solution of the initial LP (possibly after deleting some
linearly dependent rows from A. The remaining rows have full rank.)
Case 3: The minimum of ξ is > 0
=> the initial LP has no feasible solution, i.e., $S = \emptyset$

3. The Simplex algorithm 3.8 Phase I of the simplex algorithm

3. The Simplex algorithm

3.8 Phase I of the simplex algorithm

Method
B Phase T
add artificial variables $x^{a} = x^{a}$
$ \begin{bmatrix} a \\ b \\ c \\ c$
$ \frac{can}{can} = \frac{can}{can} =$
if has a container antificial verifield
If basis contains artificial variables Image: State of the state
 Then if one of these antificial variables cannot be removed from the basis
e then
delete the associated row
call Phase I for the resulting LP
$\frac{\Theta}{else}$ // ξ_{ont} = 0 and the basis contains no artificial variables
call Phase II
Phase II
call simplex algorithm with the original objective w.r.t. the basis from Phase I
1

3.8 Phase	I of the	simplex	algorithm
-----------	----------	---------	-----------

3.17 Theorem (Two-Phase-Method)
The two-phase-method solves every LP in standard form. Assumption (3.1)-(3.3) can be dropped. They are
checked in the Two-Phase-Method.
Proof
clear from the above
[●] Example
$\bigcup_{min} x_1 + x_2 + x_3 + x_4 + x_5$
s.t. $3x_1 + 2x_2 + x_3 = 1$
$5x_1 + x_2 + x_3 + x_4 = 3$
$2x_1 + 5x_2 + x_2 + x_5 = 4$
x, ≥0
Initial tableau for Phase I, we also keep track of the given objective function

3. The Simplex algorithm

1

3.8 Phase I of the simplex algorithm

			x ₁ ^a	x²	x ^a ₃	x 1	x ₂	x 3	X 4	x_5			
	-z	0	0	0	0	1	1	1	1	1			
	-ξ	0	1	1	1	0	0	0	0	0			
	×1ª	1	1	0	0	3	2	1	0	0			
	x ₂ ^a	3	0	1	0	5	1	1	1	0			
	X ^a	4	0	0	1	2	- 5	1	0	1			
	5												
	To obtain the reduced costs w.r.t. ξ for Phase I, we must transform the costs of the artificial variables to O												
	(reduced	cost	e on	ο O ·	forb	aeic	vori	ahla	د)				
1	(i educed	031	5 11	eu		usic	vuri	uble.	5).				
	We achie	ve t	his b	oy su	btra	ctin	g ead	h ro	w 1,.	m f	rom the ξ-row (the z-row has already reduced costs 0 in the		
	basic colu	umns)	'		•	,						
	0												
	Start tab	oleau	for	Pha	se I								

3. The Simplex algorithm 3.8 Phase I of the simplex algorithm

		x ₁ ^a	x ₂ ^a >	×3	$x_1 \rightarrow$	k ₂ x ₃	×4	x 5	
· · · · · · · · · · · · · · · · · · ·	-z 0	0	0	0	1	1 1	1	1	
	-ξ -8	0	0	0 -	-10 -	·8 -3	-1	-1	
	x_1^a 1	1	0	0	(3)	2 1	0	0	
	x ^a ₂ 3	0	1	0	5	1 1	1	0	
	x_3^a 4	0	0	1	2	5 1	0	1	
	J [-1							
Pivoti	ng with	the pi	ivot e	leme	ents m	arked	by a r	red ci	rcley
	5								
		×	a xa	× ^a	\boldsymbol{x}_1	x ₂	×	3 ×4	x_5
-z	-1/3	-1/3	30) 0	0	1/3	2/3	8 1	1
-ξ	-14/3	-10/3	30	0	0	-4/3	1/3	3 -1	-1
×1	1/3	1/3	3 0	0) 1	2/3	1/3	8 0	0
x ^a ₂	4/3	-5/3	31	. 0	0	-7/3	-2/3	8 1	0
x ₃ ^a	10/3	-2/3	3 0) 1	0	11/3	1/3	0	1

3. The Simplex algorithm

T

3.8 Phase I of the simplex algorithm

		x ₁ ^a	x ^a ₂	x ^a ₃	x ₁	x ₂	X 3	X 4	\mathbf{x}_5
-z	-1/2	-1/2	0	0	-1/2	0	1/2	1	1
_ξ	-4	4	0	0	2	0	1	-1	-1
X2	1/2	1/2	0	0	3/2	1	1/2	0	0
x ^a ₂	5/2	-1/2	1	0	7/2	0	1/2	(1	0
x ^a ₃	3/2	-15/6	0	1	-11/2	0	-3/2	0	1
					1				
		X ^a	X_2^{a}	X ^a	X 1	X 2	X 3	X ₄	X_5
-z	-3		-1	Ő	-4	0	0	0	1
-٤	-3/2	7/2	1	0	11/2	0	3/2	0	-1
X2	1/2	1/2	0	0	3/2	1	1/2	0	0
XA	5/2	-1/2	1	0	7/2	0	1/2	1	0
· • •		1 .		-	1	-	-		~
Xa	3/2	-5/2	0	1	-11/2	0	-3/2	0	(1)

3. The Simplex algorithm 3.8 Phase I of the simplex algorithm

		×1ª	x²	x_3^a	x ₁	x ₂	x 3	x_4	x_5
-z	-9/2	5/2	-1	-1	3/2	0	3/2	0	0
-ξ	0	1	1	1	0	0	0	0	0
x ₂	1/2	1/2	0	0	3/2	1	1/2	0	0
×4	5/2	-1/2	1	0	7/2	0	1/2	1	0
x 5	3/2	-5/2	0	1	-11/2	0	-3/2	0	1

We are lucky since the final tableau of Phase I is already optimal for Phase II (all reduced costs w.r.t. c are

≥ 0)

3. The Simplex algorithm

3.9 Geometric aspects of pivoting

⊖ Goal: Inte	erpret the simplex algorithm geometrically
• It walk	s from vertex to vertex along edges of the polyhedron with occasional extra pivots in degenerate
vertice	S
⊖ 3.8 Exam	ple (continued)
max	$x_1 + 14x_2 + 6x_3 \iff \min - x_1 - 14x_2 - 6x_3$
s.t.	$x_1 + x_2 + x_3 \le 4$
	x ₁ ≤ 2
	x ₃ ≤ 3
	$3x_2 + x_3 \leq 6$
0	× _j ≥ 0
After	dding slack variables (- first basis), the simplex algorithm yields the following tableaus:

After adding slack variables (= first basis) , the simplex algorithm yields the following tableaus:

3. The Simplex algorithm 3.9 Geometric aspects of pivoting

٦

(1)	x 1	X ₂	x 3	X 4	x_5	x 6	X 7	(2)	x_1	X ₂	x 3	X 4	x_5	x 6	X 7				
	0	-1 -	-14	-6	0	0	0	0	-z	2	0	-14	-6	0	1	0	0				
X 4	4	1	1	1	1	0	0	0	X 4	2	0	1	(1)	1	-1	0	0				
×5	2		0	0	0	1	0	0	x_1	2	1	0	0	0	1	0	0				
x 6	3	0	0	1	0	0	1	0	x 6	3	0	0	1	0	0	1	0				
×7_	6	0	3	1	0	0	0	1	×7	6	0	3	1	0	0	0	1		 		
3)	x 1	×2 .	×3	X4	X 5	×6	X 7			x 1	×2	×3	x 4	x 5	× ₆	X 7	,			
(3 -z)	×1 0	×2 -8	×3 0	×4 6	×₅ -5	× ₆ 0	×7 0	-z	30	×1 0	×2 0	×3 8	× ₄ 14	× ₅ -13	× ₆	×7 0	,			
(3 -z x ₃) 14 2	×1 0 0	×2 -8	x ₃ 0 1	×4 6 1	×5 -5 -1	× ₆ 0 0	×7 0 0	-z ×2	30 2	×1 0 0	×2 0 1	×3 8 1	×4 14 1	×5 -13 -1	× ₆ 0 0	× ₇ 0 0	,))			
(3) -z x ₃ x ₁) 14 2 2	×1 0 0	x ₂ -8 1 0	× ₃ 0 1 0	×4 6 1 0	×5 -5 -1 1	× ₆ 0 0	×7 0 0 0	-z x ₂ x ₁	30 2 2	x ₁ 0 0 1	×2 0 1 0	× ₃ 8 1 0	×4 14 1 0	×5 -13 -1	× ₆ 0 0	×7 0 0)			
3 -z x ₃ x ₁ x ₆) 14 2 2 1	x ₁ 0 0 1	×2 -8 1 0 -1	×3 0 1 0 0	×4 6 1 0 -1	×5 -5 -1 1 1	× ₆ 0 0 0	×7 0 0 0 0	-z x ₂ x ₁ x ₆	30 2 2 3	×1 0 0 1	x ₂ 0 1 0 0	×3 8 1 0	×4 14 1 0 0	× ₅ -13 -1 1 0	× ₆ 0 0 1	×7 0 0 0 0)			
(3) z ×3 ×1 ×6 ×7) 14 2 2 1 4	×1 0 1 0 0	×2 -8 1 0 -1 2	×3 0 1 0 0	×4 6 1 0 -1 -1	×5 -5 -1 1 1 1	× ₆ 0 0 1	×7 0 0 0 0 1	(4 -z x ₂ x ₁ x ₆ x ₇	30 2 2 3 0	×1 0 0 1 0 0	x ₂ 0 1 0 0 0	× ₃ 8 1 0 1 -2	×4 14 1 0 0 -3	x ₅ -13 -1 1 0 3	×6 0 0 0 1	×7 0 0 0 0)			

3. The Simplex algorithm

4

3.9 Geometric aspects of pivoting

	Ē	<u>۱</u>																			
	5)	x_1	x 2	x 3	x_4	x_5	x_6	X 7	6)	x ₁	x ₂	X 3	x ₄	x_5	x 6	X 7			
	-z	30	0	0	-2/3	1	0	0	13/3	-z	32	1	0	0	2	0	0	4			
_	×2	2	0	1	1/3	0	0	0	1/3	X 2	1	-1/2	1	0	-1/2	0	0	1/2			
_	x 1	2	1	0	2/3	1	0	0	-1/3	x 3	3	3/2	0	1	3/2	0	0	-1/2			
-	x ₆	3	0	0	1	0	0	1	0	X 6	0	-3/2	0	0	-3/2	0	1	1/2			
-	x 5	0	0	0	-2/3	-1	1	0	1/3	X 5	2	1	0	0	0	1	0	0			
-																					
-	• <u>_</u>						.	6 . II .			. (. 1 4				
	iniss	seque	ence	corr	respond	IS TO	тпе	TOIIO	wing se	equence	C OT	vertice	s in	rne a	ssocia	rea p	оіут	ope wi	rn variadie	25 x ₁ ,	
	X2, X2	,																			
٦	2. 3)																			

3.9 Geometric aspects of pivoting

:<=> the line segment [x´,y´] is an edge of P
two basic feasible solutions x, y of Ax = b, x ≥ 0 are called adjacent
:<=> if one obtains B_y from B_x by a single pivot operation according to Theorem 3.16
Observe;
(1) One then also obtains B _x from B _y by a single pivot, i.e., the neighborhood is symmetric
(2) Then there are columns j and k with B _y = ($B_x - \{A_j\}$) \cup { A_k }
(3) This does not exclude that x = y i.e. that the basic solution is degenerate
According to this definition, the simplex algorithm traverses a sequence of pairwise adjacent basic feasible
solutions x ¹ , x ² ,, x ^N with
т 1 т 2 т N
$c'x^2 \ge c'x^2 \ge \dots \ge c'x'^2 = z_{opt}$
3 18 Theorem (Interpretation of edges in the three views)
S.10 Theorem (Interpretation of edges in the three views)
Let P be a polytope and let S = { x Ax = b, x ≥ 0 } be the associated feasible set of an LP in standard form.
Let $x' = (x_1',, x_{n-m}')'$, $y' = (y_1',, y_{n-m}')' \in P$ be different vertices and let $x = (x_1,, x_n)'$, $y = (y_1,, y_n)'$
\in S be the accordinated basic feasible solutions, according to (3.7)
\in 5 be the associated basic (easible solutions according to (5.7).
Then the following statements are equivalent:
(1) [x', y'] is an edge of P

3. The Simplex algorithm 3.9 Geometric aspects of pivoting

3. The Simplex algorithm 3.9 Geometric aspects of pivoting

$0 \qquad A_j \in M_y$
$c_j := \begin{cases} 1 & A_j \in M_x - M_y \end{cases}$
<i>nM</i> otherwise
X
with M large enough so that $c_j u_j >$ n for every basic feasible solution u (such an M exists because of
Lemma 3.4).
0
=> y is the only optimal solution for c and every basic feasible solution u with entries u_j > 0 not in M_x
UM has higher cost than x
=> if we start the simplex algorithm in x w.r.t. c, it would report that no improvement is possible (since
x and y are not adjacent) and thus claim that x is optimal, a contradiction
Consider now the vertex w´∈P corresponding to w. Since w´ is a vertex, w´ is not in [x´,y´]
=> w is not in [x, y]
Let z := 1/2 (x + y) => $z_j > 0$ for all $A_j \in M_x \cup M_y =>$ each entry of z can be decreased a little without
reaching O
Lately = w => d = 0 anhy fan antoing in M ++ M
Let $u = 2 - w - r - u_j + 0$ only for entries in $M_x \cup M_y$
$z_j > 0$ for all entries in $M_x \cup M_y$ => there is $\theta > 0$ with $u := z + \theta d$, $v := z - \theta d \ge 0$
With these definitions. Au - b and Av - b i e u v = S

3. The Simplex algorithm 3.9 Geometric aspects of pivoting

3. The Simplex algorithm

3.9 Geometric aspects of pivoting

$c_i := \begin{cases} 0 & \text{if } A_j \in B_x \cup B_y \end{cases}$
1 otherwise
Claim: x and y are the only basic optimal feasible solutions w.r.t. c
clearly: x, y are optimal w.r.t. c
assume there is another basic optimal feasible solution z
anotype to a - x - fulfilla - x - 0 - x - A - C - D + L - D
construction of $c \rightarrow z$ fulfills $z_j \neq 0 \rightarrow A_j \in B_x \cup B_y$
$\Rightarrow B_z \subseteq B_x \cup B_y$
$4 \neq R \rightarrow (with R R - m + 1 - 7 + Y) A \in R$
$\gamma_j \notin \mathcal{D}_x \longrightarrow (w \cap (\neg \mathcal{D}_x \cup \mathcal{D}_y) \longrightarrow (\gamma_j \cap \mathcal{D}_z) \longrightarrow (\gamma_j \cap \mathcal{D}_z)$
=> $B_z = (B_x - \{A_q\}) \cup \{A_j\}$
=> there are single pivots that change x into y (A_i enters, A_k leaves) and to z (A_i enters, A_a
leaves) respectively. In both cases, A enters the basis
Let $B_x(r) = k$ and $B_x(s) = q$
$\rightarrow \rho - x_{r0} - x_{s0}$
$\Rightarrow \sigma_0 - \frac{1}{x_{rj}} - \frac{1}{x_{sj}}$
=> y = z, a contradiction
Claim => only convex combinations of x, y fulfill

3. The Simplex algorithm 3.9 Geometric aspects of pivoting

3. The Simplex algorithm

20-12

♦ 4.1 Duality of LPs and the duality theorem	. 22
♦ 4.2 Complementary slackness	. 23
♦ 4.3 The shortest path problem and its dual	. 24
🛇 4.4 Farkas' Lemma	. 25
🗢 4.5 Dual information in the tableau	. 26
🔍 4.6 The dual Simplex algorithm	. 27

21

4.1 Duality of LPs and the duality theorem

⊖ The dual of an LP in general form
Derivation of the dual
Consider an LP in general form: (4.1)
$\min c^T x$ $x \in \mathbb{R}^n, c \in \mathbb{R}^n$
s.t. $a_i^T x = b_i$ $i \in M$ $a_i \in \mathbb{R}^n$
$a^T r > h$
$u_i x \ge v_i$ $i \in W$
$x_j \ge 0 \qquad j \in N$
x_i unconstrained $i \in \overline{N}$
we transform it to standard form according to Lemma 3.2 with
surplus variables x_i^s for the inequalities
split variables $x = x^+ - x^-$ with $x^+ x^- > 0$
This gives
1

4. Duality

4.1 Duality of LPs and the duality theorem

min $\hat{c}^T \hat{x}$	
s.t. $\hat{A}\hat{x} = b, \hat{x} \ge 0$ with	
$\hat{A} = \begin{pmatrix} A_j, j \in N & (A_j, -A_j), j \in \overline{N} & 0, i \in M \\ -I, i \in \overline{M} & -I, i \in \overline{M} \end{pmatrix}$ $\hat{x} = \begin{pmatrix} x_j, j \in N \mid (x_j^+, x_j^-), j \in \overline{N} \mid x_i^s, i \in \overline{M} \end{pmatrix}^T$	> (4.2)
$\hat{c} = (c_j, j \in N \mid (c_j, -c_j), j \in \overline{N} \mid 0, i \in \overline{M})^T$	
where, w.o.l.g., matrix \hat{A} has full row rank, and where A_{j} denotes the colum	n of x _i in (4.1)
The previous results on the simplex algorithm give:	• •
If (4.2) has an optimal solution, then there is a basis \hat{B} of \hat{A} with	
$\hat{c}^{T} - (\hat{c}_{\hat{k}}^{T}\hat{B}^{-1})\hat{A} \ge 0$	
=:π ^T	
i.e., reduced cost ≥0	
Let m be the number of constraints in (4.1). Then	

4. Duality 4.1 Duality of LPs and the duality theorem

т. — т.с. 1
$\pi^{\scriptscriptstyle I} := \hat{c}^{\scriptscriptstyle I}_{\hat{\mathcal{B}}} \hat{B}^{-1} \in \mathbb{R}^m$
is a feasible solution for inequalities
$\pi^T \hat{A} \le \hat{c}^T \qquad (4.3)$
Inequalities (4.3) have 3 groups w.r.t. their columns:
Group 1
$\pi^{T}A$ (c, i $\in \mathbb{N}$ (1.1)
$(r_j \leq c_j, j \in \mathbb{N} $ (4.4)
Group 2
$\pi^{T}A_{j} \leq c_{j} \Leftrightarrow \pi^{T}A_{i} = c_{i}, j \in \overline{\mathbb{N}}$ (4.5)
$-\pi^T A_j \leq -c_j$
Group 3
$-\pi : < 0 \Leftrightarrow \pi : > 0 i \in \overline{M} (4.6)$
Definition of the dual of LP
(4.4) - (4.6) define constraints for a new LP with variables $\pi_{4.4}$. These constraints, together with the
(, , , , , , , , , , , , , , , , , , ,

4.1 Duality of LPs and the duality theorem

objective function max t	π ^T b cons	titute the dual LP of (4.1). The initial problem (4.1) is called the primal LP.
Transformation rules pri	mal -> du	al (follow from (4.4) - (4.6))
primal		dual
min $c^T x$		$\max \pi^T b$
$a_i^T x = b_i$	$i \in M$	π_i unconstrained
$a_i^T x \ge b_i$	$i \in \overline{M}$	$\pi_i \ge 0$
$x_j \ge 0$	$j \in N$	$\pi^T A_j \le c_j$
x_j unconstrained	$j \in \overline{N}$	$\pi^T A_j = c_j$
Observe: The dual LP is a correspond to multipliers	btained of the r	from the optimality criterion of the primal. The variables $\pi_1,, \pi_m$ ows of \hat{A} that fulfill the primal optimality criterion.
e 4.1 Theorem (dual dual =	primal)	
The dual of the dual is	the prim	al.
We therefore speak of	primal-d	lual pairs of LPs
⊖ Proof		

4.1 Duality of LPs and t	the duality theorem
--------------------------	---------------------

Write the dual in primal form:	
min $\pi^T(-b)$ such that	
$(-A_j^T)\pi \ge -c_i$	$j \in N$
$(-A_j^T)\pi = -c_i$	$j \in \overline{N}$
$\pi_i \ge 0$	$j \in \overline{M}$
π_i unconstrain	ned $j \in M$
0_	
The transformation rules yield the fo	ollowing dual LP
$\max x^T(-c) \qquad \text{ such that } $	
$x_j \ge 0$	$j \in N$
unconstrai	ned $j \in \overline{N}$
$-a_i^T x \leq -b_i$	$i\in\overline{M}$
$-a_i^T x = -b_i$	$i \in M$
which is the primal LP 🛛	
The Duality Theorem	
4.2 Theorem (Weak and Strong Duality The	eorem)

4. Duality

4.1 Duality of LPs and the duality theorem Let x be a primal feasible solution and π be a dual feasible solution. Then (Weak Duality Theorem) $c^T x \ge \pi^T b$ (4.7) If an LP has an optimal solution, so has its dual, and the optimal objective values are the same (Strong Duality Theorem) ⊖ Proof $^{\odot}$ Let x be a primal feasible solution and π be a dual feasible solution. Then $c^T x \stackrel{\pi \text{ dual feasible}}{\geq} (\pi^T A) x = \pi^T (Ax) \stackrel{x \text{ primal feasible}}{\geq} \pi^T b$ 0 Assume w.o.l.g. that the LP is in primal form (4.2) and has an optimal solution => has an basic optimal feasible solution $\hat{\mathbf{x}}$ with associated basis $\hat{\mathbf{B}}$ and $\pi^T = \hat{c}_{\hat{B}}^T \hat{B}^{-1}$ is feasible for the dual by construction \bullet For this π we obtain $\pi^{\mathsf{T}}\mathbf{b} = (\hat{c}_{\hat{\mathbf{a}}}^{\mathsf{T}}\hat{B}^{-1})\mathbf{b} = \hat{c}_{\hat{\mathbf{a}}}^{\mathsf{T}}(\hat{B}^{-1}\mathbf{b}) = \hat{c}_{\hat{\mathbf{a}}}^{\mathsf{T}}\hat{x}_{\mathsf{B}} = \hat{c}^{\mathsf{T}}\hat{x}$ So π and \hat{x} have the same objective function value. Weak Duality (4.7) then implies that π is a dual optimal solution \Box

4.1 Duality of LPs and the duality theorem

Θ	4.3 Theorem (Possible primal-dual pairs)
	Primal-dual pairs exist exactly in one of the following cases:
	(1) both LPS have a finite optimal solution and their objective values are equal
	(2) both LPs have no feasible solution
	(3) one LP has an unbounded objective function and the other has no feasible solution

4. Duality

4.1 Duality of LPs and the duality theorem

	•	, tion'	. Ve
dual	wite wition	solued	ansibio
	fill soll	cible undere	of furtion.
	timai	feas. inborectiv	the solution
 primal	66,	, , , , , , , , , , , , , , , , , , , ,	
 finite	(4)		
optimal solution	(1)		
fassible solution			
reasible solution,			
unbounded			(3)
objective			
no feasible			
colution		(3)	(2)
Solution			
Θ			
Proof			
Strong Duality Theor	rem => case (1)	occurs in row 1 and	column 1 of the table, and this is the only table
entry in which it occ	Jrs		
0			_
Consider now row 2 c	f the table, i.e.,	x is a primal feasib	le solution but $c^{T}x$ unbounded from below.
 Tf there is a dual fea	sible solution π	we obtain $\pi^{T}b < c$	Tx with the Weak Duality Theorem
 2, mere 15 a adar (et			

4. Duality

4.1 Duality of LPs and the duality theorem

Hitchcock problem or transportation problem (Hitchcock 1941) is a special minimum cost flow problem, see ADM
4. Duality 4.1 Duality of LPs and the duality theorem

4.1 Duality of LPs and the duality theorem

	Σ. Χ.	. =	b. f	or all	i (deliv	er de	mana	lb.	to ve	rtex	i)						
		J –	J I		J	(aciiv		mane	Ĵ			1)						
	× _{ii} ≥	0 fc	or all	i, j														
	The error	t.	م س ما	-	1		: f :_:_	nta h	aa +la	- f -								
	The assoc	lare	a ma	INX	A OT	coet	TICIE	nisn	asin	etoi	m							
		×11	X ₁₂	•••	x_{1n}	×21	X 22	•••	X _{2n}	•••	× _{m1}	× _{m2}	•••	×mn				
	E	1	1		1	0	0		0		0	0	•••	0				
	<u>ح</u> :	0	0		0	1	1		1		0	0		0				
	, ,			•.				•.		·.			•.					
	· <u>–</u>	_	_	•	_	-	_	•	_	•		_	•					
		0	0	•••	0	0	0	•••	0	•••	1	1	•••	1				
		1	0		0	1	0		0		1	0		0				
	ب ۲	0	1		0	0	1		0		0	1		0				
	, ,																	
	ت. ۱۱			•				•		•			•					
		0	0		1	0	0		1		0	0	•••	1				
	Θ																	
I	The dual of	the	trans	sport	atior	ı prot	olem											
	Thtroduc	a dua	l vani	iable	e 11	v f	or th	e con	etrai	nte a	e fall	owe						
	IIII Oddce	s add	u vu i	ubic.	5 u _i ,	*j '	01 110	c con	Snu	113 0	5 101	0003						
	$u_i - \sum_i x_{ii} = -a_i$ for all i																	
	Vj	۲ ⁱ >	(ij =	Dj 1	ror a	11 J												
	The dual	LP re	eads															

4.1 Duality of LPs and the duality theorem

$\max \Sigma_i - a_i u_i + \Sigma_i b_i v_i$ s.t.
$-u_i + v_i \leq c_{ii}$ for all i, j
u _i , v _j unconstrained
Interpretation of the dual LP
"Dual" entrepreneur offers to do the transportation for pairs (i,j)
He can buy the supply a _i at location i from the primal entrepreneur, transport it to j and sell it there
u; = price to buy a unit of the good at vertex i
v _j = returns per unit at vertex j
v _j - u _i = profit per unit bought in i and sold in j
v _j - u _i ≤ c _{ij} dual entrepreneur must stay below primal transportation cost in order to get the transport (i,j)
from the primal entrepreneur (otherwise primal entrepreneur will do it himself)
Dual entrepreneur wants to maximize his total profit $\sum_i b_i v_i - \sum_i a_i u_i$ under these conditions
The dual of the diet problem
The primal problem (see example 3.1)
min c ^T x
s.t. Ax≥r

4. Duality

4.1 Duality of LPs and the duality theorem

-	x ≥ 0
_	The associated dual problem
_	· · · · · · · · · · · · · · · · · · ·
_	max π ^T r
-	s.t. $\pi^T A \leq c^T$
-	π ^τ ≥0
	Θ
	Interpretation
-	The dual entrepreneur makes nutrient pills for each of the m-ingredients (magnesium, vitamin C,)
-	He asks the price π_i per unit of nutrient i
-	$\pi^{T}A_{j} \leq c_{j}$ <=> the total price of all pills substituting one unit of food j must not exceed the price c_{j} of one
_	unit of food j (pills will not be bought otherwise)
_	
_	max π ^{or} <=> maximizing total profit of the dual entrepreneur
_	
_	0
_	Dual LPs often have a natural interpretation in practice
_	
_	
_	
_	
_	

4.2 Complementary slackness

Complementary slackness provides simple necessary and sufficient conditions for optimality of a pair of primal
feasible and dual feasible solutions. They have far reaching consequences for the design of algorithms (primal-dual
algorithms, primal-dual approximation algorithms)
A.4 Theorem (Complementary slackness)
Example 2 Let x be a primal feasible solution and π be a dual feasible solution. The following statements are equivalent:
×, π are optimal (in the primal and the dual, respectively)
u _i := π_i ·($a_i^T x - b_i$) = 0 for all i = 1,, m (4.8)
$v_i := (c_i - \pi^T A_i) x_i = 0$ for all $j = 1,, n$ (4.9)
i.e.,: (slack of primal or dual constraint)·(value of associated dual or primal variable) = 0
Proof
⊖ u _i ≥ 0
since
$a_i^T x - b_i = 0 \Rightarrow u_i = 0$
$a_i^T \times -b_i \ge 0 \implies \pi_i \ge 0 \implies u_i \ge 0$
⊖v _i ≥ 0

4. Duality

4.2 Complementary slackness

0
since
x_i unconstrained => $\pi'A_i = c_i => v_i = 0$
$x_{1} \ge 0 \Rightarrow \pi A_{1} \le c_{1} \Rightarrow V_{2} \ge 0$
Set $\mathbf{u} := \sum_{j} \mathbf{u}_{j}, \mathbf{v} := \sum_{j} \mathbf{v}_{j} = \mathbf{v} \mathbf{u}, \mathbf{v} \geq 0.$ Then
u = 0 <=> (4.8) holds
$v = 0 \iff (4.9)$ holds
Then
men
$\mu + \gamma = \sum_{i} \pi_{i} (\alpha_{i}^{T} \mathbf{x} - b_{i}) + \sum_{i} (\alpha_{i} - \pi^{T} A_{i}) \mathbf{x}_{i}$
= $-\sum_{i} \pi_{i} b_{i} + \sum_{i} c_{i} x_{i} + \sum_{i} \pi_{i} a_{i}^{T} x_{i} - \sum_{i} \pi^{T} A_{i} x_{i}$
$= -\pi'b + c'x + (\pi'A)x - \pi'(Ax)$
TL T
$= -\pi D + C X$
Hence: $\mathbf{u} + \mathbf{v} = -\pi^{T}\mathbf{b} + \mathbf{c}^{T}\mathbf{x}$
0
Suppose (4.8) and (4.9) hold => u + v = 0 => $c^Tx = \pi^Tb$
Weak Duality Theorem -> x II are ontimal
Suppose that x and π are optimal
Strong Duality Theorem => $c^T x = \pi^T b$ => $u + v = 0$ => (4.8) and (4.9) \Box

4.3 The shortest path problem and its dual

4. Duality 4.3 The shortest path problem and its dual

4.6 Lemma
min c ^T f
Af = b
f≥0
has an optimal solution, then also one with $f_i \in \{0, 1\}$. Every such solution corresponds to an s,t-path
(2) The simplex aborithm finds such a solution
Proof:
(1) follows from the close the for minimum cost at flows in ADM T
(1) follows from the digorithm for minimum cost s,t-flows in ADM 1
(2) can easily be shown directly, but follows also from the fact that matrix A is totally unimodular and b
is integer. Then all basic feasible solutions of the LP are integer. We will show this more general result in
Chapter 7.2. 🗅
Solving (SP) with the simplex algorithm
We formulate (SP) as (LP)

4. Duality

4.3 The shortest path problem and its dual

min c ^T f	
Af = b (A = vertex-edge-incidence matrix)	
and solve it with the simplex algorithm.	
Since rank(A) < n, we may delete a row	
=> delete the row for vertex t, this yields b≥0	
In the example we obtain the following tableau for cost vector c = (1, 2, 2, 3, 1)	
Tritial tableau not vet transformed wint a basis, and graph G with edge costs	
Initial tableau, not yet transformed w.r.t. a basis, and graph of with edge costs	
$f_1 f_2 f_3 f_4 f_5 G (a)$	
s 1 1 1 0 0 0 s 2 t	
0	
Choose {1, 4, 5} as basis and transform the tableau w.r.t. that basis.	
Interpret the associated basic feasible solution in the graph.	

4. Duality 4.3 The shortest path problem and its dual

4. Duality

4.3 The shortest path problem and its dual
• We formulate it w.r.t. the full tableau containing also the row for vertex t
=> dual variables π_i correspond to a node potential in graph G
Tableau in the example:
fe fo fo fo fo fo b
π_s 1 1 0 0 0 +1
π_{+} 0 0 0 -1 -1 -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dual LP:
max π _s - π _t
$\pi_i - \pi_i \leq c_{ii} \text{for all edges } (i, j) \in E(G)$
π _i unconstrained
Interpretation of the dual LP
Along any path

24-6

4. Duality

4.3 The shortest path problem and its dual

4. Duality

4.3 The shortest path problem and its dual

Θ
Remarks
\bigcirc
belefing the row for vertex in the nave to variable in the dat objective function is that it's
But: edges (i,t) yield the dual constraint $\pi_i \leq c_{it}$, so that π_s cannot get arbitrarily large.
We obtain the same dual constraint π , c if we set π = 0 (which we may do we be since we only have
We obtain the same dual constraint $n_i \le c_{i+1}$ if we set $n_{+} = 0$ (which we may do w.o.i.g. since we only have
potential differences in the dual).
O
Dijkstra's algorithm (ADM 1) applied to the dual graph (in which the direction of all edges of G is reversed)
iteratively computes the π_i , where π_i is set to 0.

4. Duality

 \bigcirc

Θ

4.4 Farkas' Lemma

Cones and projections

Alternative.

This is a central and very useful lemma in duality theory. It has several variants also known as Theorems of the Let $a_1, ..., a_m \in \mathbb{R}^n$ (e.g. the rows of matrix A). The cone $C(a_1, ..., a_m)$ generated by $a_1, ..., a_m$ is defined as

$$\mathcal{C}(a_1,\ldots,a_m) \coloneqq \{ x \in \mathbb{R}^n \mid x \equiv \sum_{i=1}^m \pi_i a_i, \ \pi_i \ge 0 \}$$

= set of non-negative linear combinations of a1, ..., an

[•] The cone C(a₁, ..., a_m) generated by a₁, ..., a_m

The projection of y onto a
Θ
y $y^{T}a$
$\alpha = \ \mathbf{y}\ \cdot \ \mathbf{a}\ $
projection of y onto a = $ y \cos \alpha$
=> the projection of v onto a is non-negative $\langle => v^{T}a$ is non-negative
······································
⊖ 4.5 Theorem (Farkas' Lemma)
Let $a_1,, a_m \in \mathbb{R}^n$ and $c \in \mathbb{R}^n$. The following are equivalent
(1) for all $y \in \mathbb{R}^n$: $y^T a_i \ge 0$ for all $i = 1,,m \implies y^T c \ge 0$
i.e., for all v:
v has a non-negative projection onto each a
=> v has a non-negative projection onto c
=> y has a non-negative projection onto c
 ⇒ y has a non-negative projection onto c (2) c ∈ C(a₁,, a_m)

4. Duality

4. Duality 25-3 4.4 Farkas' Lemma 25-3
[⊖] Proof
⊖ (1) => (2)
Consider the LP
min c ^T y
$a_i^T y \ge 0$ $i = 1,,m$
y unconstrained
=> y = 0 is a feasible solution of the LP
The objective function is bounded from below since the constraints of the LP imply $c^{T}y \ge 0$ because of (1),.
=> LP has a finite optimal solution
=> the dual LP
max O
$\pi^{T}A_{j} = c_{j}$
π ≥ 0
has a feasible solution
=> there are numbers $\pi_1,, \pi_m \ge 0$ with $c = \pi^T A = \sum_i \pi_i a_i$
$\Rightarrow c \in \mathcal{C}(a_1,, a_m)$

[⊖] (2) => (1)
\bigcirc $c \in C(a_1,, a_m) \Rightarrow$ there are numbers $\pi_i \ge 0$ with $c = \sum_i \pi_i a_i$
consider v with $v^{T}a \ge 0$ for all $i = 1m$
$\Rightarrow \mathbf{y}^{T}\mathbf{c} = \mathbf{\Sigma} \cdot \mathbf{\pi} \cdot \mathbf{y}^{T}\mathbf{a} \ge \mathbf{\Sigma} \cdot \mathbf{\pi} \cdot 0 = 0 \Box$
There are many equivalent formulations of Farkas' Lemma. Examples are
(A) $\forall y (y^Ta_i \ge 0 \forall i \Rightarrow y^Tb \ge 0) \iff \exists x \ge 0$ with $A^Tx = b$ (original version by Farkas 1894)
(B) $\forall y \ge 0$ ($y^{T}a_{i} \ge 0 \forall i \Rightarrow y^{T}b \ge 0$) $\iff \exists x \ge 0$ with $A^{T}x \le b$
More in Chapter 7.5
⊖ An application of Farkas' Lemma: necessary conditions for the disjoint path problem
Disjoint Path Problem
 Instance
O Undirected graph G
Pairs of vertices $\{s_1, t_1\}, \dots, \{s_k, t_k\}$
⊖ Task
Determine pairwise edge disjoint paths from s_i to t_i (i = 1,, k)

4. Duality 4.4 Farkas' Lemma

25-4

4.4 Farkas' Lemma

The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and hopefully also sufficient criteria for the existence of a solution.

Cut criterion

Let H be the graph with V(H) := V(G) and E(H) := { { s_1, t_1 }, ..., { s_k, t_k }. A necessary condition for the

existence of a solution is the cut criterion
$$|\delta_G(X)| \ge |\delta_H(X)|$$
 for all $\emptyset \ne X \subseteq V(G)$

i.e., there are at least as many edges leaving X in G as there are pairs in H to be connected

4. Duality 4 4 Farks

4.4 Farkas' Lemma
4.7 Theorem (The distance criterion is necessary)
The distance criterion is necessary and sufficient for the existence of a fractional solution of the disjoint
path problem.
In particular, it is necessary for the existence of a solution of a disjoint path problem
Proof
Consider the disjoint path problem as a cycle packing problem
cycles = all elementary cycles in G + H that contain exactly one edge of H
k := number of these cycles
integer cycle packing = union of pairwise edge disjoint cycles that contain every edge of H in exactly one
cycle
(existence <=> feasibility of the disjoint path problem)
fractional cycle packing = non-negative linear combination (of incidence vectors) of all these cycles such
that the resulting vector has the value 1 at the entries corresponding to the edges of H, and is at most
1 at every entry corresponding to an edge of G.
(they contain integer cycle packings as special case)
Example 4.6 has the following cycles in the cycle packing problem

4. Duality

4.4 Tainas Lemina
Let M be the E(G)-cycle-incidence matrix, i.e.,
rows of M <-> edges of G
columns of M <-> incidence vectors of all cycles of G + H
M _{ec} = 1 <=> e lies on cycle C
Let N be the E(H)-cycle-incidence matrix, i.e.,
rows of N <-> edges of H
columns of N <-> incidence vectors of all cycles of G + H
$N_{c} = 1 \iff e$ lies on cycle C
Observe: every column of N contains exactly one 1
\bigcirc \Rightarrow fractional cycle packing $= \pi' \in P^k$ with $\pi' \ge 0$ $M\pi' \le 1$ $N\pi' = 1$
Add slock variables to obtain a linear system and denote the enlarged vector again by π
$r_{\rm resc}$ fractional cycle packing = $\pi \in \mathbb{R}^{k+m}$ (m = [E(G)]) with $\pi > 0$ M $\pi = 1$ N $\pi = 1$
$\frac{1}{10000000000000000000000000000000000$
write it ds
$A\pi = 1, \ \pi \ge 0$ with $A = \left(\begin{array}{c c} M & I \\ \hline N & 0 \end{array}\right)$
i.e., the all ones vector 1 lies in the cone $C(A_1,, A_{k+m})$ generated by the columns $A_j = \text{ of } A_j$

25-10

25-11

4. Duality

	4.4 Farkas' Lemma
I	Applying Farkas' Lemma gives condition (3)
	$^{igodoldsymbol{O}}$ Farkas' Lemma yields: there is such a vector π
	<=> for all $y \in R^{ E(G) + E(H) }$: $y^T A_j \ge 0$ for all $j = 1,,k+m \implies y^T 1 \ge 0$
	Partition y into (z,v) ^T , such that z corresponds to the rows of M (edges of G) and v to the rows of
	N (edges of H).
	We then get:
	$y^T A_i \ge 0 \Rightarrow z_i \ge 0$ for columns A_i of slack variables
	$y^{T}A_{i} \ge 0 \Rightarrow z^{T}M_{i} + v^{T}N_{i} \ge 0$ for the other columns A_{i}
_	Let C _i be the cycle of column A _i
_	=> C _i decomposes into a path P _i in G and an edge f from H
	Then
_	$z^{T}M_{i}$ = length $z(P_{i})$ of the path P _i w.r.t. edge weights $z(e)$
	$v^{T}N_{i}$ = edge weight v(f), where f is the edge of H lying on cycle C _i
	Hence
_	$y^T A_i \ge 0 \implies z(P_i) + v(f) \ge 0$ for all cycles C_i containing edge f
	So $z(P_i) + v(f) \ge 0$ is equivalent to
1	

$dist_{G_7}(s,t) + v(f) \ge 0 \text{ with } f = \{s,t\}$	(1)
The constraint $y^T 1 \ge 0$ becomes	
$\sum_{e \in E(C)} z(e) + \sum_{e \in E(U)} v(e) \ge 0$	(2)
Farkas' Lemma then yields for arbitrary (z.v)	(3)
z(e)>0 dist_ (st) + v(f)>0 for all edge	$s f = \{s, t\}$ in H
$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$	
$ \stackrel{\bigcirc}{\frown} Condition (3) is equivalent to the distance criterion \stackrel{\bigcirc}{\frown} $	is (by proving that their productions are equivalent)
(2) violeted => distance criterion violeted	is (by proving that their negations are equivalent)
(3) violated -> distance criterion violated	
(3) violated => there are z, v with	
Z(e) ≥ 0,	
dist _{G,z} (s,t) + v(f) ≥ 0 for all edges f = {	s, t } in H and
$\sum_{e \in E(G)} z(e) + \sum_{f \in E(H)} v(f) < 0$	
=> 0 $\leq \Sigma_{f \in E(H)} \operatorname{dist}_{G,z}(s,t) + \Sigma_{f \in E(H)} v(f) <$	$\Sigma_{f \in E(H)} \operatorname{dist}_{G,z}(s,t) - \Sigma_{e \in E(G)} z(e)$
$\Rightarrow \Sigma_{e \in E(G)} z(e) < \Sigma_{f \in E(H)} \operatorname{dist}_{G, z}(s, t)$	
=> distance criterion violated	

4. Duality

4.4 Farkas' Lemma
O distance criterion violated
=> there is $z \ge 0$ with $\sum_{e \in F(G)} z(e) < \sum_{f \in F(H)} dist_{G,r}(s,t)$
choose $v(f) := - \text{dist}_{G_7}(s, t)$ for edge $f = \{s, t\}$ in H
=> dist _c (s,t) + v(f) ≥ 0 for all edges f = { s, t } in H and
$\sum_{e \in F(e)} z(e) + \sum_{e \in F(e)} v(f) = \sum_{e \in F(e)} z(e) - \sum_{e \in F(e)} dist_{e-1}(s,t) < 0$
$= e \subseteq E(G) \qquad = f \subseteq E(G) \qquad = f \subseteq E(H) \qquad = g \subseteq E(H) \qquad = f \subseteq E(H) \qquad = f$
The distance criterion is stronger than the cut criterion
• Example 4.6 does not fulfill the distance criterion
Θ
G ² , ⁴ H
3 • 4
Set $z(e) = 1$ for all e in $G \Rightarrow \Sigma_{e}$ expressed distances $z(e) = 8$. $\Sigma_{e} = z(e) = 6$

4. Duality

	4.5 Dual information in the tableau	201
	How to get dual information from the optimal primal tableau?	
-	Suppose w.o.l.a. that the initial tableau (possibly with artificial variables from Phase I) has columns 1m as	
_		
_	Dasic columns and that the tableau is transformed w.r.t. to this dasis	
-		
-		
-		
_		
_		
-		
-	Then the following properties hold in the optimal tableau with basis B	
-	rows 1,,m are obtained from the initial tableau by multiplying it with B ⁻¹ from the left	
	• the reduced cost are obtained as	
_	$\bar{c}_{1} = c_{1} = \pi^{T} A_{1} \ge 0$ (4.10)	
_	$c_j - c_j - n + n_j \ge 0$ (4.10)	
-	where π is an optimal solution of the dual problem (Proof of the Strong Duality Theorem)	
-	The columns 1 m (which are unit vectors in the initial tableau) we get	
-	$\bar{a} = a \pi^T A = a \pi (A = 1)$	
	$c_j - c_j - n n_j - c_j - n_j$ (4.11)	
_	Hence an optimal dual solution is obtained from the optimal tableau of the primal as	

4.5 Dual information in the tableau

	$\pi_j = c_j - \bar{c}_j \ (j = 1,, m) $ (4.12)
	Observe: this holds for the dual problem of the initial tableau (and not for dual versions of other, equivalent
	primal formulations).
	Moreover, the first m columns contain $B^{-1} = B^{-1}I$ (4.13)
_	
_	
	B ⁻¹
	4.8 Example (Example for the Two-Phase-Method continued)
	Initial tableau

4. Duality

÷

4.5 Dual information in the tableau

			x ₁ ^a	x²	x ^a 3	x_1	x 2	x 3	X 4	x 5		
	-z	0	0	0	0	1	1	1	1	1		
	-ξ	0	1	1	1	0	0	0	0	0		
	Xa	1	1	0	0	3	2	1	0	0		
		3	0	1	0	5	1	1	1	0		
	Xa	4	0	0	1	2	2	1	0	1		
	3				-	-	-	-	-	-		
Optin	nal t	table	au									
				X	¹ X ₂	x	3	x_1	x 2	X 3	x_4	x_5
	-z [-9/	/2	5/2	. –1	- 1	1	3/2	0	3/2	0	0
	-ξ		0	1	. 1		1	0	0	0	0	0
	\mathbf{x}_2	1,	/2	1/2	2) ()	3/2	1	1/2	0	0
	×4	5,	/2	-1/2	2 1	1 ()	7/2	0	1/2	1	0
	X5	3,	/2	-5/2	2 0)	1 -	-11/2	0	-1/2	0	1
	J L		_				-					
(4.12)	giv	ves		π ₁ =	0 - 5	5/2	= -	- 5/2				
				π,=	0 -	(- 1)	=	1				
				۷	•			4				
				π ₃ =	0 -	(- 1)	=	1				

4.5 Dual information in the tableau

	for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with artificial
	variables x; ^a
	4.9 Example (Example for the shortest path problem continued)
	Solving the primal problem
	Tritial tableau has no identity matrix, but 2 unit vectors
	Initial tableau has no taentity matrix, but 2 unit vectors
_	=> add one artificial variable in Phase I
_	
	x^{a} f ₁ f ₂ f ₃ f ₄ f ₅
	-z 0 1 2 2 3 1
	s x ^a 1 1 1 1 0 0 0
	a f ₄ 0 0 -1 0 1 1 0
	$b f_5 0 0 -1 -1 0 1$
	0

 $\overset{\circ}{}$ Transform cost coefficients of ξ and z to reduced form (must become 0 for basic variables)

4. Duality

4.5 Dual information in the tableau

	x^{a} t_{1} t_{2} t_{3} t_{4} t_{5}
	$-\xi$ -1 0 -1 -1 0 0 0
	-z 0 0 4 3 0 0 0
	$s x^{a}$ 1 1 1 1 0 0 0
	$a f_1 0 0 -1 0 1 1 0$
	$h_{14} = 0$
	Pivot step
	·····
	v^{α} f, f, f, f, f,
	x = 11 12 13 14 15
	$-\zeta$ 0 1 0 0 0 0 0 $-\zeta$ = 0 and x is a non-basic valiable
	-z -3 -3 1 0 0 0 => optimal w.r.t. z
	s f ₂ 1 1 1 1 0 0 0
	a f ₄ 0 0 -1 0 1 1 0 basic columns of the
	h fr 1 1 1 0 -1 0 1 initial tableau
1	Primal information (visualized in the graph)

4. Duality

4.5 Dual information in the tableau

4. Duality

4.5 Dual information in the tableau

4. Duality 4.6 The

4.6 The dual Simplex algorithm	
Goal: use the primal tableau to solve the dual LP	
Characteristics of the dual LP	
The primal optimality condition $\bar{c} \ge 0$ becomes a dual constraint	
=> the primal simplex algorithm has a primal feasible solution	
and fulfills the dual constraint $\bar{c} \ge 0$ only at termination when the optimum is reached	
This suggests the following characteristics for the dual simplex algorithm	
generate a sequence of dual feasible solutions	
establish primal feasibility only at termination when the optimum is reached	
Deriving the operations in the tableau	
Tableau X with basic solution	

4. Duality

+

4.6 The dual Simplex algorithm

f ₁ f ₂ f ₃ f ₄ f ₅
-3 1 0 0 0 0 => dual feasible, i.e., ē≥0
f_2 1 1 1 0 0 0
f_{1} 1 0 0 1 1
$f_3 \begin{bmatrix} -1 & -1 & 0 & 1 & 0 & -1 \end{bmatrix}$
Δ
choose a pivot row r (instead of a pivot column) with $x_{r0} < 0$ (i.e., an inteasible entry $x_{r0} < 0$ in the primal
basic solution)
Θ
Choose a pivot column in row r the by considering entries $x_{rj} < 0$ (as to obtain $x_{r0} \ge 0$ after the pivot)
Pivoting with x < 0 changes the cost row to
rivering with x _{rs} vo changes the cost row to
Xri
$x'_{0j} = x_{0j} - \frac{1}{x_{0s}} x_{0s}$ $j = 1,, n$
^rs

4. Duality 4.6 The dual Simplex algorithm

)				-			•	•	-		· · · · · · · · · · · · · · · · · · ·		•			
Proc	o†: C	heck														
A 44 F	•	. 1 . 71	-	. 1	<i>.</i> .		1	11 .	11.							
4.11 E	xam	pie (i	Exar	nple	for 1	rne sn	ortest p	ath pro	oblem c	ontinu	za)					
, initi	al to	ıblea	u, no	t ve	t tra	nsfor	med w.r.	t. a bas	sis and	graph	with <mark>c</mark>	osts				
			•	'		-				5 1						
		f_1	f ₂	f ₃	f ₄	f ₅	G		\bigcirc					 	 	
_		1	2	2	3	1	0	1 -	TU	3				 	 	
S	1	1	1	0	0	0	(e)	<hr/>	2	_ ` `	Δ (+)					
0	0	-1	0	1	1	0	J.	2	— ī -	1 /	RU.					
, u		•	4	4	~	1				> ¹ –						
b	0	0	-1	-1	0	1			(b)							

4.6 The dual Simplex algorithm

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
© pivot operation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
=> primal and dual feasible => optimal The dual optimal solution can be obtained from the inverse of the optimal basis as $\pi^{T} = c^{T} B^{-1}$ (Duality
Theorem). The optimal basis is B = { 2, 4, 5 } with inverse

4. Duality 4.6 The dual Simplex algorithm

$B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
So
$\pi^{T} = c_{B}^{T}B^{-1} = (2,3,1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = (3,3,1)$
$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Observe: in this case we could not obtain π and B ⁻¹ directly from the optimal tableau, since the dual LP is not the one constructed from the initial tableau with basis { 2, 4, 3 }, but the dual LP of Example 4.9.

5. Computational aspects of the Simplex algorithm

♦ 5.1 The revised simplex algorithm	29
♦ 5.2 Alaorithmic consequences of the revised simplex algorithm	30
♦ 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation	31
♦ 5.4 The simplex algorithm with lower and upper bounds	32
♦ 5.5 A special case: the network simplex algorithm	33

28

only es	at ev sentio	ery pivot s 1 informati	ion in a me	uch memory for every tableau). The revised simplex algorithm uses in every sta mory-efficient way
The	core o	f that info	rmation is	the inverse P^{-1} of the current basis P from which we can easily compute all
· (- marion is	the inverse B of the current busis B, from which we can easily compare an
infor	matio	n needed fo	or a pivot	бтер
The	revise	d simplex c	ılgorithm i	s used in all commercial LP-codes
Θ	J	ماريم معرفا	ما مانسها میر	ala anithms the CADDV metains
Main id	јеа от	the revise	a simplex	digorithm: the CARRY matrix
cons	ider tl	ne initial ta	bleau with	identity matrix = initial basis on the left in the tableau
	-z	0 0	cj	-
		т		
	D	T		
	<	(0) ×		
	-			

5. Computational aspects of the Simplex algorithm 5.1 The revised simplex algorithm

after iteration ℓ the tableau contains the following data in den first $$ m+1 columns							
$-\mathbf{z}' = \mathbf{\pi}^{T}$							
<u> </u>							
CARRY ^(ℓ)							
where							
000 Ø _							
π^{T} = dual solution because of (4.12), in general infeasible.							
The numbers π_i are also called simplex multipliers.							
-0							
b - B b is the current right hand side - current primal solution							
$\nabla f = c T R^{-1}$ is the current primal cost							
2 - C _B b b is the current primar cost							
Tt suffices to maintain the following data for the simplex algorithm							
1. initial tableau							

		c ^T	
	Ь	A	
0			
2. cur	ren	t CARRY-matrix CARRY	<i>(</i> (ℓ)
<u> </u>	ron	t basis by its column inc	lices R(1) R(m)
5. cui	ren		
From 1.	2	and 3 one can obtain a	Il data required for a pivot step
Θ	.,		· · · ·
(1) Pr	icing	g Operation (computing	reduced costs)
itera	ative	ely compute	
	ē	$c_1 = \pi^T A_1$	
	c] -		
for	non	-basic variables until so	me reduced cost ī; < 0 or ī≥0 (=> termination with an optimal solution)
Θ			
(2) 60	ener	ation of the Pivot Colun	nn (transforming the pivot column w.r.t. the current basis)
com	oute		
	x	. ₽ ⁻¹ 4	
	~s -		

5. Computational aspects of the Simplex algorithm 5.1 The revised simplex algorithm

= column s of the current tableau X
the pivot element x _{rs} is obtained as
b' \leftarrow in CARRY ^(\ell)
$\min_{i, x_{is} > 0} \frac{-1}{x_{is}} \leftarrow \ln X_s$
or z is unbounded is (if all x:,≤0)
(3) Pivot Operation (pivot step)
o compute CARRY ^(ℓ+1)
i.e., transform X _s into the unit vector (with 1 at the pivot element) and apply the corresponding row
operations to $CARRY^{(\ell)}$
$-z' - \pi^{T}$
b' B ⁻¹
$CARRY^{(\ell)}$ X_s
(4) Basis Update

5. Computational aspects of the Simplex algorithm 5.1 The revised simplex algorithm

0	
set B(r) := s	
The Two-Phase-Method works similarly	
0	
one starts with the artificial cost vector	
(1,, 1, 0,, 0)	
artificial variables	
x ₁ ^a ,, x _m ^a form the initial basis	
Transformation to reduced cost w.r.t. this basis changes the cost to	
m	
$d_i := -\sum a_{ij}$	
for each non-basic variable	
At the end of Phase I we change over to the original cost vector	
=> compute - π^T = - $c_B^T B^{-1}$ and put it into CARRY ^(l)	
compute - $z = -c_B'b'$ and put it into CARRY ^(c)	
The required data is available: c_{B} is stored in the initial data, B is stored, and B ⁺ and b ⁺ are stored in	

5. Computational aspects of the Simplex algorithm 5.1 The revised simplex algorithm

5. Computational aspects of the Simplex algorithm 5.2 Algorithmic consequences of the revised simplex algorithm

⊖ (1) Do not look at every non-basic columns per iteration
one needs all reduced costs
$\bar{\mathbf{c}}_{j} = \mathbf{c}_{j} - \boldsymbol{\pi}^{T} \mathbf{A}_{j}$
only to prove optimality. At other steps, partial pricing is enough (in the primal simplex; it is not possible in the
dual simplex).
(2) Columns A _i of non-basic variables come from the initial tableau
• this is often sparse (in particular with combinatorial problems, e.g. there are only 2 entries ≠ 0 in a vertex-edge-
incidence matrix)
=> can exploit techniques to save memory usage and runtime (data structures and algorithms for sparse
matrices)
⊖ (3) Maintain CARRY ^(ℓ) implicitly
since $CARRY^{(\ell)}$ is obtained in a simple way from $CARRY^{(\ell-1)}$, it is not necessary to store the complete matrix
CARRY ^(ℓ)
• $CARRY^{(\ell)} = P_{\ell} \cdot CARRY^{(\ell-1)}$

5. Computational aspects of the Simplex algorithm 5.2 Algorithmic consequences of the revised simplex algorithm

with $P_{\ell} = (e_{1}, \dots, e_{r-1}, n, e_{r+1}, \dots, e_{m}) \text{ models elementary row operations}$ $e_{j} = i \text{-th unit vector}$ $n = \begin{pmatrix} -\frac{x_{tx}}{x_{r+1}} \\ \vdots \\ \frac{1}{x_{r+1}} \\ \vdots \\ \frac{x_{r+1}}{x_{r+1}} \end{pmatrix} \stackrel{\text{def}}{=} pivot \text{ row}$ \vdots $\Rightarrow \text{ store } P_{\ell} \text{ by its } \eta \text{-vector and position } r$ $\bullet \text{ inductively}$ $CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \dots \cdot P_{1} \cdot CARRY^{(0)}$ $\bullet \text{ if } \ell gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of \eta-vectors (\ell \leq m suffice)$	
$P_{\ell} = (e_{1}, \dots, e_{r-1}, n, e_{r+1}, \dots, e_{m}) \text{ models elementary row operations}$ $e_{i} = i-\text{th unit vector}$ $\eta = \begin{pmatrix} -\frac{x_{i_{\ell}}}{x_{r_{\ell}}} \\ \vdots \\ \frac{1}{x_{r_{\ell}}} \\ \vdots \\ \frac{1}{x_{r_{\ell}}} \\ \vdots \\ \frac{1}{x_{r_{\ell}}} \end{pmatrix} \longrightarrow \text{pivot row}$ \vdots $\Rightarrow \text{ store } P_{\ell} \text{ by its } \eta \text{-vector and position } r$ $\bullet \text{ inductively}$ $CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \dots \cdot P_{1} \cdot CARRY^{(0)}$ $\bullet \text{ if } \ell gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of \eta-vectors (\ell \leq m suffice)$	with
$e_{i} = i-\text{th unit vector}$ $\eta = \begin{pmatrix} -\frac{x_{15}}{x_{rg}} \\ \vdots \\ \frac{1}{x_{s}} \\ \vdots \\ -\frac{x_{ms}}{x_{rg}} \end{pmatrix}$ $\Rightarrow \text{ store } P_{\ell} \text{ by its } \eta \text{-vector and position r}$ $\bullet \text{ inductively}$ $CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \ldots \cdot P_{1} \cdot CARRY^{(0)}$ $\bullet \text{ if } \ell gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of \eta-vectors (\ell \leq m suffice)$	$P_{\ell} = (e_1, \dots, e_{r-1}, n, e_{r+1}, \dots, e_m)$ models elementary row operations
$\eta = \begin{pmatrix} -\frac{x_{1s}}{x_{rs}} \\ \vdots \\ -\frac{x_{ms}}{x_{rs}} \end{pmatrix}$ => store P_{ℓ} by its η -vector and position r inductively $CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \ldots \cdot P_1 \cdot CARRY^{(0)}$ if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η -vectors ($\ell \le m$ suffice)	e _i = i-th unit vector
$n = \begin{pmatrix} -\frac{\pi_{rs}}{2} \\ \vdots \\ -\frac{\pi_{rs}}{2} \\ \vdots \\ -\frac{\pi_{rs}}{2} \end{pmatrix} $ \rightarrow pivot row => store P _l by its η -vector and position r inductively $CARRY^{(l)} = P_{l-1} \cdot P_{l-2} \cdot \dots \cdot P_1 \cdot CARRY^{(0)}$ if l gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η -vectors (l ≤ m suffice)	
$\eta = \begin{bmatrix} \vdots \\ \frac{1}{x_{rs}} \\ \vdots \\ -\frac{x_{ms}}{x_{rs}} \end{bmatrix} \longrightarrow pivot row$ $\Rightarrow \text{ store } P_{\ell} \text{ by its } \eta \text{-vector and position } r$ matrix inductively $CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \ldots \cdot P_1 \cdot CARRY^{(0)}$ $\textcircled{matrix} if \ \ell gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of \eta-vectors (\ell \leq msuffice)$	$\begin{pmatrix} -\frac{\gamma_{12}}{X_{\Gamma S}} \\ \cdot \end{pmatrix}$
$\eta = \begin{pmatrix} \frac{1}{x_{rs}} \\ \vdots \\ -\frac{x_{ms}}{x_{rs}} \end{pmatrix}$ => store P _l by its η-vector and position r inductively $CARRY^{(l)} = P_{l-1} \cdot P_{l-2} \cdot \ldots \cdot P_1 \cdot CARRY^{(0)}$ if l gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (l ≤ m suffice)	
$\left(\begin{array}{c} -\frac{x_{ms}}{x_{rs}}\end{array}\right)$ => store P _l by its η-vector and position r inductively $CARRY^{(l)} = P_{l-1} \cdot P_{l-2} \cdot \ldots \cdot P_1 \cdot CARRY^{(0)}$ if l gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (l ≤ m suffice)	$\eta = \frac{1}{x_{rs}} \forall P vot row$
 ⇒ store P_ℓ by its η-vector and position r inductively CARRY^(ℓ) = P_{ℓ-1} · P_{ℓ-2} · · P₁ · CARRY⁽⁰⁾ if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (ℓ ≤ m suffice) 	$\begin{pmatrix} -\frac{x_{ms}}{x_{rs}} \end{pmatrix}$
 ⇒ store P_ℓ by its η-vector and position r inductively CARRY^(ℓ) = P_{ℓ-1} · P_{ℓ-2} · · P₁ · CARRY⁽⁰⁾ if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (ℓ ≤ m suffice) 	
 inductively CARRY^(l) = P_{l-1} · P_{l-2} · · P₁ · CARRY⁽⁰⁾ if l gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (l ≤ m suffice) 	=> store P_ℓ by its η -vector and position r
CARRY ^(ℓ) = P _{ℓ-1} · P _{ℓ-2} · · P ₁ · CARRY ⁽⁰⁾ if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (ℓ ≤ m suffice)	inductively
• if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η-vectors (ℓ ≤ m suffice)	$CARRY^{(\ell)} = P_{\ell-1} \cdot P_{\ell-2} \cdot \ldots \cdot P_1 \cdot CARRY^{(0)}$
suffice)	$^{\odot}$ if ℓ gets large, one can "re-invert", i.e., the search for an equivalent but shorter sequence of η -vectors ($\ell \leq m$
	suffice)
(4) Combine these techniques with methods for numerical stability	(4) Combine these techniques with methods for numerical stability

5. Computational aspects of the Simplex algorithm 5.2 Algorithmic consequences of the revised simplex algorithm	30-3
LU-partition, Cholesky-factorization	
(Class on numerical methods)	
Every regular matrix B can be written as B = P·L·U with	
P = permutation matrix (then P-1 = PT)	
L = lower triangular matrix	
U = upper triangular matrix	
Linear systems Bx = b can then be easily solved:	
Bx = b transforms to $LUx = P^{T}b$	
solve Ly = P ^T b	
solve Ux = y	
i.e., solve 2 linear systems in triangular form	
Some quotations by Bob Bixby, the "father" of Cplex and Gurobi	

5. Computational aspects of the Simplex algorithm 5.2 Algorithmic consequences of the revised simplex algorithm

Old machine/processor	New machine/processor	Estimated speedup	
Sun 3/50	Compaq Server ES40, 667 MHz	900	
Sun $3/50$	Pentium 4, 1.7 GHz	800	
25 MHz Intel 386	Compaq Server ES40, 667 MHz	400	
IBM $3090/108S$	Compaq Server ES40, 667 MHz	45	
Cray X-MP/416	Compaq Server ES40, 667 MHz	10	
Table 2: Mac	chine improvements–Barrier alg	gorithms	
Old machine/processor	New machine/processor	Estimated speedup	
Sun 3/50	Pentium 4, 1.7 GHz	13000	
Sun 3/50	Compaq Server ES40, 667 MHz	12000	
33 MHz Intel 386	Compaq Server ES40, 667 MHz	4000	
$IBM \ 3090/108S$	Compaq Server ES40, 667 MHz	10	
Cray X-MP/416	Compaq Server ES40, 667 MHz	5	
⊖ Algorithmic improveme	nts		
i ne duai simplex algor	fithm with steepest edge.		
The dual simplex ala	orithm was introduced by Lei	nke [1954] Tt is not a n	ew alcorithm However to r
The dual simplex dig	or mini was introduced by Lei		ew algorithm. However, to t
knowledge commerc	ial implementations of this al	aorithm were not availa	ble in 1987 as full-fledged
	·····	ge	2.0 1907 de 1 .eugea

5. Computational aspects of the Simplex algorithm

30-6

5.2 Algorithmic consequences of the revised simplex algorithm

All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed,
computational tests, some of which will be presented later in this paper, indicate that the overall
performance of the dual algorithm may be superior to that of the primal algorithm.
There are a number of reasons why implementations of the dual simplex algorithm have become so
powerful. The most important is an idea introduced by Goldfarb and Forrest [1992], a so-called "steepest-
edge" rule for selecting the "leaving variable" at each dual simplex iteration. This method requires
relatively little additional computational effort per iteration and is far superior to "standard" dual
methods, in which the selection of the leaving variable is based only upon selecting a basic variable with
large primal infegsibility
Einear alaebra
Linear algebra improvements touch all the parts of simplex algorithms and are also crucial to good
implementations of barrier algorithms. Enumerating all such improvements is beyond the scope of this
paper. I will mention only a few. For simplex algorithms, two improvements stand out among the rest.
The first of these to be introduced was dynamic LU-factorization using Markowitz threshold pivoting. This
approach was perfected by Suhl and Suhl [1990], and has become a standard part of modern codes. In
previous-generation codes, "preassigned pivot" sequences were used in the numerical factorization (see

5.	Computational aspects of the Simplex algorithm
	5.2 Algorithmic consequences of the revised simplex algorithm

Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred,
but encountered serious difficulties in the alternative case.
The second major linear algebra improvement is that LP codes now take advantage of certain ideas for
solving large, sparse linear systems, ideas that have been known in the linear-algebra community for
several years (see Gilbert and Peierls [1988]). At each major iteration of a simplex algorithm, several size-
able linear systems must be solved. The order of these systems is equal to the number of constraints in
the given LP. Typically these systems take as input a vector with a very small number of nonzero entries,
say between one and ten - independent of overall model size - and output a vector with only a few
additional nonzeros. Since it is unlikely that the sparsity of the output is due to cancellation during the
solve, it follows that only a small number of nonzeros in the LU-factorization (and update) of the basis
could have been touched during the solve. The trick then is to carry out the solve so that the work is linear
in this number of entries, and hence, in total, essentially a constant time operation, even as problem size
grows. The effect on large linear programs can be enormous.
e Presolve
This idea is made up of a set of problem reductions: Removal of redundant constraints, fixed variables, and
other extraneous model elements. The seminal reference on this subject is Brearley et al [1975]. Presolve

5. Computational aspects of the Simplex algorithm

30-8

5.2 Algorithmic consequences of the revised simplex algorithm

was available in MPS III, but modern implementations include a much more extensive set of reductions, including so-called aggregation (substituting out variables, such as free variables, the satisfaction of the bounds of which are guaranteed by the satisfaction of the bounds on the variables that remain in the model). The effects on problem size can be very significant, in some cases yielding reductions by factors exceeding an order of magnitude. Modern presolve implementations are seamless in the sense that problem input and solution output occur in terms of the original model. Θ Examples of performance improvements \bigcirc Table 10: Solution times–Best simplex CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Model Algorithm 120.6 1555.0701.1 275.8primal car continent 364.7110.5104.446.7primal 260.5 22.6 1217.4 275.0 dual energy1 10130.1 736.0 664.0 693.9 dual energy2energy3 21797.1271.9229.1161.7dual 698.6 5619.51123.2675.0primal fuel initial 3832.2102.251.315.5dual schedule 152404.0 252.3220.8 64.6dual Θ full paper

0

ROBERT	E. BIXBY
ILOG, Inc. and Rice University, b	ixby@ilog.com or bixby@rice.edu
This paper is an invited contribution to the 50th anniversary issue Operations Research and Management Science (INFORMS). It desc tools for linear programming. The paper begins with a chort personal	e of the journal <i>Operations Research</i> , published by the Institute of ribes one person's perspective on the development of computational bistory followed by historical emarks covering the some 40 years of
linear-programming developments that predate may own involvement i of computational linear programming since 1987.	in this subject. It concludes with a more detailed look at the evolution
1. INTRODUCTION	To this day, I'm not quite sure why Tom thought my code
I am a relative newcomer to computation. For the first half	would eventually be reasonably good. Initially it certainly was not
of my scientific career, my research focused exclusively on	After the code was delivered to Chesapeake, there fol-
mathematics. That focus began to change in the early 1980s	lowed a period of about two years during which I received
with the appearance of personal computers	a steady stream of practical LPs from Chesapeake, LPs
My first PC was used primarily to implement elemen-	on which my code did not do very well. In each case, I
tary algorithms used in teaching. At first these algorithms	ideas I could come up with never looking in the literature
did not include a simplex algorithm; eventually, however,	(this wasn't my area of research). Slowly the code got bet-
I concluded that it would be useful to incorporate compu-	ter, until some time around 1986, one of Tom's colleagues
tation in the LP courses that I was teaching. As a result,	informed me that my code had actually gotten good enough
I started writing my own code, initially a simple tableau	that one of their customers was interested in obtaining it
At that time in the early 1980s. I knew nothing about	separately. I was, to say the least, surprised, and immedi-
the computational aspects of linear programming (LP). I	LP codes, I chose Roy Marsten's (1981) quite successful
knew a great deal of theory, but numerical analysis and the	and portable (that was key for me) XMP code. I discov-
computational issues associated with numerical algorithms	ered, to my amazement, that for a substantial subset of the
were not subjects that were part of my graduate education.	<i>netlib</i> ¹ testset my code was indeed pretty good, running on
I had no idea that tableaus were numerically unstable.	average two times faster than XMP. In addition, it appeared
Fortunately for me, by the time my interests in compu-	This comparison to XMD was an important part of

5.2 Algorithmic consequences of the revised simplex algorithm

тив сопратьон ю лиг was an ипротансрат ог tation had started, the Department of Industrial Engineerwhat transformed LP computation into a serious part ing and Management Sciences at Northwestern University of my scientific research. Equally important was integer had hired Bob Fourer, one of the creators of the AMPL programming. modeling language. Bob had worked for several years at This was the mid-1980s, and integer-programming comthe National Bureau of Economic Research doing practiputational research was beginning to flower, with imporcal linear programming, followed by a graduate career at tant contributions by people such as Martin Grötschel, Ellis Stanford. He knew a lot about the computational aspects of Johnson, Manfred Padberg, and Laurence Wolsey. Linear mathematical programming, and he passed on a great deal programming was an essential component in that work, but of that knowledge to me in informal conversations. the tools available at that time were proving to be inade-Linear programming become more central to what I quate. The then state-of-the-art codes, such as MPSX/370, was doing when a friend of mine, Tom Baker, founded simply were not built for this kind of application; in addi-Chesapeake Decision Sciences (now a part of Aspen Techtion, they did not deal well with issues such as degeneracy. nologies). Shortly thereafter, Tom asked if I had an LP code The situation at the time is well described by some remarks that he could use in the LP module of the product he was of Grötschel and Holland (1991), commenting on their use building. I said yes, converted my code to C (that was one of MPSX/370 in work on the traveling salesman problem: of Tom's conditions), and delivered it to him. They note that if the LP-package they were using had been Subject classification: Professional: comments on Area of review: ANNIVERSARY ISSUE (SPECIAL). 0030-364X/02/5001-0003 \$05.00 1526-5463 electronic ISSN Operations Research © 2002 INFORMS Vol. 50, No. 1, January–February 2002, pp. 3–15 3 bixby-or2002.pdf

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

⊖ Goals of this chapter
Illustrate the revised simplex algorithm
Illustrate how to handle LPs with (exponentially) many columns: Column Generation
We use a path-based formulation of the max-flow problem
The max-flow problem (see ADM I)
Maximum Flow problem (MFP)
 ■ ■ Instance
network (G, u, s, t) where
G is a digraph
s, t are vertices of G, called the source and the sink, respectively
$u(e) \ge 0$ is the capacity of edge e
e Task
Find an s,t-flow f with maximum flow value v(f)
s,t-flow f = edge weight f(e) for every edge with
0 ≤ f(e) ≤ u(e) for all edges e

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

	$\begin{pmatrix} +v \end{pmatrix}$ row s	
	Af - b with b - 0 T	
	flow conservation	
	f≤u	
	f ≥ 0	
	Here $F(G) = \{e_1, \dots, e_n\}$ and $f = (f_1, \dots, f_n)^T$ i.e., we have a variable per edge for the flow on that edge	
_	A formulation of the max-flow problem as LP with path-variables (path-based formulation)	
	is based on the Flow Decomposition Theorem of ADM I	
	ADM I, Theorem 5.2 (Flow Decomposition Theorem for s,t-flows, Ford-Fulkerson 1962)	
	Let f≠0 be an s,t-flow in (G, u, s, t). Then	
	f is a positive linear combination of (incidence vectors of) directed (elementary) s,t-paths and directed	
	(elementary) cycles	
	the number of these paths and cycles can is at most m	
	• if f is integer, then there is such a linear combination with integer coefficients	

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

e Example
⊖ s,t-flow
f (1)
\sim 3 $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$
decomposition into directed paths and cycles (not unique)
(
○ corresponding linear combination

5. Computational aspects of the Simplex algorithm 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

0
$ \begin{bmatrix} f_{s1} \\ f_{s2} \\ f_{12} \\ f_{1t} \\ f_{21} \\ f_{2t} \end{bmatrix} $ $ f = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 3 \\ 1 \\ 2 \end{bmatrix} $ $ f = 3 \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} $ $ + 2 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} $ $ = 3 \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} $ $ = 1 \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} $
Observe: the s,t-paths determine the flow value, cycles play no role
The path-based LP
Let P ₁ ,, P _p be all directed elementary s,t-paths in G (Observe: p may be exponential in n).
The edge-path-incidence matrix D = (d _{ii}) is defined by
$\int 1$ edge e_i lies on path P_j $i = 1, \dots, m$
$u_{ij} := \begin{cases} 0 & \text{otherwise} \end{cases}$ $j = 1, \dots, p$
$f = (f_1,, f_p)^T$ is a flow vector that has an entry f_j for s,t-path P_j denoting the amount of flow that is sent
along path P _i
The capacity constraints read

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

Df≤u
i.e.
$\begin{pmatrix} f_1 \end{pmatrix}$
$(d_{i1},\ldots,d_{ip}) \cdot \begin{bmatrix} \vdots \\ c \end{bmatrix} \leq u_i$
Σ of flows on all paths containing e_i
= flow in edge e _i
for every row e.
Flow conservation holds trivially and the flow value v is obtained as
$v = \Sigma$. f.
Then the path-based LP is
min $c^{T}f$ with $c_{1} = -1$
Df < u
f > 0
We transform it into standard form by adding slack variables s

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

=>	min $c'^{T}f'$ with $f' = (f \mid s)^{T}$, $c' = (c \mid 0)^{T}$
	D'f' = u with $D' = (D I)$ (5.1)
	f′ ≥ 0
Slack v	variable s, represents the residual capacity on edge e,
⊖ Solving the	e path-based formulation with the revised simplex algorithm
a basic f	easible solution is given by f = 0 and s = u
=> Phase	z I is not necessary
🚧 🔴 column l	D; of path P; has (Pricing Rule) reduced cost $\overline{c_j} < 0$
⇔ c	$j = c_j - \pi^T D_j < 0$
<=> (-	π) ^T D ₁ < 1 because of c ₁ = -1
	- J J
Interpre	station
-π:	= vector of edge weights $-\pi$ of edge e
(-π)	^T D. = length of the path P. writedae weights $-\pi$.
e Tdea	
2000	

5. Computational aspects of the Simplex algorithm 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation	31-8
Compute the shortest s,t-path P w.r.t. $-\pi$. Then (5.2)	
P has length > 1 => optimality criterion holds for all columns belonging to paths	
P has length < 1 => have found a column (path) to enter the basis	
So it is not necessary to store all (exponentially many) columns of paths explicitly	
In general, the idea	
Find a column that violates the optimality criterion at most	
is again an LP, whose solution is often much simpler than all generating all columns in the revised simplex	
algorithm explicitly.	
This idea is called Column Generation	
$\overline{\bullet}$ For the column of slack variable s; we obtain	
s; has negative reduced cost <=> $-\pi_i < 0$ (5.3)	
Since:	
reduced cost of column s; is $0 - (\pi^T \mathbf{I}) = -\pi_i < 0$	
5.1 Theorem (Solving the path-based max-flow problem with column generation)	

5. Computational aspects of the Simplex algorithm 31-9 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation
A basic feasible solution of (5.1) fulfills the optimality criterion
<=> $-\pi \ge 0$ and the shortest s,t-path w.r.t. $-\pi$ has length ≥ 1
The pivot steps in the revised simplex algorithm are shortest-path computations with edge lengths $-\pi \ge 0$ or
letting a slack variable s _i enter the basis if $-\pi_i < 0$
Proof
If $-\pi_i < 0$ for some i, then s _i is because of (5.3) a non-basic variables with negative reduced cost =>
optimality criterion violated
If $-\pi \ge 0$, then pricing reduces because of (5.2) and (5.3) to computing a shortest s,t-path with non-
negative edge weights -π. 🗅
Consequence
The revised simplex algorithm solves the max-flow problem (essentially) as a sequence of shortest path
problems
Need only a (m+1)x(m+1) CARRY matrix in each iteration
[●] 5.1 Example

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

5. Computational aspects of the Simplex algorithm 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

X ₁ =	$B^{-1}D_1 = D_1$			
The reduced cost of column X_1 is then				
C1	$c_1 - \pi^T D_2 = -1 + \text{length of the path} = -1 + 0 = -1$			
Data for pivot operation:				
	0 0 0 0 0 0 -1			
s ₁				
S 2				
\$ ₃				
\$4	1 1 0			
\$ ₅	1 1 1			
⊖ 1st pivot				

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

Data for next pivot:

5. Computational aspects of the Simplex algorithm

5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

5. Computational aspects of the Simplex algorithm 5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

⊖ Goal of this chapter					
<pre> modify the simplex algorithm so that lower and upper bounds can be handled implicitly </pre>					
Modify the simplex algorithm so that lower and upper bounds can be handled implicitly					
Serves as preparation for the network simplex (programming exercise)					
lower bounds are easy					
upper bounds need a modified definition of a basic feasible solution, this then leads to a more efficient and					
rather easy variation of the simplex algorithm					
LP in standard form with lower and upper bounds					
$\bigoplus_{min c^{T}x s.t. Ax = b, \ell \leq x \leq u}$					
$\left(\begin{array}{c} \ell_1 \end{array} \right)$					
$\ell = \begin{bmatrix} \vdots \\ 0 \end{bmatrix} \ge 0$ vector of lower bounds					
$\left(\begin{array}{c} \ell_n \end{array} \right)$					
$\begin{pmatrix} u_1 \end{pmatrix}$					
$u = \left(\begin{array}{c} \vdots \\ \vdots \\ \end{array} \right) \geq \ell$ vector of upper bounds					
$\left(\begin{array}{c} u_n \end{array}\right)$					

So assume w.o.l.g. $\ell = 0$ in the sequel
i.e., min c ^T x
s.t. Ax = b (5.4)
0 < x < u
and w.o.l.g. rank(A) = m
Basic feasible solutions for LPs with upper bounds
Extended partition of the variables
Instead of a partition of the variables/columns of A into B (basic variables) and N (non-basic variables) we
now consider an extended partition into
B basic variables
L non-basic variables with value = lower bound = 0
U non-basic variables with value = upper bound = u,
for such a partition we want that
$Bx_{p} + Lx_{1} + Ux_{1} = Bx_{p} + Uu_{1} = b$ (5.5)
which gives
$x_{p} = B^{-1}(b - Uu_{1}) = B^{-1}b - B^{-1}Uu_{1}$

$L := \{j \in \{1,, n\} \mid x_i \notin B' \text{ and } s_i \in B'\}$ and $s := L $
$\bigcup := \{i \in \{1, \dots, n\} \mid x_i \in B' \text{ and } s_i \notin B' \} \text{ and } a := U $
Identifying $B = A_{\rm P}$ and $U = A_{\rm H}$ we can permute B' such that:
$\begin{pmatrix} B & B_q & 0 & 0 \end{pmatrix}$
$PB'Q^{T} = \begin{bmatrix} I_{p} & 0 & I_{p} & 0 \\ 0 & I_{q} & 0 & 0 \end{bmatrix} \text{ rows for}$
$ \begin{pmatrix} 0 & 0 & I_s \end{pmatrix} \downarrow \times + s = u $
with permutation matrices P and Q
Counting the rows of B' gives m + n = m + p + q + s
Counting the columns of B' gibes $m + n = 2p + q + s$
=> p = m => B is an m×m-matrix
Laplace expansion of det(B') = det(PB'Q) along the last n rows gives det(B') = det(B)
B´ is a basis of the large LP => det(B´)≠0 => det(B)≠0
=> B is basis of A
Since $B'(x,s)^{T} = (b,u)^{T}$, the permuted form of B' transforms into (5.6)
$Bx_{B} + Ux_{U} = b$

5. Computational aspects of the Simplex algorithm 5.4 The simplex algorithm with lower and upper bounds

	x _{ic} > 0 => x _{P(i)} decreases
-	\Rightarrow bound $\theta_i = \frac{x_{i0}}{x_{i0}}$ for θ
-	
-	(as in the ordinary simplex algorithm)
_	$$ Choose θ as minimum of the θ_i and u_s . There are 2 cases
	The minimum is attained at u
	eave the basis unchanged variable x moves from U to L or vice versa
-	$\stackrel{\text{\tiny (a)}}{=}$
-	$\mathbf{O}_{\mathbf{p}}$
-	pivor with x _{rs}
_	the new value of x _s is θ (if x _s = 0) or u _s - θ (if x _s = u _s)
	Termination
	requires additional arguments
-	
-	
-	
-	
-	
_	

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

A more detailed treatment of the network simplex algorithm will be done in the exercises
Here: a proof that it is a specialization of the simplex algorithm with upper bounds
Network problem (Input for the network simplex)
min $c^T x$ s.t. $A x = b$, $0 \le x \le u$
A = vertex-edge-incidence matrix of a digraph G = (V, E)
In the terminology of ADM I this is a Minimum Cost Flow Problem (MCFP)
Basic solutions of the network problem
we assume in the sequel that V = { 1,,n } and that G is connected.
rows of A add up to O
=> delete w.o.l.g. the row for vertex 1 and denote the resulting matrix again by A
=> A has n-1 rows
Consider a spanning tree T of G
=> T has n-1 edges

	Let B be the set of the associated columns of A
	Example:
	T (1) B $(1,2)$ (3,1) (3,5) (2,4)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	⁽⁵⁾ ⁽⁴⁾ ₅ <u>-1</u>
	Consider T as undirected tree with root 1
	Order the vertices of T in preorder traversal (i.e., root-left-right recursively)
	in the example: 1, 3, 5, 2, 4
_	Order the edges according to this vertex order,
	i.e., for each vertex j≠1 take the (unique) last edge on the path from 1 to j.
	in the example: (3,1) (3,5) (1,2) (2,4)
	consider the permuted matrix B' according to these row and column orders

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

	(3,1) ((3,5)	(1,2)	(2,4)	
1	-1		1		
3	1	1			
5		-1			
2			-1	1	
4				-1	
[⊖] 5.4 Lemma					
The permu	ted mati	rix B'	obtain	ed fro	m the preorder traversal of the tree is (after deleting row 1) an upper
triangular matrix with entries ≠ 0 on the diagonal.					
⊖ Proof					
Suppose	that the	e preor	der tra	versal	iust visits vertex i.
Let i be	the fat	her of	i in T.		
=> (i,j) or (i,j) is tree edge, say (i,j)					
Permutation of the rows and columns \Rightarrow (i, (i,j)) is an entry on the diagonal of B'					
Preorder	travers	al => j	i was vi	sited	from i
	1 3 5 2 4 5.4 Lemma The permutriangular of Proof Suppose Let j be => (i,j) a Permutat Preorder	(3,1) 1 -1 -1 -1 -1 -1 -1 -1 -1 -1	(3,1) (3,5) 1 -1 -1 -1 -1 -1 -1 -1 -1 -1	(3,1) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2) (3,5) (1,2	(3,1) (3,5) (1,2) (2,4) $1 -1 -1 -1$ $3 1 1 1$ $5 -1$ $2 -1 1$ $4 -1$ $5.4 Lemma$ $The permuted matrix B' obtained from the permuted matrix B' obtained from the permuted matrix b obtained from the permutation of the permutation of the rows and columns Preorder traversal => j was visited$

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

=> column (i,j) contains
-1 in row j
+1 in row i
5.5 Consequence
The rows and columns of the vertex-edge-incidence matrix of a spanning trees of G can be permuted by a
preorder traversal so that the resulting matrix is non-singular and upper triangular.
The linear systems Bx = b and $\pi^T B = c_B^T$ of the revised simplex algorithm can easily be solved by exploiting
the upper triangular form and the fact that every column contains at most 2 entries ≠ 0. This amounts to
simple iterative substitution along the triangular form.
5.6 Theorem (correspondence basis <-> spanning tree)
Every spanning tree of G defines a basis of the network problem (which need not be feasible w.r.t. $0 \le x \le u$).
Every basis of the network problem defines a spanning tree of G.
Proof

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

⊖ =>:
Cemma 5.4.
In particular, every basis has n-1 columns.
⊖ <=:
Let B be a basis of the network problem
=> the associated columns correspond to a subgraph G´ with n-1 edges
Claim: G' has no undirected cycles
Assume that G´ has an undirected cycle C.
choose an orientation of C and let C^* be the set of forward edges and C^- be the set of backward
edges of C w.r.t. the chosen orientation.
every vertex i in C is incident to exactly 2 edges from C
$\Rightarrow \sum_{e \in C^+} A_e - \sum_{e \in C^-} A_e = 0$
this contradicts the fact that B is a basis.
ADM I, Theorem 2.3 => every undirected graph with n vertices and n-1 edges and without cycles is a
tree 🖵

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

⊖ Steps in the revised simplex algorithm
Basis B = tree together with partition B U
1. Computing the right hand side
It is the solution of
$Bx_p = b - Uu_{i,i} =: b'$
=> solve the linear system $Bx_p = b'$
iteratively along the triangular form of B according to Consequence 5.4
$\stackrel{\scriptsize \ensuremath{\Theta}}{=}$ 2. Computing the simplex multipliers π_i
They are the solution of
$\pi^{T}B = c_{D}^{T}$
=> $\pi_i - \pi_i$ = c _i for column/edge (i.i) $\in B$
\Rightarrow iteratively along the triangular form of B π , of the last row can be read of directly then iterate
backwards
 Ontimelity epitopian
5. Optimilarly criterion

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

reduced cost of column/edge (i,j) is
$\bar{c}_{ij} = c_{ij} - \pi^{T} A_{ij} = c_{ij} - \pi_i + \pi_j$
Section 5.4 =>
$\bar{c}_{ij} \geq 0 \text{for } (i,j) \in L$
$ar{c}_{ij} \hspace{.1in} \leq \hspace{.1in} 0 \hspace{.1in} ext{for} \hspace{.1in} (i,j) \in U$
e 4. Computing the transformed column X _{rs}
-X _{rs} corresponds to the change of the basic variables when the value x _{rs} of the non-basic pivot column is set
to 1
so (r,s) enters the basis, B is a tree
=> B + (r,s) contains a unique cycle C
Orienting C according to (r,s) partitions C into a set of forward edges and a set of backward edges.
Setting x_{rs} to 1 then implies in C a change by
+1 on forward edges
-1 on backward edges
=> pivot operation corresponds exchanging edges on this cycle.

5. Computational aspects of the Simplex algorithm 5.5 A special case: the network simplex algorithm

If the non-basic variable x_{rs} is the "bottleneck", then there it changes only from L to U or vice versa (see
Section 5.4).
5. Computing an initial basic feasible solution
= Phase I, see Exercises
⊖ 6. Anti-cycling
by considering only strong tree solutions, see Exercises.
⊖ Literature on the network simplex algorithm
Chapter 11 in
K. Ahuja, T.L. Magnanti, J.B. Orlin
Network Flows: Theory, Algorithms, and Applications
Prentice Hall, 1993

6. Primal-dual algorithms

♦ 6.1 Introduction	35
♦ 6.2 The primal-dual algorithm	36
♦ 6.3 Remarks on the primal-dual algorithm	37
📀 6.4 A primal-dual algorithm for the shortest path problem	38
♦ 6.5 A primal-dual algorithm for the transportation problem	39
♦ 6.6 A primal-dual algorithm for the weighted matching problem (a sketch)	40

34

6. Primal-dual algorithms 6.1 Introduction

Background
Primal-dual algorithms are based on complementary slackness.
They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956]
They provide a general method to derive "specialized" algorithms for combinatorial optimization problems, exact
and approximate.
Basic idea
Start with an LP in standard form
(P) min z = $c^T x$
$A \times = b \ge 0$ (w.o.l.g.)
x ≥ 0
• The associated dual LP is
(D) max w = $\pi^{T}b$
π unrestricted
Complementary slackness yields

6. Primal-dual algorithms 6.1 Introduction

$x \in S_p, \ \pi \in S_D$ are optimal
$(=, \pi, (a, x - b) = 0$ for all i (this holds since $Ax = b$)
$(c_{j} - \pi^{T}A_{j})x_{j} = 0$ for all j (6.1)
So: (6.1) = is the only condition for optimality
Α
Primal-dual algorithm
Given $\pi \in S_D$, find $x \in S_P$ such that x and π fulfill (6.1)
We search for such an $x \in S_p$ solving an auxiliary problem, called the restricted primal (RP), determined by
the eiten dual facetials colution $ C$
The given dual feasible solution $\Pi \in S_{D}$.
The such x exists we use information from the dual (NDP) of the nostricted primel (DP) in order to
If no such x exists, we use information from the dual (DRF) of the restricted primar (RF) in order to
construct a "better" dual solution $\pi \in S_{2}$
\checkmark We iterate this process until we (hopefully) find an optimal pair x, π

6.2 The primal-dual algorithm

_	Θ Constructing a dual feasible start solution π
_	Θ
_	All ci 50
	=> π = 0 is dual feasible, as $\pi'A \le c'$
	Θ Some $c \neq 0$
	Use a trick:
	🚧 🔿 Tutus dans such annaise la suite la suite a
	Introduce another primal variable $x_{n+1} \ge 0$
	Introduce another primal constraint
	$x_1 + x_2 + + x_{n+1} = b_{m+1}$
	with $b_{m,1} \ge n \cdot M$ (M from Lemma 3.4) and $c_{m,1} = 0$
	m+1
	Lemma 3.4 => this constraint does not change S _P
	The dual problem then is
	max w = π ^T b + π _{m+1} b _{m+1}
	π^{T} Λ π λ λ π
	$m_{j} + m_{m+1} \leq c_{j} = 1,,n$
_	π _{m+1} ≤0
	π_i unrestricted, i = 1,,m
	• A feasible solution of this dual LP is given by

6.2 The primal-dual algorithm

$\pi_i = 0$ $i = 1,,m$
$\pi_{m+1} = \min_j c_j < 0$ (since at least one $c_j < 0$)
=> a dual feasible solution can be constructed quite easily (much simpler than a primal with the Two-Phase-
method)
The Restricted Primal (RP)
Assume that we have a dual feasible solution π of (D)
To fulfill (6.1), set
$J \coloneqq \{ j \mid \pi^{T} A_{j} = c_{j} \}$
We call J the set of admissible columns
(6.1) => x ∈ S _p is optimal <=> x _j = 0 for all j ∉ J
So we are looking for an x with
$\Sigma_{j \in J} A_{j} x_{j} = b$
x≥0, x _j = 0 for all j∉J
This search is a pure feasibility problem, which we will solve with Phase I of the simplex algorithm. The Phase I
problem is called the Restricted Primal (RP):

Т

6. Primal-dual algorithms 6.2 The primal-dual algorithm

$\epsilon = \sum^{m} a$	
$\zeta = \sum_{i=1}^{n} x_i^{-1}$	
unter $\sum_{j \in J} a_{ij} x_{ij} + x_i^a = b_i i = 1, \dots, m$	
$x_i > 0 i \in J$ (RP)	
$x_j = 0 j \notin J \qquad \text{may delete}$	
$x_i^a \ge 0$ i=1,,m these x_j	
We can solve (RP) with the simplex algorithm. (RP) searches for a fe	asible solution of (P) without the columns A_{i}
with $i \notin T$. The antificial variables define the initial basis of (DP)	3
with $j \notin J$. The difficial valiables define the initial basis of (K).	
If $\xi_{opt} = 0$, then each artificial variable is 0 and x is a feasible s	olution of (RP)
=> x is an optimal solution of (P)	
0	
If $\xi_{opt} > 0$, then there is no x in (RP) fulfilling (6.1)	
=> we investigate the dual IP of (RP)	
The dual (NDP) of the restricted primal	
(DRP) reads	

6.2 The primal-dual algorithm
🗢 dual feasibility means
$(\pi^*)^T A_j = \pi^T A_j + \theta(\pi^2)^T A_j \leq c_j$ for j = 1,, n
this is no problem if $(\pi')^T A_j \leq 0$ (this holds for all $j \in J$ since $\pi' \in S_{DRP}$)
There are 2 cases
$(\pi^{\prime})^{T}A_{j} \leq 0$ for all $j = 1,, n$
=> θ can be made arbitrarily large
=> the dual objective function of (D) is unbounded
Theorem 4.3 => (P) has no feasible solution
$(\pi')^T A_i > 0$ for some $j \notin J$
Then we obtain a constraint for θ :
$\pi'A_{j} + \theta(\pi')'A_{j} \leq c_{j}$
>0
$a = \pi^T A$
so $\theta \leq \frac{c_j - \pi A_j}{(\pi')^T A_i}$
We summarize

6.2 The primai-dual algoninm
⊖ Input
Primal LP (P) in standard form
Associated dual LP (D) with feasible solution π (possibly constructed by the above trick)
Output
• At termination : an optimal solution or a message that (P) has no feasible solution
ermination can be guaranteed by anti-cycling rules
Method
repeat
Construct (RP) by computing $J := \{ j \mid \pi^T A_j = c_j \}$
call Phase I with cost vector $\xi = \sum x_i^a$ for (RP)
Θ if $\mathcal{E} \to 0$ then
• Sopt · · · · · · · · · · · · · · · · · · ·
<u>call</u> dual Simplex for (DRP) and take the computed optimal solution π
<u>if</u> (π´)¹A _j ≤ 0 for all j = 1,, n
then return "(P) has no feasible solution"
else
\odot compute θ_1 according to (6.7)

6.2 The primal-dual algorithm

set
$$\pi := \pi + \theta_1 \pi'$$

until $\xi_{opt} = 0$
return solution x of (RP)

6. Primal-dual algorithms

5

6.3 Remarks on the primal-dual algorithm

(1) Restart: The basic optimal solution of the previous (RP) is a basic feasible solution for the new (RP)
6.3 Theorem (Keeping admissible basic columns)
Every admissible column of the optimal basis of (RP) remains admissible at the start of the next iteration of
the primal-dual algorithm
Proof
Let A _i be an admissible column of the optimal basis of (RP)
J Definition of admissible column => A _i is a column of A, i.e., does not belong to an artificial variable
reduced cost of a basic column is 0, π ' is a dual optimal solution of (RP)
$\Rightarrow 0 = \bar{c}_j = c_j - (\pi')^T A_j = 0 - (\pi')^T A_j$
$\Rightarrow (\pi')^{T} A_{j} = O$
Then
$(\pi^*)^T A_j = \pi^T A_j + \theta_1 (\pi^{\prime})^T A_j = \pi^T A_j + 0 = \pi^T A_j = c_j$
since A_j is an admissible column w.r.t. π ———
=> A_i remains admissible w.r.t. π^*
An optimal basis of (RP) is composed of

6.3 Remarks on the primal-dual algorithm

admissible columns => stay admissible because of Theorem 6.3
columns of artificial variables => stay in the new (RP)
=> Theorem and (1) 🗅
(2) (RP) can be solved with the revised simplex algorithm
this follows from Theorem 6.3. We only need to update the set J for the non-basic columns
(3) Termination can be achieved by anti-cycling rules
6.4 Theorem (Termination of the primal-dual algorithm)
The primal-dual algorithm solves (P) in finitely many steps
Proof
Interpret (RP) as a sequence of pivots of variables $x_1^a,, x_m^a, x_1,, x_n$
(possible since $x_i = 0$ for $j \notin J$ and thus can be interpreted as a non-basic variable)
=> (RP) traverses a sequence of basic feasible solutions of (I A)
Claim: The objective function decreases monotonically along that sequence (not necessarily strictly)
• this is clear within the repeat-loop, because then the algorithm is just the ordinary (revised) simplex

37-2

37-3

6. Primal-dual algorithms 6.3 Remarks on the primal-dual algorithm

	algorithm.
	o consider now a new entry into the repeat-loop
_	-> we compute θ_1
	Let r be the index at which the minimum is attained in the computation of θ_1
	Sub-Claim: column r is admissible and has negative reduced cost in the new (RP)
	0
	$(\pi^*)^{T} A_r = \pi^{T} A_r + \Theta_1(\pi')^{T} A_r = \pi^{T} A_r + \frac{c_r - \pi^{T} A_r}{(\pi')^{T} A_r} \cdot (\pi')^{T} A_r = c_r$
	=> A, is admissible w.r.t. π^* => r admissible in the new (RP)
	in the new (RP) column r has reduced cost (see Proof of Theorem 6.3 in this subsection)
	$0 - (\pi)^{T} A_{r} < 0$
_	as $(\pi')^T A_r > 0$ by definition of θ_1
	Sub-Claim => when entering the repeat-loop, we may choose column r as pivot column in the sense of the
_	ordinary simplex algorithm with monotonically decreasing cost
	Claim => adapting the lexicographic rule to the sequence of basic solutions of (I A) yields termination 🗆
+	

|--|

Deriving (P), (D), (RP), (DRP)
We consider the formulation of (SP) from Section 4.3
Af = b (A = vertex-edge-incidence matrix)
f≥0
where the row of vertex t is deleted
The dual LP is
(D) max π _s - π _t
$\pi - \pi + c$ for all edges (i, i) $\in F(G)$
$n_i - n_j \leq c_{ij}$ for an edges $(i, j) \in C(0)$
π_i unrestricted
- - 0 (connectioned to delete direct t)
$\pi_{t} = 0$ (corresponds to deleted row t)
0
The set of admissible columns is
$IJ = \{(i,j) \in E \mid \pi_i - \pi_j = c_{ij}\}$

6. Primal-dual algorithms

6.4 A primal-dual algorithm for the shortest path problem

6.4 A primal-dual algorithm for the shortest path problem

6. Primal-dual algorithms

6.4 A primal-dual algorithm for the shortest path problem

6.4 A primal-dual algorithm for the shortest path problem

6. Primal-dual algorithms

6.4 A primal-dual algorithm for the shortest path problem

6. Primal-dual algorithms 6.4 A primal-dual algorithm for the shortest path problem

6. Primal-dual algorithms

6.4 A primal-dual algorithm for the shortest path problem

6.4 A primal-dual algorithm for the shortest path problem

W := { i \in V † can be reached from i via edges from IJ } = { i \in V π_i = 0 }
π_i remains unchanged as soon as $i \in W$, since π_i = 0 afterwards
(2) When an edge (i, j) enters IJ, it stays in IJ,
because π_i and π_j change by the same amount => π_i - π_j stays the same
(3) $i \in W \Rightarrow \pi_i$ = length of a shortest path from i to t
(inductive proof)
In every iteration of the algorithm, one adds those vertices from V - W to W that are closest to t
(inductive Proof)
Consequence
The primal-dual algorithm for (SP) with $c \ge 0$ is essentially Dijkstra's algorithm, as in the chord model in
Section 4.3

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

Deriving (P), (D), (RP), (DRP)
Primal LP (P) and dual LP (D)
We consider the formulation of the transportation problem from Section 4.1
(P) min $\sum_{i,j} c_{ij} f_{ij}$ s.t.
$\Sigma_{j} f_{ij} = a_{i}$ for all i (pick up supply a_{i} from vertex i)
$\Sigma_i f_{ii} = b_i$ for all j (deliver demand b_i to vertex j)
f > 0 for all i i
with (w.o.l.g.) $\Sigma_i a_i = \Sigma_j b_j$
Introduce dual variables α_i , β_j for the two groups of constraints
$\alpha_i \sum_i f_{ii} = a_i$ for all i
$\beta = \sum_{i=1}^{n} f_{i}$
The dual (D) then is
(D) max $\Sigma_i a_i \alpha_i + \Sigma_i b_i \beta_i$ s.t.
$\alpha_i + \beta_i \leq c_{ii}$ for all i, j
α_i, β_j unconstrained
A feasible solution of (D) is

6.5 A primal-dual algorithm for the transportation problem

α _i = 0 for all i
$\beta_1 = \min_i c_{i1}$ for all j does not require that all $c_{i1} \ge 0$
Pestricted primel (PP)
The set of admissible columns is
$IJ = \{ (i,j) \in E \mid \alpha_i + \beta_i = c_{ij} \}$
- ' J 'J
0
Restricted primal (RP)
min $\xi = \sum_{i=1}^{\infty} x_i^{\alpha}$
$\sum_{j} f_{ij} + x_{i}^{\omega} = a_{i} \text{ for } i = 1,, m$
$\Sigma_i f_{ij} + x_{m+j}^{a} = b_j$ for j = 1,, n
$f_{ii} \ge 0$ for all edges $(i,j) \in IJ$
f. = 0 for all edges (i i) ∉ IJ
x _i ^a ≥0 for i=1,,m+n
We modify (RP) by substituting the artificial variables x_i^a in the objective function and obtain (with $f_{ij} = 0$
for all edges (i,j) ∉ IJ)

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

_	
_	$\xi = \sum a + \sum b = 2\sum f$
_	$\varsigma = \Sigma_i u_i + \Sigma_j D_j = \Sigma \Sigma(i,j) \in IJ^{-1}ij$
	<
_	
	=> minimizing ξ <=> maximizing Σ _{(iii) ∈ TT} f _{ii}
	Deleting the artificial variables then yields (because of $x_i^a \ge 0$)
	(RP') max $\Sigma_{(i)} \in TT$ f_{ii}
_	
	Σ _j f _{ij} ≤ a _j for i=1,, m
	$\sum f = 1$
	$\Sigma_i I_{ij} \leq D_j$ for $j = 1,, n$
_	f _{ii} ≥0 for all edges (i,j) ∈ IJ
_	
	t _{ij} = 0 for all edges (i,j) ∉ IJ
	• (DD') companying the empty flow machine in the entry C of educing the educed

=> (RP') corresponds to a max-flow problem in the graph G of admissible edges

_	$a_1 \swarrow b_1$
_	
_	a _m b _n = capacities
_	
	admissible edges
	The primal-dual algorithm vields:
_	
_	f is optimal in (P) <=> the maximum flow value fulfills v(f) = $\sum_i a_i = \sum_j b_j$
_	The dual (DRP) of (RP)
_	
_	Introduce dual variables u _i , v _j for the two groups of constraints
_	$u_i = \sum_{i=1}^{n} f_{ii} + x_i^a = a_i \text{ for } i = 1,, m$
	$v_j \sum_i f_{ij} + x_{m+j}^{\alpha} = b_j$ for j = 1,, n
	The dual of (RP) is
	(DRP) max w = $\sum_i a_i u_i + \sum_j b_j v_j$ s.t.

6.5 A primal-dual algorithm for the transportation problem

_	u _i + v _j ≤ 0 for all (i,j)∈ IJ
_	
_	u _i , v _j s i
-	u _i , v _i unrestricted
-	6 6 Lemma (Optimal colution of (DDP))
_	
-	Let $\xi_{opt} > 0$ in (RP) and let f be a maximum s,t-flow in G.
_	Let $I^* \subseteq I$ be the set of vertices that can be reached from s in G_f (i.e. there is a flow augmenting path
_	from s to these vertices).
-	Let $T^* \subset T$ be the set of vertices that can be reached from s in G. (i.e. there is a flow sugmenting both
-	Let $J \subseteq J$ be the set of vertices that can be reached from s in \mathcal{G}_{f} (i.e. there is a flow augmenting path
_	from s to these vertices).
_	Then
_	
_	$\alpha_i := 1$ if $i \in I^*$ $\alpha_i := -1$ if $i \notin I^*$
_	$\beta_i := -1$ if $j \in J^*$ $\beta_i := 1$ if $j \notin J^*$
-	is an optimal solution of (DRP)
-	
-	Proof
-	igodol From ADM I we know that X := {s} \cup I* \cup J* is a cut of minimum capacity of G, and that every max-flow
_	algorithm computes such a cut. Hence the sets I^* and J^* can be determined efficiently.

6.5 A primal-dual algorithm for the transportation problem

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem otherwise there is a flow augmenting s,t-path (5) the flow value is $v(f) = \sum_{i \in I - I^*} a_i + \sum_{j \in J^*} b_j$ since: v(f) = net outflow out of X = {s} \cup I* \cup J* into V(G) - X => (5) follows from (1) - (4) (A) α_i and β_i are feasible for (DRP) Show that $\alpha_i + \beta_j \le 0$ If $\alpha_i + \beta_j > 0 \Rightarrow \alpha_i = 1$ and $\beta_j = 1 \Rightarrow i \in I^*$ and $j \in J - J^*$ => a contradiction to (1) (B) α_i and β_i are optimal for (DRP) The objective function value for α_i and β_j is $w = \sum_{i} a_{i} \alpha_{i} + \sum_{i} b_{i} \beta_{i}$ = $\sum_{i \in I^*} a_i - \sum_{i \in I - I^*} a_i - \sum_{i \in J^*} b_i + \sum_{i \in J - J^*} b_i$ Because of (DRP') and (5) $\xi_{opt} = \sum_i a_i + \sum_i b_i - 2v(f)$ = $\sum_{i} a_{i} + \sum_{j} b_{j}$ - 2($\sum_{i \in I - I^{\star}} a_{i} + \sum_{j \in J^{\star}} b_{j}$) = w Weak duality => α_i and β_i are optimal \Box

39-6

6.5 A primal-dual algorithm for the transportation problem

Updating the dual solution
0
Let α_i and β_j be a dual solution of (D) and let α_i and β_j be the optimal solution of (DRP)
Tf E O then there are 2 cases in the primal-dual algorithm (Theorem 6.2)
Case 1: α _i ´ + β _j ´ ≤ 0 for all (i,j) ∉ IJ
• (P) is infeasible by Theorem 6.2
this cannot happen as (P) has a feasible solution,
$e_{\alpha} f = (1/\Sigma e_{\alpha}) e_{\alpha} b_{\alpha}$
$= \frac{2 \cdot y_i}{1} = \frac{1}{1} \sum_{k} \frac{u_k}{u_j} \frac{u_j}{u_j}$
Case 2: α _i ´ + β _i ´ > 0 for some (i,j)∉ IJ
Co this approved the standard approved (6.7) yields
So this case is the standard case. (0.7) yields
$c_{ij} - \pi^T A_{ij}$
$\Theta_1 = \min \left\{ \frac{\sigma}{(\pi')^\top A_{ij}} \mid (i, j) \notin IJ, (\pi')^\top A_{ij} > 0 \right\}$
$c_{ii} - a_i - \beta_i$
$= \min \left\{ \frac{-3}{\sigma' + \beta'} \mid (i, j) \notin IJ, \alpha'_i + \beta'_j > 0 \right\}$
ui ' Pj
$= \min \left\{ \frac{c_{ij} - a_i - \beta_j}{1 \in T^*} \mid i \in T^* \} \right\}$
we summarize

6. Primal-dual algorithms

Ŧ

6.5 A primal-dual algorithm for the transportation problem

_	
_	671 emma (Undating the dual solution)
	Let ξ _{opt} > 0 in (RP) and let f be a maximum s,t-flow in G.
	Let $T \leftarrow T$ be the set of ventices that can be needed from s in G
	Let $\mathbf{I} \subseteq \mathbf{I}$ be the set of vertices that can be reached from s in $\mathbf{G}_{\mathbf{f}}$
	Let $J^* \subseteq J$ be the set of vertices that can be reached from s in G_f
	O Them
	Inen
	$c_{ii} = \sigma_i = \beta_i$
	$\Theta_1 = \min\left\{\frac{\sigma_j - \sigma_i}{2} \mid i \in I^*, j \notin J^*\right\}$
	and the new dual solution is obtained as
	$\alpha^* = \alpha + \theta$, if $i \in T^*$, $\alpha^* = \alpha - \theta$, if $i \notin T^*$
	$\alpha_1 = \alpha_1 \cdot \alpha_1 + 1 \cdot \alpha_2 = \alpha_1 \cdot \alpha_1 + 1 \cdot \alpha_2$
	$\beta_i^* = \beta_j - \theta_1$ if $j \in J^*$ $\beta_i^* = \beta_j + \theta_1$ if $i \notin J^*$
_	Every optimal flow of the old (RP') stays feasible in the new (RP')
_	
_	Proof
_	The new dual solution is obtained as $\pi^* := \pi + \theta \cdot \pi'$
	Hence the values of α_i^* and β_j^* follow from the value of θ_1 and Lemma 6.6
	It remains to show that the optimal flow stays feasible. This follows already from Theorem 6.3 since the
-	

6.5 A primal-dual algorithm for the transportation problem

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

Determine a feasible solution of (D) by
$\alpha_i := 0$ for all i
β _j := min _i c _{ij} for all j
e repeat
construct graph G of admissible edges from IJ := { (i,j) $\in E \mid \alpha_i + \beta_i = c_{ij}$ }
© compute a maximum s,t-flow f in G // warmstart with the flow from the previous iteration is possible
[⊖] <u>if</u> v(f) < Σ _i a _i <u>then</u>
set $I^* := \{ i \in I \mid \text{there is a flow augmenting s,i-path in } G_f \}$
set $J^* := \{ j \in J \mid \text{there is a flow augmenting s,j-path in } G_f \}$
set
$\Theta_1 := \min \left\{ \frac{c_{ij} - \alpha_i - \beta_j}{2} \mid i \in \mathbb{I}^*, j \not\in J^* \right\}$
and take as new dual solution
$\alpha_i := \alpha_i + \theta_1 \text{if} i \in I^* \qquad \alpha_i := \alpha_i - \theta_1 \text{if} i \notin I^*$
$\beta_j := \beta_j - \theta_1 \text{if} j \in J^* \qquad \beta_j := \beta_j + \theta_1 \text{if} i \notin J^*$
$\underbrace{until}_{i} v(f) = \sum_{i} a_{i}$

6.5 A primal-dual algorithm for the transportation problem

return	flow f	
Θ	4 12	
For the t	rion ransportation problem, the paradigm of th	e primal-dual algorithm leads to two nested loops of
reachabil	ity problems . The loops "combinatorializ	e" cost and capacities.
1	Fransportation Problem	
c	ombinatorialize cost	
	Max-Flow-Problem combinatorialize capacities	
	Reachability Problem find a flow augmenting path	
⊖ 6.8 Example		
😑 Input data		

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

6.5 A primal-dual algorithm for the transportation problem

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

_	T* = { 1 } . T* = { 2 }
_	
	edge (1,1) -> (2 - 0 - 1) / 2 = 1/2
	edge (1,3) \rightarrow (3 - 0 - 2) / 2 = 1/2 => $\theta_1 = 1/2$
_	$edge(1,4) \rightarrow (4-0-2)/2 = 1$
_	
	Computing the new dual solution
	$\alpha_i := \alpha_i + \theta_1 \text{if } i \in I^* \qquad \alpha_i := \alpha_i - \theta_1 \text{if } i \notin I^*$
	$\beta_i := \beta_i - \theta_1 \text{if } j \in J^* \qquad \beta_i := \beta_i + \theta_1 \text{if } i \notin J^*$
	j j - j j -
	So $\alpha_1 = 1/2$ $\alpha_2 = -1/2$ $\alpha_3 = -1/2$
	$\beta_1 = 3/2$ $\beta_2 = 1/2$ $\beta_2 = 5/2$ $\beta_4 = 5/2$
	err erz erz erz erz erz erz erz erz erz
	Iteration 2
	0

Construct graph G of admissible edges

6.5 A primal-dual algorithm for the transportation problem

6.5 A primal-dual algorithm for the transportation problem

6.5 A primal-dual algorithm for the transportation problem

0
3 1 5 5
$c_{ii} - a_i - \beta_i$
$\Theta_1 := \min\{\frac{-1}{2}, j \notin J^*\}$ 1/2 1 2 1 3 4
-1/2 2 1 2 2 3
-1/2 5 5 1 4 2
$I^* = \{1, 2\}, J^* = \{1, 2, 3\}$
$edge(1,4) \rightarrow (4-1/2-5/2)/2 = 1/2$
edge (2,4) -> $(3 + 1/2 - 5/2) / 2 = 1/2 => \theta_1 = 1/2$
Compute the new dual solution
$\alpha_i := \alpha_i + \theta_1 \text{if} i \in I^{\wedge} \qquad \alpha_i := \alpha_i - \theta_1 \text{if} i \notin I^{\wedge}$
$\beta_j := \beta_j - \theta_1 \text{if} j \in J^* \beta_j := \beta_j + \theta_1 \text{if} i \notin J^*$
So $\alpha_1 = 1$ $\alpha_2 = 0$ $\alpha_3 = -1$
$\beta_1 = 1$ $\beta_2 = 0$ $\beta_3 = 2$ $\beta_4 = 3$
Iteration 3
Construct graph G of admissible edges

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

6. Primal-dual algorithms

6.5 A primal-dual algorithm for the transportation problem

39-20

6. Primal-dual algorithms 6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

⊖ Goal of this section
Sketch of a primal dual algorithm for weighted (perfect) matching.
This closes the gap from ADM I, Section 7.1
⊖ Matching
Et G be an undirected graph. A matching of G is
a set $M \subseteq E(G)$ of edges such that no 2 edges of M share an endpoint
a matching M is called perfect if every vertex of G is incident to an edge of M
e graph with a perfect matching (red edges)
0

6. Primal-dual algorithms 6.6 A primal-dual algorithm for the weighted matching problem (a sketch)
Maximum weight matching problem (MWMP)
Instance
Undirected graph G, edge weights c(e)
⊖ Task
Find a matching M with maximum weight c(M)
$c(M) = \sum_{e \in M} c(e)$
Minimum weight perfect matching problem (MWPMP)
⊖ Instance
Undirected graph G, edge weights c(e)
⊖ Task
Find a perfect matching M with minimum weight c(M)
or report that there is no perfect matching
6.8 Lemma (Equivalence of matching problems)

ļ	MWMP and MWPMP are equivalent in the sense that there is a simple transformation from one problem to the
	other such that one can construct from an optimal solution of one problem an optimal solution of the other.
	Proof
	[●] "=>"
	Let (G,c) be an instance of the minimum weight perfect matching problem.
_	Choose K large enough so that c'(e) := K - c(e) > 0 for all edges e, and only maximum cardinality
	matchings of G have maximum weight w.r.t. c'. (K := $1 + \sum_{e \in M} c(e) $ suffices)
_	Let M be an optimal solution of the maximum weight matching problem for (G, c')
	M has maximum cardinality => M is a perfect matching for (G,c) or there is no perfect matching in G
_	If M is perfect, then c'(M) = Kn/2 - $\Sigma_{e \in M}$ c(e). So M has maximum weight w.r.t. c' iff M has
	minimum weight w.r.t. c.
	[⊖] "<="
	Let (G,c) be an instance of the maximum weight matching problem.
	Add V(G) many new vertices to G and so many edges that the new graph G' is complete.
	Set $c'(e) := -c(e)$ if $e \in E(G)$ and $c'(e) := 0$ if e is a new edge.
	Let M' be an optimal solution of the minimum weight perfect matching problem for (G', c')
1	

6.	Primal-dual	algorithms
----	-------------	------------

.

0	
6.6 A primal-dual algorithm for	the weighted matching problem (a sketch)

=> M := M' \cap E(G) is an optimal solution of the maximum weight matching problem \Box
The primal-dual algorithm for the minimum weight perfect matching problem
Primal LP (P)
There is no obvious LP-formulation. The following theorem was one of the pioneering results of Edmonds.
Given an instance (G,c) with $G = (V, E)$, he considers the LP (P)
min $\Sigma_{e \in F}$ c(e)x _e
$x(\delta(v)) = 1$ for all $v \in V$
x(δ(S))≥1 for all odd vertex sets S of G
x ≥ 0
Here $x(\delta(S)) \coloneqq \sum_{\alpha \in \delta(S)} x_{\alpha}$
6.9 Theorem (Matching polytope Theorem, Edmonds 1965)
Let (G c) be an instance of the minimum weight perfect matching problem. Then:
(1) G has a perfect matching <=> (P) has a feasible solution
(2) In this case the minimum weight of a perfect matching of G is equal to the optimal value of (P)

The primal-dual algorithm constructs an optimal solution x of (P) (if there is one) that is a perfect
matching of G.
=> Theorem 6.9 and Lemma 3.5 imply that all basic feasible solutions of (P) correspond to perfect
matchings. 🗅
⊖ Dual LP (D)
We do not transform (P) into standard form. The primal-dual algorithm can be adapted also to other forms of
(P).
Let U be the set of all odd vertex sets of G. The dual LP of (P) is (D)
$\max \Sigma(y_v : v \in V) + \Sigma(Y_S : S \in U)$
$y_v + y_w + \Sigma(Y_S : e \in S \in U) \le c(e)$ for all edges $e = vw \in E$
Y ₅ ≥ 0 for all S∈U
y, unrestricted
○ Complementary slackness conditions
$ x_{e} > 0 \Rightarrow c(e) - (y_{v} + y_{w} + \sum (Y_{s} : e \in S \in U)) = 0 $

6. Primal-dual algorithms

6.6 A primal-dual algorithm for the weighted matching problem (a sketch)
6. Primal-dual algorithms

6.6 A primal-dua	l algorithm for t	the weighted	matching p	problem (a	a sketch)
/		0	01	(/

matching problems.
The algorithm can be implemented to run in $O(n^2m)$ time. In particular, at most n variables $Y_c > 0$
throughout the algorithm
There are improvements for dense graphs (that work only on sparse subsets of the edges)
For details see Chapter 5.3 in
W.J. Cook W.H. Cunningham W.B. Pulleyblank and A. Schrijver
Combinatorial Optimization
Wiley 1998
Wiley 1990

7. Integer linear optimization

♦ 7.1 Introduction	42
• 7.2 Totally unimodular matrices	43
• 7.3 Branch and bound algorithms	44
♦ 7.4 Lagrangian relaxation	45
♦ 7.5 Cutting plane algorithms	46
♦ 7.6 Optimization and separation	47

41

÷.

	Integer linear programs (Integer Linear Program, ILP, IP) require all variables to be integer, i.e., $x_i \in \mathbb{Z}$ for all j.
	Mixed integer linear programs (Mixed Integer Linear Program, MILP, MIP) may require only some of them to be
	integer.
	In this section:
	Integer variables add much modeling power. Many non-linear effects can be modeled by IPs.
	The drawback is that IPs are NP-hard in general.
-	
	EP relaxation of an IP
	standard form of an IP
	min c ^T x
	s.t. Ax = b
	x≥0 and integer
	Special case: 0/1 IP or Binary Integer Program
	min $c^{T}x$
	s.t. Ax = b
-	$x \in \{0, 1\}$
-	

7. Integer linear optimization 7.1 Introduction

The LP relaxation of an IP is obtained be dropping the integrality constraints, i.e.,
min c ^T ×
s.t. Ax = b
x > 0
in the general case and
min cTv
in the 0/1 case.
Solving the LP relaxation and rounding
need not yield a feasible solution
■ may work when variables have large values, but even then large errors can occur.
······································

7. Integer linear optimization 7.1 Introduction

7. Integer linear optimization

7. Integer linear optimization 7.1 Introduction

5

(3) Conditional constraints
o if x <a a,b="" else="" then="" with="" y≥0="" y≥b="">0
Claim: A conditional constraint can be reduced to case (2)
the conditional constraint is equivalent to
y ≥ 0
xza or yzb 💷
(4) Discrete variables
$\bigotimes_{x \in \{s_1, \dots, s_m\}}$
Claim: a discrete variable x ∈ { s ₁ ,, s _m } can be modeled as
$x = s_1 \delta_1 + + s_m \delta_m$ with $\delta_i \in \{0, 1\}$ and $\delta_1 + + \delta_m = 1$
clear 🖵
7.1 Example (Minimum weight perfect matching problem as IP)
Every solution of the IP

7. Integer linear optimization 7.1 Introduction

$\min \nabla = c(a) x$
nun ∠e∈E c(e)xe
$x(\delta(v)) = 1$ for all $v \in V$
$x_{a} \in \{0, 1\}$
is a perfect matching
© Complexity of ILPs
7.2 Theorem (Complexity of ILPs)
(1) SATISFIABILITY (SAT) is reducible to ILP
(2) Deciding if an ILP has a feasible solution is an NP-hard problem
(3) It is NP-hard to round a feasible solution of the LP relaxation of an ILP to a feasible solution of the ILP
Proof
• Consider an instance of SAT given by m clauses $C_1,, C_m$ with Boolean variables $x_1,, x_n$
Introduce for every Boolean variable x, a O/1-variable z_i with $z_i = 1$ if $x_i = TRUE$
Satisfying a clause can then be written as a linear inequality, and the existence of a satisfying truth
assignment is equivalent to the existence of a feasible solution of the ILP.
Example:

$x_1 \lor x_2 \lor x_3, x_1 \lor \overline{x}_2, x_2 \lor \overline{x}_3, x_3 \lor \overline{x}_1, \overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$
$\underbrace{-}_{C_1} \underbrace{-}_{C_2} \underbrace{-}_{C_3} \underbrace{-}_{C_4} \underbrace{-}_{C_5} \underbrace{-}_{C_5$
is equivalent to
$z_1 + z_2 + z_3 \ge 1$
$z_1 + (1 - z_2) \ge 1$
$z_2 + (1-z_3) \ge 1$
$z_{2} + (1-z_{1}) \ge 1$
$(1-7_{4}) + (1-7_{2}) + (1-7_{2}) > 1$
$z_i \in \{0, 1\}$
If every clause has ≥ 2 literals (this is the non-trivial case), then $z_i = 1/2$ is a feasible solution of the LP
relaxation. So rounding to a feasible solution of the ILP is as hard as finding a satisfying truth assignment
for the given SA⊤ instance. □
emark:
The proof does not show that testing for feasibility is NP-complete. To that end we need a certificate for
feasibility of polynomial length (see ADM I). It is not directly obvious if such a certificate exists

7. Integer linear optimization

7.1 Introduction

One can, however, show that the entries x_j of an integer feasible solution x are not too large (a statement similar to Lemma 3.4). Thus x itself can serve as a certificate. So NP-hard can be replaced by NP-complete in Theorem 7.2.

⊖ Main question of this section
• When does an LP have integer basic solutions?
=> Then the corresponding ILP can be solved by solving the LP relaxation with the simplex algorithm.
• We consider here the following special case:
When does Ax = b have only integer basic solutions for an arbitrary choice of integer right hand side b?
This is then a property of the matrix A
Totally unimodular matrices
A quadratic matrix B with integer entries is called unimodular
:<=> det B ∈ { -1, 1 }
A matrix A with integer entries is called totally unimodular (TUM)
:<=> every quadratic non-singular submatrix is unimodular
⊖ First properties
A TUM => A has only entries $a_{ij} \in \{-1, 0, 1\}$
• the smallest non-unimodular matrix is

7. Integer linear optimization 7.2 Totally unimodular matrices

$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
• Given a basis B of A with B = $(A_{B(1)}, A_{B(2)},, A_{B(m)})$, Cramer's rule yields
$x_{B(i)} = \frac{\det B^i}{\det B}$ with $B^i = (A_{B(1)}, \dots, A_{B(i-1)}, b, A_{B(i+1)}, \dots, A_{B(m)})$
=> x _{B(i)} is integer if A is TUM and b is integer
Polyhedra of linear optimization problems with integer vertices
Let $R_1(A) := \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ be the polyhedron of the standard form of the LP
Let $R_2(A) := \{x \in \mathbb{R}^n \mid Ax \le b, x \ge 0\}$ be the polyhedron of the canonical form of the LP
Remark:
igodoldoldoldoldoldoldoldoldoldoldoldoldol
The definition of R ₂ (A) follows the correspondence between geometric and algebraic interpretation of LPs in
Section 3.3. Thus the vertices of $R_2(A)$ correspond to the basic feasible solutions of the LP { Ax + s = b, x, s
≥0} enhanced by slack variables s.

7. Integer linear optimization

7.2 Totally unimodular matrices

7.3 Theorem (Integrality of $R_1(A)$) If A is totally unimodular, then all vertices of $R_1(A)$ are integer for any integer right hand side b. In particular, for an LP in standard form with totally unimodular matrix A and integer right hand side b, the simplex algorithm always terminates with an integer optimal solution. Θ Proof: \bigcirc follows from section "first properties" 7.4 Theorem (Integrality of $R_2(A)$) If A is totally unimodular, then all vertices of R₂(A) are integer for any integer right hand side b. In particular, for an LP in canonical form with totally unimodular matrix A and integer right hand side b, the simplex algorithm applied to the corresponding standard form with slack variables always terminates with an integer optimal solution. Proof: \bigcirc Adding slack variables gives the matrix (A|I). Let C be a non-singular guadratic submatrix of (A|I)

=> after a suitable permutation of the rows, C has the form
$\left(\begin{array}{c c} \mathbf{B} & 0 \\ \hline \mathbf{D} & \mathbf{I_k} \end{array}\right)$
with B = quadratic submatrix of A
I _k = (k,k)-identity matrix
\Rightarrow $ det(C) = det(B) = 1$, since A is TUM
=> (A I) is TUM
=> statement with Theorem 7.3 and Theorem 3.10 🗅
So Theorems 7.3 and 7.4 say that the polyhedra $R_1(A)$ and $R_2(A)$ have integer vertices, if A is totally
unimodular and the right hand side b is integer.
Recognizing totally unimodular matrices
The complexity of recognizing totally unimodular matrices has been open for a long time and was solved by
Seymour only in 1980. He proved a "Decomposition Theorem" stating that every totally unimodular matrix can be
constructed from "simple" totally unimodular matrices by certain construction rules. His Decomposition

7. Integer linear optimization

7.2 Totally unimodular matrices

Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)
⁴ m)
···· <i>y</i> .
For details see Chapters 19 and 20 in
A. Schrijver
Theory of Linear and Integer Programming
Wiley 1986
• We will only show a sufficient criterion
8
7.5 Theorem (A sufficient criterion for total unimodularity)
A matrix A with entries $a_{ii} \in \{-1, 0, 1\}$ is totally unimodular if it fulfills (1) and (2) below:
(1) A has at most 2 entries ≠ 0 per column
(2) The rows of A can be partitioned into two disjoint sets I_1, I_2 such that
for every column with 2 entries \neq 0 and the same sign, the associated rows lie in different sets I_{j}
for every column with 2 entries ≠ 0 and different signs, the associated rows lie in the same set I,

Base case k = 1
0
obvious, as A has only entries $a_{ij} \in \{-1, 0, 1\}$
Enductive step to k
0
Let C be a quadratic non-singular (k,k)-submatrix of A
=> each column of C has at least one entry $\neq 0$
Case 1: C has a column with exactly one entry a _{ii} ≠ 0
aplace expansion of det(C) along this column vields
Laplace expansion of der(c) along this column yields
$ \det(C) = a_{ij} \cdot \det(C') $
where C' is the submetrix of C often deleting new i and column i
where c is the submatrix of c after deleting row 1 and column j
C non-singular => det(C') ≠ 0
$\frac{1}{2}$
inductive assumption => [det(c)] = 1
$a_{ij} \in \{-1, 1\} \Rightarrow det(C) = 1$
Case 2: all columns of C have at least 2 entries ≠ 0
(1) => all columns have exactly 2 entries ≠ 0
consider the partition of the rows in I_1 , I_2 according to (2)
$\Rightarrow \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} a_{ii}$ for every column i

7. Integer linear optimization 7.2 Totally unimodular matrices

$\Rightarrow \sum_{i \in I_1} a_i - \sum_{i \in I_2} a_i = 0$
i.e., a linear combination of the row vectors of C yields the null vector
=> this contradicts that C is non-singular
=> this case cannot occur 🗅
7.6 Corollary (Important classes of totally unimodular matrices)
Every LP in standard form or canonical form, whose matrix of coefficients is the
1. vertex-edge incidence matrix of a digraph
2. vertex-edge incidence matrix of a bipartite graph
has only integer basic optimal solutions (for an integer right hand side b).
This covers LP formulations of
shortest path problems
max-flow problems
transportation problems
Proof
© Case 1

7. Integer linear optimization

7.2 Totally unimodular matrices

:<=> each of its rows and columns sums to 1
• An nxn-matrix with entries $a_{ii} \in \{0, 1\}$ is called a permutation matrix
:<=> each of its rows and columns contains exactly one 1
Every doubly stochastic nxn-matrix is a convex combination of nxn-permutation matrices
⊖ Proof
A doubly stochastic matrix M can be seen as a feasible solution of the assignment problem
min $\sum_{i,j} c_{ij} t_{ij}$ s.t.
$\Sigma_j f_{ij} = 1$ for all i = 1,, n
Σ_{i} f. = 1 for all i = 1 n
f _{ij} ≥0 for all i, j
Let A be the associated matrix of coefficients and let $R_1(A)$ be the associated polyhedron of the
standard form
=> $R_1(A)$ is a polytope, as the feasibility domain is bounded because of $0 \le f_{ij} \le 1$
Minkowski's Theorem (Theorem 3.9) => M is a convex combination of the vertices of $R_1(A)$

• A is the vertex-edge incidence matrix of the complete bipartite graph K _{n,n}
=> A is totally unimodular because of Corollary 7.6
=> The vertices von R ₁ (A) are integer because of Theorem 7.3
$0 \le f_{ij} \le 1 \Rightarrow$ the vertices of $R_1(A)$ are permutation matrices \Box

7. Integer linear optimization 7.3 Branch and bound algorithms

Θ

Goal of this section
 Introduction of Branch and Bound as a standard technique for solving NP-complete problems exactly, in particular IPs.
 Although quite simple, Branch and Bound is the basis and the workhorse for all commercial IP solvers, but of course improved by quite a number of additional methods and tricks.
 The basic idea of Branch and Bound
 Branch and Bound (B&B) = problem dependent, cleverly organized systematic search in the set of feasible solutions for an optimal solution, or until termination with a "good" solution (i.e., one with an instance-dependent performance guarantee)

The use of lower bounds for a minimization problem

7. Integer linear optimization

7.3 Branch and bound algorithms	
illustrated for the disjoint path problem (see Section 4.4)	
We imagine the solution space (= set of feasible solutions) as a set of points	
Every point represents a feasible solution	
Branching = partition the current set of solutions into ≥2 subsets (not necessarily disjoint)	

•••••
I 2
branching is usually displayed in a tree (Branch and Bound Tree)
here: partition the set of solutions into 4 subsets depending on which red edge is used on a path between the
red terminals

7. Integer linear optimization 7.3 Branch and bound algorithms

	$\cdots \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
	$\cdots \mathbf{r} \cdots \mathbf{r}$
	Branching and Bounding is used together with
	Good search strategies for choosing the next node (= subset of feasible solutions) in the B&B tree
	depth-first search
	breadth-first search
	best-first-search (node with best (= smallest) lower bound)
J	combinations of the above
	The tree is of course maintained implicitly and will never be generated explicitly
	Techniques for generating good lower bounds (next chapter)
1	

Lagrangian relaxation	
LD relevation (notweek for TDa)	
LP-relaxation (natural for LPS)	_
Techniques for constructing feasible solutions in tree nodes (they provide upper bounds on the optimum)	
	-
Runtime is exponential, depends very much on the quality of the lower bounds	

7. Integer linear optimization 7.3 Branch and bound algorithms

 god lower bounds
 small BåB tree

 god lower bounds
 bad lower bounds

 huge BåB tree
 huge BåB tree

44-11

7.5 Branch and bound algorithms
Input
instance I of a problem
feasible solution $x \in S_{\tau}$ with performance guarantee given by the objective function value $c(x)$ and a lower
bound ℓ for the optimum
• Ingredients
o lower bounding strategy
branching strategy
search strateay
 Method
● 1 Work in the root
 consider a slightly modified easier to solve instance. T' (a relaxation) for computing a lower bound for T'
compute the optimal solution x' of T' let z' be the objective function value:
if $y' \in S$ then neturn $y' / (y')$ is optimal
\circ set $\ell := z'$ // initial along lower bound
Set c = 2 // initial global lower bound (/ initialize data atmusture D. for maintaining the already concerted still under whe data of the D*D transition.
77 Initialize data structure D for maintaining the already generated still unsearched hodes of the B&B free

7. Integer linear optimization 7.3 Branch and bound algorithms

7.3 Dianch and bound algoniums
add I with $\ell(I) := \ell$ to D
use heuristics to generate feasible solutions
set x* := best feasible solution found
set u := c(x*) // initial upper bound
⊖ 2. Main loop
$rightarrow$ while performance guarantee (u- ℓ)/ ℓ is not small enough and we have not run out of time or memory do
choose next node v of the B&B tree from D for searching // search strategy
<u>if</u> ℓ(v) ≥ u then delete v from D // pruning
else
generated the children v ₁ ,, v _k of v // branching rule
// union of the feasibility domains of the children = feasibility domain of v
for each child v _i do do
compute the optimal solution x' of (the relaxation of) the associated subproblem, let z' be its
objective function value // bounding rule
if x' ∈ S _T and z' < u then
x* := x' // update the best known feasible solution

	u := z' // update the global upper bound
	else
	\bigcirc if z' < u then add v; with $\ell(v_i) := z'$ to D // new subproblem
_	delete v from D // v is fathomed
	$\ell := \min \{ \ell(w) \mid w \text{ in } D \} // update global lower bound$
_	● <u>return</u> x* and ℓ
_	
_	Branch and Bound for IPs
	natural for bounding: LP relaxation
	natural for branching: branch w.r.t. fractional variables in the LP relaxation
_	
	7.8 Example (The KNAPSACK problem, see ADM I)
_	─ KNAPSACK
	⊖ Instance
	n items with weight w; and profit c;
	a knapsack with capacity (= total weight) W

7. Integer linear optimization

7.3 Branch and bound algorithms
⊖ Task
find a subset $S \subseteq \{1,, n\}$ with
maximum value $c(S) \coloneqq \Sigma \{c, j \in S \}$
capacity of the knapsack is respected, i.e., $w(S) \coloneqq \Sigma \{w_i \mid j \in S\} \leq W$
An IP formulation of KNAPSACK
Introduce 0/1-variable x _i with x _i = 1 if item j is put into the knapsack
min $\Sigma_i - c_i x_i$ s.t.
$\Sigma_i w_i \times_i \leq W$
x _i ∈{0,1}
7.9 Lemma (Optimal solutions of the LP relaxation of KNAPSACK)
An optimal solution of the LP-relaxation
min $\Sigma_i - c_i \times_i$
$\Sigma_i w_i \times \omega$
$0 \le x_1 \le 1$
of the IP formulation of KNAP5ACK is obtained as follows

sort and number the items is such a way that $c_1/w_1 \ge c_2/w_2 \ge c_n/w_n$ (largest profit per unit weight
first)
compute in this order the smallest k, such that $w_1 + w_2 + \dots + w_{k+1} > W$
set $x_1 = x_2 = = x_k = 1$
$x_{1,1} = (W - w_1 - w_2 - \dots - w_k)/w_{k-1}$
$x_{1} = 0$ otherwise
Proof by checking complementary slackness
the primal dual pair is given by
$\mathbf{v}_1 $ \mathbf{v}_1 \mathbf{v}_1 \mathbf{v}_1 \mathbf{v}_1 \mathbf{v}_1
$\mathbf{v}_{\mathbf{n}}$ 1 1
× ₁ × _n
complementary slackness conditions give
$(1) \times (2) = 2 \times (1 + 2) = C$
(2) + 20 = 5 w x = W (is satisfied by x from the lemma)
$(z) = -z_j = -z_j = -z_j$

7. Integer linear optimization 7.3 Branch and bound algorithms

	5
	(3) $v_i > 0 \Rightarrow x_i = 1$
	\odot Define a dual feasible solution that together with x satisfies conditions (1) and (3)
	$(3) - v_{k+1} - v_{k+2} - \dots - v_n = 0$
	=> (with (1) for $j = k+1$) $w_{k+1}u = c_{k+1} \Rightarrow u = c_{k+1}/w_{k+1}$
	=> (with (1) for j = 1, k) w _j (c _{k+1} /w _{k+1}) + v _j = c _j
_	$\Rightarrow v_j := c_j - w_j(c_{k+1}/w_{k+1})$ for $j = 1,, k$
_	=> we have defined values for all dual variables from observing conditions (1) and (3)
	show: this defines a dual feasible solution
	need only show $x \ge 0$ i.e. $(x_1, y_2, y_3) \ge 0$ for $i = 1$ k
	$T = \{ (1,,.,(1,,.,(1,,(1,,.,(1,,(1,,.,(1,,(1,$
	This follows from $c_j/w_j \ge c_{k+1}/w_{k+1}$ for $j = 1,, k$
_	Θ
_	Use the generic B&B algorithm with the following ingredients
_	lower bounding strategy = LP relaxation solved with Lemma 7.9
_	branching strategy = branch on fractional variables x _{k+1}
	search strategy = best first
	51

	■ Instanc	e			
	0			<u>C:</u>	
-	j ! 	Wj 16	с _ј 112	w _j 7	W = 35
-	2	15	90	, 6	
-	3 4	3 3	15 12	5 4	
-	5	3 ⊿	9 12	3	
-	7 :	4 13	26	2	
-					
-	heuris	stic	solut	ion >	$x_1 = x_2 = x_2 = 1$, $x_1 = 0$ otherwise => upper bound $u = -217$
	LP rele	axat	tion c	nives	$x_1 = x_2 = x_2 = 1, x_4 = 1/3, x_5 = 0$ otherwise => lower bound $\ell = -221$
	⊖ Branch (and	Boun	d Tr	ee
-					· ·

7. Integer linear optimization

7.3 Branch and bound algorithms

	0
	$x_1 = x_2 = x_3 = 1$ (k) = order of
	(x ₄ = 1/3) the search
	lb = -221 1 lb = lower bound
	$x_4 = 1$ $x_4 = 0$
	$x_1 = x_2 = x_4 = 1$ $x_1 = x_2 = x_3 = 1$
	$\begin{pmatrix} x_3 = 1/3 \\ x_5 = 1/3 \end{pmatrix}$
	lb = -219 5
	$x_3 = 1$ $x_3 = 0$ $x_5 = 1$ $x_5 = 0$
	$x = \frac{13}{15}$
	$1 = -217 \ge 10^{-1}$ $1 = -217 \ge 10^{-1}$ $1 = -216 \ge 10^{-1}$ $1 = -220^{-1}$
	= pruned $\begin{pmatrix} x_1 = x_2 = x_6 = 1 \\ y_6 = 1 \end{pmatrix}$ $\begin{pmatrix} x_1 = x_2 = x_3 = 1 \\ y_6 = 1 \end{pmatrix}$
	feasible $x_7 = 1/13$
	$\begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
1	

$x_7 = 1$ $x_7 = 0$	
$x_1 = x_7 = 1$ $(x_1 = x_2 = x_3 = 1)$	
x ₂ = 2/5 feasible	
lb = -174 > u	
⊖ Using other relaxations than the LP-relaxation	
 This is possible, e.g. by deleting constraints 	
=> the feasibility domain gets larger => minimum gets smaller	
· · · · · · · · · · · · · · · · · · ·	
An IP formulation	
Introduce 0/1-variable x_{ij} with $x_{ij} = 1 \iff edge(i,j)$ is in the TSP tour	
$\min \sum_{i,j} \sum_{i=1}^{j} \sum_{i=1$	
$\sum_{i} x_{ii} = 1$ for all $i = 1,, n$ (7.1)	
$\sum_{i} x_{i} = 1$ for all $j = 1,, n$ (7.2)	
$\sum_{i,j \in \mathcal{S}} x_{ij} \leq S - 1 \text{ for all } \emptyset \neq S \subset \{1,, n\} $ (7.3)	
7. Integer linear optimization	44-21

7. Integer linear optimization 7.3 Branch and bound algorithms

$x_{ij} \in \{0, 1\}$ (7.4)
The Cycle Cover Relaxation of the TSP
Is obtained by deleting constraints (7.3).
The remaining constraints define an assignment problem in which edges (i,i) are not permitted. One can
model this in objective function with high costs c _{ii} . Such assignment problems can be solved efficiently, e.g.
with the primal-dual method of Section 6.5.
Using the cycle cover relaxation in a Branch and Bound algorithm
Take the cycle cover relaxation as lower bounding strategy
The optimal assignment (x _{ii}) is a tour if it fulfills constraint (7.3). Otherwise branch as follows:
choose a cycle with smallest number of edges and branch by setting every edge to 0
=> each edge of the cycle generates a child in the B&B tree

Θ
Main statements of this chapter
Lagrangian relaxation is an important technique to generate "good" lower bounds for IPs. It relaxes side
constraints, but punishes their violation in the objective function. By varying the penalty costs, the lower bound
can be improved.
A systematic improvement of the penalty costs leads to subgradient optimization. This is a method to maximize
a non-differentiable concave function.
The lower bound obtained in this way is at least as good as that obtained by LP relaxation, and both are equal
under certain conditions. The advantage of Lagrangian relaxation over LP relaxation is due to a quicker
(approximate) lower bound computation by combinatorial methods instead of solving an LP as in the LP-
relaxation.
Lagrangian relaxation is one of the workhorses in branch and bound algorithms
The basics of Lagrangian relaxation
Consider the integer linear program
(P) min $c^T \times$
s.t. Ax≥b (k "difficult" side constraints)

7. Integer linear optimization

7.4 Lagrangian relaxation

Bx≥d (m-k "easy" side constraints)
x integer
Relax the "difficult" side constraints $Ax \ge b$ and punish their violation in the objective function.
To this end, introduce Lagrange multipliers $\lambda_1,,\lambda_k$ for the relaxed side constraints. They form a kind of duc
variable for these side constraints and must fulfill the conditions
$a_i x \ge b_i \implies \lambda_i \ge 0$ (7.5)
$a_i x = b_i \Rightarrow \lambda_i$ unrestricted (7.6)
^O For fixed such $\lambda = (\lambda_1,, \lambda_k)^T$ the Lagrangian relaxation (LR _{λ}) of (P) is defined as
(LR_{λ}) min $c^T x + \lambda^T (b - Ax) =: L(\lambda, x)$
s.t. Bx≥d
x integer
$L(\lambda,x)$ is called the Lagrange function, $\lambda = (\lambda_1,, \lambda_k)^T$ is also called Lagrange vector and can be seen as
vector of penalty costs.
We denote the feasibility domains of (P) and (LR $_{\lambda}$) with S(P) and S(LR $_{\lambda}$) and the associated optimal values
with $z(P)$ and $z(LR_{\lambda})$, respectively.

	7.11 Lemma (Lagrangian relaxation yields lower bounds)
	For every Lagrange vector λ:
_	(1) $S(LR_{\lambda}) \supseteq S(P)$
_	$(2) z(LR_1) \leq z(P)$
_	
_	Proof
-	(1) is trivial, as side constraints have been deleted
-	
-	(2):
-	Let x be optimal w.r.t. (P)
-	
-	=> b _i - a _i x ≤0, or b _i - a _i x =0 for equality constraints
-	=> $\lambda_i(b_i - a_i x) \leq 0$ for all $i \Rightarrow \lambda^T(b - Ax) \leq 0$
_	$\Rightarrow z(P) = c^T x \Rightarrow c^T x + \lambda^T (h - Ax) \Rightarrow z(I R_1) as x \in S(P) \subseteq S(I R_1) \square$
_	
_	
_	7 12 Lemma (Optimality criterion)
_	
_	If x and λ fulfill
_	(1) x is optimal wat (IP)
	$(1) \land (3) $ optimizer with the $(1) \land (1) \land (1$

7. Integer linear optimization 7.4 Lagrangian relaxation

(2) $a_i x \ge b_i$, or $a_i x = b_i$ for equality constraints
(3) $\lambda^{T}(b - Ax) = 0$
then x is optimal w.r.t. (P). If (3) is violated, then x is ε -optimal with $\varepsilon = \lambda^{T}(b - Ax)$
Proof
(1), (2) ⇒ x ∈ S(P)
=> $z(LR_{\lambda}) = c^T x + \lambda^T (b - Ax) = c^T x \ge z(P)$ because of (3) and $x \in S(P)$
=> $z(LR_{\lambda}) = z(P)$ because of Lemma 7.11.
If x violates (3), then $\lambda^{T}(b - Ax)$ is the error term \Box
The aim of Lagrangian relaxation
Partition the constraints of (P) is such a way that (LR_{λ}) is much easier to solve than (P)
Make $z(P) - z(LR_{\lambda})$ as small as possible (duality gap of Lagrangian relaxation)
i.e., make L(λ) := z(LR $_{\lambda}$) as large as possible by varying the Lagrange multipliers
=> this leads to the optimization problem $\max_{\lambda} L(\lambda)$
$^{\odot}$ When used for B&B, it is not required to solve this optimization problem optimally. A good value of L(λ) usually
suffices, as each such value provides a lower bound for z(P).

Lagrangian relaxation of the symmetric TSP via 1-trees
IP formulation of the symmetric ISP
Introduce 0/1-variable x_e with $x_e = 1 \iff edge e$ is in the tour
(P) min $\Sigma_e c_e x_e$
×(δ(i)) = 2 for all i = 1,, n (7.7)
$x(S) \le S - 1$ for all $\emptyset \ne S \subseteq \{2,, n\}$ (7.8)
observe: $S \subseteq \{2,, n\}$ suffices to
exclude short cycles
$x \in \{0,1\} $
$x_e \in \{0, 1\}$ (7.9)
Here $x(S) \coloneqq \sum_{e = ii \ i i \in S} x_e$ and $x(\delta(i)) \coloneqq \sum_{e \in \delta(i)} x_e$
A variation of (P) gives (LR $_{\lambda}$)
Partition (7.7) into
$\Sigma_e x_e = n$ (7.10) redundant in (P)
$x(\delta(i)) = 2$ for $i = 2,, n$ (7.11)

7. Integer linear optimization 7.4 Lagrangian relaxation

x(δ(1)) = 2 (7.12)
(LR_{λ}) is defined by relaxing (7.11)
(LR_{λ}) min $\sum_{e} c_{e} x_{e} + \sum_{i=2} n \lambda_{i} (2 - x(\delta(i)))$
s.t. (7.8), (7.9), (7.10), (7.12)
Observe: (7.10) is not redundant in (LR,)
$^{\odot}$ Combinatorial structure of the feasible solutions of (LR _{λ})
\sim 7.13 Lemma (Feasible solutions von (LR _{λ}) are 1-trees)
$rightarrow x$ is a feasible solution von (LR _{λ}) <=> x is a 1-tree, i.e.,
x is a spanning tree on the vertex set { 2,, n }
with 2 additional edges out of vertex 1
Proof
let x be a feasible solution of (LR_{λ})
(7.9), (7.10), (7.12) => x has n-2 edges on vertices 2,, n
(7.8) => x is connected

ADM I => a connected graph with n-2 edges and n-1 vertices is a spanning tree
(7.12) => 2 additional edges out of vertex 1
=> x is a 1-tree
[●] "<="
every 1-tree fulfills conditions (7.8), (7.9), (7.10), (7.12) 🗆
Θ The Lagrange function L(λ ,x)
L(λ,x) = Σ _e c _e x _e + Σ _{i = 2,,n} λ_i (2 - x(δ(i)), λ_i unrestricted
=> replace w.o.l.g. λ_i by - λ_i (this gives a better combinatorial interpretation)
=> $L(\lambda,x) = \sum_{e} c_{e} x_{e} + \sum_{i=2,,n} \lambda_{i}(x(\delta(i) - 2))$
with x($\delta(i)$) - 2 = deviation from the desired degree 2 of vertex i
• With $\lambda_1 := 0$ we obtain
$L(\lambda, x) = \sum_{e} c_{e} x_{e} + \sum_{i=1,,n} \lambda_{i}(x(\delta(i) - 2))$
= $\sum_{e} c_{e} x_{e} + \sum_{i=1,,n} \lambda_{i} x(\delta(i)) - 2 \sum_{i=1,,n} \lambda_{i}$
= $\sum_{e} c_{e} x_{e} + \sum_{e=ij} (\lambda_{i} + \lambda_{j}) x_{e} - 2 \sum_{i=1,,n} \lambda_{i}$
= $\sum_{e=ij} (c_e + \lambda_i + \lambda_j) x_e - 2 \sum_{i=1,,n} \lambda_i$

7. Integer linear optimization

7.4 Lagrangian relaxation

This gives new edge costs $c_e' = c_e + \lambda_i + \lambda_j$ for $e = ij$ minus the constant term $2 \sum_{i=1,,n} \lambda_i$
Interpretation of the Lagrangian relaxation
Relaxed problem
= computing a 1-tree with minimum weight w.r.t. edge costs $c_e + \lambda_i + \lambda_j$ for edge $e = ij$
Varying the Lagrange multipliers λ_i
= varying the edge costs c_e via node values λ_i
This variation of edge costs has no influence on the optimality of a tour, but may change the 1-tree
because:
$\sum_{e=ij} (c_e + \lambda_i + \lambda_j) x_e - 2 \sum_{i=1,,n} \lambda_i = \sum_e c_e x_e \text{ if } x \text{ is a tour}$
If the minimum 1-tree is a tour, then this tour is optimal for (P) because of Lemma 7.12, as $\lambda^{T}(b - Ax) = 0$
for any tour
A minimum 1-tree can be constructed in polynomial time as follows:
(1) Compute a MST on the vertices 2,, n with an algorithm from ADM I (Kruskal or Prim)
(2) Choose the two cheapest edges out of vertex 1
Algorithm for improving the lower bound (varying the λ .)

7. Integer linear optimization

Input
araph $G = (V F)$ with $V = \{1, n\}$
g. q
edge costs c _e
Output
optimal tour or 1-tree with "good" lower bound $z(LR_{\lambda})$
Method
// initialize the λ_{i}
set $\lambda_i \coloneqq 0$ for every vertex i
// initialize a step length w > 0 for varying the λ
set w := 1
e neneat
compute a minimum 1-tree x for edge costs $c_{ij} + \lambda_j + \lambda_j$
IT X is four <u>then</u> return X // X is an optimal four
// varying the λ_i
<u>tor</u> all vertices i ≠ 1 <u>do</u>
determine the degree d. of vertex i

$\frac{\text{if } a_i \neq 2 \text{ then } A_i \coloneqq A_i \neq (a_i - 2)W$
vary the step length w if appropriate
$\underbrace{until}_{x(LR_{\lambda})} = z(x)$ is "good" enough
<u>return</u> best x found and the associated λ
Α.
7.14 Example (1-tree relaxation of the symmetric TSP)
Step length w is always 1
Graph with edge costs
$(2) - 2 - (5) - c_{e}$
(1) - 1 - (3) - 2 - (6) - 3 - (8)
4 - 1 - 7
Iteration 1
0
minimum 1 tree, varying the $\lambda_i^{}$ and new edge costs

7. Integer linear optimization 7.4 Lagrangian relaxation

45-11

7. Integer linear optimization

7.4 Lagrangian relaxation

value of $T_2 = 3 + 2\lambda_2 + 3\lambda_3 + 2\lambda_4 + 1\lambda_5 + 2\lambda_6 =: z_2$
$\sim \sim \circ$
The value of an optimal four w.r.t. $c_{ij} + A_i + A_j$ is
$4 + 2\lambda_2 + 2\lambda_3 + 2\lambda_4 + 2\lambda_5 + 2\lambda_6 =: z_0$
() => 7_{1} = 7_{2} = $1 + \lambda_{1} = \lambda_{2}$ and $7_{2} = 7_{2} = 1 = \lambda_{2} + \lambda_{2}$
$-20^{-2}2_{1}^{-1}$ $-1^{+}X_{3}^{-}X_{5}^{-1}$ $-1^{+}X_{3}^{-}X_{5}^{-1}$
=> either z ₀ > z ₁ or z ₀ > z ₂
since $z_0 < z_1$ and $z_0 < z_2$ imply that $1 + \lambda_2 - \lambda_5 < 0$ and $1 - \lambda_2 + \lambda_5 < 0$
=> $\lambda_3 - \lambda_5 > 1$ and $-\lambda_3 + \lambda_5 > 1$, a contradiction \Box
Observe: What we abserve here for the TCP viz that may $f(x) \neq \tau(P)$ is concreding the case. Learning
Observe, what we observe here for the TSF, viz. that $\max_{\lambda} L(\lambda) \neq Z(F)$, is generally the case. Lagrangian
relaxation provides in general only lower bounds for z(P). But these are very valuable in a Branch & Bound
alaarithm
For more information about Lagrangian relaxations of the TSP see
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds.
The Traveling Salesman problem: A Guided tour of Combinatorial Optimization
Tohn Wiley & Song New York 1985
Junn Wiley & Juns, New Jurk, 1703.

Computing max _λ L(λ) by subgradient optimization
$\max_{\lambda} L(\lambda) = \max_{\lambda} \min_{x} L(\lambda, x) = \max_{\lambda} \min \{ L(\lambda, x) \mid x \in S(LR_{\lambda}) \}$
Subgradient optimization uses the fact that S(LR $_\lambda$) is finite when S(LR $_\lambda$) is a polytope. This follows from the
integrality of x , and we will assume it in the sequel.
$S(LR_{\lambda})$ finite => we can write $S(LR_{\lambda})$ as $S(LR_{\lambda}) = \{x^1, x^2,, x^R\}$
=> $L(\lambda) = \min \{ c^T x^r + \lambda^T (b - A x^r) r = 1,, R \}$
=> L(λ) is the minimum of finitely many affine linear functions $c^T x^r + \lambda^T (b - Ax^r)$ of λ
=> L(λ) is piecewise linear and concave, but in general not differentiable
$c \times + \Lambda (D - A \times)$
$\sim \lambda$

7.4 Lagrangian relaxation	
Subgradient optimization	
~ gradient method for maximizing a concave continuously differentiable function $f:\mathbb{R}^n\to\mathbb{R}^1$	
Gradient and subgradient	
Gradient of a continuously differentiable function in u	
= vector of partial derivatives in u:	
$\nabla f(u) = \left(\frac{\partial f}{\partial x_1}(u), \dots, \frac{\partial f}{\partial x_n}(u)\right)$	
From calculus we know:	
f is concave <=>	
f(v) - f(u) ≤ ∇f(u) ^T (v-u) for all v, u	

	£		
4	۲ ^۲	/	
			F
			∇f(u) ^T (v-u)
f(v) - f(u)			
	u	v	
Culture director (. (
Subgradient of a co	ntinuous concav	e function in u	
= vector d with	f(v) - f(u)	(v-u) for all v	
The set of subgra	idients in u is c	alled the subdifferen	tial of f in u and is denoted by $\partial f(u)$
Then: f is differe	entiable in u =>	∂f(u) = { ∇f(u) }	
· · · · · · · · · · · · · · · · · · ·			
Conditions for the ma	ximum of a cond	cave function	
	(famantichla and		
The continuously dif	rterentiable cas	ie	
From calculus we l	know:		
f attaine ite mavi	inum at)* ->	$\nabla f(\lambda *) = 0$	

7. Integer linear optimization 7.4 Lagrangian relaxation

	Θ
	The non-differentiable case
	7.16 Lemma (Condition for the maximum of a continuous concave function)
	Let $f : \mathbb{R}^n \to \mathbb{R}^1$ be continuous and concave. Then
_	f attains its maximum at $\lambda^* \iff 0 \in \partial f(\lambda^*)$
_	
_	Proof
_	⊖ _{и_и}
	<=
	let $0 \in \partial f(\lambda^*)$
	=> 0 = 0'(v − λ*) ≥ f(v) − f(λ*) for all v => f attains its maximum at λ*
_	[●] " _→ "
	$$ let f attain its maximum at λ^{\star}
_	$- \cdot 0 - 0^{T}(y - \lambda^{*}) + f(\lambda) - f(\lambda^{*})$ for all $y - \cdot 0 \in \lambda f(\lambda^{*})$
	Generic subgradient optimization
	a continuous concave function $f: \mathbb{R}^n \to \mathbb{R}^1$

a point λ^* at which f attains its maximum, or a point λ with a "good" value f(λ)
Method
choose a starting point up
initialize a counter i := 0
repeat
0
if $0 \in \delta f(u_i)$ then return $u_i // f$ attains its maximum at u_i
// this step my be skipped if the test " $0 \in \partial f(u_i)$ " is computationally too expensive
compute a subgradient $d_i \in \partial f(u_i)$ and a step length $w_i > 0$
$set u_{i+1} - u_i + w_i u_i$
i := i+1
0
until no more computing time or hardly any progress
return the best point of the sequence $u_{\alpha,,u_{i}}$
···· ··· ··· ··· ··· ··· ··· ···
A typical run of the algorithm

45-19

Let $(w_i)_{i \in \mathbb{N}}$ be a sequence of step lengths with
(1) we can all i
(1) w _i 2 0 for dill
(2) $(w_i)_{i \in \mathbb{N}}$ is a monotonically decreasing null sequence
(3) the series $\sum w_i$ is divergent
Then the sequence of points u _i generated by subgradient optimization fulfills
$\lim_{i \to \infty} f(u_i) = f(\lambda^*)$
0
without proof
0
This theorem ensures convergence under relatively weak conditions, which can easily be met in practice.
The only problem is to control the speed of convergence. But this is not that important for the use in
B&B
Θ
computing a subgradient $a_i \in ot(u_i)$
This is simple, subaradients come for free in Laaranajan relaxation
719 Lomma (Cubanadianta in Loonanaian nalovation)
7.10 Lemma (Subgradients in Lagrangian relaxation)

7. Integer linear optimization 7.4 Lagrangian relaxation

45-22

Let x* be an optimal solution of (LR_{λ}) in $\lambda = u$. Then b - Ax* is a subgradient of $L(\lambda) = \min_{x} L(\lambda,x)$ in $\lambda = u$, i.e., b - Ax* $\in \delta f(u)$. Proof by checking the definition of subgradient $L(v) - L(u) = \min_{x} L(v,x) - \min_{x} L(u,x)$ $= \min_{x} L(v,x) - L(u,x*)$ since x* is optimal for (LR_{u}) $\leq L(v,x*) - L(u,x*)$ since x* is feasible for (LR_{v}) $= (c^{T}x* + v^{T}(b - Ax*)) - (c^{T}x* + u^{T}(b - Ax*))$ $= (v^{T} - u^{T})(b - Ax*) = (b - Ax*)^{T}(v - u) \square$ Remark: In the 1-tree relaxation of the symmetric TSP, a transition of λ_{i} to $-\lambda_{i}$ reveals $x(\delta(i)) - 2$ as

subgradient. The change of multipliers λ_i in this example are therefore an application of subgradient optimization.

Lagrangian relaxation vs. LP relaxation

There is a relationship between the optimal value of a Lagrangian relaxation and the optimal value of the LP

relaxation of an IP.

The initial problem (P) min $c^{T}x$ s.t. $Ax \ge b$ $Bx \ge d$ x integer we do not consider sign constraints for x, but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) (LR _{λ}) min $c^{T}x + \lambda^{T}(b - Ax) = min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) min $c^{T}x$	We consider:	
The initial problem (P) min $c^{T}x$ s.t. $Ax \ge b$ $Bx \ge d$ x integer we do not consider sign constraints for x, but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) (LR _{λ}) min $c^{T}x + \lambda^{T}(b - Ax) = min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) min $c^{T}x$	0	
(P) min $c^{T}x$ s.t. $Ax \ge b$ $Bx \ge d$ x integer we do not consider sign constraints for x, but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) (LR _{λ}) min $c^{T}x + \lambda^{T}(b - Ax) = min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) min $c^{T}x$	The initial pr	oblem
s.t. $Ax \ge b$ $Bx \ge d$ x integer we do not consider sign constraints for x , but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) (LR_{λ}) min $c^{T}x + \lambda^{T}(b - Ax) = min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) min $c^{T}x$	(P)	min c ^T x
$Bx \ge d$ $x \text{ integer}$ we do not consider sign constraints for x, but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) $(LR_{\lambda}) \min c^{T}x + \lambda^{T}(b - Ax) = \min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ $x \text{ integer}$ The LP relaxation of (P) $(LP) \min c^{T}x$		s.t. Ax≥b
$ \begin{array}{c} \times \text{ integer} \\ \text{we do not consider sign constraints for } x, \text{ but assume that these are contained in } Bx \ge d \\ \hline \\ \text{The Lagrangian relaxation of (P)} \\ (LR_{\lambda}) \min c^{T}x + \lambda^{T}(b - Ax) = \min_{x} L(\lambda, x) = L(\lambda) \\ \text{s.t.} Bx \ge d \\ & \qquad \qquad$		Bx ≥ d
we do not consider sign constraints for x, but assume that these are contained in $Bx \ge d$ The Lagrangian relaxation of (P) (LR _{λ}) min c ^T x + λ^{T} (b - Ax) = min _x L(λ , x) = L(λ) s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) min c ^T x		x integer
The Lagrangian relaxation of (P) $(LR_{\lambda}) \min c^{T}x + \lambda^{T}(b - Ax) = \min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) $\min c^{T}x$	we do not co	nsider sign constraints for x , but assume that these are contained in $Bx \ge d$
$(LR_{\lambda}) \min c^{T}x + \lambda^{T}(b - Ax) = \min_{x} L(\lambda, x) = L(\lambda)$ s.t. $Bx \ge d$ x integer The LP relaxation of (P) (LP) $\min c^{T}x$	The Lagrang	ian relaxation of (P)
s.t. Bx ≥ d x integer The LP relaxation of (P) (LP) min c ^T x	(LR _λ)	min $c^{T}x + \lambda^{T}(b - Ax) = min_{x} L(\lambda, x) = L(\lambda)$
x integer The LP relaxation of (P) (LP) min c ^T x		s.t. Bx≥d
The LP relaxation of (P) (LP) min c ^T x		x integer
(LP) min c ^T x		
(LP) min c ^T x	The LP relax	ation of (P)
	(LP)	min c ^T x
s.t. Ax≥b		s.t. Ax≥b
Bx > d		Bx > d

7. Integer linear optimization 7.4 Lagrangian relaxation

× unconstraine	ed
with optimal value z(LP)	
Θ	
7.19 Theorem (Relationship between L	agrangian relaxation and LP relaxation)
$\max_{\lambda} L(\lambda) \ge z(LP)$	
Equality holds if the polyhedron defi	ined by Bx \ge d is integer (so that the integrality condition in (LR _{λ}) may be
dropped).	
Proof	
0	
we show this for side constraints o	of the form $Ax \ge b$ (=> $\lambda \ge 0$), the proof can easily be adapted to equations
(λ unconstrained).	
0	
max $L(\lambda)$ = max min $L(\lambda,x)$ =	= max min L(λ,x)
λ20 λ20 ×	λ20 ×
Bx ≥ d	Bx≥d
× gzz	
holds if Bx ≥ d	induces an integer
polyhedron, ot	therwise we have ≥

Bx≥d	
= max $[\lambda^{T}b + min (c^{T})$	$^{\Gamma} - \lambda^{T} A$)x] = max [$\lambda^{T} b$ + max $d^{T} y$]
λ ≥ 0 ×	λ ≥ 0
Bx ≥ d	$B^{T}y = c - A^{T}\lambda$
H	LP duality I
= max [b'λ + d'γ	y] = min c'x
λ <u>≥</u> 0	x unconstrained
y ≥ 0	Ax≥b
Β [⊤] y = c - Α [⊤] λ	B× ≥ d
H	⊣ LP duality ⊢
= z(LP) 🗅	
a	

7. Integer linear optimization

7.4 Lagrangian relaxation

-	
_	Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-
_	
	relaxation should be preferred above the Lagrangian relaxation if Bx≥d defines an integer polyhedron. But in
	practice one very often favors subgradient optimization, since it is usually much faster (very often, L(λ) con
_	
_	be computed combinatorially), and since approximate values of max $_\lambda$ L(λ) are usually sufficient.
-	

7. Integer linear optimization 7.5 Cutting plane algorithms

7. Integer linear optimization

7.5 Cutting plane algorithms
A polyhedron P is called integer (or integral) if all its vertices are integer.
Then a polyhedron P fulfills:
(1) P is integer <=> P = P _I
(2) integer optimization on P <=> linear optimization on P _I
Therefore, one is interested in linear descriptions of P_{I} (= description of P_{I} by linear inequalities)
One difficulty here is that P _I need not be a polyhedron any more in general.
An example is given by
$P := \{(y, x) \in \mathbb{R}^2 \mid \frac{y}{x} \le \sqrt{2}\}$
(exercise)
One can show, however, that P _I is a polyhedron when P is rational, and we will do this for rational polytopes P.
A polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is called rational, if all entries of A and b are rational numbers. We will
assume in this chapter that all polyhedra are rational. For the sake of completeness, we will mention this as an
assumption in all theorems.
© Criteria for the existence of feasible points and valid inequalities

7. Integer linear optimization 7.5 Cutting plane algorithms

0	These criteria are alternative formulations of Farkas' Lemma (Lemma 4.5)
t	
╞	An inequality $w^T x \leq t$ is called valid for polyhedron P, if all points $x \in P$ fulfill that inequality.
	Θ
Τ	7.21 Lemma (Farkas' Lemma for the existence of feasible solutions)
	Consider a polyhedron $P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$. Then:
	(1) $P \neq \emptyset$ <=> y'b ≥ 0 for all $y \in \mathbb{R}^m$ with $y \ge 0$ and $y'A = 0$
	(2) $\mathbf{D} = \mathbf{\mathcal{A}}$ we there is $\mathbf{U} = \mathbf{D}^{\mathbf{M}} + \mathbf{U} = \mathbf{O}$ with $\mathbf{U}^{T} \mathbf{A} = \mathbf{O}$ and $\mathbf{U}^{T} \mathbf{b} = \mathbf{I}$
	(2) $P = \omega$ (2) $r = \omega$ (2)
Τ	(3) $P = \emptyset \iff$ the inequality $0^T \times 4 - 1$ can be obtained as non-negative linear combination of the inequalities
Τ	(-) · · · · · · · · · · · · · · · · · · ·
T	in Ax≤b
L	Proof
	(1)
	⊖ "
	0
	Consider the LP max{0 ^T x Ax≤b}
	$P \neq Q \rightarrow Q$ is an antimal solution of the LP
	r + w - r every x = r is an optimial solution of the Lr
1	Duality theorem => the dual LP has an optimal solution and
-	$0 = \max\{0^{T} \times 4 \times (1) = \min\{0^{T} \times 0 \times (1) = 0\}$
	$\sigma = \max \{\sigma \land (\sigma \land (\sigma \land)) = \min \{\gamma \land (\sigma \land) \land (\sigma \land) \rangle$

7. Integer linear optimization

7.5 Cutting plane algorithms

=> $y^T b \ge 0$ for all $y \ge 0$ with $y^T A = 0$
~ "<="
Consider the LP min $\{y'b \mid y'A = 0, y \ge 0\}$
0 is a feasible solution of this LP
$\overline{\mathbf{r}}$
Assumption => the objective function y'b is bounded from below by 0
Duality theorem => P has an optimal solution so in particular a feasible solution
(2)
\bigcirc
tollows from the negation of (1)
$P = \emptyset \iff there is y' \in \mathbb{R}^m, y' \ge 0$ with $(y')^T A = 0$ and $(y')^T b < 0$.
T
Let g := (y')'b < 0
With v := v'/lal we obtain
$P = \emptyset$ <=> there is $y \in \mathbb{R}^m$, $y \ge 0$ with $y^T A = 0$ and $y^T b \le -1$
"<="
0
clear
[™] =>"

7. Integer linear optimization 7.5 Cutting plane algorithms

46-5

7. Integer linear optimization

7.5 Cutting plane algorithms

46-8

(2) do cutting plane algorithms terminate? (3) how does one compute an x^* separating hyperplane for a given $x^* \in P - P_T$? \odot We will answer here only (1) and (2) and show that there are proof techniques for (1), and that there is a finite set of cutting planes of a special structure such that cutting plane algorithms using them terminate with $P = P_{T}$. 0 (3) depends very much on the specific problem, we will show some examples in Chapter 8. Θ Cutting plane proofs For a polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, the validity of an inequality $w^T x \leq t$ can be shown by Farkas' Lemma (Lemma 7.22). This is more complicated for cutting planes. 7.23 Example (Example of a cutting plane proof) Consider the system of linear inequalities $2 x_1 + 3 x_2 \le 27$ (1) $2 x_1 - 2 x_2 \le 7$ (2) -6 x₁ - 2 x₂ ≤ -9 (3)

7. Integer linear optimization

7.5 Cutting plane algorithms

$-2 \times_1 - 6 \times_2 \le -11$	(4)
$-6 \times + 8 \times_{2} < 21$	(5)
The associated polytope	P and its integer hull

Multiply (5) with 1/2
$= -3x_1 + 4x_2 \le 21/2$
=> $-3x_1 + 4x_2 \le \lfloor 21/2 \rfloor$ = 10 is valid for P _I (as there are only integer coefficients on the left hand side)
=> this gives the new inequality $-3x_1 + 4x_2 \le 10$ (6) for P_I
Multiply (6) with 2, (1) with 3 and add the resulting inequalities
$= -6x_1 + 8x_2 \le 20$
$6x_1 + 9x_2 \le 81$
\Rightarrow 17 x ₂ \leq 101
=> we obtain the wanted inequality $x_2 \leq \lfloor 101/17 \rfloor = 5$ by rounding down the right hand side
In general, these inequalities have the form
$y^{T}Ax \leq \lfloor y^{T}b \rfloor$ with $y \geq 0$ and $y^{T}A$ integer
where $Ax \leq b$ is the system of inequalities after the "previous" step.
This observation leads to the general definition of a cutting plane proof.
General definition
Let Ax ≤ b be a system of m linear inequalities.

7. Integer linear optimization

7.5 Cutting plane algorithms

A cutting plane proof for	n the inequality w ^T Y	t with integen w	nd t stanting from	Axy b is a finita
	r the nequality w x s	a with integer w c	na i starting from	AX 2D IS a finite
sequence of inequalities	of the form			
a _{m+k} x ≤ b _{m+k} (k =	1,,M)			
together with non-nega	tive numbers			
y_k $(1 \le k \le M, 1 \le j)$	≤ m + k - 1)			
such that, for each k =	1,, M, the inequality	Y		
a _{m+k} x ≤ b _{m+k}				
is obtained as non-nega	ive linear combination			
($a_{11}x_1 + \ldots + a_{1n}x_n$		(b_1)	
$(y_{k_1}, \dots, y_{k_{m+k-1}})$:	$\leq \lfloor (y_{k_1}, \dots, y_{k_{m+k-1}}) \rfloor$:]	
	$_{1+k-1} X_1 + \ldots + Q_{m+k-1} X_n$		b _{m+k-1}	
		/	(
of the previous inequali	ries (initial and already	y generated), where		
- the coefficients of th	e variables on the left	hand side are integ	er	
- the right hand side is	not integer is and is re	ounded down		
- the last inequality of t	he sequence is the ine	quality w [⊤] x≤t		
Thequalities of the form	1			
211040011100 01 1110 1011	•			

46-11

y [⊤] Ax ≤ Ly [⊤] b」 with y≥0 and y [⊤] A integer
are called Gomory-Chvátal cuts.
Gomory has shown in 1960 that these cuts lead to finite cutting plane algorithms.
Chvátal has introduced cutting plane proofs in 1973. These proofs are similar to Farkas' Lemma in the variants
Lemma 7.21 (2) and 7.22.
7.24 Theorem (Cutting plane proofs for rational polytopes, Chvátal 1973)
Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a rational polytope and let $w^T x \le t$ be an inequality with integer w and t that
is valid for P _I . Then there exists a cutting plane proof of w ^T x ≤ t' from Ax ≤ b, for some t' ≤ t.
Proof: see below. 🗆
7.25 Theorem (Cutting plane proofs for rational polytopes without integer points, Chvátal 1973)
Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a rational polytope without integer points. Then there exists cutting plane
proof of $0^T x \le -1$ from $A x \le b$.
Proof: see below. 🗅

7. Integer linear optimization 7.5 Cutting plane algorithms

For the proof we need a lemma that enables an inductive argument on the dimension of P. It shows that	
Gomory-Chvátal cuts for a face of a rational polyhedron can be lifted to the the polyhedron itself "by rotation".	
7.26 Lemma (Rotation of Gomory-Chvátal cuts)	
Let F be a non-empty face of a rational polytope P. Assume that F is given by a linear system and that	
c ^T x ≤ Ld] is a Gomory-Chvátal cut for F.	
Then there exists a Gomory-Chvátal cut (c') ^T x ≤ Ld' 」 for P with	
$F \cap \{x \mid c^{T}x \leq \lfloor d \rfloor\} = F \cap \{x \mid (c')^{T}x \leq \lfloor d' \rfloor\} \text{ (equality on } F)$	

0
(c') ^T x ≤ d'
P
⊖ Drasf
Proot
Let w.o.l.g. $P = \{x \mid A'x \le b', A''x \le b''\}$ with A'', b'' integer.
Let F := { x A'x ≤ b', A''x = b'' } (equations A''x = b'' describes F)
Let c'x < Ld] be the given Gomory-Chvatal cut for F
and let w.o.l.g. d = max { $c^Tx x \in F$ } (deepest cut with c^Tx ; it exists since P is a polytope).
Duality theorem => the dual LP has an optimal solution
-> there are v'>0 and v'' unconstrained with
more are y zo and y unconstrained with

7. Integer linear optimization

7.5 Cutting plane algorithms

$(y')^{T}A' + (y'')^{T}A'' = c^{T}$ (*)
(y')'b' + (y'')'b'' = d (**)
We now construct c' and d' from y''
(c') ^T := c ^T - <mark>(</mark>
integer ≥ 0 ≥ 0
d' := d - (└y'' ┘) ^T b'' = (y') ^T b' + (y'' - └y'' ┘) ^T b'' because of (**)
c is integer as part of a Gomory-Chvatal cut, ([y`])'A` is integer => c` integer
(c') ^T x ≤ d' is a valid inequality for P
because $(c')^{T}x = (v')^{T}A'x + (v'' - v'')^{T}A''x < (v')^{T}b' + (v'' - v'')^{T}b'' = d'$
≥0 <u>≥0</u>
Definition of d' => d = d' + (Ly'']) ^T b''
integer since b'' is integer
-2 $ d - d' + (v'')^{Th''}$
Equality on F
$F \cap \{ x \mid (c')^T x \leq L d' \rfloor \}$
= F∩{× (c') ^T ×≤Ld'J,

fulfilled in F because of A''x = b''
= F∩{x (c'+ <mark>(Ly''」)^TA''</mark>) ^T x ≤ (Ld'」+ Ly''」) ^T b''}
= F∩{x c ^T x ≤ Ld」} □
Proof of Theorem 7.25
(cutting plane proofs for rational polytopes $P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$ without integer points)
Induction on dim(P)
⊖ Inductive base
[⊖] P = Ø
=> statement follows from Farkas' Lemma 7.21 (3)
eim(P) = 0
=> P = {x*} and x* is not integer.
=> there is an integer vector w such that $w^T x^*$ is not an integer (set $w_i := 1$ for one non-integer entry
of x* and w _i := 0 otherwise).
Let t be such that the hyperplane $H = \{x \mid w^T x = t\}$ contains x^* (can easily be achieved by
translation).

7. Integer linear optimization

7.5 Cutting plane algorithms

7. Integer linear optimization

46-19

-	P is a polytope => r := max { $w^T x x \in P$ } is finite
-	=> w ^T x≤r is a valid inequality for P
-	Farkas' Lemma 7.22 => there is a cutting plane proof for w ^T x≤r
-	w integer => w ^T x≤ r is Gomory-Chvátal cut
-	adding $w^{T}x \leq r $ and $0^{T}x \leq 1$ gives $w^{T}x \leq r = 1$
_	
_	repeated addition of 0'x≤-1 gives w'x≤t'≤t in finitely many steps
-	© Case 2: P _I ≠ Ø
-	\bigcirc P is a polytope => r := max { w ^T x x \in P } is finite
-	w integer => w ^T x≤ Lr」 is a Gomory-Chvátal cut for P
-	let P' := { $x \in P \mid w^T x \leq \lfloor r \rfloor$ }
-	we are done if [r]≤t
-	So assume [r] > t
-	Let $F := \{x \in P' \mid w^T x = \lfloor r \rfloor\} \Rightarrow F$ is a face of P'
-	F contains no integer points, as $w^T x \leq t$ is valid for P_I and $t < \lfloor r \rfloor$
_	Theorem 7.25 => for F, there is a cutting plane proof of $0^T x \le -1$ from $A x \le b$, $w^T x = \lfloor r \rfloor$
-	● Rotation Lemma for F and P' => there is a cutting plane proof of an inequality c ^T x ≤ Ld」 for P from Ax ≤

7. Integer linear optimization 7.5 Cutting plane algorithms

46-22

- b, $w^{\mathsf{T}} \times \leq \lfloor r \rfloor$ such that $P' \cap \{ \times \mid c^{\mathsf{T}} \times \leq \lfloor d \rfloor, w^{\mathsf{T}} \times = \lfloor r \rfloor \} = \emptyset$
 - So, after applying this sequence of cuts to P', we have $w^T x \leq \lfloor r \rfloor 1$.
 - Repeating this argument eventually gives $w^T x \le t' \le t$, completing the proof. \Box

⊖ Chvátal closure and Chvátal rank

Cutting plane proofs may use already generated cutting planes. We consider now what happens, if one can only use the initially given cutting planes $A \times \leq b$

Let $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ be a rational polytope. If one adds to P all Gomory-Chvátal cuts $y^T Ax \le \lfloor y^T b \rfloor$

with $y \ge 0$, $y^T A$ integer, one obtains the Chvátal closure P' of P.

7.27 (Properties of the Chvátal closure)

The Chvátal closure of a rational polytope is again a rational polytope. In particular, it has a linear description using only the given inequalities Ax ≤ b and finitely many Gomory-Chvátal cuts.

⊖ Proof

• Let $P = \{x \mid Ax \le b\}$ with A and b integer

Set P' := P \cap { x y ^T Ax \leq $\lfloor y^{T}b \rfloor$ with y \geq 0, y ^T A integer }. Then:
(7.13) $P' = P \cap \{x \mid y^T A x \le \lfloor y^T b \rfloor$ with $y \ge 0$, $y^T A$ integer, $0 \le y < 1\}$
Proof of (7.13):
Let $w^T x \leq \lfloor t \rfloor$ be a Gomory-Chvátal cut with $y \geq 0$, $y^T A = w$, $y^T b = t$
Let $y' := y - \lfloor y \rfloor$ be the fractional part of y. Then $0 \le y' < 1$
Let w' := $(y')^T A = y^T A - (\lfloor y \rfloor)^T A = w - (\lfloor y \rfloor)^T A$
=> w' is integer, as w and A are integer.
Let t' := $(y')^T b = y^T b - (\lfloor y \rfloor)^T b = t - (\lfloor y \rfloor)^T b$
=> t and t' differ by an integer number, namely by $(\lfloor y \rfloor)^T b$
=> w ^T x ≤ Lt] is obtained as sum of
(w') ^T × ≤ ⊥t'」 < formed according to (7.13)
+ (Ly」) ^T Ax ≤ (Ly」) ^T b < redundant as
non-negative linear combination of the rows of Ax≤b
=> the inequalities specified in (7.13) form the Chvátal closure
➡ There are only finitely many inequalities of the form (7.13)
Denote the entries of matrix A by a_{ij} and let A_j be the j-th column of A

7. Integer linear optimization 7.5 Cutting plane algorithms

$0 \leq y < 1 \Rightarrow y^{T} A_{j} \in [-\Sigma_{i} a_{ij} , \Sigma_{i} a_{ij}]$
$y^{T}A_{j}$ integer => there are only finitely many such $y^{T}A_{j}$
All inequalities of the form (7.13) have integer coefficients
=> They are again rational 🛛
Iterating the Chvátal closure operation defines a sequence of Chvátal closures
$P = P^{(0)} \supseteq P^{(1)} \supseteq P^{(2)} \supseteq \dots \supseteq P_{T}$
7.28 Theorem (The Chvátal closure operation terminates)
Let P be a rational polytope. Then there is $k \in \mathbb{N}$ with $P_I = P^{(k)}$.
In particular, cutting plane algorithms with a good choice of Gomory Chvátal cuts terminate after finitely many
steps.
Proof
P _I is a polytope and can thus be described by finitely many inequalities (Minkowski's Theorem).
Each of these inequalities has a cutting plane proof of some finite length r with inequalities only from
finitely many P ⁽ⁱ⁾ (i≤r)
=> the maximum of these r shows the statement \Box

Gomory has specified such a good choice of Gomory Chvátal cuts already in 1960.
The smallest k with P _I = P ^(k) is called the Chvátal rank of P. It can be interpreted as a measure of complexity
of the integer hull of polytopes. Already in \mathbb{R}^2 there are examples that the Chvátal rank can become
arbitrarily large. For 0/1-polytopes in \mathbb{R}^n is is bounded by $6n^3\log n$.
7.29 Example (A polytope with Chvátal rank 2)
The initial polytope P
⊖ P is given by
$-2x_1 + x_2 \le 0$ (1)
$2 x_1 + x_2 \le 6$ (2)
- x ₂ ≤ -1 (3)

7. Integer linear optimization 7.5 Cutting plane algorithms

46-27

of t	he degree constraints:
	$x(\delta(x)) = 1$ for all $x \in V$ degree constraints
	$\Sigma_{e \subseteq R} \times_{e} \leq r$ for all sets $R \subseteq V(G)$ with $ R = 2r+1$ odd-set inequalities
	x > 0
0	
🛛 The	comb-inequalities of the TSP have Chvátal Rang 1 w.r.t. the 2-matching polytope (see Section 8.2)

7. Integer linear optimization 7.6 Optimization and separation

Separation is the problem to compute for a given point x* and a given polyhedron Q a hyperplane H that
separates x* from Q.
Separation is needed in cutting plane algorithms. Then $Q = P_T$ (integer hull of a rational polyhedron P) and x^* is
the LP optimum over P.
There is a strong relationship between separation and optimization. We define:
Optimization (OPT)
⊖ Input:
rational polyhedron Q,
$c \in \mathbb{R}^n$ such that $c^T x$ is bounded from below on P
Output:
\bigcirc x* $\in Q$ with x* = min { $c^T x \mid x \in Q$ }
Separation (SEP)
⊖ Input:
rational polyhedron Q,
$y \in \mathbb{R}^n$

46-29

7. Integer linear optimization 7.6 Optimization and separation

Output:
"Yes" if y ∈ Q
$a^{T}x \leq d \in \mathbb{R}^{n}$ with $a^{T}x \leq d$ for all $x \in Q$ but $a^{T}y > d$ if $y \notin Q$ (a separating hyperplane)
7.30 Theorem (Polynomial equivalence of separation and optimization; Grötschel, Lovász, Schrijver 1984)
OPT) can be solved in polynomial time <=> (SEP) can be solved in polynomial time.
This holds also for ε-approximations.
• Without proof.
The following techniques are used for full-dimensional polyhedra:
"<=" ellipsoid method and duality theorem
"=>" antiblocking of polyhedra
For details see
M. Grötschel, L. Lovász, and A. Schrijver,
Geometric Algorithms and Combinatorial Optimization
Springer Berlin 2nd ed 1993

7. Integer linear optimization 7.6 Optimization and separa

7.6 Optimization and separation
Remarks
If (OPT) can be solved in polynomial time, then cutting planes can be found in polynomial time.
If (OPT) is NP-hard, then we will (if P ≠ NP) not be able to find all cutting planes in polynomial time. But we may
still be able to find many.
Therefore one uses in practice polynomial algorithms for constructing cutting planes until no more are found.
Then one branches on fractional variables and looks again for cutting planes for the resulting subproblems, etc.
This combination of Branch & Bound with cutting plane algorithms is called Branch & Cut. We will see examples in
Chapter 8.
Instead of the ellipsoid method (which has proven to be inefficient in practice) one uses the dual simplex
algorithm. The dual simplex algorithm can easily accommodate new cutting planes as additional constraints.

♦ 8.1 Introduction	49
8.2 Some linear descriptions	50
🛇 8.3 Separation and branch & cut	51

8. Polytopes induced by combinatorial optimization problems 8.1 Introduction

⊖ Goal of this chapter
Develop an abstract view on combinatorial optimization problems in order to describe induced polytopes in a
unified way.
Θ An instance of an (abstract) combinatorial optimization problem is a triple (E, \mathcal{F} , c) where
E is a finite set, the ground set (e.g. the set of edges of a graph)
\mathcal{F} is the set system of feasible solutions $F \subseteq E$ (e.g. the set system of all matchings $M \subseteq E(G)$)
\circ c : E -> \mathbb{R} with c(F) := $\Sigma_{C,C}$ c(e) computes the value of feasible solution F (e.g. the weight of a matching M)
The polytope P_{π} induced by (E, F c) is obtained as follows.
For a set $F \subseteq E$ we consider the incidence vector $x^F \in \mathbb{R}^E$ defined by
$\mathbf{x}_{e}^{F} \coloneqq \begin{cases} 1 & \mathbf{e} \in F \\ 0 & \mathbf{e} \notin F \end{cases}$
We interpret c as vector $c \in \mathbb{R}^{E}$ with $c_{-} := c(e)$
and write for arbitrary vectors $\mathbf{x} \in \mathbb{R}^{E}$
$x(F) \coloneqq \sum_{r \in F} x_r$
Then P := conv { $x^F F \in \mathcal{F}$ }
\mathcal{F}

8. Polytopes induced by combinatorial optimization problems 8.1 Introduction

i.e., it is the convex hull of all incidence vectors x^F of feasible solutions $F \in \mathcal{F}$
Minkowski's Theorem yields:
P_{π} is a polytope, and the vertices of P_{π} are incidence vectors of feasible solutions
=> there is a system of linear inequalities Ax < b x > 0 whose set of solutions is P
(the so-called linear description of P_{σ})
=> the optimum of (E, \mathcal{F} , c) is attained in a vertex of Ax \leq b, x \geq 0
=> we can solve (E, \mathcal{F} , c) with linear optimization, if we have a linear description $Ax \leq b, x \geq 0$ of $P_{\mathcal{F}}$
⊖ Problems:
How does one find linear descriptions?
The proof of the Minkowski's Theorem is constructive, but "unsuited".
How large is the number of constraints?
In general exponential, see the matching polytope.
but we only need a partial description for a vertex attaining the optimum
 These questions are studied in combinatorial polyhedral theory (polyhedral combinatorics)
mese questions di e studied in combinatorial polynear di meory (polynear di combinatorics)

T

_	Illustration of some (partial) linear descriptions and of techniques how to prove them
	The matching polytope
_	(E, \mathcal{F} , c) is given by
	E = edge set E(G) of an undirected graph
	$\mathcal{F} = \{ M \subseteq E \mid M \text{ is a matching} \} =: \mathcal{M}$
	c(e) = non-negative edge weight of e
	$P_{\mathcal{M}} := \operatorname{conv} \{ x^{M} \mid M \in \mathcal{M} \}$ is called the matching polytope of graph G
	8.1 Theorem (linear description of the matching polytopes)
	In bipartite graphs, P_{M} has the linear description
	$x(\delta(y)) \leq 1$ for all vertices y
	x ≥ 0
	In arbitrary graphs, Pay has the linear description
1	
	$x(\delta(v)) \leq 1$ for all vertices v

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions

	we have variables x_1, x_2, x_3 for the edges 1, 2, 3
	then $P_{\alpha_4} := \operatorname{conv} \{ \mathbf{x}^M \mid M \in \mathcal{M} \}$ is a tetrahedron
	Δx_3
	~ ~2
	×.
	The inequalities for the bipartite case are fulfilled by $x := (1/2, 1/2, 1/2)^T$, but $x \notin P_{\alpha A}$
	So the additional inequalities for odd sets are needed, in this case
	$x_1 + x_2 + x_3 \le 1$
	The proof uses in both cases the following ideas
	(1) The inequalities are valid for P_{α_4} i.e., $P_{\alpha_4} \subseteq \{x \mid Ax \le b, x \ge 0\}$
	(2) The optimization problem
	max c ^T x subject to inequalities Ax≤b,x≥0
	always attains its optimum in an incidence vector $\mathbf{x}^{M}, M \in \mathcal{M}$
	(this can e.a. by complementary slackness or the primal-dual algorithm)
1	

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions

(3) Lemma 3.5 (for each vertex x there is an objective function c such that the optimum is obtained in x
only)
(2), (3) => every vertex of the linear description is an incidence vector x^M , $M \in M$
$\Rightarrow \{x \mid Ax \leq b, x \geq 0\} \subseteq P_{\mathcal{M}}$
The polytope of antichains of a partial order
Basic facts about partial orders
A (finite) partial order (E, <) is given by
a (finite) ground set E and
a binary relation < on E with
a < b and b < c => a < c (< is transitive)
a < b => a ≠ b (< is irreflexive)
We represent partial orders by edge diagrams
= acyclic diaraph $G = (V, E)$ with
F(G) = around set of the partial order
esse' set there is a directed path from head(e) to tail(e')
head(e) = head(e') for all minimal elements $e e'$ of the partial order (E <)

	tail(e) = tail(e') for all maximal elements e, e' of the partial order (E,<)
	(every partial order is an induced suborder of an edge diagram)
	Example:
	1 7 4
	E = { 1, 2, 3, 4, 5 } and 1 < 4, 1 < 3 < 5, 2 < 5
	a, b ∈ E are called comparable :<=> a < b or b < a
_	chain = set of pairwise comparable elements
	in the example, Ø {3} {1,5} {1,4} {1,3,5} are chains, the last two are maximal chains (i.e.,⊆-maximal)
	a, b ∈ E are called incomparable :<=> a, b are not comparable
	antichain = set of pairwise incomparable elements
	in the example, \emptyset {3} {2, 3} {4,5} {2,3,4} are antichains, the last two are maximal antichains (i.e., \subseteq -maximal)
	Combinatorial optimization problem:

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions	50-7
Compute an antichain of maximum weight w.r.t. weights c(e)≥0	
Application: project scheduling	
partial order = processing structure of a construction project	
chain = must be done sequentially	
antichain = may be done simultaneously	
weight of an antichain = amount of required resources if all jobs are processed simultaneously	
maximum weight = maximum amount of required resources	
$^{\odot}$ (E, F, c) is given by	
E = edge set E(G) of the edge diagram of the partial order	
$\mathcal{F} = \{ A \subseteq E \mid A \text{ is an antichain } \} =: \mathcal{A}$	
c(e) = non-negative edge weights of e	
$P_{\alpha} := \operatorname{conv} \{ x^{A} \mid A \in \mathcal{A} \}$ is called the <u>antichain polytope</u> of the partial order	
Example	

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions

=> x is a convex combination of vertices of P_{A} , i.e, of incidence vectors x^{A} of antichains A
=> each incidence vector x ^A fulfills x ^A (K)≤1
=> the convex combination x fulfills $x(K) \le 1$
(2) The LP given by the inequalities attains its optimum on incidence vectors of antichains
The LP is given by
(P) max c ^T x s.t. x(K)≤1 for every chain K
x ≥ 0
• The dual LP is
(D) min $1^{T} \mathbf{y} = \sum_{K} \mathbf{y}_{K} \ s.t.$ $\sum_{K : e \in K} \mathbf{y}_{K} \ge c_{e}$ for all $e \in E$
y _k ≥0 for all chains K
Interpreting y _k as "multiple occurrences" of chain K, the dual (D) says:
find as few as possible chains (multiple occurrences permitted) such that each element e is "covered" at
least c, times
=> consider only maximal chains
=> $\sum_{k} y_{k}$ is a flow in the edge diagram G w.r.t. lower capacities c_{p}
Example:

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions

= maximum weight of an antichain
=> optimum of (P) is attained by an incidence vectors of an antichain
(1) and (2) prove Theorem 8.2 by the same arguments as for the matching polytope. 🗅
[●] 8.3 Remark
(P) and (D) correspond to a weighted version Dilworth's Theorem
Theorem of Dilworth:
minimum number of chains covering all elements of a partial order
= maximum cardinality of an antichain
The traveling salesman polytope in the symmetric, complete case
© Consider the TSP on an undirected, w.o.l.g. complete graph K, with edge costs c(e) ≥ 0.
Then (E, \mathcal{F} , c) is given by
E = edge set E(K_)
$\mathcal{F} = \{ T \subseteq F \mid T \text{ is a TSP-tour} \}$
c(a) = non-negative edge weight of a
C(c) = 10171cyu11vc cuyc weiyi11 0] c

$P_{cr} := \text{conv} \{ x^T \mid T \text{ is TSP-tour } \}$ is called the TSP polytope and is denoted by Q_{TSP}^n
• The vertices must fulfill
$x(\delta(v)) = 2$ for all vertices v (8.1)
=> dim(Q_{TSP}^n) $\leq m - n = \frac{n(n-3)}{2}$ One can even show that $dim(Q_{TSP}^n) = m - n$
=> (8.1) defines a linear system of maximum rank whose set of solutions contains Q ⁿ _{TSP}
Oconstraints (8.1) still permit subtours.
These can be avoided by the subtour elimination constraints:
$x(E(W)) \leq W - 1$ for all $\emptyset \neq W \subset V$ (8.2)
where $F(W) = set of edges with both end points in W$
Furthermore (non-negativity constraints, upper bounds)
$0 \le x_1 \le 1$ for all edges e (8.3)

8. Polytopes induced by combinatorial optimization problems 8.2 Some linear descriptions

Θ	9.4 Theorem (Theoryalities for the TSP polytope, Chystal 1972, Grötzshel & Badhana 1979)
	8.4 Theorem (Inequalities for the TSP polytope, chvatal 1973, Grotschel & Paaberg 1979)
	For the TSP polytope Q^n_{TSP} the following statements hold for $n \ge 6$
	(a) dim(Q ⁿ _{TSP}) = m - n
	(b) the inequalities (8.3) define facets for every edge e
	(c) the subtour elimination constraints (8.3) are facets if $3 \le W \le n-3$
	(d) all comb inequalities (8.5) are facets
	without proof 🖵
Θ	8.5 Remark
	(a) - (d) do not constitute a linear description, and none is known.
	for Q^{10}_{TSP} , more than 50 billion different facets are known, for Q^{120}_{TSP} there are more than 10^{179}
	complete linear descriptions become too large to be solved by LP algorithms directly
	But one can use partial linear descriptions in Branch & Cut. For a fixed objective function one needs only
	cutting planes that lead to an optimal vertex. Other parts of the polytope are then of no interest.

8. Polytopes induced by combinatorial optimization problems 8.3 Separation and branch & cut

Goal of this section
Discussion of a concrete branch & cut algorithm for the TSP problem
Examples for polynomial separation
Examples of how to show that inequalities define facets
A branch & cut algorithm for the TSP problem
The algorithm starts with the LP
(P) min $c^T x$ s.t.
$x(\delta(v)) = 2$ for all vertices v (8.1)
0≤x,≤1 for all edges e (8.3)
and first adds subtour elimination inequalities and then comb inequalities
(first with a fast heuristic, then with an exact algorithm).
When no more such inequalities are found, one switches to branch and bound or a general cutting plane
algorithm
A flow diagram of the algorithm

8. Polytopes induced by combinatorial optimization problems 8.3 Separation and branch & cut

_

	Example 1: Chain inequalities for the antichain polytope
	They have the form
	x(K)≤1 for every chain K
	For a vector x^* , the separation problem for chain inequalities can be solved as follows:
	(1) compute the longest chain K* w.r.t. weights given by x*
	(2) if x*(K*)>1, then x(K*)≤1 is an x* separating chain inequality
	if x*(K*)≤1, then x* fulfills all chain inequalities
	The longest chain can be computed in the edge diagram as longest path (this is polynomial, as the edge
	diagram is acyclic)
	Example 2: Subtour-elimination inequalities for the TSP polytope
	• we assume that the following inequalities are satisfied
	$x(\delta(y)) = 2$ for all vertices y degree constraints (8.1)
	0 < x < 1 non-negativity and upper bounds (8.3)
	(which can be checked efficiently)
1	

8. Polytopes induced by combinatorial optimization problems 8.3 Separation and branch & cut

8.6 Lemma (Separation of subtour elimination inequalities)
Assume that x* fulfills inequalities (8.1) and (8.3)
Then there is an x* separating subtour inequality
<=> there is a cut $\delta(X)$ with $x^*(\delta(X)) < 2$
Proof
• Let X be a vertex set, $\emptyset \neq X \neq V$. Then
$x^{*}(\delta(X)) = \sum_{x \in Y} \sum_{x \in S(x)} x_{x}^{*} - 2 \sum_{x \in Y} x_{x}^{*}$
$= \sum_{v \in V} \frac{2}{2} - 2 \sum_{v \in V} x_{v}^{*} \text{ because of } (8.1)$
$= 2 X - 2\sum_{x \in X} x_x^* = 2 X - 2x^*(E(X))$
$S_0 x^*(\delta(X)) + 2x^*(E(X)) = 2 X $ (*)
⊖ _{"<=>} "
* violates the subtour inequality w.r.t. X
8.7 Consequence (Separation of subtour elimination inequalities)
Given (8.1), the separation problem for subtour-elimination inequalities leads to computing a cut $\delta(X)$ with
minimum capacity. This can be done by solving a sequence of st-max-flow problems

8. Polytopes induced by combinatorial optimization problems 8.3 Separation and branch & cut

8. Polytopes induced by combinatorial optimization problems 8.3 Separation and branch & cut

	$K \subseteq K' \implies (x(K) = 1 \implies x(K') \ge 1)$
	but since $x \in P_{a}$ we have $x(K') = 1 \Rightarrow x \in \{x(K') = 1\} \cap P_{a}$
1	Facets H define inclusions-maximal sets $H \cap P_A$ among all faces of P_A
	But the incidence vector of {e'} lies in { x(K') = 1 } \cap P $_{\mathcal{A}}$ - { x(K) = 1 } \cap P $_{\mathcal{A}}$,
	a contradiction 🖵
-	

9. LP-based approximation algorithms

♦ 9.1 Simple rounding and the use of dual solutions	53
9.2 Randomized rounding	54
♦ 9.3 Primal-dual approximation algorithms and network design	55

52

9. LP-based approximation algorithms

9.1 Simple rounding and the use of dual solutions

⊖ Goals of ·	this chapter
Demons	trate on 3 selected techniques that LP-theory provides advanced methods to design approximation
algorith	Ims
↔ ♦ Please r	repeat the chapter on approximation algorithm from ADM I
Goals of ·	this section
Approx	imation algorithms based on solving an LP with subsequent rounding to an integer solution
Proving	approximation guarantees by the use of LP-duality and dual solutions
● As an exa	imple, we consider WEIGHTED VERTEX COVER (WVC)
■ Instanc	e
o an und	directed graph G with vertex weights $w_{1,2} = 0$
■ Task	
Deter	mine a vertex cover C of G with minimum weight $\sum_{v \in C} w_{v}$
Example	

9. LP-based approximation algorithms

9.1 Simple rounding and the use of dual solutions

9.1 Lemma (Approximation guarantee for simple rounding)
Let A(I) be the feasible solution of (IP) obtained by rounding.
Let OPT(I) be an optimal solution of the given instance I and let LP(I) be an optimal solution of the LP-
relaxation.
If
A(I)≤ ρ·LP(I) for every instance Ι,
then algorithm "Simple Rounding" is a p-approximation algorithm
Remark: it is common in the theory of approximation algorithms to use A(I), OPT(I) both for the solution
itself and for the value of that solution.
Proof
As (LP) is a relaxation of (IP), we have LP(I) ≤ IP(I) = OPT(I)
$\Rightarrow A(\mathbf{I}) \leq \rho \cdot LP(\mathbf{I}) \leq \rho \cdot OPT(\mathbf{I}) \square$
Application to WVC
⊖ IP-formulation (IP)

9. LP-based approximation algorithms 53-4 9.1 Simple rounding and the use of dual solutions 0 Introduce 0/1-variables x_v with $x_v = 1 \iff v \in C$ Then WVC is equivalent to the IP min $\sum_{v} w_{v} x_{v}$ s.t. $x_{ii} + x_{ij} \ge 1$ for every edge e = (u,v) of G $x_v \in \{0,1\}$ for every vertex v of G The LP-relaxation (LP) of (IP) \bigcirc min $\sum_{v} w_{v} x_{v}$ s.t. $x_u + x_v \ge 1$ for every edge e = (u,v) of G $x_v \ge 0$ for every vertex v of G $x_v \ge 0$ is sufficient, since each optimal LP solution fulfills $x_v \le 1$ because of $w_v \ge 0$ (LP) has only polynomially many inequalities and variables and can thus be solved in polynomial time with a polynomial LP-algorithm (see Chapter 10) The rounding 0 let x' be an optimal solution of (LP) round x' to x* as follows:

9. LP-based approximation algorithms9.1 Simple rounding and the use of dual solutions

$\int 1 \text{ if } x'_{v} \ge 0.5$
$x_v^{+} := \begin{cases} 0 & \text{otherwise} \end{cases}$
Then:
×* is feasible for (IP), i.e., a vertex cover
let (u,v) be an edge of G
=> $x_{11} + x_{y} + x_{11} +$
=> the edge (u,v) is covered by x*
$(I) \leq 2 \cdot LP(I)$
$x_{y}^{*} \leq 2x_{y}^{+} \Rightarrow A(I) \leq 2 \cdot LP(I) \text{ as } w_{y} \geq 0$
So algorithm "Simple Rounding" is a 2-approximation algorithm for WVC
The use of dual solutions (for minimization problems)
9.2 Lemma (The use of dual solutions in approximation algorithms)
Let (D) be the dual LP of the LP-relaxation (LP) of (IP).
Let dual(I) be a feasible solution of (D) for instance I.
Let A be a polynomial algorithm that constructs a feasible solution A(I) of (IP) with

9. LP-based approximation algorithms

9.1 Simple rounding and the use of dual solutions		
A(I) ≤ p·dual(I) for every instance I		
Then A is a p-approximation algorithm		
● Proof:		
● weak duality theorem => dual(I) ≤ LP(I)		
(LP) is a relaxation of (IP) => LP(I) ≤ OPT(I)		
So $A(I) \leq \rho \cdot dual(I) \leq \rho \cdot OPT(I)$		
[⊖] Remark		
In contrast to Simple Rounding, the use of dual solutions need not solve an LP. It suffices that the algorithm		
constructs a feasible solution A(I) of (IP). The dual solution dual(I) is only needed in the proof of the		
inequality		
A(I) ≤ ρ·dual(I)		
but not in the algorithm.		
⊖ Application to WVC (Bar-Yehuda & Even 1981)		
The IP-relaxation (IP) of WVC (see above) is		

9. LP-based approximation algorithms

9.1 Simple rounding and the use of dual solutions

9. LP-based approximation algorithms

9.1 Simple rounding and the use of dual solutions

	an instance I of WVC with E≠Ø and w.o.l.g. w.,>0 for all v		
_	// vertices v with w _v = 0 will be taken and PACK is only applied to the graph induced by the remaining		
	vertices		
	Output		
	●		
	Method		
	set $C := \emptyset$ and $y_a = 0$ for all edges e		
	e repeat		
	choose an edge e		
	increase the value of the dual variable y until one (or both) endpoints of e are saturated		
	add the saturated endpoint(s) of e to C		
	delete the saturated endpoint(s) of e and all incident edges		
_	until no edges are left		
	eturn C		
	Proving the approximation guarantee with the use of dual solutions		
1			

9. LP-based approximation algorithms 53-10 9.1 Simple rounding and the use of dual solutions The set C computed by the algorithm is a vertex cover 0 an edge e is only deleted if at least one of its endpoints u is saturated => u∈C and u covers edge e The edge weights at the end of the algorithm constitute a dual feasible solution dual(I) elear, since $y_e \ge 0$ and $\sum_{e \in \delta(v)} y_e \le w_v$ throughout the algorithm Θ $\mathsf{PACK}(\mathsf{I}) = \sum_{\mathsf{v} \in \mathcal{C}} \mathsf{w}_{\mathsf{v}} \leq 2 \cdot \sum_{e \in \mathsf{E}} \mathsf{y}_{e} = 2 \cdot \mathsf{dual}(\mathsf{I})$ => approximation guarantee 2 with Lemma 9.2 0 interpret the increase of y_e by k as paying k\$ to each endpoint of e => a vertex v has been paid w_v when it enters the set C => $\sum_{v \in C} w_v \leq \text{total payment to all vertices} = 2 \sum_{e \in F} y_e$

9. LP-based approximation algorithms 9.2 Randomized rounding

θ		
Goals of this section		
TILustrate approximation algorithms based on solving on LP with subsequent randomized rounding		
i.e., rounding with probabilities obtained from the optimal LP solution		
We take MAX SAT as illustrative example see ADM T Chapter 94		
A trivial randomized rounding for MAX SAT (see ADM T chapter 9.4)		
A miniar and onlized rounding for MAX SAT (see ADM 1, chapter 3.4)		
🎽 Algorithm Randomize (Johnson 1974)		
an instance of MAX SAT		
at least k literals (k≥1) per clause Z		
weight c(Z) per clause Z		
Output		
a random truth assignment with expected performance		
a random n'ann assignment with expected performance		
$E[\Sigma_7 c(Z)] \ge (1 - 1/2^K) OPT(I)$		
Methoa		
toss a fair coin for every Boolean variable x; and set		

9. LP-based approximation algorithms 9.2 Randomized rounding

0 			
x _j = IRUE IF the coin shows head			
x; = FALSE if the coin shows number			
return the resulting random truth assignment			
0			
This algorithm is good for $k \ge 2$ (it gives at least 3/4 of the optimal weight), but is bad for $k = 1$ (where it gives			
only 1/2 of the entimel weight)			
only 1/2 of the optimal weight).			
Randomized rounding based on an LP relaxation			
The general principle of randomized rounding (Raghavan & Thompson 1987)			
0			
 Model the problem as an IP 	variables x _i ∈{0,1}		
2 Delay the TP to an I P	0 < Y < 1		
	02/j21		
3. Solve the LP optimally	values x _i '		
0	J		
4. Round randomized			
set x = 1 with probability x.			
••••••••••••••••••••••••••••••••••••••			
5. Show that the resulting vector x			
is feasible for the TP			
IS LEASING FOR THE TE			

9. LP-based approximation algorithms 9.2 Randomized rounding

Use y^* for randomized rounding, i.e., set $x_i := \text{TRUE}$ with probability y_i^* $x_i := \text{FALSE}$ with probability $1 - y_i^*$ This trivially produced a truth assignment of the given instance. Of course, not all clauses will be satisfied (i.e., evaluate to TRUE). The performance guarantee Consider w.o.l.g. the clause $C_j = x_1 v x_2 v \dots v x_k$ (it is similar for negated variables and other indices). Then Prob[C_j is satisfied] = $1 - \prod_{i=1}^k (1 - y_i^*)$ $\geq 1 - \left(1 - \frac{1}{k} \sum_{i=1}^k y_i^*\right)^k$ since geometric mean \leq arithmetic mean $\geq 1 - \left(1 - \frac{1}{k} z_j^*\right)^k$ because of the LP inequality Now set

9. LP-based approximation algorithms 9.2 Randomized rounding

$$f(z) := 1 - \left(1 - \frac{1}{k}z\right)^{k} \quad \text{concave in } z$$

and
$$g(z) := \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) z \quad \text{linear in } z$$

Hence $f(z) \ge g(z)$ on the interval $[0,1]$ if $f(z) \ge g(z)$ for the endpoints $z = 0$ and $z = 1$ of the interval
Checking $z = 0$: $f(0) = 0$, $g(0) = 0$
Checking $z = 1$: $f(1) = g(1)$
So
$$Prob[C_{j} \text{ satisfied}] \ge \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) z_{j}^{*}$$

 $\Rightarrow \text{ E(total weight of all satisfied clauses)}$
 $\ge \min_{k} \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) \sum_{j} w_{j} z_{j}^{*} \ge \left(1 - \frac{1}{e}\right) \sum_{j} w_{j} z_{j}^{*}$

9. LP-based approximation algorithms 9.2 Randomized rounding

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

 Introduction of the primal-dual scheme for constructing approximation algorithms We demonstrate this on the network design problem 	
Introduction of the primal-dual scheme for constructing approximation algorithms We demonstrate this on the network design problem	
We demonstrate this on the network design problem	
⊖ The network design problem	
Θ	
Instance	
an undirected graph G = (V, E)	
edge costs c, ≥ 0	
connection requirements r _{ii} for any 2 vertices i, j	
© Wanted	
an edge set $F \subseteq E$ with minimal cost $\sum_{e \in F} c_e$ such that	
G' := (V, F) contains at least r _{ii} pairwise edge disjoint paths between i and j for any 2 vertices i, j	
The network design problem is NP-hard (Karp 1972).	
It arises in designing low-cost networks that can survive edge failures	

54-7

9.3 Primal-dual approximation algorithms and network design

$\Sigma_{e \in \delta(S)} \times_{e} \ge f(S)$ for all $\emptyset \neq S \subset V$ (cut conditions)
$x_{a} \in \{0, 1\}$ for all edges e
\bigcirc x is a solution of (IP) <=> F = { $e \in E \mid x_a = 1$ } is a solution of the network design problem
⊖ "<="
• trivial
⊖ "=>"
Max Flow Min Cut Theorem (applied to any pair i, j with edge capacities 1) + cut constraints
=> there is a flow from i to j with value ≥ r _{ii}
=> there is an integer flow from i to j with value ≥r _{ii}
=> there are r _{ii} pairwise edge disjoint paths from i to j
=> the conditions in the (IP) are also sufficient 🛛
Some special cases
Shortest s t-paths
$r_{12} = 1$, $r_{13} = 0$ otherwise
$f(S) = 1$ if $ S \cap \{s, t\} = 1$, $f(S) = 0$ otherwise

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

⊖ Minimum spanning trees
r _{ij} = 1 for all pairs i, j
$f(S) = 1$ for all $\emptyset \neq S \subset V$, $f(S) = 0$ otherwise
⊖ Minimum Steiner tree
$r_{ij} = 1$ for all $i, j \in 1$ (1 = set of terminals that held to be connected)
f(S)=1 if S∩T≠Ø and T-S≠Ø, f(S)=0 otherwise
Generalized Steiner tree problem
$(:=) f(5) \in \{0, 1\}$
(x - y) = (x - y - y)
⊖ The primal-dual scheme
It uses complementary slackness similar to the primal-dual algorithm of Chapter 6.
We recall it below in the form needed here:
Starting point are an LP
(P) min $\Sigma_i c_i x_i$ s.t. $\Sigma_i a_{ii} x_i \ge b_i$ for all i, $x_i \ge 0$ for all j
and the extremined dual
(D) max Σ _i b _i y _i s.t. Σ _i a _{ij} y _i ≤c _j for all j, y _i ≥0 for all i

9.3 Primal-dual approximation algorithms and network design

9. LP-based approximation algorithms 9.3 Primal-dual approximation algorithms and network design

Dual LP
$ \max \sum_{s \in \mathcal{L}(s)=1} y_s $
$\Sigma = 1 \times 1$
$\Sigma_{S:e} \in \delta(S)$ ys Σ_{e} for all edges e
y _S ≥0 for all variables y _S
Call an edge e saturated if $\sum_{S:e \in \delta(S)} y_S = c_e$
The primal slackness condition then says: $x > 0 \Rightarrow$ e saturated
e
The primal dual algorithm for f(S) ∈ { 0, 1 }
⊖ Input
Instance of the network design problem with f(S) ∈ { 0, 1 }
Output
Feasible solution (V, A) of the network design problem with performance guarantee 2
Method
Initialize all dual variables y _c := 0
Initialize the primal solution (as edge set A) $A := \emptyset$
while A is not a feasible solution do

9. LP-based approximation algorithms

9.3 Primal-dual approximation algorithms and network design

let C be the set of all connected components S in the graph (V, A) of the edges of A with f(S) = 1
 increase y_S for all S ∈ C by the same amount until some edge e ∉ A becomes saturated
 add all saturated edges to A
 remove redundant edges from A (this makes A ⊆-minimal feasible) // cleanup step
 return A

9.3 Primal-dual approximation algorithms and network design

9.3 Primal-dual approximation algorithms and network design

P-based approximation algorithms Primal-dual approximation algorithms and network design

	0
_	
_	
_	
_	
_	
_	
	This last iteration added 2 saturated edges to A.
	Cleanup step
	The edge between a and b is redundant and is removed.

55-14

Performance guarantees of the primal dual scheme for $f(S) \in \{0, 1\}$
9.3 Theorem (Performance guarantee and runtime of the primal dual algorithm, Agarwal, Klein & Ravi 1991
Goemans & Williamson 1992)
The primal dual algorithm for $f(S) \in \{0, 1\}$ can be implemented with a runtime of $O(n^2 \log n)$.

9.3 Primal-dual approximation algorithms and network design

The computed primal solution A fulfills $\sum_{\alpha \in A} c_{\alpha} \leq 2 \cdot OPT(I)$, i.e., the algorithm is a 2-approximation
algorithm
with Lemma 9.4 and 9.5 (only the performance guarantee, not the runtime)
The essential combinatorial inequality
The algorithm runs through iterations k = 1, 2,, K
In iteration k, let
A _k be the edge set at the start of that iteration
$C_{i,j}$ be the set of connected components that grow in iteration k (i.e. $f(S) = 1$)
ϵ be the value by which all v_{-} with $S \in C_{-}$ arow
9.4 Lemma (Combinatorial inequality giving the approximation guarantee)
• The primal dual algorithm is an <i>a</i> -approximation algorithm if in each iteration k, the inequality
$\Sigma_{c,c,c} = \delta(S) \cap D \leq \alpha C_{c} $
holds for every C-minimal feasible solution D containing A.
, , , , , , , , , , , , , , , , , , ,

9. LP-based approximation algorithms 9.3 Primal-dual approximation algorithms and network design

9. LP-based approximation algorithms 9.3 Primal-dual approximation algorithms and network design

9. LF	-based	approx	imation	algorithms	
-------	--------	--------	---------	------------	--

9.3 Primal-dual	approximation	algorithms and	network design

The resulting subgraph (which still is a forest) fulfills:
$\Sigma_{v} \operatorname{red} d(v) = \Sigma_{v} \operatorname{red} \operatorname{ar} \operatorname{blue} d(v) - \Sigma_{v} \operatorname{blue} d(v)$
 ≤ 2·(# red + # blue) - Σ_{v blue} d(v) because #edges ≤ #vertices in a forest,
≤ 2·(# red + # blue) - 2·(# blue) because of the claim
= 2·(# red)
⊖ Performance guarantees in the primal dual scheme for arbitrary values f(S)
O Goemans, Mihail, Vazirani & Williamson 1993
Iteratively use a variation of the primal dual algorithm
This gives a 2·H(R)-approximation algorithm with
R := max _{ii} r _{ii} and
H(R) := 1 + 1/2 + 1/3 + + 1/R ~ log R
Experience with the primal dual algorithm in practice
⊖ Steiner trees (Hall 1995)
60 instances from Beasley

9. LP-based approximation algorithms 9.3 Primal-dual approximation algorithms and network design	55-23
500 - 1000 vertices, 600 - 60000 edges	
On average only 7% deviation from the optimum	
better than heuristics on large instances	
⊖ Generalized Steiner tree problems (Hu & Wein 1995)	
1000 randomly generated instances, 32 - 64 vertices	
In general only 5% deviation from the optimum	
 Network design (Mihail, Mostrel, Dean & Shallcross 1996) Ugad in a saftware peakees at Pollegra 	
(ITP/INPLANS CCS Network Topology Analyzer)	
Is reported to do well, but details are confidential	
⊖ Jain's algorithm for network design	
Is based on simple rounding, gives a 2-approximation for general f(S)	

	9.3 Primal-dual approximation algorithms and network design
	9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)
	Every basic feasible solution x of the LP-relaxation of the general network design problem has an entry e
	with $x_e \ge 1/2$
	For a proof see Korte & Vygen 🗅
	8
	Jain's Algorithm
	Tinput
	instance of the general network design problem
	Output
	a feasible solution of the network design problem with performance guarantee 2
	e Method
	let Q be the LP-relaxation of the IP formulation of the given instance
	epeat forever
	$ \frac{1}{2} $ compute a basic optimal solution x of Ω
	of all x are integer then return x
	$\frac{1}{1} \text{ dif } x_e \text{ die integer men return x}$
	round x_e to 1 for dileages e with $x_e \ge 1/2$
	9. LP-based approximation algorithms 55-25
	9.3 Primal-dual approximation algorithms and network design
	modify Q as follows
	set the rounded variables x _e to their new value x _e := 1
	adapt the demands $f(S) := f(S) - \sum_{e \in \delta(S)} x_e$
_	9.7 Theorem (Performance guarantee of Jain's algorithm)
	Jain's algorithm constructs a feasible solution x of the general network design problem with
	$\Sigma_{c} \in A$ $c_{c} \leq 2 \cdot OPT(I)$,
	i.e. the algorithm has a performance guarantee of 2
	Proof by induction on the number of iterations

■ Remarks on Jain's algorithm

The LP-relaxation has exponentially many inequalities. It can be solved in polynomial time since

separation and optimization are polynomially equivalent (Theorem 7.26)

the separation problem for $\sum_{e \in \delta(S)} x_e \ge f(S)$ can be solved in polynomial time by a sequence of min cut problems

• The algorithm is not so useful in practice since it must solve a sequence of LPs.

It is open if a "practical" 2-approximation algorithm exists.

 ·····	

10. Complexity of linear optimization and interior point methods

\bigcirc	10.1 LP is in NP ∩ coNP	. 57
\odot	10.2 Runtime of the simplex algorithm	. 58
\odot	10.3 The ellipsoid method	. 59
\odot	10.4 Interior point methods	. 60

56

Most important statements of this chapter (all only with proof sketches)
■ Linear programming (LP) is in NP ∩ coNP. Therefore it was conjectured that there is a polynomial algorithm for
LP.
All known variants of the simplex algorithm show an exponential worst-case runtime. However, the average case
analysis and the smoothed analysis show a polynomial runtime.
The ellipsoid method is the historically first method with a polynomial worst-case runtime for LP (Khachiyan
1979). It is, however, not practically relevant.
Interior points methods have been developed shortly after the ellipsoid method (first by Karmarkar 1984). They
also have a polynomial worst-case runtime. Today's variants (log barrier, primal-dual) are competitive with the
simplex algorithm and even superior for very large and sparse problems. But they rather unsuited for solving a
sequence of related optimization problems (which is important for many algorithms for integer optimization like
branch and bound or cutting-plane-methods).
Encoding length of an LP
Let the LP be given by
min c ^T x

10. Complexity of linear optimization and interior point methods 10.1 LP is in NP ∩ coNP

s.t. Ax = b
x > 0
with rational data. A, b, c
The encoding length (size) of LP w.r.t. to the standard encoding (see ADM I) is
<lp> = <a> + + <c></c></lp>
Another definition used with interior points methods is
L := <det<sub>max> + <b<sub>max> + <c<sub>max> + m + n</c<sub></b<sub></det<sub>
with
det := max { det A' : A' is a guadratic submatrix of A }
$b_{max} := max b $
max = max c
max i maxj roji
■ 10.1 Lemma (Encoding length of LP)
The proof is based on

	det A = volume of the parallelepiped generated by the columns of A
	$\Rightarrow \det A \leq \prod_{j} A_{j} \qquad \Box$
Θ	10.2 Lemma (Entries of basic solutions can be represented with L bits)
(Let x be a basic solution of LP in simplified form (gcd of at least one nominator and denominator is 1)
	$\mathbf{x}_{B}^{T} = \left(\frac{PB(1)}{q}, \dots, \frac{PB(m)}{q}\right)$
	Then $0 \le p_i < 2^L$ and $1 \le q < 2^L$
\$\$\$ (The proof is similar to that of Lemma 3.4 🗖
Θ	10.3 Lemma (The objective values of two basic solutions differ sufficiently)
(Let x, y be basic feasible solutions of LP with $c^{T}x \neq c^{T}y$.
	Then $ c^{T}x - c^{T}y > 1/2^{2L}$
(Proof
	Let p be the least common multiple of the denominators of x, q that of y

10. Complexity of linear optimization and interior point methods 10.1 LP is in NP ∩ coNP

10. Complexity of linear optimization and interior point methods 10.1 LP is in NP ∩ coNP

	Input: LP and a rational number λ
	Question: Is min { $c^T x \mid Ax = b \mid x > 0$ } $\langle \lambda \rangle$
	Θ
_	10.5 Theorem
	$P \in NP \cap coNP$
	Proof
	\square LP \in NP
	We must provide a certificate of polynomial length for min { $c^T x \mid Ax = b, x \ge 0$ } $\le \lambda$
	Case 1: LP has an optimal solution
	=> LP has a basic feasible solution x' with $c^{T}x' \leq \lambda$
	Lemma 10.2 => the entries of x' are polynomial in L
	Ax' = b, x' ≥ 0 and $c^T x' \le \lambda$ can be checked in polynomial time (in L)
	=> x' is such a certificate
	Case 2: LP has a feasible solution but the objective function is not bounded from below
	$\stackrel{\circ}{=}$ => the dual program (D) max { $y^{T}b y^{T}A \leq c^{T}$, y unconstrained } has no feasible solution
	Farkas' Lemma for (D) => there is $x^* \ge 0$ with $Ax^* = 0$, $c^Tx^* = -1$

10. Complexity of linear optimization and interior point methods 10.1 LP is in NP ∩ coNP

Take as certificate
a basic feasible solution of LP to show feasibility
a basic feasible solution of $\{Ax = b, x \ge 0, c^Tx = -1\}$ to show unboundedness of the primal objective
Both basic solutions are polynomial in L because of Lemma 10.2
Case 3: LP has no feasible solution
then the instance is not a "yes"-instance => no certificate is required
⊖ LP ∈ coNP
• We must provide a certificate of polynomial length for min { $c^T x \mid Ax = b, x \ge 0$ } > λ
⊖ Case 1: LP has an optimal solution
duality theorem => inequality is equivalent to max { $y^{T}b y^{T}A \le c^{T}$, y unconstrained } > λ
this can be certified as in Case 1 above by a basic feasible solution of $\{y^TA \le c^T, y \text{ unconstrained}\}$ with
value > λ
○ Case 2: LP has a feasible solution but the objective function is not bounded from below
then the instance is not a "no"-instance => no certificate is required
Case 3: LP has no feasible solution Case 3: LP has no feasible solution
then the instance is a "yes"-instance, as min { c ^T x Ax = b, x ≥ 0 } = ∞

_	Farkas' Lemma => there is y≥0 with y ^T A = 0, y ^T b = -1
_	=> take as certificate a basic feasible solution of $\{y \ge 0 \text{ with } y^T A = 0, y^T b = -1\}$

10. Complexity of linear optimization and interior point methods 10.2 Runtime of the simplex algorithm

Θ Worst-case runtime of the simplex algorithm 0 The worst-case runtime of the simplex algorithm is exponential 0 The counterexamples are so-called Klee-Minty cubes, i.e., slightly distorted cubes on which the simplex algorithm traverses all vertices, although it could get to the optimal solution with one pivot. 1 23 x_2 x_1 @ 0 http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html Θ Average runtime of the simplex algorithm Θ First results were obtained by Borgwardt 1982 Θ Variant of the simplex algorithm: "Schattenecken" algorithm

10. Complexity of linear optimization and interior point methods 10.2 Runtime of the simplex algorithm

New complexity model introduced by Spielman & Teng 2002 and first applied to LP (95 page paper)
 Consider for any instance I a neighborhood N(I) with a probability distribution on N(I), and compute sup { E_{I*∈N(I)}[runtime(I*)] | all instances I }
 Special cases:
 Worst case analysis: N(I) = {I}
 Average case: N(I) = set of all instances with the same dimensions n and m
 Smoothed analysis "interpolates" between these extremes

The runtime in the smoothed analysis is polynomial in n, m, and $1/\sigma$
Caveats
no statement for the standard simplex algorithm
the model preserves sparseness, but not degeneracy
····· ································

10. Complexity of linear optimization and interior point methods 10.3 The ellipsoid method

The geometric intuition is simple, the technical details (and the proof of polynomial runtime) are difficult.
We will illustrate here only the ecometric intuition
we will mustrate here only the geometric infuttion.
Reducing linear optimization to finding a feasible point
One possibility: binary search wrt the optimum d with inequality cx < d
Another possibility: use duality
Use simultaneously the side constraints of the primal and the dual
and the constraint $c^{T} \mathbf{x} \leq \mathbf{b}^{T} \mathbf{y}$
=> the only feasible points are $(x,y)^T$ with x optimal in the primal, y optimal in the dual
The ellipsoid method computes a feasible point in a polytope P
start with a ball E around the origin containing P
while the volume of E is not too small do // there is still a point in $E \cap P$
• if the center x of E is in P then return x
compute a hyperplane that separates x from P, let H be the halfspace containing P
igodol compute the new ellipsoid E with smallest volume containing H \cap E and the intersection points of the

10. Complexity of linear optimization and interior point methods 10.3 The ellipsoid method	<i>59-3</i>
the volume per iteration shrinks by the factor $exp(-1/2n) < 1$	
the volume check is done as follows for full dimensional polytopes P	
Translate the inequalities of P by $1/2^{2L+1}$, such that P contains a ball with radius $r = 1/2^{2L}$	
=> one can stop if the volume of E is below that of P	
one need additional techniques for lower dimensional polytopes	
the algorithm requires $O(n^2 L)$ iterations with $O(n^4 L)$ arithmetic operations with numbers of $O(L)$ bits	
more information about the ellipsoid method	
M. Grötschel, L. Lovász, and A. Schrijver	
Geometric Algorithms and Combinatorial Optimization	
Springer, Berlin, 2nd ed., 1993	

⊖ Goal of this section
A sketch of the interior point algorithm by Ye with improvements by Freund (both published in Mathematical
Programming 1991)
⊖ Starting point and general idea
given are a primal LP and the associated dual in the form
(P) min $z = c^T x$
s.t. Ax = b, x≥0
(D) max $w = b^T y$
s.t. $A^{T} \mathbf{v} + \mathbf{s} = \mathbf{c}, \mathbf{s} \ge 0$ (slack variables), v unrestricted
The algorithm solves (P) and (D) simultaneously
It computes in each phase a primal solution $x^* > 0$ and dual slack variables $s^* > 0$
Basic idea:
Stay away from the boundary $x_1 = 0$ s = 0 i.e. ensure $x_1 > 0$ s > 0
but make the duality gap $c^Tx^* - b^Ty^* = (A^Ty^* + s)^Tx^* - (Ax^*)^Ty^* = x^*Ts^* > 0$ small

⊖ The two main ingredients
Ingredient 1: scaling
Let x*>0 and s*>0 be given
Scaling is a function $\mathbb{R}^n \to \mathbb{R}^n$ with
$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} \longrightarrow \mathbf{x}' = \begin{pmatrix} \frac{\mathbf{x}_1}{\mathbf{x}_1^*} \\ \vdots \\ \frac{\mathbf{x}_n}{\mathbf{x}_n^*} \end{pmatrix}$
Observe:
$x^* \rightarrow \begin{pmatrix} 1 \\ \vdots \end{pmatrix}$
$\left(\begin{array}{c} i \end{array}\right)$
Scaling in matrix form:
$\langle r^* \rangle = 0$
$x' = (X^*)^{-1}x$ with $X^* = \begin{pmatrix} x_1 & \dots & 0 \\ & \ddots & \\ & & \ddots & \end{pmatrix}$
$\begin{pmatrix} 0 & \dots & x_n^* \end{pmatrix}$

10. Complexity of linear optimization and interior point methods 10.4 Interior point methods

Ingredient 2: potential function
• It measures the size of the duality can It is a locarithmic barrier function
$G(x,s) := q \cdot \ln(x's) - \sum_{j} \ln(x_{j} \cdot s_{j})$
with a suitable parameter q > 0
Observe
$a \cdot \ln(x^T s) \rightarrow -\infty$ if the gap $x^T s \rightarrow 0$
$\sum \ln(x, a)$, $\sum \ln \frac{1}{2} \ln \frac{1}{2$
$- \sum_{j} m(x_{j}s_{j}) \rightarrow +\infty \text{if } x_{j} \rightarrow 0 \text{ or } s_{j} \rightarrow 0, \text{ i.e., close to the boundary}$
Question: how to choose q?
A good choice of g is
$q := n + \sqrt{n}$
This choice leads to $O(\sqrt{n} \cdot L)$ iterations
where 1 := encoding length of Section 101
Stopping criterion
The potential function leads to a stopping criterion that is based on Lemma 10.2:

10. Complexity of linear optimization and interior point methods 10.4 Interior point methods

s.t. A ^T y + s = c, s≥0 (slack variables), y unrestricted
Output
• Primal dual pair (x,s) with $G(x,s) \leq -k\sqrt{n}L$
^e Method
Initialization
i = 0 // counter
choose x^0, y^0 primal-dual feasible with $G(x^0, s^0) = O(\sqrt{nL})$
// idea: modify phase I of the simplex algorithm such that $x \sim 2^{L}$, $s \sim 2^{L}$
© Iteration
Θ while $G(x^i, s^i) > -2\sqrt{n}L$ do
odo a primal step // change only x ⁱ
or a dual step // change s ⁱ
this gives (x ⁱ⁺¹ , s ⁱ⁺¹)
• i := i+1
Details of the iteration

10. Complexity of linear optimization and interior point methods 10.4 Interior point methods

Overview
Scale the current pair $(x^{i}, s^{i}) \rightarrow (e, s^{\prime})$ with $e = 1$
=> (e, s') is far from the boundary
the primal or dual step then computes (\tilde{x}, \tilde{s}) and reduces G
the re-transformation of (\tilde{x}, \tilde{s}) into the original space gives (x^{i+1}, s^{i+1})
■ Main property of the primal/dual step
\bigcirc do it in such a way that $G(x^{i+1}, s^{i+1}) - G(x^i, s^i) \le -7/120 \le 0$
$\Rightarrow G(x^N, s^N) < -2\sqrt{nL}$ after N steps with
$k_{1}/n = N \frac{7}{2} < 2_{2}/n $
$\approx G(x^0, s^0)$ 120 120 120 120 120 120 120 120 120 120
$\Rightarrow N \ge \frac{120}{7} (k+2)\sqrt{n}L = O(\sqrt{n}L)$
⊖ Computing (×̃, š̃)
Compute the x-aradient of G in the point (e, s') :

$$g := \nabla_{x} G(x, s)|_{(e,s')} = \frac{q}{x^{T}s}s - \left(\frac{\frac{1}{x_{1}}}{\frac{1}{x_{n}}}\right)|_{(e,s')} = \frac{q}{x^{T}s'}s' - e$$
Go into the direction -g to decrease G, but stay feasible (i.e., $A^{*}.\tilde{x} = b$).
To this end, let d be the projection of g onto the subspace { x | $A^{*}x = 0$ }
 $\Rightarrow d = (I - A^{*}(A^{*}A^{*T})^{-1}A^{*})g$ (without proof)
Go into direction -d

A possible problem: $||d||$ is too small
 \Rightarrow the primal step does not decrease G enough
Therefore: make a primal step if $||d|| \ge 0.4$
a dual step if $||d|| \le 0.4$
 $\widehat{x} := e - \frac{1}{4||d||}d$, $\widehat{s} := s$

10. Complexity of linear optimization and interior point methods 10.4 Interior point methods

The numbers the Gaussian elimination must not become too large
Use <det b=""> < <a> for every quadratic submatrix of A</det>
=> (Cramers' Rule) all numbers in Gaussian elimination can be represented with L bits
·
10.6 Theorem (Polynomial runtime of Ye's algorithm)
Ye's algorithm runs in O(n ^{3.5} L) time.
without proof 🗆