
Linear and Integer Programming
(ADM II)

Script

Rolf Möhring
WS 2010/11

Contents

1-1

1. Introduction
.. 31.1 Algorithmic Discrete Mathematics (ADM)

.. 41.2 Content of ADM II
... 51.3 Winter term 2010/11

2. Optimization problems
... 72.1 Examples

.. 82.2 Neighborhoods and local optimization
.. 92.3 Convex sets and functions

... 102.4 Convex optimization problems
3. The Simplex algorithm

... 123.1 Forms of linear programs
... 133.2 Basic feasible solutions

... 143.3 The geometry of linear programs
.. 153.4 Local search among basic feasible solutions

... 163.5 Organization in tableaus
... 173.6 Choosing a profitable column

.. 183.7 Pivoting rules and cycling
... 193.8 Phase I of the simplex algorithm

... 203.9 Geometric aspects of pivoting
4. Duality

.. 224.1 Duality of LPs and the duality theorem
... 234.2 Complementary slackness

.. 244.3 The shortest path problem and its dual
... 254.4 Farkas' Lemma

... 264.5 Dual information in the tableau
.. 274.6 The dual Simplex algorithm

5. Computational aspects of the Simplex algorithm
... 295.1 The revised simplex algorithm

... 305.2 Algorithmic consequences of the revised simplex algorithm
... 315.3 Solving the max-flow problem with the revised simplex algorithm and column generation

Contents

1-2

... 325.4 The simplex algorithm with lower and upper bounds
... 335.5 A special case: the network simplex algorithm

6. Primal-dual algorithms
... 356.1 Introduction

... 366.2 The primal-dual algorithm
.. 376.3 Remarks on the primal-dual algorithm

... 386.4 A primal-dual algorithm for the shortest path problem
.. 396.5 A primal-dual algorithm for the transportation problem

... 406.6 A primal-dual algorithm for the weighted matching problem (a sketch)
7. Integer linear optimization

... 427.1 Introduction
... 437.2 Totally unimodular matrices
... 447.3 Branch and bound algorithms

... 457.4 Lagrangian relaxation
... 467.5 Cutting plane algorithms

... 477.6 Optimization and separation
8. Polytopes induced by combinatorial optimization problems

... 498.1 Introduction
.. 508.2 Some linear descriptions

.. 518.3 Separation and branch & cut
9. LP-based approximation algorithms

.. 539.1 Simple rounding and the use of dual solutions
... 549.2 Randomized rounding

.. 559.3 Primal-dual approximation algorithms and network design
10. Complexity of linear optimization and interior point methods

.. 5710.1 LP is in NP ∩ coNP
... 5810.2 Runtime of the simplex algorithm

.. 5910.3 The ellipsoid method
... 6010.4 Interior point methods

1. Introduction

2

... 31.1 Algorithmic Discrete Mathematics (ADM)
.. 41.2 Content of ADM II

.. 51.3 Winter term 2010/11

1. Introduction
1.1 Algorithmic Discrete Mathematics (ADM)

3-1

On the history of ADM

Young area, has its roots in

algebra, graph theory, combinatorics

computer science (algorithm design and complexity theory)

optimization

Deals with optimization problems having a disrete structure

graphs, networks

finite solution space

Applications

telecommunication networks, traffic networks

logistics, production planning, location planning

...

ADM at TU Berlin

1. Introduction
1.1 Algorithmic Discrete Mathematics (ADM)

3-2

Basic courses

Graph and network algorithms (ADM I)

Linear and integer optimization (ADM II)

Special courses (ADM III)

Scheduling problems

Applied network optimization

Polyhedral theory

...

Seminar (partly parallel with ADM II or ADM III)

Bachelor thesis or master thesis

1. Introduction
1.2 Content of ADM II

4-1

Linear optimization problems

Linear objective function, linear inequalities as side constraints

Linear optimization: min cTx subject to Ax ! b, x " 0

Simplex algorithm

Duality

Geometry of linear optimization problems

Ax ! b, x " 0 define a polyhedron

1. Introduction
1.2 Content of ADM II

4-2

Optimum is attained in a vertex (corner point)

The simplex algorithm traverses vertices

1. Introduction
1.2 Content of ADM II

4-3

Discrete problems as linear optimization problems

polyhedral theory

Discrete problems as geometric problems

Minimum spanning trees as vectors

Graph G

1. Introduction
1.2 Content of ADM II

4-4

1 2

3

Minimum spanning trees of G as vectors (incidence vectors)

2

3

1 2 1

31
1
0

!
1
0
1

!
0
1
1

!

Convex hull of incidence vectors = polytope (yellow set)

polytope = yellow set

Computing a minimum spanning tree = linear optimization over this polytope

1. Introduction
1.2 Content of ADM II

4-5

Integer linear optimization

variables may only attain integer values

much more difficult problems

Solution methods

Lagrangian relaxation

cutting plane algorithms

LP-based approximation algorithms

...

Exercises with implementation assignments

1. Introduction
1.3 Winter term 2010/11

5-1

Torsten Gellert (Exercises)

Christoph Hansknecht (Tutorials)

Website

http://www.math.tu-berlin.de/coga/teaching/wt08/adm2/

http://www.math.tu-berlin.de/coga/teaching/wt10/adm2/

Notebook: http://www.math.tu-berlin.de/~moehring/adm2/

Literature

C.#H. Papadimitriou and K.#Steiglitz

Combinatorial Optimization: Algorithms and Complexity

Prentice Hall, Englewood Cliffs, NJ, 1982

Pocket book - 512 pages - Dover Publications

First published: Juli 1998

Auflage: Unabridged

ISBN: 0486402584

B. Korte, J. Vygen:

Combinatorial Optimization: Theory and Algorithms

Springer, 2000/2002/2006/2008

1. Introduction
1.3 Winter term 2010/11

5-2

Springer, 2000/2002/2006/2008

jetzt auch auf deutsch

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver

Combinatorial Optimization

Wiley 1998

V.#Chvátal

Linear Programming

Freeman, New York, 1983

G.#L. Nemhauser and L.#A. Wolsey

Integer and Combinatorial Optimization

John Wiley & Sons, New#York, 1988

M.#Grötschel, L.#Lovász, and A.#Schrijver

Geometric Algorithms and Combinatorial Optimization

Springer-Verlag, Berlin, 2nd#ed., 1993

D.#S. Hochbaum, ed.

Approximation Algorithms for NP-hard problems

PWS Publishing Company, Boston, MA, 1997

1. Introduction
1.3 Winter term 2010/11

5-3

PWS Publishing Company, Boston, MA, 1997

H.#M. Salkin and K.#Mathur

Foundations of Integer Programming

North-Holland, Amsterdam, 1989.

R.#J. Vanderbei

Linear Programming: Foundations and Extensions

Kluwer Acad. Publ., Dordrecht, 2nd#ed., 2001.

http://www.princeton.edu/~rvdb/LPbook/index.html

Encyclopedia

A. Schrijver:

Combinatorial Optimization: Polyhedra and Efficiency

Springer, 2003

3 volumes with 1881 Seiten, aso available as CD

2. Optimization problems

6

... 72.1 Examples
... 82.2 Neighborhoods and local optimization

.. 92.3 Convex sets and functions
.. 102.4 Convex optimization problems

2. Optimization problems
2.1 Examples

7-1

An (NP-) optimization problem P0 is defined as follows

Each instance I ∈ P0 has a feasibility domain SI. Its elements y ∈ SI are called solutions

Feasibility (y ∈ SI) can in be tested in polynomial time

Task:

Given an instance I and an objective function c : SI -> Q (rational numbers), find an optimal solution y =

OPT(I)

i.e., y ∈ SI with OPT(I) = c(y) ! c(x) for all x ∈ SI

OPT(I) denotes both, the optimal solution and the objective function value of the optimal solution

such a solution is called a global optimum (global minimum) or optimum (minimum)

An algorithm that does this is called exact

2.1 Example: Traveling Salesman problem (TSP)

Instance

Complete Graph Kn, n " 3

Rational edge weights c(e) " 0

Task

2. Optimization problems
2.1 Examples

7-2

Compute a Hamiltonian cycle C with minimal length
!!"" #

�
#∈$!"" !!#"

A concrete instance:

G = Kn in the plane with Euclidean distances

Two feasible solutions

2. Optimization problems
2.2 Neighborhoods and local optimization

8-1

Neighborhoods

Neighborhoods are defined as !-niggarded (w.r.t. some norm) for continuous problems. How for discrete

problems?

A neighborhood for a problem class P0 is given by a mapping

!" ! #" → "
#"

for each instance I ∈ P0

NI(y) is called the neighborhood of y ∈ SI. We write N(y) of I is clear from the context

2.4 Example: TSP

Define a neighborhood by a 2-exchange

N2(y) := { x ∈ SI | x results from y by exchanging ! 2 edges from y by other edges }

2. Optimization problems
2.2 Neighborhoods and local optimization

8-2

This generalizes to any k " 2 and yields the neighborhood Nk(y)

2.5 Example: MST

Define a neighborhood by exchanging an edge on a fundamental cycle

N(y) := { x ∈ SI | x results from y by adding an edge to y and deleting another edge on the resulting cycle}

2. Optimization problems
2.2 Neighborhoods and local optimization

8-3

G T T'

2.6 Example: LP

Define a neighborhood as !-neighborhood

N!(y) := { x | Ax = b, x " 0, || y-x || ! ! }

y
!

Local and global optima

2. Optimization problems
2.2 Neighborhoods and local optimization

8-4

Local and global optima

Consider a problem class P0 with neighborhood N and let I ∈ P0

y ∈ SI is called locally optimal w.r.t. N if c(y) ! c(x) for all x ∈ NI(y)

2.7 Example: local minima in calculus

2.8 Example: TSP

Locally optimal solutions w.r.t. Nk are called k-optimal or k-opt for short

exact neighborhood

A neighborhood N for a problem class P0 is called exact

:<=> every local optimum w.r.t. N is a global optimum

2. Optimization problems
2.2 Neighborhoods and local optimization

8-5

:<=> every local optimum w.r.t. N is a global optimum

More precisely, for all I ∈ P0, every locally optimal y ∈ SI w.r.t. NI is globally optimal

2.9 Example: TSP

N2 is not exact

Counter example :

1

5

4 3

2

cost a

cost b

cost c

a < b < c

tour y = "outer edges" has cost 5b

Since both green edges are adjacent, every 2-exchange can at most add one green edge, thus at best one

green and one red

The new tour is worse if a+c > 2b

=> y is locally optimal w.r.t. N2

2. Optimization problems
2.2 Neighborhoods and local optimization

8-6

=> y is locally optimal w.r.t. N2

Two successive 2-exchanges add both green edges to the tour

1

5

4 3

2

1

5

4 3

2

1

5

4 3

2

This tour is better than y if 2a+c < 3b

a < b < c and a+c > 2b and 2a+c < 3b are fulfilled by a = 1, b = 4, c = 8

Nn is exact

clear since Nn(y) = SI !

2.10 Example: MST

The neighborhood of MST is exact

Proof :

2. Optimization problems
2.2 Neighborhoods and local optimization

8-7

Proof :

Use a theorem from ADM I:

T is optimal <=> every non-tree-edge e is the most expensive edge in the cycle induced by e in T + e

 !

Neighborhoods motivate the principle of local search

Algorithm local search

Input

instance I of an optimization problem P0 with neighborhood NI

start solution y ∈ SI

Output

local optimum w.r.t. NI

Method

iterative improvement

while there is a better solution x ∈ NI(y) do

choose better solution x ∈ NI(y)

y := x

2. Optimization problems
2.2 Neighborhoods and local optimization

8-8

y := x

return y

2.11 Theorem (local search for MST)

Local search w.r.t. the MST-neighborhood is a polynomial algorithm for computing a (globally) optimal MST if

(a) it always chooses a non-tree-edge f that is cheaper than the most expensive edge of the cycle K

induced by f

(b) it always deletes a most expensive tree-edge e from the cycle K induced by f

Proof:

1. Since the neighborhood is exact, the algorithm has computed a globally optimal solution at termination

2. The algorithm terminates in polynomial time

 Claim 1: A deleted edge never returns into the tree

Proof by contradiction

Let K be the cycle when edge e is removed

2. Optimization problems
2.2 Neighborhoods and local optimization

8-9

e K

Consider the first later point in time t at which e is chosen to enter the tree

=> e is currently a non-tree-edge and induces a cycle K'

e K K'

=> K' results from K by the local search steps until time t

In every of these steps, e is a non-tree-edge and induces a cycle K(e) in the current tree

Claim 2: In every of these steps, c(e) " c(g) for all edges g ∈ K(e)

Proof by induction along the sequence of cycles K = K1, K2, K3, ...

Base case: clear for K = K1 by construction

Inductive step from Ki to Ki+1

clear for Ki = Ki+1

2. Optimization problems
2.2 Neighborhoods and local optimization

8-10

clear for Ki = Ki+1

let Ki $ Ki+1

two cases are possible

Ki+1 makes Ki larger

=> Ki+1 = Ki - (some edges including the currently deleted edge e') + P (P is part of the

current cycle from which we delete e')

e e

e'

P

=> c(e') " c(f) for all edges f ∈ P because of (b)

c(e) " c(e') by the inductive assumption, (b) => c(e) " c(f) for all edges f ∈ Ki+1

Ki+1 makes Ki smaller

=> Ki+1 = K + (some edges including the currently added edge e') - P (P is part of Ki)

2. Optimization problems
2.2 Neighborhoods and local optimization

8-11

e e

e'

P

f
0

=> c(e') < c(f0) for the removed edge f0, c(e) " c(f) for all edges f ∈ P because of the

inductive assumption

=> c(e) " c(f) for all edges f ∈ Ki+1

Claim 2 contradicts the choice of e specified in (a)

So there are at most m-n+1 exchanges (m = # edges, n = # vertices). Every exchange step can be done in

O(n) time

determine the most expensive edge e in the cycle induced by the non-tree-edge f and compare c(e)

and c(f)

[by breadth first search in O(# edges in tree) = O(n)]

exchange e and f if c(e) < c(f)

[O(n) if the tree is maintained as array of adjacency lists]

2. Optimization problems
2.2 Neighborhoods and local optimization

8-12

[O(n) if the tree is maintained as array of adjacency lists]

Thus O((m-n+1)n) = O(mn) altogether !

Remark: we have obtained better algorithms in ADM I: Kruskal O(m·log n) and Prim O(n2)

Exercises: Analyze local search for TSP with the k-opt neighborhood. Does it run in polynomial time?

2. Optimization problems
2.3 Convex sets and functions

9-1

Convex combination of two vectors

Let x, y ∈ Rn. Then every point

z = λ·x + (1-λ)·y with 0 ! λ ! 1

is called a convex combination of x and y (a strictly convex combination if 0 < λ < 1)

the convex combinations of x and y are exactly the points on the line segment from x to y

x

y

x-y

points on this line segment are vectors of the form y + λ(x-y)

Convex set

S ! Rn is called convex if S contains all convex combinations of any two points x, y ∈ S

2.12 Example:

2. Optimization problems
2.3 Convex sets and functions

9-2

Rn, Ø, {x}, x ∈ Rn are convex

The convex subsets of R1 are precisely the intervals

Convex sets in R2 are those without "bays"

A B
C

2.13 Lemma

The intersection of (any number of) convex sets is convex

Proof:

Let S = "i∈I Si, Si convex

Let x, y ∈ S, 0 ! λ ! 1, z = λ·x + (1-λ)·y

Def. of S => x,y ∈ Si for all i => z ∈ Si for all i => z ∈ S !

Lemma 2.13 is the basis for the definition of the convex hull of a set

2. Optimization problems
2.3 Convex sets and functions

9-3

The convex hull conv(S) of a set S is the smallest convex set containing S, i.e.,

!"#$%!& '
�

!⊆"# " ("#$)*

"

This intersection exists, since Rn is one of the sets M

An equivalent description is (exercise)

conv(S) = { λ1x
1 + ... + λkxk | xi ∈ S, λi " 0, % λi = 1, k finite }

Theorem of Caratheodory: in Rn, k ! n+1 suffices

Convex function

Let S ! Rn be a convex set. A function c : S -> R1 is called convex in S if

c(λ·x + (1-λ)·y) ! λ·c(x) + (1-λ)·c(y)

for all x, y ∈ S, all 0 ! λ ! 1

2.14 Example

Every linear function is convex

Interpretation of convex functions c : R1 -> R1

2. Optimization problems
2.3 Convex sets and functions

9-4

!"c(x) + (1-!)·c(y)

x

c

y

c(x)

c(y)

z

z := λ·x + (1-λ)·y c(z) ! λ·c(x) + (1-λ)·c(y)

2.15 Lemma

Let c be convex in S ! Rn. Then, for every real number t, the level set

St := { x ∈ S | c(x) ! t }

is convex

Proof:

Consider z := λ·x + (1-λ)·y with x, y ∈ St, 0 ! λ ! 1

=> c(z) ! λ·c(x) + (1-λ)·c(y) since c is convex

! λ·t + (1-λ)·t since x, y ∈ St

=> z ∈ St !

Level sets of a convex function c : R2 -> R1

2. Optimization problems
2.3 Convex sets and functions

9-5

Level sets of a convex function c : R2 -> R1

c = 3 2 1

Concave function

c in S ! Rn is called concave if -c is convex

<=> c(λ·x + (1-λ)·y) " λ·c(x) + (1-λ)·c(y) for all x, y ∈ S, all 0 ! λ ! 1

2. Optimization problems
2.4 Convex optimization problems

10-1

Convex optimization = minimizing a convex function on a convex set.

Important principle: local Optima are global Optima

2.16 Theorem (local - global)

Consider an instance I of an optimization problem with SI ! Rn convex and c convex in SI.

=> The neighborhood

N!(y) := { x ∈ SI : || y-x || ! ! }

defined by the Euclidean distance is exact for every ! > 0.

Proof:

Let ! > 0 and let y be locally optimal w.r.t. N! .

Consider x ∈ SI. Show that c(y) ! c(x).

This is trivial if x ∈ N!(y)

So assume x ∉ N!(y)

=> then there is some λ such that z := λ·x + (1-λ)·y ∈ N!(y) and z $ y

2. Optimization problems
2.4 Convex optimization problems

10-2

SI

N
!
(y)

y

x

z

c convex => c(z) ! λ·c(x) + (1-λ)·c(y), moreover c(z) " c(y) since y is locally optimal

⇒ !!"" !
!!#" " !# " $"!!%"

$
!
!!%" " !# " $"!!%"

$
$!!%"

Hence c(x) " c(y) !

Observe: this holds without any further assumptions on c; in particular, c need not be differentiable.

Historical definition of convex optimization problems

An instance I of an optimization problem is called a convex optimization problem if

SI is specified as set of all x ∈ Rn fulfilling side constraints of the form:

2. Optimization problems
2.4 Convex optimization problems

10-3

SI is specified as set of all x ∈ Rn fulfilling side constraints of the form:

gi(x) " 0 i = 1,...,m

gi : R
n -> R1 concave, i = 1,...,m

c is convex in SI

2.17 Lemma

The feasible set SI of an instance I of a historically defined convex optimization problem is convex

Proof:

gi concave => -gi convex

=> Si := { x | -gi(x) ! 0 } = { x | gi(x) " 0 } convex because of Lemma 2.15

=> SI = "i Si is convex because of Lemma 2.13 !

2.18 Theorem

In a convex optimization problem, every local optimum is a global optimum

2.19 Remark

There can be many global optima

2. Optimization problems
2.4 Convex optimization problems

10-4

There can be many global optima

Every instance of LP is a convex optimization problem

=> every local minimum is a global minimum

Calculus offers sufficient criteria for smooth functions to be convex:

D ! Rn open, c : D -> R1 is twice continuously differentiable,

Hessian matrix (= matrix of 2nd partial derivatives) of c is positive semidefinite

3. The Simplex algorithm

11

... 123.1 Forms of linear programs
.. 133.2 Basic feasible solutions

... 143.3 The geometry of linear programs
.. 153.4 Local search among basic feasible solutions

.. 163.5 Organization in tableaus
.. 173.6 Choosing a profitable column

... 183.7 Pivoting rules and cycling
... 193.8 Phase I of the simplex algorithm

... 203.9 Geometric aspects of pivoting

3. The Simplex algorithm
3.1 Forms of linear programs

12-1

(3.1) General Form

 !"# !"# # ∈ R$% ! ∈ R$

such that aT
i x = bi i ∈ M ai ∈ Rn

aT
i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj arbitrary j ∈ N

3.1 Example: Diet problem (historically the oldest LP)

n foods, j = 1,..., n

m nutrients (proteins, vitamins etc.) i = 1,..., m

aij = amount of nutrient i per unit of food j,

ri = required amount of nutrient i per time period (week)

xj = amount of food j per time period (week)

cj = cost per per unit of food j

x = (x1, x2, ..., xn)T models a weekly diet

feasible diet fulfills Ax " r with A = (aij), r = (r1, r2, ..., rm)T

(3.2) Computing a "cheapest" feasible diet is the LP

min cTx

3. The Simplex algorithm
3.1 Forms of linear programs

12-2

min cTx

s.t. Ax " r

 x " 0

An LP of the form (3.2) is called in canonical form

An LP of the form

(3.3) min cTx

s.t. Ax = b

 x " 0

is called in standard form

An LP of the form (3.1) is called in general form

3.2 Lemma (Equivalence of the three forms)

All 3 forms are equivalent

in the sense that an instance I of one form can be transformed into an instance I' of any other form by a

simple transformation such that one can easily construct an optimal solution of I from an optimal solution of

I'

Proof

3. The Simplex algorithm
3.1 Forms of linear programs

12-3

Proof

it suffices to provide the following transformations:

general form -> canonical form

eliminate equality constraints and unrestricted variables∑n
j=1 aijxj = bi →

∑n
j=1 aijxj ≥ bi and

∑n
j=1 aijxj ≤ bi

xj unrestricted → xj = x+j − x−j , x+j , x
−
j ≥ 0

general form -> standard form

eliminate """ by introducing surplus variables si " 0
∑n

j=1 aijxj ≥ bi → ∑n
j=1 aijxj − si = bi

eliminate "!" by introducing slack variables si " 0

 ∑
n
j=1 aijxj ≤ bi → ∑n

j=1 aijxj + si = bi !

3. The Simplex algorithm
3.2 Basic feasible solutions

13-1

Goal: Develop an algorithm to solve LPs

Starting point: LP in standard form

min cTx

s.t. Ax = b

 x " 0

with initial assumptions 3.1 - 3.3 (which we will get rid of later)

Assumption 3.1: A is an (mxn)-matrix with full row rank m

3.3 Example

min 2x1 +x4 +5x7

s.t. x1 +x2 +x3 +x4 = 4

x1 +x5 = 2

+x3 +x6 = 3

+3x2 +x3 +x7 = 6

xj ≥ 0 ∀j

3. The Simplex algorithm
3.2 Basic feasible solutions

13-2

!!!"" #





$ $ $ $! %

$ $! &

$ $! '

' $ $! (





A has full row rank m = 4

Recall from linear algebra:

column rank = row rank = rank(A) = m

A basis of A is a set of m linearly independent columns B = {Aj, Ak, ..., Ar}, and these columns are called basic

columns. The other columns are called non-basic columns.

We denote the submatrix of these columns by B (sometimes AB) and the corresponding indices by B(1),..., B

(m).

So B = (AB(1), AB(2), ..., AB(m)). Sometimes we will identify B with the set of indices, i.e., B = { B(1), ..., B(m) }.

AN denotes the submatrix of non-basic columns.

3. The Simplex algorithm
3.2 Basic feasible solutions

13-3

A has at most (n
m) bases

3.3 Example (continued)

Basis 1:




! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %





B(1) = 4, B(2) = 5, B(3) = 6, B(4) = 7

Basis 2




! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %





B(1) = 2, B(2) = 5, B(3) = 6, B(4) = 7

Basis 3

3. The Simplex algorithm
3.2 Basic feasible solutions

13-4





! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %





B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7

! !





" " "

"

"

" "





Every basis matrix is invertible and can be transformed into the identity matrix by elementary row operations

and column permutations (Gaussian elimination).

If we transform the whole extended matrix (A|b) with these operations, we obtain a solution of Ax = b by

setting the basic variables to the (transformed) right hand side, and the non-basic variables to 0. This solution

is called the basic solution for basis B.

The applet below can be used to carry out these operations

3. The Simplex algorithm
3.2 Basic feasible solutions

13-5

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

3.3 Example (continued)

Basis 1

no transformation needed since B = identity matrix

basic solution: x4 = 4, x5 = 2, x6 = 3, x7 = 6, xj = 0 otherwise

Basis 2





! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %









! ! ! ! ! "

! ! ! #

! ! ! $

"$ "# "$! ! "%





B(1) = 2, B(2) = 5, B(3) = 6, B(4) = 7

basic solution: x2 = 4, x5 = 2, x6 = 3, x7 = -6, xj = 0 otherwise

Basis 3

3. The Simplex algorithm
3.2 Basic feasible solutions

13-6





! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %









! ! !! !! " !!

! ! " "

! ! " #

!# # " ! " $





B(1) = 2, B(2) = 1, B(3) = 3, B(4) = 7

basic solution: x2 = -1, x1 = 2, x3 = 3, x7 = 6, xj = 0 otherwise

If we permute the columns of A and x such that A = (AB, AN) and x = (xB, xN)T, then the elementary

transformations correspond to multiplying the linear system (AB, AN) (xB, xN)T = b from the left with the

inverse B-1 of the basis:

B-1(AB, AN) (xB, xN)T = B-1b

 <=> B-1ABxB + B-1ANxN = B-1b

 <=> xB + B-1ANxN = B-1b

If we set xN = 0 in the basic solution, we obtain xB = B-1b

So if B is a basis of A, then we obtain the associated basic solution x = (xB, xN)T as

xB = B-1b, xN = 0

3. The Simplex algorithm
3.2 Basic feasible solutions

13-7

xB = B-1b, xN = 0

3.3 Example (continued)

Basis 3

! !





" " "

"

"

" "




⇒ !

!"
!





" !" !"

"

"

!# # $ "





⇒ !" !





!"

!#

!$

!%




! "

!#
!





!# !#

#

#

!$ $ " #




"





&

"

$

'




!





!#

"

$

'





A basic solution x is called a basic feasible solution (bfs for short) if x " 0, i.e., x is a feasible solution of the

LP

3.3 Example (continued)

The basic solution of basis 1 is feasible, those of basis 2 and basis 3 are not.

3. The Simplex algorithm
3.2 Basic feasible solutions

13-8

The role of basic solutions for the simplex algorithm

From an algebraic view, the simplex algorithm will turn out to be a local search on the set of basic feasible

solutions

To see this we need

a neighborhood (two basic feasible solutions are neighbors if they differ in at most one column)

an algorithmic analysis how to go from one basic feasible solution to a neighbor (pivot operation, pivot step, or

simply pivot)

we start with a few mathematical properties of (feasible) basic solutions

Some mathematical properties of (feasible) basic solutions

3.4 Lemma (The values of basic variables are bounded)

Let the entries of A and b be integer numbers and let x be a basic solution of Ax = b.

Let α := maxij |aij| and β := maxi |bi|. Then

|xj| ! m! αm-1 β for all j

Proof:

Let xB = B-1b with B = (AB(1), AB(2), ..., AB(m)).

3. The Simplex algorithm
3.2 Basic feasible solutions

13-9

Let xB = B-1b with B = (AB(1), AB(2), ..., AB(m)).

By Cramer's rule we obtain

xB(i) =
detBi

detB mit Bi = (AB(1), . . . , AB(i−1), b,AB(i+1), . . . , AB(m))

A, b integer => det B integer => |det B| " 1

Expanding det Bi along column b yields m summands of the form bi · [(m-1)x(m-1) sub-determinant of A].

Each such sub-determinant is the sum of (m-1)! products of (m-1) entries from A. Hence:

!!"!#"! #
!$%&"#!

!$%&"!
" !$%&"#! " $ # % # !$ $ '"(# &$$' # $(&$$'%

 !

3.5 Lemma (Every basic feasible solution can be optimal, we cannot do with a subset)

Let x be a basic feasible solution of Ax = b, x " 0 with basis B.

=> there is a cost vector c such that x is the only optimal solution of

min cTx

s.t. Ax = b

 x " 0

Proof:

3. The Simplex algorithm
3.2 Basic feasible solutions

13-10

Proof:

Set cj :=

{
0 if j ∈ B
1 if j "∈ B

=> cTx = 0, as non-basic variables are 0

=> x is optimal, as cTy " 0 for every feasible solution y

let y be another optimal solution

=> yj = 0 for all j ∉ B

=> Ay = b reduces to ByB = b => yB = B-1b = xB

=> x is the only optimal solution !

We will see later that basic feasible solutions also suffice, i.e., they constitute the smallest set of feasible

solutions on which the optimum is attained for all cost vectors c

Existence of basic feasible solutions

Question: does every LP have a basic feasible solution?

Assumption 3.2: The feasible domain SI of an LP is non-empty

3. The Simplex algorithm
3.2 Basic feasible solutions

13-11

Assumption 3.2: The feasible domain SI of an LP is non-empty

3.6 Theorem (Existence of basic feasible solutions)

With assumptions

3.1: rank(A) = m

3.2: SI $ Ø

there exists at least one basic feasible solution

Proof:

SI $ Ø => there are feasible solutions

let x be a solution with the most 0-entries and let w.o.l.g. x1, ..., xt > 0, xt+1, ..., xn = 0

=> Ax = b reduces to A1x1 + ...+ Atxt = b (3.4)

A

x
1
 x

1
...

 x

t
 0 ... 0

let A' := (A1 ,..., At) and r := rank(A')

3. The Simplex algorithm
3.2 Basic feasible solutions

13-12

let A' := (A1 ,..., At) and r := rank(A')

=> 0 ! r ! min {t, m}

case distinction

r = 0

=> Aj = 0 for j = 1, ..., t => (3.4) Ax = 0

=> (choice of x) x = 0

=> x is a basic feasible solution for any basis, a particular basis exists because of assumption 3.1

0 < r < t

we generate a contradiction

let B´ be a non-singular submatrix of A' with rank r, w.l.o.g.

x
1
 x

2
...

x

r
 ... x

t
 0 ... 0

B´
!

�
!




""" # # # ""$
###

#
###

"$" # # # "$$





let Bj´ the columns of the first r entries of Aj (j = 1, ..., t) and let b´ be the vector of the first r

3. The Simplex algorithm
3.2 Basic feasible solutions

13-13

let Bj´ the columns of the first r entries of Aj (j = 1, ..., t) and let b´ be the vector of the first r

entries of b

r < t => the last m - r equations of (3.4) are redundant and we can write (3.4) as

B1´x1 + ...+ Bt´xt = b´

<=> B1´x1 + ...+ Br´xr = b´ - (Br+1´xr+1 + ...+ Bt´xt)

⇔ !!�
"" # # # " !

�
$#




%"
$$$
%$



 % &�
!

�
!�
$&"" # # # " !

�
'

�



%$&"
$$$
%'





Multiplying from the left with (B´)-1 yields




!!
"""
!"



 # $#�%!!$�
! $#�%!!

�
#�
"&!% & & & % #

�
'

�



!"&!
"""
!'





⇔




x1
...

xr



 =




β1
...

βr



 +




α1,r+1 . . . α1t

...
. . .

...
αr,r+1 . . . αrt








xr+1

...
xt



 (∗)

for some numbers αij and βi ,

i.e.,, x1, ..., xr depend affinely linear on xr+1, ..., xt

3. The Simplex algorithm
3.2 Basic feasible solutions

13-14

i.e.,, x1, ..., xr depend affinely linear on xr+1, ..., xt

Use (*) to construct a new feasible solution with more 0-entries

there is a row i with αi,r+1 $ 0 (otherwise we may choose xr+1 = 0 which contradicts the choice of

x)

vary xr+1 such that one of x1, ..., xr or xr+1 becomes 0, but all stay " 0

αi,r+1 < 0 => xi grows when xr+1 gets smaller => x1, ..., xt stay " 0

αi,r+1 > 0 => decreasing xr+1 by θ > 0 yields the condition xi - αi,r+1·θ " 0

choose θ := min { xr+1, xi
αi,r+1

| αi,r+1 > 0 }

and set yr+1 := xr+1 - θ and yj := xj for j > r+1

=> y1, ..., yr are determined by (*) and are " 0

=> y = (y1, ..., yn)T is a feasible solution of the LP

2 cases:

yr+1 = 0 (occurs if θ = xr+1)

or some y1, ..., yr become 0

=> contradiction to the choice of x

0 < r = t ! m

3. The Simplex algorithm
3.2 Basic feasible solutions

13-15

0 < r = t ! m

A' has t columns, rank(A') = t => the t columns of A' are linearly independent

=> (rank(A) = m) they can be augmented to a basis B of A by adding columns of A

=> x is a basic feasible solution for basis B !

Boundedness of the feasible domain

last assumption

Assumption 3.3: { cTx | Ax = b, x " 0 } is bounded from below

this will show that we can restrict ourselves to bounded feasibility domains SI = { x | Ax = b, x " 0 }

3.7 Theorem (The feasible domain can be assumed as being bounded)

Assume

3.1: rank(A) = m

3.2: SI $ Ø

3.3: { cTx | Ax = b, x " 0 } is bounded from below

Then the LP

min { cTx | Ax = b, x " 0 } (LP)

is equivalent to the LP

3. The Simplex algorithm
3.2 Basic feasible solutions

13-16

is equivalent to the LP

min { cTx | Ax = b, x " 0, xj ! M } (LP*)

with M := (m+1)! αm β

α := maxij { |aij|, |cj| }

β := maxi { |bi|, |z| }

z := inf { cTx | Ax = b, x " 0 }

in the sense that the optimal values coincide and (LP) and (LP*) have a common optimal solution that is a basic

solution of (LP).

Proof:

let G := { cTx | Ax = b, x " 0 } ! R1 => z := inf G > -& because of assumption (3.3)

G is closed (since defined by = and " and the linear function cTx) => z ∈ G

=> { x ∈ Rn | cTx = z, Ax = b, x " 0 } is the set of optimal solutions of (LP) (3.5)

Two cases

rank { cTx = z, Ax = b } = m+1

Theorem 3.6 => (3.5) has a basic feasible solution x with basis B

Lemma 3.4 => x fulfills the bounds xj ! M

Moreover: x is feasible for (LP)

3. The Simplex algorithm
3.2 Basic feasible solutions

13-17

Moreover: x is feasible for (LP)

(3.5) => x is optimal for (LP) and this also for (LP*), as SLP* ! SLP

rank = m+1 => B without the row for cTx = z contains m linearly independent columns from A

=> x is a basic solution of (LP)

rank { cTx = z, Ax = b } = m

=> c is a linear combination of the rows ai of A, say c = % diai

=> cTx = (% diai)
Tx = % diai

Tx = % dibi = constant, independent of x

=> every such solution of (LP) is optimal, in particular a feasible basic solution.

This fulfills the bounds because of Lemma 3.4 !

3. The Simplex algorithm
3.3 The geometry of linear programs

14-1

Main statements of this chapter

The feasible domain of an LP in canonical form is a polyhedron

The basic feasible solutions of the associated LP in standard form correspond to vertices of this polyhedron

The optimum is attained in a vertex of the polyhedron / in a basic feasible solution of the associated LP in

standard form

Basic geometric facts

Ø $ S ! Rd is a linear subspace of Rd

<=> S is closed under vector addition and scalar multiplication

<=> S is the set of solutions of a homogeneous linear system Ax = 0

Then dim(S) + rank(A) = d

T ! Rd is an affine subspace of Rd

<=> T is a linear subspace translated by some vector, i.e.,

T = { u + x | x ∈ S } , S linear subspace, u ∈ Rd

<=> T is set of solutions of an inhomogeneous linear system Ax = b

dimension dim(T) := dim(S)

3. The Simplex algorithm
3.3 The geometry of linear programs

14-2

Dimension of a set S ! Rd

= dimension of the smallest affine subspace containing S (affine hull of S)

Examples:

a line has dimension 1

|S| = k ! d+1 => dim(S) ! k-1

The set of solutions S = { x | Ax = b, x " 0 } of an LP in standard form fulfills dim(S) ! n-m

because:

rank(A) = m => { x | Ax = b } has dimension n-m (as long as Ax = b is solvable)

the sign restrictions xj " 0 can lower the dimension

e.g., if { x | Ax = b } " { xj " 0 } = {0}

Hyperplane in Rd

= affine subspace of dimension d-1

= set of solutions of an equation a1x1 + ... + adxd = b (not all aj = 0)

it defines two (closed) halfspaces

{ x | a1x1 + ... + adxd " b } and { x | a1x1 + ... + adxd ! b }

Polyhedron in Rd

3. The Simplex algorithm
3.3 The geometry of linear programs

14-3

= non-empty intersection of finitely many halfspaces (generated by hyperplanes)

=> polyhedra are convex

Polytope in Rd

= bounded polyhedron

Example: Platonic Solids

http://www.3quarks.com/GIF-Animations/PlatonicSolids/index-de.html

Geometric aspects of polytopes

Feasible domains S of LPs in canonical form are polyhedra. They are polytopes if S is bounded or can be

assumed to be bounded.

3.8 Example

3. The Simplex algorithm
3.3 The geometry of linear programs

14-4

x2

x1

x3

 H1

 H2 H4

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

 H7

H5

H6

x2

x1

x3

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

H3

The polytope is the intersection of the following halfspaces

x1 + x2 + x3 ! 4 hyperplane H1

x1 ! 2 hyperplane H4

 x3 ! 3 hyperplane H3

 3x2 + x3 ! 6 hyperplane H2

 xj " 0 hyperplanes H5, H6, H7

3. The Simplex algorithm
3.3 The geometry of linear programs

14-5

 xj " 0 hyperplanes H5, H6, H7

A hyperplane H supports polyhedron P

:<=> H " P $ Ø and P is contained in one of the halfspaces defined by H

f := H " P is then called a face of P, and H is called a P supporting hyperplane defining f

important: facet := face of dimension d-1

vertex or extreme point := face of dimension 0 (a point)

edge := face of dimension 1 (a line segment)

Some geometric facts (without proof)

(a) A facet defining hyperplane of P belongs to one of the halfspaces that define P (i.e., deleting H

changes P)

(b) Face defining hyperplanes do generally not fulfill (a).

The halfspace x2 ! 2 in Example 3.8 defines a face ({ x2 ! 2 } " P) that is an edge but not a facet).

This halfspace is redundant, its generating inequality is already implied by others:

x3 " 0, 3x2 + x3 ! 6 => 3x2 ! 3x2 + x3 ! 6 => x2 ! 2

(c) An edge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the

3. The Simplex algorithm
3.3 The geometry of linear programs

14-6

(c) An edge is a line segment that connects two vertices and lies on the boundary of the polyhedron (the

converse is not true)

3.9 Theorem (Minkowski 1896)

(a) Every polytope is the convex hull of its vertices,

i.e., every point x of a polytope P can be represented as

x = λ1x
1 + ... + λkxk, xi vertex of P, λi " 0, % λi = 1, k finite

(b) if V ! Rd is finite, then conv(V) is a polytope P and { vertices of P } ! V

Proof

partly an exercise

(a) by induction on dimension d

In example 3.8 we have





!

!

!



 "
!

#





#

#

$



 %
!

&





$

$

&



 %
!

'





$

$

$





(b) is intuitively clear geometrically, but more complicated to prove algebraically. !

3. The Simplex algorithm
3.3 The geometry of linear programs

14-7

Consequence: There are two views on a polytope:

1. as convex hull of a finite set of points

(e.g., of the incidence vectors of solutions of a combinatorial optimization problem)

2. as the intersection of finitely many halfspaces (if this intersection is bounded)

(this is the natural view when the inequalities are explicitly given, e.g., as for LPs in canonical form)

A third, algebraic, will be derived in the sequel. It consists of a linear system Ax = b, x " 0 whose basic

feasible solutions correspond to the vertices of P.

Algebraic interpretation of polytopes

From the polytope to the linear system

Let P be a polytope in R+
n-m given by the n inequalities (3.6)

 xi " 0 i = 1, ..., n-m

hi,1x1 + ... + hi,n-mxn-m + gi ! 0 i = n-m+1, ..., n

Let H be the coefficient matrix of inequalities i = n-m+1, ..., n

Introduce slack variables xi for inequalities i = n-m+1, ..., n (m many)

=> (3.6) becomes Ax = b, x " 0, x ∈ Rn with A = (H|I), b = -(gn-m+1, ..., gn)T

3. The Simplex algorithm
3.3 The geometry of linear programs

14-8

=> (3.6) becomes Ax = b, x " 0, x ∈ Rn with A = (H|I), b = -(gn-m+1, ..., gn)T

i.e., the feasible domain S of an LP in standard form

This induces the following mapping (transformation) f : P -> S (3.7)

x� =




x�1
...
x�n−m



 ∈ P �→





x1
...
xn−m
...
xn




∈ S

with xi =






x�i i = 1, . . . , n − m

−gi −
n−m

∑
j=1

hijx�j
� �� �

slack

i = n − m + 1, . . . , n

Observe: x is uniquely determined by x´, i.e., f is injective

From the linear system to the polytope

Let Ax = b, x " 0, x ∈ Rn be the feasible domain S of an LP in standard form (under assumptions 3.1 - 3.3).

Then there exists a basis B, and we consider the partition A = (AB,AN) and x = (xB, xN)T in basic and non-

basic variables.

W.o.l.g. let B = { n-m+1, ..., n } (last m columns of A)

3. The Simplex algorithm
3.3 The geometry of linear programs

14-9

W.o.l.g. let B = { n-m+1, ..., n } (last m columns of A)

 Multiplying Ax = b from the left by B-1 gives

B-1 (AB,AN) (xB, xN)T = xB + B-1AN
 xN = B-1b =: b´

With B-1Aj =: A´j we obtain

!"!#" # $�
!

%!&�

'#$

(�
#'!' # # $) * * *) &

Hence Ax = b, x " 0 is equivalent to (3.8)

!�
" !

�#!$
%!" &�

"%'% " # " ! "())) ($

'% " # % �∈ *

These are n inequalities in the variables x1, ..., xn-m, which define a polytope P in Rn-m (since S is bounded)

This construction defines the following mapping g : S -> P (for B = { n-m+1,...,n }) (3.9)

! !





!"

###

!"!#

###

!"





∈ $ �→ !�
!





!�
"

###

!�
"!#



 ∈ %

with xj´ := xj j = 1, ..., n-m (we "forget" the slack of basic variables).

3. The Simplex algorithm
3.3 The geometry of linear programs

14-10

with xj´ := xj j = 1, ..., n-m (we "forget" the slack of basic variables).

Obviously, g is a linear function and injective, as xn-m+1, ..., xn are uniquely determined by x1, ..., xn-m.

Moreover:

xj = 0 for j = 1, ..., n-m, i.e. j ∉ B, implies that x´ lies on a "coordinate hyperplane" in P

xj = 0 for j = n-m+1, ..., n, i.e. j ∈ B, implies that a P-defining inequality holds with equality

(basic variables "correspond" to slack variables, where this role is defined somewhat arbitrarily by the

choice of B)

3.8 Example (continued)

! !





" " "
"

"
"

"
"

$ "
"





" !





%

&

$

'





3. The Simplex algorithm
3.3 The geometry of linear programs

14-11

values of the
given variables

values of the
slack variables

!
�
!





"

"

#



 ∈ " ↔ ! !





"

"

#

$

"

"

%





∈ #

Observe: f and g are bijections between P and S, where g depends on the choice of the basis and

determines P.

3.10 Theorem (Interpretation of vertices in the three views)

Let P be a polytope and let S = { x | Ax = b, x " 0 } be the associated feasible set of an LP in standard form.

Let y´= (y1´, ..., yn-m´)T ∈ P and let y = (y1, ..., yn)T ∈ S be the associated vector according to (3.7)

Then the following statements are equivalent:

(1) y´ is a vertex of P

(2) y´ cannot be represented as a strict convex combination of other points from P

(3) y is a basic feasible solution of S

3. The Simplex algorithm
3.3 The geometry of linear programs

14-12

(3) y is a basic feasible solution of S

Proof

(1) => (2)

Assume there are z´, z´´ ∈ P, 0 < λ < 1 with y´ = λ z´ + (1-λ)z´´

y´ is a vertex => there is a halfspace HS = { z | hTz ! g } with HS " P = {y´}

z´, z´´ ∉ HS => hTz´ > g and hTz´´ > g => hT(λ z´ + (1-λ)z´´) > g

=> y´ ∉ HS, a contradiction

(2) => (3)

Let y ∈ S be constructed from y´ according to (3.7) and let B' := { j | yj > 0 }

Claim: the columns Aj with j ∈ B' are linearly independent

if not, there exist numbers dj (not all 0) with %j # B' djAj = 0 (3.10)

Definition of B' => %j # B' yjAj = b (3.11)

(3.11) + θ·(3.10) and (3.11) - θ·(3.10) yield

%j # B' (yj + θdj)Aj = b and %j # B' (yj - θdj)Aj = b

yj > 0 for j ∈ B' => θ > 0 can be chosen in such a way that yj + θdj " 0 and yj - θdj " 0.

To this end we must have:

θ ! yj /|dj| for negative and positive dj

3. The Simplex algorithm
3.3 The geometry of linear programs

14-13

θ ! yj /|dj| for negative and positive dj

=> this is possible for all j ∈ B' simultaneously

define x1 and x2 from S by

x1
j :=

{
yj − θdj j ∈ B′

0 otherwise
x2

j :=

{
yj + θdj j ∈ B′

0 otherwise

=> x1, x2 ∈ S, different from y, and

! !

"

#
"
"
$
"

#
"
#

g : S -> P defined by (3.9) is linear and g(y) = y´

⇒ !
� ! ""!# ! "

�
$

%
#
$ &

$

%
#
%

�
!
$

%
""#$# &

$

%
""#%#

with g(x1), g(x2) ∈ P => a contradiction to (2)

=> |B'| ! m => (Assumption 3.1) B' can be augmented to a basis B

=> y is a basic feasible solution for B

(3) => (1)

let y be a basic feasible solution of Ax = b, x " 0 with basis B

Lemma 3.5 => there is a cost vector c such that y is the only optimal solution of the LP with cost vector

3. The Simplex algorithm
3.3 The geometry of linear programs

14-14

Lemma 3.5 => there is a cost vector c such that y is the only optimal solution of the LP with cost vector

c.

In other words,

y is the only solution of (3.12)

cTx ! cTy =: b0 ,

Ax = b, x " 0

Transform (3.12) into standard form with a slack variable xn+1 for cTx ! b0 :





!! " " " !# !

$! " " " $#

"

###

"









%!

###

%#$!



 %

�
&"

&

�

=> B $ {n+1} is a basis of (3.12)

Transform (3.12) according to transformation g defined by (3.9).

This yields a system of linear inequalities whose m last inequalities define the polytope P.

The first inequality is transformed into c1´x1´ + ... + cn-m´xn-m´ ! b0´ (3.13)

The transformation is a bijection

=> y -> y´, and y´ is the only point in P fulfilling (3.13) with equality

3. The Simplex algorithm
3.3 The geometry of linear programs

14-15

=> y -> y´, and y´ is the only point in P fulfilling (3.13) with equality

=> c1´x1´ + ... + cn-m´xn-m´ = b0´ is a supporting hyperplane H of P and H " P = {y´}

=> y´ is vertex of P !

There is a similar characterization for edges of the polytope (later)

Corollary (Feasible solutions are convex combinations of basic feasible solutions)

Under assumptions 3.1 - 3.3, every feasible solution in S is a convex combination of basic feasible solutions.

Proof:

Because of Theorem 3.7, we may assume that the feasible domain S is bounded

=> the associated polyhedron P is a polytope

Let x ∈ S and let x' be the associated point in P

=> (Minkowski's Theorem) x' is a convex combination of vertices x'i of P

=> x is a convex combination of the basic feasible solutions corresponding to these vertices

because:

let x' = % λix'i => z := % λix
i ∈ S, as S is convex

g linear => g(z) = % λig(xi) = % λix'i = x'

3. The Simplex algorithm
3.3 The geometry of linear programs

14-16

g linear => g(z) = % λig(xi) = % λix'i = x'

g injective, g(x) = x' = g(z) => x = z !

A more precise analysis of the correspondence "basic feasible solution <-> vertex"

vertices x´, y´ are different <=> associated basic feasible solutions x, y are different

But: in general not the associated bases!

i.e., different bases �⇒ different associated basic solutions

Example 3.8 (continued)

! !





" " "
"

"
"

"
"

$ "
"





" !





%

&

$

'





B = { 1, 2, 3, 6 } B' = { 1, 2, 4, 6 }

=> B-1b = (B')-1b' = (2, 2, 0, 3)T. In both cases the associated basic solution is (2, 2, 0, 0, 0, 3, 0)T

Geometric view:

Non-basic variables in B are x4, x5, x7 => x4 = x5 = x7 = 0

=> x´ ∈ H1 " H2 " H4

3. The Simplex algorithm
3.3 The geometry of linear programs

14-17

=> x´ ∈ H1 " H2 " H4

Non-basic variables in B´ are x3, x5, x7 non-basic variables => x3 = x5 = x7 = 0

=> x´ ∈ H5 " H2 " H4

i.e., x´ lies on more than 3 facets

in both cases, x´ is the same vertex (2,2,0)T and x = (2, 2, 0, 0, 0, 3, 0)T is the same basic feasible

solution

degenerate basic feasible solution, degenerate vertex

= basic feasible solution (corresponding to a vertex) with more than n-m zero entries

3.11 Theorem (Characterizing degenerate basic feasible solutions and degenerate vertices)

x is a basic feasible solution for several bases => x is degenerate

x´ is a degenerate vertex <=> x´ lies in the intersection of more than n-m facets

Proof

Let B and B' be different bases for x

=> xj = 0 for the n-m Indices j ∈ B and for the n-m Indices j ∈ B'

=> x is degenerate

The statement for vertices is left as an exercise !

3. The Simplex algorithm
3.3 The geometry of linear programs

14-18

The statement for vertices is left as an exercise !

The Fundamental Theorem of linear optimization

We are now prepared to show that the optimum of an LP is attained at a vertex / a basic feasible solution

(assuming 3.1 - 3.3).

Note that there can also be optima attained at other points (e.g., if c is constant on a face of the polytope)

3.12 Theorem (Fundamental Theorem of linear optimization)

Every instance of LP attains its optimum at a basic feasible solution.

Every convex combination of basic optimal feasible solutions is optimal.

Proof

First statement: geometrically with associated transformed objective function cTx -> dTx´

Transformation of the objective function into the geometric view

Let SI be given by { Ax = b, x " 0 } and let B be a basis for a basic feasible solution.

Consider the polytope P associated with basis B according to transformation (3.9)

=> P is defined via the non-basic variables xN and xB = B-1b - B-1AN
 xN

The objective function cTx is then transformed as follows:

3. The Simplex algorithm
3.3 The geometry of linear programs

14-19

cTx = cT
BxB + cT

N xN

= cT
B(B−1b − B−1 AN xN) + cT

N xN

= cT
BB−1b
� �� �
constant

+ (cT
N − cT

BB−1 AN)� �� �
dT

xN

=> min cTx (algebraic) corresponds to min dTxN (geometric)

Proof in the geometric view

P is closed and bounded, y -> dTy is continuous on P

=> optimum is attained on P

let y0 be optimal and let yk, k = 1, ..., r be the vertices of P

Minkowski's Theorem => y0 = % λkyk with λk " 0, % λk = 1

let j be an index for which dTyj is minimum among the vertices yk, k = 1, ..., r

=> dTy0 = dT % λkyk = % λkdTyk " % λkdTyj = dTyj % λk = dTyj

=> yj is optimal => optimum is attained at a vertex

correspondence vertices <-> basic feasible solutions => optimum is attained at a basic feasible solution

The second statement is easy to see !

Corollary

3. The Simplex algorithm
3.3 The geometry of linear programs

14-20

Corollary

Every optimal solution is a convex combination of basic optimal feasible solutions

Proof:

Let x be an optimal solution of min cTx, Ax = b, x " 0

Corollary of Theorem 3.10 => x is a convex combination of basic feasible solutions

say x = λ1x
1 + ... + λkxk, with basic feasible solutions xi, λi " 0, % λi = 1, k finite

=> cTx = % λi c
Txi (*)

Assume that xr is not optimal => cTx < cTxr

(*), λi " 0 => there is some xs in the convex combination with cTx > cTxs

=> this contradicts the fact that x is optimal

=> all basic solutions in the convex combination are optimal !

Theorem 3.12 is the basis for the simplex algorithm

clever local search among the vertices (geometric view)

clever local search among the basic feasible solutions (algebraic view)

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-1

Main topics of this chapter

We consider the pivot operation that defines the neighborhood of basic feasible solutions

We analyze the underlying algebraic calculus

We will introduce the use of tableaus

First thoughts on the pivot operation

Let y be a basic feasible solution of Ax = 0, x " 0 with basis B

=> can write Ay = b as %i # B AB(i)yB(i) = b (3.14)

B basis => every column Aj ∉ B is a linear combination of basic columns

=> there are numbers xij (i = 1, ..., m) with %i = 1,...,m AB(i)xij = Aj (3.15)

 (3.14) - θ·(3.15) => %i = 1,...,m AB(i) (yB(i) - θxij) + θAj = b (3.16)

We will now change θ in (3.16) to obtain another basic feasible solution.

We consider 3 cases:

Case 1: y is not degenerate and not all xij ! 0 (i = 1, ..., m)

y not degenerate => all yB(i) > 0 (i = 1, ..., m)

transition from θ = 0 to θ > 0 corresponds to the transition from y to x(θ) with

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-2

x�(θ) =






yB(i) − θxij � = B(i), i = 1, . . . , m

θ � = j

0 otherwise

=> x(θ) has m+1 entrees > 0 (for small θ)

x(θ) stays feasible as long as x(θ) " 0

since: Ax(θ) = %i = 1,...,m AB(i) (yB(i) - θxij) + θAj = b because of (3.16)

x(θ) " 0 holds as long as 0 ! θ ! θ0 with

!! " #$% !
"#&$'

%$&
" %$& ' !($ " (())) (* # &)*(+'

If the minimum of (3.17) is attained at k, then x(θ0) is a basic feasible solution with basis B' = B - {B(k)}

U {j}

since

1. the columns Aj with j ∈ B' are linearly independent

Suppose not. Then there exist numbers di (not all 0) with %i = 1,...,m, i $ k diAB(i) + djAj = 0

(3.15) => %i = 1,...,m, i $ k diAB(i) + dj(%i = 1,...,m AB(i)xij) = 0

this is a linear combination of the columns of B that gives 0.

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-3

this is a linear combination of the columns of B that gives 0.

So all coefficients in the linear combination must be 0

=> (di + djxij) = 0 for i = 1, ..., m, i $ k and djxkj = 0

xkj determines θ0 => xkj > 0 => dj = 0 => di = 0 for all i, a contradiction

2. x(θ0)N' = 0 by construction

3.3 Example (continued)





! ! ! ! ! "

! ! ! #

! ! ! $

$! ! ! %




⇒ !" !





!"

!#

!$

!%




!





&

&

"

'





y3
y1

!! "





#

$

#

#



 " !$! "$! % !& ! "'! % !(! "&! % !) ! "*!

= 1·A1 - 1·A3 + 1·A6 + 1·A7

=> (3.16) reads as (2 - θ)·A1 + (2 + θ)·A3 + (1 - θ)·A6 + (4 - θ)·A7 + θ·A5

=> transition from y = x(0) to x(θ) reads as

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-4

=> transition from y = x(0) to x(θ) reads as

y =





2
0
2
0
0
1
4





→ x(θ) =





2 − θ
0

2 + θ
0
θ

1 − θ
4 − θ





→





1
0
3
0
1
0
3





for θ = 1

x(1) is a basic feasible solution with basis B = { 3, 1, 5, 7 }

Case 2: y is degenerate

so there is an index i with yB(i) = 0 and xij > 0

=> θ0 = 0

=> no movement in Rn and thus also not in Rn-m

=> we stay in the same vertex / basic feasible solution, but obtain another basis, as AB(i) and Aj are

exchanged

Case 3: all xij ! 0 (i = 1, ..., m)

=> θ can be made arbitrarily large and x(θ) stays feasible

=> SI is unbounded

=> objective function is not bounded from below because of Theorem 3.7

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-5

=> objective function is not bounded from below because of Theorem 3.7

Basis exchange

3.13 Theorem (basis exchange)

When computing θ0, suppose that the minimum is attained at i = k, then x(θ0) is a basic feasible solution

with basis B´, and

!�!"" #

�
!!"" " �# #

$ " # #

x(θ0) is degenerate if k is not unique

Proof: this follows from the previous arguments

In the example we obtain k = 3, B(3) = 6, B´(3) = 5 !

This step from one basic feasible solution to another one is called a pivot step (also pivot operation or simply

pivot)

We say that: AB(k) leaves the basis and Aj enters the basis

 xB(k) leaves the basis and xj enters the basis

θ0 is called the primal step length

3. The Simplex algorithm
3.4 Local search among basic feasible solutions

15-6

θ0 is called the primal step length

Two basic feasible solutions with different bases are called neighbors, if one can be obtained from the other by

a pivot operation. So pivot operations define a neighborhood on the set of basic feasible solutions.

3. The Simplex algorithm
3.5 Organization in tableaus

16-1

Goal: make the pivot operation efficient

=> must get hold of the xij

=> must express non-basic columns as a linear combination of basic columns

this can be done by transforming the basis to an identity matrix

An example

Let Ax = b be given as

3x1 + 2x2 + x3 = 1

5x1 + x2 + x3 + x4 = 3

2x1 + 5x2 + x3 + x5 = 4

We write this down in a tableau:

!! !" !# !$!%

! # " ! & &

% ! ! ! &

$ " % ! & !

with b as column 0

3. The Simplex algorithm
3.5 Organization in tableaus

16-2

We transform the linear system / the tableau w.r.t. a basis B is such a way that the basic columns form the

identity matrix.

For B = { 3, 4, 5 } this gives the following tableau

!! !" !# !$!%

! # " ! & &

" " !! & ! &

!! # & & !

=> xB(1) = x3 = 1

 xB(2) = x4 = 2

 xB(3) = x5 = 3

Moreover A1 = 3AB(1) + 2AB(2) - 1AB(3). The coefficients are obviously given by the column of x1

=> the numbers xij are in column j of the transformed tableau (transformed such that B is the identity

matrix)

So if A1 is to enter the basis, then

!! " #$% !
"#&$'

%$(
" %$(& !' $ " (' (((') # " #$% !

(

)
'
*

*
"

(

)
+%, * " (

The tableau for the new basis is then obtained by transforming it so that A1 becomes the new unit vector in

3. The Simplex algorithm
3.5 Organization in tableaus

16-3

The tableau for the new basis is then obtained by transforming it so that A1 becomes the new unit vector in

the basis

!! !" !# !$!%

!

#
! "

#

!

#
& &

$

#
& !'

#
!"

#
! &

!&

#
& !!

#

!

#
& !

=> xB´(1) = x1 = 1/3

 xB´(2) = x4 = 4/3

 xB´(3) = x5 = 10/3

In this basis exchange, a11 plays the role of the pivot element (as in Gaussian elimination)

The pivoting rules

Let (xij) be the tableau for basis B and let (x'ij) be the tableau for the new basis B', both with the right-

hand-side as column 0, i.e. (xi0) and. (x'i0). Let xkj be the pivot element. Then the entries of the new tableau

are obtained by

3. The Simplex algorithm
3.5 Organization in tableaus

16-4

are obtained by

(3.18)






x�kq =
xkq
xkj

q = 0, . . . , n

x�iq = xiq − x�kqxij i = 1, . . . , m, i �= k; q = 0, . . . , n

B�(i) = B(i) i = 1, . . . , m, i �= k

B�(i) = j i = k

Mnemonic:

k

i

q j

xkq xkj

xiq xij

must become 1

must become 0

3. The Simplex algorithm
3.6 Choosing a profitable column

17-1

Goal: Understand the change of the objective function for a basis exchange

First thoughts on the change of the objective function

Let y be a basic feasible solution with basis B

=> y has the objective function value (cost) zy = %i = 1,...,m cB(i)yB(i)

If Aj enters the basis, then Ax(θ) = %i = 1,...,m AB(i) (yB(i) - θxij) + θAj (= b)

θ = 1 => for every "unit" of variable xj entering the basis, xij units of yB(i) leave basis

=> the cost changes by 1·cj - %i = 1,...,m xijcB(i)

Set
zj := ∑m

i=1 xijcB(i)

c̄j := cj − zj

c̄j is called the reduced cost coefficient (or simply reduced cost) of xj

it describes the change in cost when xj is entering the basis with value xj = 1

zj describes the change in cost contributed by the the basic variables of basis B when xj enters the basis with

value xj = 1

We will show:

!!" # "

=> we can improve the cost by letting xj enter the basis

3. The Simplex algorithm
3.6 Choosing a profitable column

17-2

=> we can improve the cost by letting xj enter the basis
c̄j " 0 for all non-basic variables xj

=> current feasible basic solution is locally optimal w.r.t. the basis exchange neighborhood

=> we have a globally optimal feasible basic solution, i.e., the neighborhood w.r.t. basis exchange is exact

Notation

X = current tableau for basis B

A = initial matrix, b initial right hand side

Then

X = B-1(b|A)

i.e., current tableau is obtained by multiplying (b|A) with B-1 from the left

!
"
! #

"

$
% ! #

"

$
$
!"
&

i.e., this equation describes the change in cost zj for the basic variables when xj = 1 enters the basis

because:

3. The Simplex algorithm
3.6 Choosing a profitable column

17-3

!" !
#�

$!"

%$"&'#$$!
�
&'#"$())) (&'##$

�



%""
%%%

%#"





⇒ !
"
! #

"

$
% ! #

"

$
$
!"
&

Optimality criterion

3.14 Theorem (Optimality Criterion)

Let x be a basic feasible solution with basis B. Then

(1) A pivot step at which xj enters the basis with value xj = θ0 changes the cost by
!!""# # !!$"# ! $#% $&'()%

(2) If

!! " ! ! " " # $%&'#(

i.e., all reduced costs are non-negative, then x is optimal.

Proof

Proof of (1) (intuitively clear from our first thoughts above, here is the precise derivation)

When xj enters the basis, the pivoting rules (3.18) yield the following new right hand side (= column 0 of

3. The Simplex algorithm
3.6 Choosing a profitable column

17-4

When xj enters the basis, the pivoting rules (3.18) yield the following new right hand side (= column 0 of

the tableaus)

x′i0 =





xi0 − θ0xij i #= k

θ0 i = k
with θ0 =

xk0
xkj

Let z be the old objective function value function value and let z' be the new one

=> new objective function value is

z� =
m

∑
i=1, i �=k

(xi0 − θ0xij)cB(i) + θ0cj

=
m

∑
i=1

xi0cB(i)

� �� �
=z

−θ0

m

∑
i=1

xijcB(i) − (xk0 − θ0xkj)cB(k) + θ0cj

= z + θ0

�
xkjcB(k) + cj −

m

∑
i=1

xijcB(i)

� �� �
=cj−zj

�
− xk0cB(k)

3. The Simplex algorithm
3.6 Choosing a profitable column

17-5

= z + θ0(cj − zj) + θ0xkjcB(k)� �� �
= xk0cB(k) as θ0=xk0/xkj

− xk0cB(k)

! ! " "#$#$! !$%

=> (3.19)

Proof of (2)

Let y be a feasible solution of the LP, i.e., Ay = b, y " 0

!! " ! ! " " # ⇒ ! " ". Together with y " 0 we obtain

cTy ≥ zTy = cT
BB−1 Ay = cT

BB−1b = cT
BxB

So x is globally optimal (and in particular also a best basic feasible solution) !

Tableau with reduced costs

The optimality criterion suggests to make the reduced costs available in the tableau.

=> add them as row 0

Question: How to obtain the initial reduced costs from the given objective c?

Write the cost as

0 = -z0 + c1x1 + ... + cnxn

3. The Simplex algorithm
3.6 Choosing a profitable column

17-6

0 = -z0 + c1x1 + ... + cnxn

This can be seen as enlarging Ax = b to



!

""" !"

! ! ! ! ! ! ! ! !

#
""" #








"$#
! ! !

%



 $




#

! ! !

&





For a basic variable xj we obtain

since (xij) is a unit vector
with 1 at entry i0 with B(i0) = j

!!" " !" ! #" " !" !
$�

%"#

&%"!'$%% " #

⇒ !" !
#�

$!"

%$"!&#$$! !" ! !&#$"$! !" ! !" ! "

So c̄j = 0 for basic variables

for non-basic variables xj we obtain: (3.21)

c̄j = cj − zj = cj −
m

∑
i=1

xijcB(i) = cj − cT
BB−1 Aj = cj − cT

BXj

i.e., is obtained from c and X for non-basic variables

3. The Simplex algorithm
3.6 Choosing a profitable column

17-7

i.e.,
c̄j is obtained from c and X for non-basic variables

for -z0 we obtain: (3.22)

−z0 = −
m

∑
i=1

cB(i)xB(i) = −cT
BX0

i.e., -z0 is also obtained from c and X

New enlarged tableau (in the following denoted as tableau)

!!! ""# # # # ""$ # # # ""%

&#! &## # # # &#$ # # # &#%

$$$
$$$

$$$
$$$

&'! &'# # # # &'$ # # # &'%

(!#) (!#*$

x
B

3.15 Theorem (Updating the reduced cost)

At a basis exchange, the reduced costs are updated by the same rules (3.18) as all other rows of the tableau

(3.18).

In other words: for column j entering the basis, row 0 is transformed so that !!" " ##" becomes 0. The

resulting changes in row 0 give the new reduced costs and the new -z0

3. The Simplex algorithm
3.6 Choosing a profitable column

17-8
In other words: for column j entering the basis, row 0 is transformed so that becomes 0. The

resulting changes in row 0 give the new reduced costs and the new -z0

Proof: checking !

3.16 Corollary (Test for an unbounded objective function)

c̄j < 0, all xij ! 0 (i = 1,...m) => cTx is not bounded from below

Proof

θ and thus x(θ) can then become arbitrarily large

=> the objective function decreases by ! ! !"# → " !

The basic version of the simplex algorithm

Algorithm (Generic simplex algorithm)

Input

Tableau X of an LP in standard form with full row rank and with identity matrix as feasible basis

Output

At termination: an basic optimal feasible solution or the message that the objective function is unbounded

Termination is not guaranteed

Method (iterative pivoting in the direction of decreasing cost)

while there is a column j with < 0 do

3. The Simplex algorithm
3.6 Choosing a profitable column

17-9

while there is a column j with !!" < 0 do

choose column j with !!" < 0

if xij ! 0 for all i then return "objective function is unbounded"

determine θ0 and index k, for which the minimum in (3.17) is attained

pivot with pivot entry xkj according to (3.18) (also for row 0)

return xB

Example

min x1 + x2 + x3 + x4 + x5

s.t. 3x1 + 2x2 + x3 = 1

5x1 + x2 + x3 + x4 = 3

2x1 + 5x2 + x3 + x5 = 4

xj " 0

Initial tableau (not yet with reduced costs and identity matrix as basis)

3. The Simplex algorithm
3.6 Choosing a profitable column

17-10

!! !" !# !$!%

& ! ! ! ! !

! # " ! & &

% ! ! ! &

$ " % ! & !

Transform it w.r.t. basis B = { 3, 4, 5 }

i.e., columns 3, 4, 5 change into unit vectors (including row 0 for the cost coefficients)

!! !" !# !$!%

!" !& !# !# ' ' '

!# ! # " ! ' '

!$ " " !! ' ! '

!% # !! # ' ' !

A specific transformation:

1. subtracting row 1 from row 2 and from row 3 yields the identity matrix in rows 1-3;

2. subtracting rows 1-3 from row 0 correspond to (3.21) and (3.22)

Pivot operation:

Columns 1 and 2 have reduced costs < 0, we choose x2 to enter the basis.

3. The Simplex algorithm
3.6 Choosing a profitable column

17-11

Columns 1 and 2 have reduced costs < 0, we choose x2 to enter the basis.

Computing θ0 yields θ0 = min { 1/2, 3/3 } = 1/2 with k = 1. Hence xB(1) = x3 leaves the basis.

!! !" !# !$!%

!" !&#" ##" ' ##" ' '

!" !#" ##" ! !#" ' '

!$ %#" (#" ' !#" ! '

!% ##" !!!#" ' !##" ' !

All reduced costs " 0 => optimal solution reached

x = (0, 1/2, 0, 5/2, 3/2) is as basic optimal solution with cost z = 9/2

Applets for pivoting

Advanced Simplex Pivoting Tool

Advanced Simplex Pivot Tool

Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-1

Main topics of this chapter

Strategies for the choice of a column (pivoting rules)

Strategies for the choice of a pivot element in a column if there are more than one

In particular: Ensure termination of the simplex algorithm

Strategies for the choice of a column (Pricing)

We have a choice if several !!" < 0, this choice influences the number of pivot operations.

There is no "best" choice. Commercial solves apply a wide selection of heuristics. Here are some of them:

(1) Steepest relative descent among the non-basic variables

Among all columns j with !!" < 0, choose j with maximum | !!" |

This column has the largest relative descent of cost in the direction of a non-basic variable. However, since

θ0 is not known yet, this choice does not necessarily lead to the largest descent.

(2) Steepest absolute descent among the non-basic variables

Among all columns j with !!" < 0, choose j with maximum | θ0!!" |

This column has the largest absolute descent of cost in the direction of a non-basic variable. It generally

reduces the number of pivots, but at the price of an increase of computational effort by a factor of m per

pivot compared with (1)

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-2

pivot compared with (1)

(3) Largest relative descent in the whole feasible domain

Among all columns j with !!" < 0, choose j with maximum
c̄j�

1 + ∑m
i=1 x2

ij

=
c̄j

�x(θ)− x� with θ = 1

This column has the largest relative descent of cost in the direction of x(θ) - x, but is computationally very

expensive

Strategies for the choice of the pivot element

This choice is not so important for termination of the simplex algorithm if θ0 > 0, because then the pivot

operation leads to a new vertex / a new basic feasible solution with a better objective function value.

It is however important if θ0 = 0. In this case, the current basic solution is degenerate and the pivot operation

changes only the basis, but not the basic solution / vertex, see Theorem 3.13

This may lead to cycling, i.e., starting from tableau X we arrive again at tableau X after several pivots

=> we have traversed a "cycle" of different bases with the same basic solution

=> the simplex algorithm does not terminate

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-3

3.15 Example (An example for cycling , Gass 1964)

min -3/4 x1 + 150 x2 -1/50 x3 + 6 x4

s.t. 1/4 x1 - 60 x2 -1/25 x3 + 9 x4 ! 0

 1/2 x1 - 90 x2 -1/50 x3 + 3 x4 ! 0

 x3 ! 1

 xj " 0

Initial tableau with a basis of slack variables

!! !" !# !$!% !& !'

!" (!##$!%(!!#%(& (((

!% (!#$!&(!!#"%) ! ((

!& (!#" !)(!!#%(# (! (

!' ! ((! (((!

Choosing the sequence

x11 x22 x13 x24 x15 x26

of pivot element, we arrive again at the initial tableau

Proof: check, e.g. with the Matrix Row Operation Tool

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-4

Proof: check, e.g. with the Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

Anti-cycling rules

The lexicographic anti-cycling rule

Divide every row i with xij > 0 by xij and choose the lexicographically smallest of them as pivot row

Lexicographic rule:

Choose k such that

1
xkj

· Xk,· = lex-min

�
1

xij
· Xi,· | i = 1, . . . , m, xij > 0

�

where Xi,• = i-th row of tableau X and lex-min = lexicographic minimum

!! "#
"#!

"#$

3.16 Theorem (The lexicographic anti-cycling rule avoids cycling)

(a) The rows i = 1, ..., m of the current tableau can be made lexicographically positive.

(b) If the rows i = 1, ..., m of the current tableau are lexicographically positive, then the simplex

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-5

(b) If the rows i = 1, ..., m of the current tableau are lexicographically positive, then the simplex

algorithm with lexicographic anti-cycling rule terminates after finitely many steps.

Proof

(1) The rows of the current tableau can be made lexicographically positive.

e.g. by permuting the basic columns to positions 1,2,...,m

=> every row either starts with xi0 > 0 or with (0,...,0,1,...), where xi,B(i) = 1

=> every row is lexicographically positive, i.e., >lex (0,0,...,0)

(2) The lex-min is unique

Suppose not => there are rows i, r with

!

!"#
"!"#$!"!$ % % % $!"&$ %

!

!'#
"!'#$!'!$ % % % $!'&$

=> rows i and r are linearly dependent

=> this contradicts assumption 3.1 that rank(A) = m

(3) All rows of the tableaus stay lexicographically positive after a pivot step

if xkj is the pivot element, then the new rows after pivoting are

for i = k:

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-6

!

!"#
"!"#$!"!$ % % % $!"&$

xkj > 0 => we stay lexicographically positive

for i $ k:

!!""# !"## $ $ $ # !"%$! !"&
#

!'&
!!'"# !'## $ $ $ # !'%$

This is >lex (0,0,...,0)

⇔ !

!"#
"!"#$!"!$ % % % $!"&$ '%&'

!

!(#
"!(#$!(!$ % % % $!(&$

This is the case since row k is the lex-min, and the lex-min is unique (equality cannot happen)

(4) Row 0 (the cost row) strictly increases lexicographically after every pivot step

if xkj is the pivot element, then the new row 0 after the pivot operation is obtained as

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-7

> 0 as
pivot element

< 0 as
reduced cost in
the pivot column

lex positive

!!!""##" $ $ $ ""#%$!
#

&'(����
"#(����

!&'%" &'#" $ $ $ " &'%$� �� �

=> the new row is lexicographically larger

(5) Termination

Every basis uniquely determines row 0 because of (3.21) and (3.22).

Row 0 grows lexicographically => corresponding basic solutions must be different

There are only finitely many basic solutions => termination !

3.15 Example (continued)

The initial tableau is already lexicographically positive

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-8

!! !" !# !$!% !& !'

!" (!##$!%(!!#%(& (((

!% (!#$!&(!!#"%) ! ((

!& (!#" !)(!!#%(# (! (

!' ! ((! (((!

The sequence

x11 x22 x23 x34 x35

of pivot elements fulfills the lexicographic anti-cycling rule and terminates with an optimal solution. The

initial degenerate basic solution is left after pivoting with x34.

Proof: check, e.g. with the Matrix Row Operation Tool

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/tutorialsf1/scriptpivot2.html

Bland's anti-cycling rule

Among all columns j with !!" < 0 choose the one with smallest column index j

Among all rows i with θ0 = xi0/xij choose the one with smallest column index B(i)

Proof: Exercise !

3. The Simplex algorithm
3.7 Pivoting rules and cycling

18-9

Empirical tests show that Bland's rule needs many pivots

Anti-cycling in practice

Experience shows that cycling is mostly already resolved by the rounding caused by floating point arithmetic.

Commercial solvers control the progress of the objective function and change their pivot rule if there is

evidence of cycling until they reach a different basic feasible solution.

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-1

Goal: Provide an initial tableau for the simplex algorithm, i.e., a tableau that is already transformed w.r.t. to the

basis of a basic feasible solution

This is easy if the LP is given in the form Ax ! b, x " 0 with b " 0. Then we just introduce slack variables s1, ...,

sm and the associated columns form a basis

Initial tableau

!! " " " !# $! $" " " " $%

!& # '! " " " '# # # " " " #

$! (!)!! " " ")!# ! # " " " #

$$$
$$$

$$$
$ $ $

$$$
$$$

$$$
$ $ $ #

$% (%)%! " " ")%# # # " " " !

For general LP in standard form, this is done with the two-phase-method

Given: LP in standard form

min cTx

s.t. Ax = b

x " 0

and w.l.o.g. b " 0 (otherwise multiply rows by -1)

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-2

Phase I

Introduce artificial variables xa = (x1
a, ..., xm

a)T (a for artificial) and solve the LP

min ξ = xa
1 + . . . + xa

m

s.t. xa + Ax = b (3.23)

xa, x ≥ 0

with the simplex algorithm (the artificial variables form a basis and the cost coefficients w.r.t. ξ are in

reduced form (3.21))

There are 3 possible outcomes

Case 1: The minimum of ξ is 0 and all xi
a are non-basic variables

=> all xi
a = 0 and we have a basic feasible solution for the initial problem

Case 2: The minimum of ξ is 0 but some xi
a are basic variables

Let xB(i) be an artificial variable.

ξ = 0 => xB(i) = 0

Try to eliminate xB(i) from the basis.

To that end we need in tableau X a non-artificial non-basic column j with xij $ 0

(since xB(i) = 0, we can pivot with xij (first multiply row i by -1 if xij < 0)

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-3

Case 2a: There is such a non-artificial non-basic column j with xij $ 0

Pivot with xij

=> we have a basis with fewer artificial variables

Case 2b: There is no non-artificial non-basic column j with xij $ 0

=> xij = 0 for j = 1, ..., n, i.e. for all non-artificial variables

clear from the above for non-basic variables xj

basic variables xj have a 0 in position i in their column because only xB(i) has a 1 there

=> rank(A) < m

=> assumption 3.1 violated

this implies that row i of A is a linear combination of the other rows of A and can be deleted

together with artificial variable xB(i)

We can therefore drop assumption 3.1, Phase I provides a test for rank(A) = m

Repetition of these steps results in a basic feasible solution of the initial LP (possibly after deleting some

linearly dependent rows from A. The remaining rows have full rank.)

Case 3: The minimum of ξ is > 0

=> the initial LP has no feasible solution, i.e., S = Ø

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-4

We can therefore drop assumption 3.2, Phase I provides a test for S $ Ø

Phase II

Continue with the basic feasible solution from Phase I (if S $ Ø)

To this end, we must compute the reduced costs !!" and the objective function value -z0 of the original

objective c for the current basis from Phase I

either with (3.21) and (3.22)

or by applying all transformations of Phase I also to the cost coefficients cj

Theorem 3.15 => these transformations give the reduced costs !!" at the start of Phase II

Algorithm (Two-Phase-Method)

Input

LP in standard form

Output

At termination : basic optimal solution or the message that the objective function is unbounded or that S =

Ø

Termination can be guaranteed by anti-cycling rules

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-5

Method

Phase I

add artificial variables x1
a, ..., xm

a

call simplex algorithm with objective ξ = % xi
a

if ξopt > 0 then return "there is no feasible solution"

if basis contains artificial variables

then

if one of these artificial variables cannot be removed from the basis

then

delete the associated row

call Phase I for the resulting LP

else // ξopt = 0 and the basis contains no artificial variables

call Phase II

Phase II

call simplex algorithm with the original objective w.r.t. the basis from Phase I

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-6

3.17 Theorem (Two-Phase-Method)

The two-phase-method solves every LP in standard form. Assumption (3.1)-(3.3) can be dropped. They are

checked in the Two-Phase-Method.

Proof

clear from the above !

Example

min x1 + x2 + x3 + x4 + x5

s.t. 3x1 + 2x2 + x3 = 1

5x1 + x2 + x3 + x4 = 3

2x1 + 5x2 + x3 + x5 = 4

xj " 0

Initial tableau for Phase I, we also keep track of the given objective function

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-7

!"
!

!"
"

!"
#

!! !" !# !$!%

!# & & & & ! ! ! ! !

!$ & ! ! ! & & & & &

!"
!

! ! & & # " ! & &

!"
"

& ! & % ! ! ! &

!"
#

$ & & ! " " ! & ! 5

To obtain the reduced costs w.r.t. ξ for Phase I, we must transform the costs of the artificial variables to 0

(reduced costs are 0 for basic variables).

We achieve this by subtracting each row 1,...,m from the ξ-row (the z-row has already reduced costs 0 in the

basic columns)

Start tableau for Phase I

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-8

!"
!

!"
"

!"
#

!! !" !# !$!%

!# & & & & ! ! ! ! !

!$!' & & & !!& !' !# !! !!

!"
!

! ! & & # " ! & &

!"
"

& ! & % ! ! ! &

!"
#

$ & & ! " " ! & ! 5

Pivoting with the pivot elements marked by a red circle yields

!"
!

!"
"

!"
#

!! !" !# !$!%

!# !!$# !!$# & & & !$# "$# ! !

!% !!$$# !!&$# & & & !$$# !$# !! !!

!! !$# !$# & & ! "$# !$# & &

!"
"

$$# !%$# ! & & !'$# !"$# ! &

!"
#

!&$# !"$# & ! & !!$# !$# & !

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-9

!"
!

!"
"

!"
#

!! !" !# !$!%

!# !!$" !!$" & & !!$" & !$" ! !

!% !$ $ & & " & ! !! !!

!" !$" !$" & & #$" ! !$" & &

!"
"

%$" !!$" ! & '$" & !$" ! &

!"
#

#$" !!%$(& ! !!!$" & !#$" & !

!"
!

!"
"

!"
#

!! !" !# !$!%

!# !# & !! & !$ & & & !

!$!#%" '%" ! & !!%" & #%" & !!

!" !%" !%" & & #%" ! !%" & &

!$ %%" !!%" ! & '%" & !%" ! &

!"
#

#%" !%%" & ! !!!%" & !!%" & ! -3/

3. The Simplex algorithm
3.8 Phase I of the simplex algorithm

19-10

!"
!

!"
"

!"
#

!! !" !# !$!%

!# !&$" %$" !! !! #$" ' #$" ' '

!% ' ! ! ! ' ' ' ' '

!" !$" !$" ' ' #$" ! !$" ' '

!$ %$" !!$" ! ' ($" ' !$" ! '

!% #$" !%$" ' ! !!!$" ' !!$" ' ! -3/

We are lucky since the final tableau of Phase I is already optimal for Phase II (all reduced costs w.r.t. c are

" 0)

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-1

Goal: Interpret the simplex algorithm geometrically

It walks from vertex to vertex along edges of the polyhedron with occasional extra pivots in degenerate

vertices

3.8 Example (continued)

max x1 + 14x2 + 6x3 <=> min - x1 - 14x2 - 6x3

s.t. x1 + x2 + x3 ! 4

x1 ! 2

 x3 ! 3

 3x2 + x3 ! 6

 xj " 0

After adding slack variables (= first basis) , the simplex algorithm yields the following tableaus:

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-2

1 !! !" !# !$!% !& !'

!" (!! !!$!& ((((

!$ $! ! ! ! (((

!% " ! (((! ((

!& # ((! ((! (

!' & (# ! (((!

!! !" !# !$!% !& !'

!" " (!!$!& (! ((

!$ " (! ! ! !! ((

!! " ! (((! ((

!& # ((! ((! (

!' & (# ! (((!

2

3 !! !" !# !$!% !& !'

!" !$ (!) (& !% ((

!# " (! ! ! !! ((

!! " ! (((! ((

!& ! (!! (!! ! ! (

!' $ (" (!! ! (!

!! !" !# !$!% !& !'

!" #((() !$!!# ((

!" " (! ! ! !! ((

!! " ! (((! ((

!& # ((! ((! (

!' (((!" !# # (!

4

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-3

!! !" !# !$!% !& !'

!" #(((!"## ! ((!###

!" " (! !## (((!##

!! " ! ("## ! ((!!##

!& # ((! ((! (

!% (((!"## !! ! (!##

5 !! !" !# !$!% !& !'

!" #" ! ((" (($

!" ! !!#" ! (!!#" ((!#"

!# # ##" (! ##" ((!!#"

!& (!##" ((!##" (! !#"

!% " ! (((! ((

6

This sequence corresponds to the following sequence of vertices in the associated polytope with variables x1,

x2, x3

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-4

x2

x1

x3

(2,2,0)

(2,0,0)

(1,0,3)

(2,0,2)

1

2

3

4 5=

6

We will analyze this observation now more closely.

Adjacency of vertices and basic feasible solutions

Two vertices x´, y´ of a polyhedron P are called adjacent

:<=> the line segment [x´, y´] is an edge of P

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-5

:<=> the line segment [x´, y´] is an edge of P

two basic feasible solutions x, y of Ax = b, x " 0 are called adjacent

:<=> if one obtains By from Bx by a single pivot operation according to Theorem 3.16

Observe:

(1) One then also obtains Bx from By by a single pivot, i.e., the neighborhood is symmetric

(2) Then there are columns j and k with By = (Bx - { Aj }) $ { Ak }

(3) This does not exclude that x = y, i.e., that the basic solution is degenerate

According to this definition, the simplex algorithm traverses a sequence of pairwise adjacent basic feasible

solutions x1, x2, ..., xN with

cTx1 " cTx2 " ... " cTxN = zopt

3.18 Theorem (Interpretation of edges in the three views)

Let P be a polytope and let S = { x | Ax = b, x " 0 } be the associated feasible set of an LP in standard form.

Let x´ = (x1´, ..., xn-m´)T, y´= (y1´, ..., yn-m´)T ∈ P be different vertices and let x = (x1, ..., xn)T, y = (y1, ..., yn)T

∈ S be the associated basic feasible solutions according to (3.7).

Then the following statements are equivalent:

(1) [x´, y´] is an edge of P

(2) If z´∈ [x´, y´] is a strictly convex combination of points u´, v´ ∈ P, then u´, v´ ∈ [x´, y´]

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-6

(2) If z´∈ [x´, y´] is a strictly convex combination of points u´, v´ ∈ P, then u´, v´ ∈ [x´, y´]

(3) x, y are (different) adjacent basic feasible solutions of S

Proof

Similar to Theorem 3.10, we use again the transformation P <-> S

(1) => (2)

Let [x´, y´] be an edge of P => there is a supporting hyperplane H with H " P = [x´, y´], say H = { w´ |

hTw´= g }.

Assume that (2) is wrong for z´∈ [x´, y´], and let w.o.l.g. u´ ∉ [x´, y´] and hTu´< g.

Then hTv´! g, since P is contained in a halfspace induced by H

=> g = hTz´ = hT(λu´+ (1-λ)v´) = λhTu´ + (1-λ)hTv´ < g as λ $ 0, a contradiction

(2) => (3)

Assume that x´, y´ fulfill (2) but not (3), i.e., x and y are not adjacent

Let Mx, My be the sets of columns Aj of A with xj > 0 and yj > 0, respectively.

Claim: there is a basic feasible solution w $ x, y such that: wj > 0 => Aj ∈ Mx $ My

Suppose not. Let w.o.l.g. y $ 0 (possible since x $ y). Then choose

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-7

cj :=






0 Aj ∈ My

1 Aj ∈ Mx − My

nM otherwise

with M large enough so that cjuj > n for every basic feasible solution u (such an M exists because of

Lemma 3.4).

=> y is the only optimal solution for c and every basic feasible solution u with entries uj > 0 not in Mx

$ My has higher cost than x

=> if we start the simplex algorithm in x w.r.t. c, it would report that no improvement is possible (since

x and y are not adjacent) and thus claim that x is optimal, a contradiction

Consider now the vertex w´∈ P corresponding to w. Since w´ is a vertex, w´ is not in [x´, y´]

=> w is not in [x, y]

Let z := 1/2 (x + y) => zj > 0 for all Aj ∈ Mx $ My => each entry of z can be decreased a little without

reaching 0

Let d := z - w => dj $ 0 only for entries in Mx $ My

zj > 0 for all entries in Mx $ My => there is θ > 0 with u := z + θd, v := z - θd " 0

With these definitions, Au = b and Av = b, i.e., u, v ∈ S.

Moreover: w not in [x, y] => u, v not in [x, y]

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-8

Moreover: w not in [x, y] => u, v not in [x, y]

x

y

zw

z - w

=> z = 1/2 (u + v) is a convex combination of the feasible points u, v ∉ [x, y]

=> (transformation to P) z´ = 1/2 (u´ + v´) is a convex combination of the points u´, v´ ∉ [x´, y´], a

contradiction to (2)

(3) => (1)

Let Bx, By be the bases for x and y with By = (Bx - { Aj }) $ { Ak }

Define c by

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-9

cj :=

�
0 if Aj ∈ Bx ∪ By

1 otherwise

Claim: x and y are the only basic optimal feasible solutions w.r.t. c

clearly: x, y are optimal w.r.t. c

assume there is another basic optimal feasible solution z

construction of c => z fulfills zj > 0 => Aj ∈ Bx $ By

=> Bz ! Bx $ By

Aj ∉ Bx => (with | Bx $ By | = m +1, z $ x) Aj ∈ Bz

=> Bz = (Bx - { Aq }) $ { Aj }

=> there are single pivots that change x into y (Aj enters, Ak leaves) and to z (Aj enters, Aq

leaves), respectively. In both cases, Aj enters the basis.

Let Bx(r) = k and Bx(s) = q

⇒ !! "
"#!

"#$
"
"%!

"%$

=> y = z, a contradiction

Claim => only convex combinations of x, y fulfill

Aw = b

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-10

Aw = b

w " 0

cTw ! cTx

The transformation of S to P as in the proof of Theorem 3.10 yields:

Only points w´ in [x´, y´] fulfill the inequality dTw´ ! dTx´ (d´ = transformed cost vector) in P

=> [x´, y´] is the intersection of a halfspace with P

=> [x´, y´] is an edge of P !

3.19 Remarks

(1) LP is a convex optimization problem. So the Euclidean neighborhood

N!(y) := { x ∈ SI : || y-x || ! ! }

is exact because of Theorem 2.16.

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-11

N
!
(y)

(2) The geometric interpretation of the simplex algorithm defines another neighborhood via adjacency of

vertices:

NP(y) := { x | x vertex of P, x adjacent to y }

This neighborhood is also exact because of Theorem 3.18, Theorem 3.10 and Theorem 3.14. It corresponds to

the graph neighborhood in the skeleton graph of the polytopes.

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-12

NP(y)
skeleton

graph
of P

(3) The algebraic interpretation of the simplex algorithm defines a third neighborhood via adjacency of basic

feasible solutions:

NA(y) := { x | x basic feasible solution, x adjacent to y }

This is also exact in the sense of Theorem 3.14 (no negative reduced cost) and corresponds also to a graph

neighborhood. This graph G results from the skeleton graph by refining every polytope vertex by a set of graph

vertices (= all basic feasible solutions corresponding to the polytope vertex). G coincides with the skeleton graph

iff P has no degenerate vertices.

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-13

iff P has no degenerate vertices.

1467 =
4567

2456

3457 1357

23572345

1235

1367

12671236

2356

1256 1246

unordered set
of basic columns

NA(y)

(4) So the simplex algorithm can be seen as a local search on the graph defined by neighborhood NA. Checking

for better neighbors can be done by checking the sign of the reduced costs and thus is very simple.

(5) It is not known if this local search is polynomial. There are counterexamples for all known pivot rules that

require exponentially many pivots.

3. The Simplex algorithm
3.9 Geometric aspects of pivoting

20-14

require exponentially many pivots.

These counterexamples are in most cases so-called Klee-Minty cubes, i.e., slightly distorted cubes on which

the simplex algorithm all visits all vertices, while it could reach the optimal vertex in one step.

http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html

(6) Luckily, these counterexamples are not practically relevant. Empirically, the runtime of the simplex

algorithm is linear in the number of rows.

4. Duality

21

... 224.1 Duality of LPs and the duality theorem
.. 234.2 Complementary slackness

... 244.3 The shortest path problem and its dual
.. 254.4 Farkas' Lemma

.. 264.5 Dual information in the tableau
... 274.6 The dual Simplex algorithm

4. Duality
4.1 Duality of LPs and the duality theorem

22-1

The dual of an LP in general form

Derivation of the dual

Consider an LP in general form: (4.1)

 min cTx x ∈ Rn, c ∈ Rn

s.t. aT
i x = bi i ∈ M ai ∈ Rn

aT
i x ≥ bi i ∈ M

xj ≥ 0 j ∈ N
xj unconstrained j ∈ N

we transform it to standard form according to Lemma 3.2 with

surplus variables xi
s for the inequalities

split variables xj = xj
+ - xj

- with xj
+, xj

- " 0

This gives

4. Duality
4.1 Duality of LPs and the duality theorem

22-2

min ĉT x̂

s.t. Âx̂ = b, x̂ ≥ 0 with

Â =



Aj, j ∈ N

�������
(Aj,−Aj), j ∈ N

�������

0, i ∈ M

−I, i ∈ M





x̂ =
�

xj, j ∈ N | (x+j , x−j), j ∈ N | xs
i , i ∈ M

�T

ĉ =
�
cj, j ∈ N | (cj,−cj), j ∈ N | 0, i ∈ M

�T






(4.2)

where, w.o.l.g., matrix !! has full row rank, and where Aj denotes the column of xj in (4.1)

The previous results on the simplex algorithm give:

If (4.2) has an optimal solution, then there is a basis !! of !! with

!!" ! "!!"!#
!#!#$

� �� �
%&$"

!% " '

i.e., reduced cost " 0

 Let m be the number of constraints in (4.1). Then

4. Duality
4.1 Duality of LPs and the duality theorem

22-3

 πT := ĉT
B̂ B̂−1 ∈ Rm

is a feasible solution for inequalities

πT Â ≤ ĉT (4.3)

Inequalities (4.3) have 3 groups w.r.t. their columns:

Group 1
!"#$! %$& $ ∈ ' !"("#

Group 2

!"#$! %$

"!"#$! "%$




 ⇔ !"#$! %$& $ ∈ ' "#($%

Group 3

!!" " ! ⇔ !" # !# " ∈ $ "#%$%

Definition of the dual of LP

(4.4) - (4.6) define constraints for a new LP with variables π1, ..., πm. These constraints, together with the

objective function max πTb constitute the dual LP of (4.1). The initial problem (4.1) is called the primal LP.

4. Duality
4.1 Duality of LPs and the duality theorem

22-4

objective function max πTb constitute the dual LP of (4.1). The initial problem (4.1) is called the primal LP.

Transformation rules primal -> dual (follow from (4.4) - (4.6))

primal dual

min cTx max πT b

aTi x = bi i ∈ M πi unconstrained

aTi x ≥ bi i ∈ M πi ≥ 0

xj ≥ 0 j ∈ N πTAj ≤ cj

xj unconstrained j ∈ N πTAj = cj

Observe: The dual LP is obtained from the optimality criterion of the primal. The variables π1, ..., πm

correspond to multipliers of the rows of !! that fulfill the primal optimality criterion.

4.1 Theorem (dual dual = primal)

The dual of the dual is the primal.

We therefore speak of primal-dual pairs of LPs

Proof

Write the dual in primal form:

4. Duality
4.1 Duality of LPs and the duality theorem

22-5

Write the dual in primal form:

min πT (−b) such that

(−AT
j)π ≥ −ci j ∈ N

(−AT
j)π = −ci j ∈ N

πi ≥ 0 j ∈ M

πi unconstrained j ∈ M

The transformation rules yield the following dual LP

max xT (−c) such that

xj ≥ 0 j ∈ N

xj unconstrained j ∈ N

−aTi x ≤ −bi i ∈ M

−aTi x = −bi i ∈ M

which is the primal LP !

The Duality Theorem

4.2 Theorem (Weak and Strong Duality Theorem)

Let x be a primal feasible solution and π be a dual feasible solution. Then (Weak Duality Theorem)

4. Duality
4.1 Duality of LPs and the duality theorem

22-6

Let x be a primal feasible solution and π be a dual feasible solution. Then (Weak Duality Theorem)

!
"
! $

"
% !"&#$

If an LP has an optimal solution, so has its dual, and the optimal objective values are the same (Strong Duality

Theorem)

Proof

Let x be a primal feasible solution and π be a dual feasible solution. Then

cTx
π dual feasible

≥ (πTA)x = πT (Ax)
x primal feasible

≥ πT b

Assume w.o.l.g. that the LP is in primal form (4.2) and has an optimal solution

=> has an basic optimal feasible solution !! with associated basis !! and πT = ĉT
B̂
B̂−1

 is feasible for the

dual by construction

For this π we obtain

!
"
! "#$"#%

#%!$%# ! #$"#%"
#%!$

#% ! #$"#%#&% ! #$"#&

So π and !! have the same objective function value.

Weak Duality (4.7) then implies that π is a dual optimal solution !

4. Duality
4.1 Duality of LPs and the duality theorem

22-7

4.3 Theorem (Possible primal-dual pairs)

Primal-dual pairs exist exactly in one of the following cases:

(1) both LPs have a finite optimal solution and their objective values are equal

(2) both LPs have no feasible solution

(3) one LP has an unbounded objective function and the other has no feasible solution

4. Duality
4.1 Duality of LPs and the duality theorem

22-8

dual

primal

finite
optimal solution

fin
ite

opt
imal s

olu
tio

n

fea
sib

le
sol

uti
on,

unb
oun

ded

ob
jec

tiv
e no

fea
sib

le

sol
uti

on

feasible solution,
unbounded
objective

no feasible
solution

(1)

(3)

(2)(3)

Proof

Strong Duality Theorem => Case (1) occurs in row 1 and column 1 of the table, and this is the only table

entry in which it occurs

Consider now row 2 of the table, i.e., x is a primal feasible solution but cTx unbounded from below.

If there is a dual feasible solution π, we obtain πTb ! cTx with the Weak Duality Theorem

=> cTx is bounded from below, a contradiction.

4. Duality
4.1 Duality of LPs and the duality theorem

22-9

=> cTx is bounded from below, a contradiction.

Therefore case (3) can only occur at positions (2,3) and (3,2)

An example for (3)

(P) min x1 s.t. x1 + x2 " 1, - x1 - x2 " 1, x1, x2 " 0

=> (P) has no feasible solution

(D) max π1 + π2 s.t. π1 - π2 ! 1, π1 - π2 ! 0, π1, π2 " 0

!
1

!
2 !

T
b

=> πTb is unbounded

So only entry (3,3) remains. This case can occur

An example for (2)

4. Duality
4.1 Duality of LPs and the duality theorem

22-10

An example for (2)

(P) min x1 s.t. x1 + x2 " 1, - x1 - x2 " 1, x1, x2 unconstrained

x
1

x
2

=> (P) has no feasible solutions

(D) max π1 + π2 s.t. π1 - π2 = 1, π1 - π2 = 0, π1, π2 " 0

=> (D) has no feasible solution !

The transportation problem and its dual

Hitchcock problem or transportation problem (Hitchcock 1941) is a special minimum cost flow problem, see ADM

I

4. Duality
4.1 Duality of LPs and the duality theorem

22-11

I

supply
in A

demand
in B

A B
u = !

 G "bipartite"

We want to transport a good (oil, grain, coal) at minimum cost from the supply locations to the demand

locations

Vertex i ∈ A (i = 1, ..., m) supplies ai units

Vertex j ∈ B (j = 1, ..., n) demands bj units, total supply = total demand.

Edges (i,j) ∈ A x B have cost cij per transported unit and infinite capacity uij

An LP formulation for the transportation problem

xij = number of units transported from i to j

min %i,j cijxij s.t.

%j xij = ai for all i (pick up supply ai from vertex i)

%i xij = bj for all j (deliver demand bj to vertex j)

4. Duality
4.1 Duality of LPs and the duality theorem

22-12

%i xij = bj for all j (deliver demand bj to vertex j)

xij " 0 for all i, j

The associated matrix A of coefficients has the form

i
=

1,
...

,m
j

=
1,

...
,n

!!! !!" " " " !!# !"! !"" " " " !"# " " " !$! !$" " " " !$#

! ! " " " ! # # " " " # " " " # # " " " #

" " " # ! ! " " " ! " " " # # " " "

$ $ $
$ $ $

$ $ $
$ $ $

" " " # # # " " " # " " " ! ! " " " !

! # " " " # ! # " " " # " " " ! # " " " #

! " " " # # ! " " " # " " " # ! " " "

$ $ $
$ $ $

$ $ $
$ $ $

" " " ! # # " " " ! " " " # # " " " !

The dual of the transportation problem

Introduce dual variables ui, vj for the constraints as follows

ui - %j xij = - ai for all i

vj %i xij = bj for all j

The dual LP reads

max %i - aiui + %j bjvj s.t.

4. Duality
4.1 Duality of LPs and the duality theorem

22-13

max %i - aiui + %j bjvj s.t.

- ui + vj ! cij for all i, j

ui, vj unconstrained

Interpretation of the dual LP

"Dual" entrepreneur offers to do the transportation for pairs (i,j)

He can buy the supply ai at location i from the primal entrepreneur, transport it to j and sell it there

ui = price to buy a unit of the good at vertex i

vj = returns per unit at vertex j

vj - ui = profit per unit bought in i and sold in j

vj - ui ! cij dual entrepreneur must stay below primal transportation cost in order to get the transport (i,j)

from the primal entrepreneur (otherwise primal entrepreneur will do it himself)

Dual entrepreneur wants to maximize his total profit %j bjvj - %i aiui under these conditions

The dual of the diet problem

The primal problem (see example 3.1)

min cTx

s.t. Ax " r

 x " 0

4. Duality
4.1 Duality of LPs and the duality theorem

22-14

 x " 0

The associated dual problem

max πTr

s.t. πTA ! cT

πT " 0

Interpretation

The dual entrepreneur makes nutrient pills for each of the m ingredients (magnesium, vitamin C, ...)

He asks the price πi per unit of nutrient i

πTAj ! cj <=> the total price of all pills substituting one unit of food j must not exceed the price cj of one

unit of food j (pills will not be bought otherwise)

max πTr <=> maximizing total profit of the dual entrepreneur

Dual LPs often have a natural interpretation in practice

4. Duality
4.2 Complementary slackness

23-1

Complementary slackness provides simple necessary and sufficient conditions for optimality of a pair of primal

feasible and dual feasible solutions. They have far reaching consequences for the design of algorithms (primal-dual

algorithms, primal-dual approximation algorithms)

4.4 Theorem (Complementary slackness)

Let x be a primal feasible solution and π be a dual feasible solution. The following statements are equivalent:

x, π are optimal (in the primal and the dual, respectively)

ui := πi·(ai
Tx - bi) = 0 for all i = 1, ..., m (4.8)

vj := (cj - πTAj)·xj = 0 for all j = 1, ..., n (4.9)

i.e.,: (slack of primal or dual constraint)·(value of associated dual or primal variable) = 0

Proof

ui " 0

since

ai
Tx - bi = 0 => ui = 0

ai
Tx - bi " 0 => πi " 0 => ui " 0

vj " 0

4. Duality
4.2 Complementary slackness

23-2

since

xj unconstrained => πTAj = cj => vj = 0

xj " 0 => πTAj ! cj => vj " 0

Set u := %i ui, v := %j vj => u, v " 0. Then

u = 0 <=> (4.8) holds

v = 0 <=> (4.9) holds

Then

u + v = %i πi·(ai
Tx - bi) + %j (cj - πTAj)·xj

= - %i πibi + %j cjxj + %i πiai
Tx - %j πTAjxj

= - πTb + cTx + (πTA)x - πT(Ax)

 = - πTb + cTx

Hence: u + v = - πTb + cTx

Suppose (4.8) and (4.9) hold => u + v = 0 => cTx = πTb

Weak Duality Theorem => x, π are optimal

Suppose that x and π are optimal

Strong Duality Theorem => cTx = πTb => u + v = 0 => (4.8) and (4.9) !

4. Duality
4.2 Complementary slackness

23-3

4. Duality
4.3 The shortest path problem and its dual

24-1

The shortest path problem as primal LP

Shortest Path Problem (SP)

Instance

Digraph G

Rational edge weights c(e), e ∈ E(G)

Vertices s, t ∈ V(G)

Task

Determine an elementary s,t-path P of minimum weight c(P) (shortest s,t-path)
!!"" #

�
#∈$!"" !!#"c(W) = ∑e∈E(P) c(e)

(SP) is an instance of (LP)

4. Duality
4.3 The shortest path problem and its dual

24-2

The vertex-edge-incidence matrix A = (aij) of G is defined as

i
ej

i
ej!"# !"






#$ %&''(

!$ %&''(

) (*+(,

if

if

otherwise

where V(G) = { 1, ..., n } and E(G) = { e1, ..., em }

Example

s

a

b

t

e
1

e
2

e
3

e
4

e
5

G

!! !" !# !$!%

" ! ! & & &

& & & !! !!

$!! & ! ! &

% & !! !! & !

A

The vertex-edge-incidence matrix of a digraph has per column exactly one 1, exactly one -1, and 0

otherwise

=> sum of rows is 0 => rank(A) < n

Later: rank(A) = n-1 if G is connected (in the undirected sense)

4. Duality
4.3 The shortest path problem and its dual

24-3

Later: rank(A) = n-1 if G is connected (in the undirected sense)

Let fj be a variable representing the amount of flow on edge ej, and let f := (f1, ..., fm)T

Flow conservation in node i is then expressed as ai
Tf = 0

v
3
0
2

4

1

inflow in v = 5 = outflow from v

An s,t-path is a flow of flow value 1 from s to t (all fj = 1 on the path and 0 otherwise)

=> every s,t-path is a solution of the linear system

row s
row t

flow conservation

!" ! # "#$ # !





%$

!$

&

'''

&





Af = b with

with v = 1

Of course, this linear system has also solutions that do not correspond to s,t-paths. But we have

4. Duality
4.3 The shortest path problem and its dual

24-4

4.6 Lemma

(1) If

min cTf

Af = b

f " 0

has an optimal solution, then also one with fj ∈ { 0, 1 }. Every such solution corresponds to an s,t-path

(2) The simplex algorithm finds such a solution

Proof:

(1) follows from the algorithm for minimum cost s,t-flows in ADM I

(2) can easily be shown directly, but follows also from the fact that matrix A is totally unimodular and b

is integer. Then all basic feasible solutions of the LP are integer. We will show this more general result in

Chapter 7.2. !

Solving (SP) with the simplex algorithm

We formulate (SP) as (LP)

min cTf

4. Duality
4.3 The shortest path problem and its dual

24-5

min cTf

Af = b (A = vertex-edge-incidence matrix)

f " 0

and solve it with the simplex algorithm.

Since rank(A) < n, we may delete a row

=> delete the row for vertex t, this yields b " 0

In the example we obtain the following tableau for cost vector c = (1, 2, 2, 3, 1)

Initial tableau, not yet transformed w.r.t. a basis, and graph G with edge costs

!! !" !# !$!%

! " " # !

" ! ! ! & & &

& !! & ! ! &

$ & & !! !! & !

s

a

b

t

1

2

2

3

1

G

Choose { 1, 4, 5 } as basis and transform the tableau w.r.t. that basis.

Interpret the associated basic feasible solution in the graph.

4. Duality
4.3 The shortest path problem and its dual

24-6

!! !" !# !$!%

!$ & !! & & &

!! ! ! ! & & &

!$! & ! ! ! &

!% & & !! !! & !

s

a

b

t

e
1

e
4

e
5

f
5
 = 0

1 3

The basic solution has n-1 = |V| - 1 variables, but not every s,t-path has so many edges

=> many basic feasible solutions are degenerate (a common phenomenon in combinatorial optimization problem)

Next tableau and basic feasible solution in the graph

!! !" !# !$!%

!# & & ! ! &

!! & ! & !! !! &

!" ! & ! ! ! &

!% ! & & & ! !

s

a

b

t

e
1

e
2 e

5

2 1

=> optimal solution found, shortest path has length 3

The dual of the shortest path problem

We formulate it w.r.t. the full tableau containing also the row for vertex t

4. Duality
4.3 The shortest path problem and its dual

24-7

We formulate it w.r.t. the full tableau containing also the row for vertex t

=> dual variables πi correspond to a node potential in graph G

Tableau in the example:

!! !" !# !$!% "

! " " # !

$% ! ! & & & '!

$& & & & !! !! !!

$' !! & ! ! & &

$" & !! !! & ! &

Dual LP:

max πs - πt

πi - πj ! cij for all edges (i, j) ∈ E(G)

πi unconstrained

Interpretation of the dual LP

Along any path

4. Duality
4.3 The shortest path problem and its dual

24-8

i k p q t...

from i to t we have

 (πi - πk) + (πk - πp) + ... + (πq - πt) = πi - πt

 ! cik ! ckp ! cqt

=> πi - πt ! cik + ckp + ... + cqt = length of the path from i to t

Since this holds for every such path,

πi - πt ! length of a shortest path from i to t

=> max πs - πt is equivalent to

finding the greatest lower bound for the length of a shortest path from s to t

Complementary slackness conditions

Path f and node potential π are primal-dual optimal <=>

(1) fij > 0 => πi - πj = cij

i.e., edge (i,j) lies on a shortest path => potential difference = cost

(2) πi - πj < cij => fij = 0

i.e., potential difference < cost => edge (i,j) does not lie on a shortest path

4. Duality
4.3 The shortest path problem and its dual

24-9

i.e., potential difference < cost => edge (i,j) does not lie on a shortest path

Interpretation:

the lower bounds πi - πt are tight along any shortest path

The cord model (for cij " 0)

edge (i, j) <-> cord with length cij

πi - πj <-> pulling vertices i and j apart

πi - πj ! cij <-> pulling is bounded from above by length cij

max πs - πt <-> pull s and t apart as far as possible

complementary slackness: the cords on shortest paths are the tight ones

Remarks

4. Duality
4.3 The shortest path problem and its dual

24-10

Remarks

Deleting the row for vertex t => we have no variable πt => the dual objective function is max πs

But: edges (i,t) yield the dual constraint πi ! cit, so that πs cannot get arbitrarily large.

We obtains the same dual constraint πi ! cit if we set πt = 0 (which we may do w.o.l.g. since we only have

potential differences in the dual).

Dijkstra's algorithm (ADM I) applied to the dual graph (in which the direction of all edges of G is reversed)

iteratively computes the πi, where πt is set to 0.

4. Duality
4.4 Farkas' Lemma

25-1

This is a central and very useful lemma in duality theory. It has several variants also known as Theorems of the

Alternative.

Cones and projections

The cone C(a1, ..., am) generated by a1, ..., am

Let a1, ..., am ∈ Rn (e.g. the rows of matrix A). The cone C(a1, ..., am) generated by a1, ..., am is defined as

!!""# $ $ $ # "%# $% ! & ∈ R' " & %

%�

(%"

)("(#)(# & $

= set of non-negative linear combinations of a1, ..., an

vectors in the green angle
have a non-negative projection
onto a1 und a2

a2

a1

C(a1,a2)

4. Duality
4.4 Farkas' Lemma

25-2

The projection of y onto a

y

a
α

!"#

�!� ! �#�cos α =

projection of y onto a = �!� cos α

=> the projection of y onto a is non-negative <=> yTa is non-negative

4.5 Theorem (Farkas' Lemma)

Let a1, ..., am ∈ Rn and c ∈ Rn. The following are equivalent

(1) for all y ∈ Rn : yTai " 0 for all i = 1,...,m => yTc " 0

i.e., for all y :

 y has a non-negative projection onto each ai

=> y has a non-negative projection onto c

(2) c ∈ C(a1, ..., am)

i.e., c lies in the cone generated by a1, ..., am

4. Duality
4.4 Farkas' Lemma

25-3

Proof

(1) => (2)

Consider the LP

min cTy

ai
Ty " 0 i = 1,...,m

y unconstrained

=> y = 0 is a feasible solution of the LP

The objective function is bounded from below since the constraints of the LP imply cTy " 0 because of (1),.

=> LP has a finite optimal solution

=> the dual LP

max 0

πTAj = cj

π " 0

has a feasible solution

=> there are numbers π1, ..., πm " 0 with c = πTA = %i πiai

=> c ∈ C(a1, ..., am)

4. Duality
4.4 Farkas' Lemma

25-4

(2) => (1)

c ∈ C(a1, ..., am) => there are numbers πi " 0 with c = %i πiai

consider y with yTai " 0 for all i = 1,...m

=> yTc = %i πiy
Tai " %i πi·0 = 0 !

There are many equivalent formulations of Farkas' Lemma. Examples are

(A) ∀ y (yTai " 0 ∀ i => yTb " 0) <=> ∃ x " 0 with ATx = b (original version by Farkas 1894)

(B) ∀ y " 0 (yTai " 0 ∀ i => yTb " 0) <=> ∃ x " 0 with ATx ! b

More in Chapter 7.5

An application of Farkas' Lemma: necessary conditions for the disjoint path problem

Disjoint Path Problem

Instance

Undirected graph G

Pairs of vertices { s1, t1 }, ..., { sk, tk }

Task

Determine pairwise edge disjoint paths from si to ti (i = 1, ..., k)

4. Duality
4.4 Farkas' Lemma

25-5

An example: minimum cost embeddings of VPNs into the base net of Telekom

The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and

4. Duality
4.4 Farkas' Lemma

25-6

The decision version of the disjoint path problem is NP-complete. We therefore look for strong necessary and

hopefully also sufficient criteria for the existence of a solution.

Cut criterion

Let H be the graph with V(H) := V(G) and E(H) := { { s1, t1 }, ..., { sk, tk } }. A necessary condition for the

existence of a solution is the cut criterion

 |δG(X)| ≥ |δH(X)| for all ∅ �= X ⊆ V(G)

i.e., there are at least as many edges leaving X in G as there are pairs in H to be connected

X V-X

G

V-X

X V-X

H

The cut criterion is not sufficient

4.6 Example

4. Duality
4.4 Farkas' Lemma

25-7

1 1

3

2

3 4

2 4
G H

Cut criterion holds, but there is no solution

Distance criterion

Let distG,z(s,t) be the length of a shortest path from s to t in G w.r.t. edge weights z(e) " 0, e ∈ E(G).

An instance of the disjoint path problem fulfills the distance criterion

:<=> for any choice of edge weights z(e) " 0, e ∈ E(G),

�

!!"#"∈$!%"

&'!#(")!!" #" #
�

*∈$!("

)!*"

The cut criterion reduces to the distance criterion for edge weights

z(e) :=

�
1 if e ∈ δ(X)

0 otherwise

4.7 Theorem (The distance criterion is necessary)

4. Duality
4.4 Farkas' Lemma

25-8

4.7 Theorem (The distance criterion is necessary)

The distance criterion is necessary and sufficient for the existence of a fractional solution of the disjoint

path problem.

In particular, it is necessary for the existence of a solution of a disjoint path problem

Proof

Consider the disjoint path problem as a cycle packing problem

cycles = all elementary cycles in G + H that contain exactly one edge of H

k := number of these cycles

integer cycle packing = union of pairwise edge disjoint cycles that contain every edge of H in exactly one

cycle

(existence <=> feasibility of the disjoint path problem)

fractional cycle packing = non-negative linear combination (of incidence vectors) of all these cycles such

that the resulting vector has the value 1 at the entries corresponding to the edges of H, and is at most

1 at every entry corresponding to an edge of G.

(they contain integer cycle packings as special case)

Example 4.6 has the following cycles in the cycle packing problem

4. Duality
4.4 Farkas' Lemma

25-9

A formulation of the fractional cycle packing

Let M be the E(G)-cycle-incidence matrix, i.e.,

4. Duality
4.4 Farkas' Lemma

25-10

Let M be the E(G)-cycle-incidence matrix, i.e.,

rows of M <-> edges of G

columns of M <-> incidence vectors of all cycles of G + H

Me,C = 1 <=> e lies on cycle C

Let N be the E(H)-cycle-incidence matrix, i.e.,

rows of N <-> edges of H

columns of N <-> incidence vectors of all cycles of G + H

Ne,C = 1 <=> e lies on cycle C

Observe: every column of N contains exactly one 1

=> fractional cycle packing = π' ∈ Rk with π' " 0, Mπ' ! 1, Nπ' = 1

Add slack variables to obtain a linear system and denote the enlarged vector again by π
=> fractional cycle packing = π ∈ Rk+m (m = |E(G)|) with π " 0, Mπ = 1, Nπ = 1

Write it as

Aπ = 1, π ≥ 0 with A =

�
M I

N 0

�

i.e., the all ones vector 1 lies in the cone C(A1, ..., Ak+m) generated by the columns Aj = of A

Applying Farkas' Lemma gives condition (3)

4. Duality
4.4 Farkas' Lemma

25-11

Applying Farkas' Lemma gives condition (3)

Farkas' Lemma yields: there is such a vector π
<=> for all y ∈ R|E(G)|+|E(H)| : yTAj " 0 for all j = 1,...,k+m => yT1 " 0

Partition y into (z,v)T, such that z corresponds to the rows of M (edges of G) and v to the rows of

N (edges of H).

We then get:

yTAj " 0 => zi " 0 for columns Aj of slack variables

yTAj " 0 => zTMj + vTNj " 0 for the other columns Aj

Let Cj be the cycle of column Aj

=> Cj decomposes into a path Pj in G and an edge f from H

Then

zTMj = length z(Pj) of the path P j w.r.t. edge weights z(e)

vTNj = edge weight v(f), where f is the edge of H lying on cycle Cj

Hence

yTAj " 0 => z(P j) + v(f) " 0 for all cycles Cj containing edge f

So z(P j) + v(f) " 0 is equivalent to

distG,z(s,t) + v(f) " 0 with f = { s, t } (1)

4. Duality
4.4 Farkas' Lemma

25-12

distG,z(s,t) + v(f) " 0 with f = { s, t } (1)

The constraint yT1 " 0 becomes

%e # E(G) z(e) + %e # E(H) v(e) " 0 (2)

Farkas' Lemma then yields for arbitrary (z,v) (3)

z(e) " 0, distG,z(s,t) + v(f) " 0 for all edges f = { s, t } in H

=> %e # E(G) z(e) + %f # E(H) v(f) " 0

Condition (3) is equivalent to the distance criterion is (by proving that their negations are equivalent)

(3) violated => distance criterion violated

(3) violated => there are z, v with

z(e) " 0,

distG,z(s,t) + v(f) " 0 for all edges f = { s, t } in H and

%e # E(G) z(e) + %f # E(H) v(f) < 0

=> 0 ! %f # E(H) distG,z(s,t) + %f # E(H) v(f) < %f # E(H) distG,z(s,t) - %e # E(G) z(e)

=> %e # E(G) z(e) < %f # E(H) distG,z(s,t)

=> distance criterion violated

distance criterion violated => (3) violated

distance criterion violated

4. Duality
4.4 Farkas' Lemma

25-13

distance criterion violated

=> there is z " 0 with %e # E(G) z(e) < %f # E(H) distG,z(s,t)

choose v(f) := - distG,z(s,t) for edge f = {s, t} in H

=> distG,z(s,t) + v(f) " 0 for all edges f = { s, t } in H and

%e # E(G) z(e) + %f # E(H) v(f) = %e # E(G) z(e) - %f # E(H) distG,z(s,t) < 0

=> (3) is violated !

The distance criterion is stronger than the cut criterion

Example 4.6 does not fulfill the distance criterion

1 1

3

2

3 4

2 4
G H

Set z(e) = 1 for all e in G => %f = {s,t} # E(H) distG,z(s,t) = 8, %e # E(G) z(e) = 6

The distance criterion is not sufficient for the existence of a solution of the disjoint path problem

4. Duality
4.4 Farkas' Lemma

25-14

The distance criterion is not sufficient for the existence of a solution of the disjoint path problem

The instance of the disjoint path problem

1

12

2G H

A fractional cycle packing

! +! +! +!

So the distance criterion holds because of Theorem 4.7

There is no solution for the disjoint path problem

4. Duality
4.5 Dual information in the tableau

26-1

How to get dual information from the optimal primal tableau?

Suppose w.o.l.g. that the initial tableau (possibly with artificial variables from Phase I) has columns 1,...,m as

basic columns and that the tableau is transformed w.r.t. to this basis

1

1

...

Then the following properties hold in the optimal tableau with basis B

rows 1,...,m are obtained from the initial tableau by multiplying it with B-1 from the left

the reduced cost are obtained as
!!" " !" ! #

$%" " # $%&&#'

where π is an optimal solution of the dual problem (Proof of the Strong Duality Theorem)

In columns 1,...,m (which are unit vectors in the initial tableau) we get
!!" " !" ! #

$%" " !" ! #" #$&%%&

Hence an optimal dual solution is obtained from the optimal tableau of the primal as

4. Duality
4.5 Dual information in the tableau

26-2

!" ! #" ! "#" #" ! $$ % % % $ &% #&%$'%

Observe: this holds for the dual problem of the initial tableau (and not for dual versions of other, equivalent

primal formulations).

Moreover, the first m columns contain B-1 = B-1 I (4.13)

cj - !j

B-1

4.8 Example (Example for the Two-Phase-Method continued)

Initial tableau

4. Duality
4.5 Dual information in the tableau

26-3

!"
!

!"
"

!"
#

!! !" !# !$!%

!# & & & & ! ! ! ! !

!$ & ! ! ! & & & & &

!"
!

! ! & & # " ! & &

!"
"

& ! & % ! ! ! &

!"
#

$ & & ! " " ! & !

Optimal tableau

!"
!

!"
"

!"
#

!! !" !# !$!%

!# !&$" %$" !! !! #$" ' #$" ' '

!% ' ! ! ! ' ' ' ' '

!" !$" !$" ' ' #$" ! !$" ' '

!$ %$" !!$" ! ' ($" ' !$" ! '

!% #$" !%$" ' ! !!!$" ' !!$" ' !

(4.12) gives π1 = 0 - 5/2 = - 5/2

π2 = 0 - (- 1) = 1

π3 = 0 - (- 1) = 1

for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with artificial

4. Duality
4.5 Dual information in the tableau

26-4

for the values of the dual variables w.r.t. the dual problem obtained from the primal formulation with artificial

variables xi
a

4.9 Example (Example for the shortest path problem continued)

Solving the primal problem

Initial tableau has no identity matrix, but 2 unit vectors

=> add one artificial variable in Phase I

!" #! #" ## #$ #%

!$! & & & & &

!% & ! " " # !

& !" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% & & & !! !! & !

Transform cost coefficients of ξ and z to reduced form (must become 0 for basic variables)

4. Duality
4.5 Dual information in the tableau

26-5

!" #! #" ## #$ #%

!$!! & !! !! & & &

!% & & $ # & & &

& !" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% & & & !! !! & !

Pivot step

!" #! #" ## #$ #%

!$ & ! & & & & &

!% !# !# ! & & & &

& #" ! ! ! ! & & &

" #$ & & !! & ! ! &

' #% ! ! ! & !! & !

=> ξ = 0 and xa is a non-basic variable

=> optimal w.r.t. z

basic columns of the
initial tableau

Primal information (visualized in the graph)

4. Duality
4.5 Dual information in the tableau

26-6

s

a

b

t

e
2 e

5

2 1

e
4

the primal optimal solution displays the edges on the shortest path

Dual information (obtained from the primal optimal tableau and displayed in the graph)

!" ! #$% ! "#$% ! # ! $!%& ! %

!% ! #' ! "#' ! % ! # ! %

!& ! #(! "#(!) ! # !)

!' ! #

πt = 0 since row t is not in the primal LP

4. Duality
4.5 Dual information in the tableau

26-7

s

a

b

t

1

2

2

3

1

3

1

0

3

the dual solution displays the shortest distance from a vertex to t

4. Duality
4.6 The dual Simplex algorithm

27-1

Goal: use the primal tableau to solve the dual LP

Characteristics of the dual LP

The primal optimality condition !! ! " becomes a dual constraint

=> the primal simplex algorithm has a primal feasible solution

and fulfills the dual constraint !! ! " only at termination when the optimum is reached

This suggests the following characteristics for the dual simplex algorithm

generate a sequence of dual feasible solutions

establish primal feasibility only at termination when the optimum is reached

Deriving the operations in the tableau

Tableau X with basic solution

4. Duality

4.6 The dual Simplex algorithm
27-2

!! !" !# !$!%

!# ! & & & &

!" ! ! ! & & &

!$! & & & ! !

!# !! !! & ! & !!

=> dual feasible, i.e.,

primal infeasible, i.e.,

 !! ! "dual zulässig, d.h. !! ! "

nicht primal zulässig, d.h. xB ! 0

Choose a pivot row r (instead of a pivot column) with xr0 < 0 (i.e., an infeasible entry xr0 < 0 in the primal

basic solution)

Choose a pivot column in row r the by considering entries xrj < 0 (as to obtain xr0 " 0 after the pivot)

Pivoting with xrs < 0 changes the cost row to

!�
!" " !!" !

!#"

!#$
!!$ " " #% & & & % '

4. Duality
4.6 The dual Simplex algorithm

27-3

0

r

j s
x0j x0s

xrj xrs

must become 0

must become 1

To stay feasible in the dual, x0j´ " 0 for all j

⇒
!!"

!#"
!

!!$

!#$
"#$% !#" % !for

=> choose column s is such a way that

!!"

!#$
" #$% !

!!$

!#$
" !#$ % !& $ " && ' ' ' & (#

Observe the symmetry with the primal simplex algorithm

in particular: all xrj > 0 => dual LP has an unbounded objective function

4.10 Theorem (Interpretation of the dual simplex algorithm)

The dual simplex algorithm is the primal simplex algorithm applied to the primal formulation of the dual LP

4. Duality
4.6 The dual Simplex algorithm

27-4

The dual simplex algorithm is the primal simplex algorithm applied to the primal formulation of the dual LP

Proof: Check !

4.11 Example (Example for the shortest path problem continued)

initial tableau, not yet transformed w.r.t. a basis and graph with costs

!! !" !# !$!%

! " " # !

" ! ! ! & & &

& !! & ! ! &

$ & & !! !! & !

s

a

b

t

1

2

2

3

1

G

choose B = { 2, 4, 3 } as basis and transform the tableau w.r.t. B, display the basic solution in the graph

4. Duality
4.6 The dual Simplex algorithm

27-5

!! !" !# !$!%

!# ! & & & &

!" ! ! ! & & &

!$! & & & ! !

!# !! !! & ! & !!

=> dual feasible

primal infeasible

s

a

b

t

e
1

e
2

e
3

e
4

e
5

the basic solution corresponds to the s,t-cut X = { s, a }

ADM I: s,t-cuts are "dual structures" of s,t-flows. This is confirmed here by LP duality

Choosing the pivot element

r = 3 is the pivot row

choosing the pivot column:

!!"

!#$
" #$% !

!!$

!#$
" !#$ % !& $ " && ' ' ' & (# " #$% !

&

$&
&
!

$&
" !

j = 1 j = 5

=> s = 5 is the pivot column

4. Duality
4.6 The dual Simplex algorithm

27-6

!! !" !# !$!%

!# ! & & & &

!" ! ! ! & & &

!$! & & & ! !

!# !! !! & ! & !!

pivot operation

!! !" !# !$!%

!# ! & & & &

!" ! ! ! & & &

!$ & !! & ! ! &

!% ! ! & !! & !

s

a

b

t

e
2 e

5

2 1

e
4

=> primal and dual feasible => optimal

The dual optimal solution can be obtained from the inverse of the optimal basis as !"
! #

"

$
$
!"

 (Duality

Theorem).

The optimal basis is B = { 2, 4, 5 } with inverse

4. Duality
4.6 The dual Simplex algorithm

27-7

!
!!

"





! # #

!

! # !





So

!" ! #"$$
!" ! #$%%% "&





" ' '

' " '

" ' "



 ! #%%%% "&

s

a

b

t

1

2

2

3

1

3

1

0

3

Observe: in this case we could not obtain π and B-1 directly from the optimal tableau, since the dual LP is not

the one constructed from the initial tableau with basis { 2, 4, 3 }, but the dual LP of Example 4.9.

5. Computational aspects of the Simplex algorithm

28

... 295.1 The revised simplex algorithm
.. 305.2 Algorithmic consequences of the revised simplex algorithm

.. 315.3 Solving the max-flow problem with the revised simplex algorithm and column generation
... 325.4 The simplex algorithm with lower and upper bounds

... 335.5 A special case: the network simplex algorithm

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-1

The full tableau is redundant (identity matrix!) and may contain very many non-basic columns (all of them are

stored at every pivot step, => much memory for every tableau). The revised simplex algorithm uses in every step

only essential information in a memory-efficient way.

The core of that information is the inverse B-1 of the current basis B, from which we can easily compute all

information needed for a pivot step

The revised simplex algorithm is used in all commercial LP-codes

Main idea of the revised simplex algorithm: the CARRY matrix

consider the initial tableau with identity matrix = initial basis on the left in the tableau

-z 0 0

b I

!!"

CARRY(0)

because of (4.13), matrix I will change to the inverse B-1 of the current basis B in subsequent pivot steps

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-2

after iteration � the tableau contains the following data in den first m+1 columns

-z´ - !
T

B
-1

!"##$
!�"

b´

where

πT = dual solution because of (4.12), in general infeasible.

The numbers πi are also called simplex multipliers.

b´ = B-1b is the current right hand side = current primal solution

z´ = cB
TB-1b is the current primal cost

It suffices to maintain the following data for the simplex algorithm

1. initial tableau

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-3

c
T

Ab

2. current CARRY-matrix !"##$!�"

3. current basis by its column indices B(1),...,B(m)

From 1., 2., and 3., one can obtain all data required for a pivot step

(1) Pricing Operation (computing reduced costs)

iteratively compute
!!" " !" ! #

$%"

for non-basic variables until some reduced cost !!" # " or !! ! " (=> termination with an optimal solution)

(2) Generation of the Pivot Column (transforming the pivot column w.r.t. the current basis)

compute

!" ! #
!"
$"

= column s of the current tableau X

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-4

= column s of the current tableau X

the pivot element xrs is obtained as

!"#

!" #!$ % $

&�
!

#!$

← !" #$%%&
!�"

← !" #$

or z is unbounded is (if all xis ! 0)

(3) Pivot Operation (pivot step)

compute !"##$!�"#$

i.e., transform Xs into the unit vector (with 1 at the pivot element) and apply the corresponding row

operations to !"##$!�"

-z´ - !
T

B
-1

!"##$
!�"

b´

X
s

r ← !"#

(4) Basis Update

set B(r) := s

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-5

set B(r) := s

The Two-Phase-Method works similarly

one starts with the artificial cost vector

(1, ..., 1, 0, ..., 0)

artificial variables
x1

a, ..., xm
a form the initial basis

Transformation to reduced cost w.r.t. this basis changes the cost to

!" !" !

#�

$ " #

%$"

for each non-basic variable

At the end of Phase I we change over to the original cost vector

=> compute - πT = - cB
TB-1 and put it into !"##$!�"

compute - z = - cB
Tb´ and put it into !"##$!�"

The required data is available: cB is stored in the initial data, B is stored, and B-1 and b´ are stored in

5. Computational aspects of the Simplex algorithm
5.1 The revised simplex algorithm

29-6

!"##$
!�"

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-1

(1) Do not look at every non-basic columns per iteration

one needs all reduced costs

 !!" " !" ! #
$%"

only to prove optimality. At other steps, partial pricing is enough (in the primal simplex; it is not possible in the

dual simplex).

(2) Columns Aj of non-basic variables come from the initial tableau

this is often sparse (in particular with combinatorial problems, e.g. there are only 2 entries $ 0 in a vertex-edge-

incidence matrix)

=> can exploit techniques to save memory usage and runtime (data structures and algorithms for sparse

matrices)

(3) Maintain !"##$!�" implicitly

since !"##$!�" is obtained in a simple way from !"##$!�!"#, it is not necessary to store the complete matrix

!"##$
!�".

!"##$
!�" # %� ! !"##$

!�"$"

with

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-2

with

!� ! ""## $ $ $ # "%!## &# "%$## $ $ $ # "'% models elementary row operations

ei = i-th unit vector

! !





!
""#

"$#

###

"

"$#

###

!
"%#

"$#





pivot row

=> store ⇒ !� !"#$%&#'()*'%& "+,#-./' *() 0/!$.$/(#by its η-vector and position r

inductively

CARRY(�) = P�−1 · P�−2 · . . . · P1 · CARRY(0)

if � gets large, one can "re-invert" , i.e., the search for an equivalent but shorter sequence of η-vectors (� ! m

suffice)

(4) Combine these techniques with methods for numerical stability

LU-partition, Cholesky-factorization

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-3

LU-partition, Cholesky-factorization

(Class on numerical methods)

Every regular matrix B can be written as B = P·L·U with

P = permutation matrix (then P-1 = PT)

L = lower triangular matrix

U = upper triangular matrix

Linear systems Bx = b can then be easily solved:

Bx = b transforms to LUx = PTb

solve Ly = PTb

solve Ux = y

i.e., solve 2 linear systems in triangular form

Some quotations by Bob Bixby, the "father" of Cplex and Gurobi

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-4

Bixby

ISMP 2003

from Solving Real-World Linear Programs: A Decade and More of Progress, Operations Research (50) 2002, 3-15

It was thus around 1987 that I became seriously involved in the computational aspects of linear programming.

The first version of CPLEX, CPLEX 1.0, was released in 1988.

Advances in computing machinery

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-5

Table 1: Machine improvements–Simplex algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50
Sun 3/50
25 MHz Intel 386
IBM 3090/108S
Cray X-MP/416

Compaq Server ES40, 667 MHz
Pentium 4, 1.7 GHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz

900
800
400
45
10

Table 2: Machine improvements–Barrier algorithms

Old machine/processor New machine/processor Estimated speedup
Sun 3/50
Sun 3/50
33 MHz Intel 386
IBM 3090/108S
Cray X-MP/416

Pentium 4, 1.7 GHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz
Compaq Server ES40, 667 MHz

13000
12000
4000
10
5

The IBM 3090 is included here because, into the mid 1980s, these machines were
typical of the mainframes that dominated LP practice. It is worth noting that the
simplex speedup listed is surely a significant overestimate of the speedup relative
to a code such as MPSX. The C compilers for these machines were not very good;
moreover, the CPLEX code took no account of the special properties of the 3090
architecture. MPSX, by contrast, was written largely in machine assembly code and
tuned to the specifics of the 3090 architecture.

The final machine listed, the Cray X-MP, was never in wide use as an LP com-
puting environment. However, significant testing was carried out on these machines
in the late 1980s and early 1990s, and they do illustrate the upper limit of computing
power available at that time.

What I conclude from Tables 1 and 2 is that for desktop computing, machine
speedups have contributed a factor between 500 and 1000 to the speed of simplex
algorithms. Barrier algorithms, on the other hand, have experienced speedups an
order of magnitude greater. This difference is fundamental to the fact that barrier
algorithms have emerged as a powerful computational tool in linear programming.

5 LP computation: 1947 – late 1980s

George Dantzig is widely recognized as the father of linear programming. A central
part of his many contributions to this subject was the recognition that linear pro-
gramming was more than simply a conceptual tool. It was important to be able to
solve linear programs and compute actual answers:

5

Algorithmic improvements

The dual simplex algorithm with steepest edge.

The dual simplex algorithm was introduced by Lemke [1954]. It is not a new algorithm. However, to my

knowledge, commercial implementations of this algorithm were not available in 1987 as full-fledged

alternatives to the primal simplex algorithm. [...]

All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed,

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-6

All that has changed. The dual simplex algorithm is now a standard alternative in modern codes. Indeed,

computational tests, some of which will be presented later in this paper, indicate that the overall

performance of the dual algorithm may be superior to that of the primal algorithm.

There are a number of reasons why implementations of the dual simplex algorithm have become so

powerful. The most important is an idea introduced by Goldfarb and Forrest [1992], a so-called “steepest-

edge” rule for selecting the “leaving variable” at each dual simplex iteration. This method requires

relatively little additional computational effort per iteration and is far superior to “standard” dual

methods, in which the selection of the leaving variable is based only upon selecting a basic variable with

large primal infeasibility.

Linear algebra

Linear algebra improvements touch all the parts of simplex algorithms and are also crucial to good

implementations of barrier algorithms. Enumerating all such improvements is beyond the scope of this

paper. I will mention only a few. For simplex algorithms, two improvements stand out among the rest.

The first of these to be introduced was dynamic LU-factorization using Markowitz threshold pivoting. This

approach was perfected by Suhl and Suhl [1990], and has become a standard part of modern codes. In

previous-generation codes, “preassigned pivot” sequences were used in the numerical factorization (see

Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred,

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-7

Hellerman and Rarick [1971]). These methods were very effective when no numerical difficulties occurred,

but encountered serious difficulties in the alternative case.

The second major linear algebra improvement is that LP codes now take advantage of certain ideas for

solving large, sparse linear systems, ideas that have been known in the linear-algebra community for

several years (see Gilbert and Peierls [1988]). At each major iteration of a simplex algorithm, several size-

able linear systems must be solved. The order of these systems is equal to the number of constraints in

the given LP. Typically these systems take as input a vector with a very small number of nonzero entries,

say between one and ten – independent of overall model size – and output a vector with only a few

additional nonzeros. Since it is unlikely that the sparsity of the output is due to cancellation during the

solve, it follows that only a small number of nonzeros in the LU-factorization (and update) of the basis

could have been touched during the solve. The trick then is to carry out the solve so that the work is linear

in this number of entries, and hence, in total, essentially a constant time operation, even as problem size

grows. The effect on large linear programs can be enormous.

Presolve

This idea is made up of a set of problem reductions: Removal of redundant constraints, fixed variables, and

other extraneous model elements. The seminal reference on this subject is Brearley et al [1975]. Presolve

was available in MPS III, but modern implementations include a much more extensive set of reductions,

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-8

was available in MPS III, but modern implementations include a much more extensive set of reductions,

including so-called aggregation (substituting out variables, such as free variables, the satisfaction of the

bounds of which are guaranteed by the satisfaction of the bounds on the variables that remain in the

model). The effects on problem size can be very significant, in some cases yielding reductions by factors

exceeding an order of magnitude. Modern presolve implementations are seamless in the sense that problem

input and solution output occur in terms of the original model.

Examples of performance improvements

Tables 10 and 11 give solution times for the models in Table 8 using CPLEX 1.0,

2.2, 5.0, and 7.1. Runs were made on a 300 MHz UltraSparc. In the first table I have

tabulated the best of the primal and dual solution times for each of the eight models

and for each of the CPLEX versions. The final column specifies which algorithm was

the winner for each of the eight models running CPLEX 7.1. The second table records

the best of all three algorithms, barrier, primal, and dual, with the final column again

recording the winners for version 7.1.

Table 10: Solution times–Best simplex

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

701.1

110.5

275.0

736.0

271.9

1123.2

102.2

252.3

275.8

104.4

260.5

664.0

229.1

698.6

51.3

220.8

120.6

46.7

22.6

693.9

161.7

675.0

15.5

64.6

primal

primal

dual

dual

dual

primal

dual

dual

Table 11: Solution times–Best of three

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

203.0

110.5

46.5

171.4

152.6

999.1

102.2

252.3

117.1

99.5

31.5

71.7

113.4

340.5

51.3

132.0

67.3

46.7

22.4

32.4

82.2

124.7

15.5

47.9

barrier

primal

barrier

barrier

barrier

barrier

dual

barrier

Table 12 compares CPLEX 1.0 to the various other versions using geometric means

of individual ratios of solve times. According to this table, the best simplex algorithm

in CPLEX 7.1 is almost 52 times faster than CPLEX 1.0 on these models, and the

best of three is 114 times faster.

A shortcoming of the testset in Table 8 is that these models are no longer “large,”

though they were certainly considered large in 1994. In addition, a single algorithm,

barrier, is dominant
6
. To construct a more comprehensive, less biased measure of

recent improvements I will use a larger, more comprehensive testset, and focus on

6Lustig et al [1994] effectively acknowledge this fact, pointing out that seven of these models
came into their possession precisely because they were apparently difficult to solve with simplex
algorithms.

19

full paper

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-9

SOLVING REAL-WORLD LINEAR PROGRAMS:
A DECADE AND MORE OF PROGRESS

ROBERT E. BIXBY
ILOG, Inc. and Rice University, bixby@ilog.com or bixby@rice.edu

This paper is an invited contribution to the 50th anniversary issue of the journal Operations Research, published by the Institute of
Operations Research and Management Science (INFORMS). It describes one person’s perspective on the development of computational
tools for linear programming. The paper begins with a short personal history, followed by historical remarks covering the some 40 years of
linear-programming developments that predate my own involvement in this subject. It concludes with a more detailed look at the evolution
of computational linear programming since 1987.

1. INTRODUCTION

I am a relative newcomer to computation. For the first half
of my scientific career, my research focused exclusively on
the theoretical aspects of operations research and discrete
mathematics. That focus began to change in the early 1980s
with the appearance of personal computers.
My first PC was used primarily to implement elemen-

tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that I was teaching. As a result,
I started writing my own code, initially a simple tableau
code.
At that time, in the early 1980s, I knew nothing about

the computational aspects of linear programming (LP). I
knew a great deal of theory, but numerical analysis and the
computational issues associated with numerical algorithms
were not subjects that were part of my graduate education.
I had no idea that tableaus were numerically unstable.
Fortunately for me, by the time my interests in compu-

tation had started, the Department of Industrial Engineer-
ing and Management Sciences at Northwestern University
had hired Bob Fourer, one of the creators of the AMPL
modeling language. Bob had worked for several years at
the National Bureau of Economic Research doing practi-
cal linear programming, followed by a graduate career at
Stanford. He knew a lot about the computational aspects of
mathematical programming, and he passed on a great deal
of that knowledge to me in informal conversations.
Linear programming become more central to what I

was doing when a friend of mine, Tom Baker, founded
Chesapeake Decision Sciences (now a part of Aspen Tech-
nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. I said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

To this day, I’m not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.
After the code was delivered to Chesapeake, there fol-

lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, I
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib1 testset my code was indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.
This comparison to XMP was an important part of

what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.
This was the mid-1980s, and integer-programming com-

putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grötschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
tion, they did not deal well with issues such as degeneracy.
The situation at the time is well described by some remarks
of Grötschel and Holland (1991), commenting on their use
of MPSX/370 in work on the traveling salesman problem:
They note that if the LP-package they were using had been

0030-364X/02/5001-0003 $05.00
1526-5463 electronic ISSN 3

Subject classification: Professional: comments on
Area of review: Anniversary Issue (Special).

Operations Research © 2002 INFORMS
Vol. 50, No. 1, January–February 2002, pp. 3–15

5. Computational aspects of the Simplex algorithm
5.2 Algorithmic consequences of the revised simplex algorithm

30-10

SOLVING REAL-WORLD LINEAR PROGRAMS:
A DECADE AND MORE OF PROGRESS

ROBERT E. BIXBY
ILOG, Inc. and Rice University, bixby@ilog.com or bixby@rice.edu

This paper is an invited contribution to the 50th anniversary issue of the journal Operations Research, published by the Institute of
Operations Research and Management Science (INFORMS). It describes one person’s perspective on the development of computational
tools for linear programming. The paper begins with a short personal history, followed by historical remarks covering the some 40 years of
linear-programming developments that predate my own involvement in this subject. It concludes with a more detailed look at the evolution
of computational linear programming since 1987.

1. INTRODUCTION

I am a relative newcomer to computation. For the first half
of my scientific career, my research focused exclusively on
the theoretical aspects of operations research and discrete
mathematics. That focus began to change in the early 1980s
with the appearance of personal computers.
My first PC was used primarily to implement elemen-

tary algorithms used in teaching. At first these algorithms
did not include a simplex algorithm; eventually, however,
I concluded that it would be useful to incorporate compu-
tation in the LP courses that I was teaching. As a result,
I started writing my own code, initially a simple tableau
code.
At that time, in the early 1980s, I knew nothing about

the computational aspects of linear programming (LP). I
knew a great deal of theory, but numerical analysis and the
computational issues associated with numerical algorithms
were not subjects that were part of my graduate education.
I had no idea that tableaus were numerically unstable.
Fortunately for me, by the time my interests in compu-

tation had started, the Department of Industrial Engineer-
ing and Management Sciences at Northwestern University
had hired Bob Fourer, one of the creators of the AMPL
modeling language. Bob had worked for several years at
the National Bureau of Economic Research doing practi-
cal linear programming, followed by a graduate career at
Stanford. He knew a lot about the computational aspects of
mathematical programming, and he passed on a great deal
of that knowledge to me in informal conversations.
Linear programming become more central to what I

was doing when a friend of mine, Tom Baker, founded
Chesapeake Decision Sciences (now a part of Aspen Tech-
nologies). Shortly thereafter, Tom asked if I had an LP code
that he could use in the LP module of the product he was
building. I said yes, converted my code to C (that was one
of Tom’s conditions), and delivered it to him.

To this day, I’m not quite sure why Tom thought my code
would eventually be reasonably good. Initially it certainly
was not.
After the code was delivered to Chesapeake, there fol-

lowed a period of about two years during which I received
a steady stream of practical LPs from Chesapeake, LPs
on which my code did not do very well. In each case, I
poked around in my code and the LP itself to see what
ideas I could come up with, never looking in the literature
(this wasn’t my area of research). Slowly the code got bet-
ter, until some time around 1986, one of Tom’s colleagues
informed me that my code had actually gotten good enough
that one of their customers was interested in obtaining it
separately. I was, to say the least, surprised, and immedi-
ately set about doing my first actual comparisons to other
LP codes. I chose Roy Marsten’s (1981) quite successful
and portable (that was key for me) XMP code. I discov-
ered, to my amazement, that for a substantial subset of the
netlib1 testset my code was indeed pretty good, running on
average two times faster than XMP. In addition, it appeared
that my code was significantly more stable than XMP.
This comparison to XMP was an important part of

what transformed LP computation into a serious part
of my scientific research. Equally important was integer
programming.
This was the mid-1980s, and integer-programming com-

putational research was beginning to flower, with impor-
tant contributions by people such as Martin Grötschel, Ellis
Johnson, Manfred Padberg, and Laurence Wolsey. Linear
programming was an essential component in that work, but
the tools available at that time were proving to be inade-
quate. The then state-of-the-art codes, such as MPSX/370,
simply were not built for this kind of application; in addi-
tion, they did not deal well with issues such as degeneracy.
The situation at the time is well described by some remarks
of Grötschel and Holland (1991), commenting on their use
of MPSX/370 in work on the traveling salesman problem:
They note that if the LP-package they were using had been

0030-364X/02/5001-0003 $05.00
1526-5463 electronic ISSN 3

Subject classification: Professional: comments on
Area of review: Anniversary Issue (Special).

Operations Research © 2002 INFORMS
Vol. 50, No. 1, January–February 2002, pp. 3–15

bixby-or2002.pdf

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-1

Goals of this chapter

Illustrate the revised simplex algorithm

Illustrate how to handle LPs with (exponentially) many columns: Column Generation

We use a path-based formulation of the max-flow problem

The max-flow problem (see ADM I)

Maximum Flow problem (MFP)

Instance

network (G, u, s, t) where

G is a digraph

s, t are vertices of G, called the source and the sink, respectively

u(e) " 0 is the capacity of edge e

Task

Find an s,t-flow f with maximum flow value v(f)

s,t-flow f = edge weight f(e) for every edge with

0 ! f(e) ! u(e) for all edges e

flow conservation in all vertices v $ s, t

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-2

flow conservation in all vertices v $ s, t

flow value v(f) = net outflow out of s

Example: a flow f

s

1

2

t

3/3

2/3 3/3

2/3

f

1/1

f(e)/u(e) v(f) = 5

A formulation of the max-flow problem as LP with edge-variables (edge-based formulation)

we use the vertex-edge-incidence matrix as for the shortest path problem

max v (maximize the flow value v) such that

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-3

row s
row t (redundant)

flow conservation

!" ! # "#$ # !





%$

!$

&

'''

&





with

f ! u

f " 0

Here E(G) = { e1, ..., em } and f = (f1, ..., fm)T , i.e.,, we have a variable per edge for the flow on that edge

A formulation of the max-flow problem as LP with path-variables (path-based formulation)

is based on the Flow Decomposition Theorem of ADM I

ADM I, Theorem 5.2 (Flow Decomposition Theorem for s,t-flows, Ford-Fulkerson 1962)

Let f $ 0 be an s,t-flow in (G, u, s, t). Then

f is a positive linear combination of (incidence vectors of) directed (elementary) s,t-paths and directed

(elementary) cycles

the number of these paths and cycles can is at most m

if f is integer, then there is such a linear combination with integer coefficients

Example

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-4

Example

s,t-flow

s

1

2

t

3

2 2

3

1

1

f

decomposition into directed paths and cycles (not unique)

s

1

t

3 3

s

2

t

2 2

1

2

1

1

corresponding linear combination

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-5

f
s1

f
s2

f
12

f
1t

f
21

f
2t

3

2

1

3

1

2

f =

1

0

0

1

0

0

= 3·

0

1

0

0

0

1

+ 2·

0

0

1

0

1

0

+ 1·

Observe: the s,t-paths determine the flow value, cycles play no role

The path-based LP

Let P1, ..., Pp be all directed elementary s,t-paths in G (Observe: p may be exponential in n).

The edge-path-incidence matrix D = (dij) is defined by

dij :=

�
1 edge ei lies on path Pj i = 1, . . . , m
0 otherwise j = 1, . . . , p

f = (f1, ..., fp)T is a flow vector that has an entry fj for s,t-path Pj denoting the amount of flow that is sent

along path Pj

The capacity constraints read

Df ! u

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-6

Df ! u

i.e.

!!""# $ $ $ # !"%# !





&"
$$$

&%



 " '"

! of flows on all paths containing ei
= flow in edge ei

for every row ei

Flow conservation holds trivially and the flow value v is obtained as

v = %j fj

Then the path-based LP is

min cTf with cj = -1

Df ! u

f " 0

We transform it into standard form by adding slack variables si

=> min c´Tf´ with f´= (f | s)T, c´= (c | 0)T

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-7

=> min c´Tf´ with f´= (f | s)T, c´= (c | 0)T

D´f´ = u with D´= (D | I) (5.1)

f´ " 0

Slack variable si represents the residual capacity on edge ei

Solving the path-based formulation with the revised simplex algorithm

a basic feasible solution is given by f = 0 and s = u

=> Phase I is not necessary

column Dj of path Pj has (Pricing Rule) reduced cost

!!" < 0

⇔ !!" " !" ! #
$%" & #

<=> (-π)T Dj < 1 because of cj = -1

Interpretation

-π = vector of edge weights -πi of edge ei

(-π)T Dj = length of the path Pj w.r.t. edge weights -πi

Idea

Compute the shortest s,t-path P w.r.t. -π. Then (5.2)

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-8

Compute the shortest s,t-path P w.r.t. -π. Then (5.2)

P has length " 1 => optimality criterion holds for all columns belonging to paths

P has length < 1 => have found a column (path) to enter the basis

So it is not necessary to store all (exponentially many) columns of paths explicitly

In general, the idea

Find a column that violates the optimality criterion at most

is again an LP, whose solution is often much simpler than all generating all columns in the revised simplex

algorithm explicitly.

This idea is called Column Generation

For the column of slack variable si we obtain

si has negative reduced cost <=> -πi < 0 (5.3)

since:

reduced cost of column si is 0 - (πT I)i = -πi < 0

5.1 Theorem (Solving the path-based max-flow problem with column generation)

A basic feasible solution of (5.1) fulfills the optimality criterion

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-9

A basic feasible solution of (5.1) fulfills the optimality criterion

<=> -π " 0 and the shortest s,t-path w.r.t. -π has length " 1

The pivot steps in the revised simplex algorithm are shortest-path computations with edge lengths -π " 0 or

letting a slack variable si enter the basis if -πi < 0

Proof

If -πi < 0 for some i, then si is because of (5.3) a non-basic variables with negative reduced cost =>

optimality criterion violated

If -π " 0, then pricing reduces because of (5.2) and (5.3) to computing a shortest s,t-path with non-

negative edge weights -π. !

Consequence

The revised simplex algorithm solves the max-flow problem (essentially) as a sequence of shortest path

problems

Need only a (m+1)x(m+1) CARRY matrix in each iteration

5.1 Example

Prepare data for the revised simplex algorithm

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-10

Prepare data for the revised simplex algorithm

s

a

b

t

e
1

e
2

e
3

e
4

e
5

G u
i
= 1

! ! ! ! ! !

!" " "

!# " "

!$ " "

!% " "

!& " "

!"##$
!"# -!

T

-πT = 0 => every s,t-path is a shortest path with cost 0 < 1

=> choose w.o.l.g. P1 = { e1, e3, e5 } as entering column

s

a

b

t

e
1

e
2

e
3

e
4

e
5

The associated column D1 of the initial LP is (1, 0, 1, 0, 1)T and we obtain the transformed column X1 as

X1 = B-1D1 = D1

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-11

X1 = B-1D1 = D1

The reduced cost of column X1 is then

c1 - πT D1 = -1 + length of the path = -1 + 0 = -1

Data for pivot operation:

!!

!

"

!

"

!

! ! ! ! ! !

!" " "

!# " "

!$ " "

!% " "

!& " "

1st pivot

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-12

! ! " " " "

!! ! !

"# ! !

"$ " !! !

"% ! !

"& " !! !

!"##$
!"#

η-vector

s

a

b

t
e1

e2

e3

e4

e5

1 0

00

0

graph with edge weights -π
and shortest path

The associated column D2 of the initial LP is (0, 1, 0, 0, 1)T and we obtain the transformed column X2 as

X2 = B-1D2 = D2

The reduced cost is c2 + length shortest path = -1 + 0 = -1

Data for next pivot:

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-13

! ! " " " "

!! ! !

"# ! !

"$ " !! !

"% ! !

"& " !! !

!!

"

!

"

"

!

2nd pivot

! " " " " !

!! ! !

"# ! ! ! !!

"$ " !! !

"% ! !

!# " !! !

!"##$
!"#

η-vector

s

a

b

t
e1

e2

e3

e4

e5

0 0

10

0

graph with edge weights -π
and shortest path

The associated column D3 of the initial LP is (1, 0, 0, 1, 0)T and we obtain the transformed column X2 as

X3 = B-1D3 = (1, 1, -1, 1, -1)T

The reduced cost is c3 + length shortest path = -1 + 0 = -1

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-14

The reduced cost is c3 + length shortest path = -1 + 0 = -1

Data for next pivot:

!!

!

!

!!

!

!!

! " " " " !

!! ! !

"# ! ! ! !!

"$ " !! !

"% ! !

!# " !! !

3rd pivot

!"##$
!"#

! " # # # "

!$ " "

"! # # " !"

"$ " # "

"% # !" "

!! " # "

s

a

b

t
e1

e2

e3

e4

e5

1 0

10

0

length shortest path ! 1

=> have reached an optimal solution with maximum flow f3 + f2

5. Computational aspects of the Simplex algorithm
5.3 Solving the max-flow problem with the revised simplex algorithm and column generation

31-15

s

a

b

t
e1

e2

e3

e4

e5

1 1

11

0 maximum
flow

Remarks

Column generation maintains only a (changing) subproblem of the initial problem (called the master problem) with

few columns. It generates new columns when needed for improvement by solving the pricing operation as a

separate optimization problem over all possible (and only implicitly represented) columns.

In the max-flow example, the pricing reduces to a simple shortest path problem. In general, the pricing will be

more difficult and often even NP-hard (e.g. if the flow carrying paths must respect additional constraints, e.g. in

traffic applications where routes must not be too long, or only main streets ...).

Column generation is one of the workhorses for solving complex network problems. More in ADM III

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-1

Goal of this chapter

modify the simplex algorithm so that lower and upper bounds can be handled implicitly

serves as preparation for the network simplex (programming exercise)

lower bounds are easy

upper bounds need a modified definition of a basic feasible solution, this then leads to a more efficient and

rather easy variation of the simplex algorithm

LP in standard form with lower and upper bounds

min cTx s.t. Ax = b, � ! x ! u

� =





�1
...

�n



 ≥ 0 vector of lower bounds

u =





u1
...

un



 ≥ � vector of upper bounds

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-2

Approaches

(1) treat bounds as additional constraints and transform the resulting LP into standard form with slack

variables for the bound constraints

=> matrix A gets larger

unwanted, as bounds are very simple constraints

(2) treat bounds implicitly by a slight variation of the simplex algorithm

-> in this chapter

Treat lower bounds by substituting variables

Approach: xj = yj + �j

=> yj = xj - �j

=> write initial LP as

min cTy s.t. Ay = b´, 0 ! y ! u´

with b´:= b - A� and u´:= u - �

Solution y of the modified LP yields a solution x of the initial LP by

x = y + �

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-3

So assume w.o.l.g. � = 0 in the sequel

i.e., min cTx

s.t. Ax = b (5.4)

0 ! x ! u

and w.o.l.g. rank(A) = m

Basic feasible solutions for LPs with upper bounds

Extended partition of the variables

Instead of a partition of the variables/columns of A into B (basic variables) and N (non-basic variables) we

now consider an extended partition into

B basic variables

L non-basic variables with value = lower bound = 0

U non-basic variables with value = upper bound = uj

for such a partition we want that

BxB + LxL + UxU = BxB + UuU = b (5.5)

which gives

xB = B-1(b - UuU) = B-1b - B-1UuU

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-4

A basic feasible solution with basis B of an LP with upper bounds is every basic solution of the form (5.5)

5.2 Theorem (Fundamental Theorem for LPs with upper bounds)

If LP (5.4) has an optimal solution, then also an optimal solution that is a basic feasible solution of the form

(5.5).

Proof

Model x ! u with slack variables s as linear system x + s = u

Then we obtain the following large LP in standard form (LPSU)

min cTx

s.t. Ax = b

x + s = u

x " 0, s " 0

Since A has full row rank, also (LPSU) has full row rank.

Let (x,s)T be a basic feasible solution of (LPSU) with basis B´.

Set

B := { j ∈ { 1,...,n } | xj ∈ B´ and sj ∈ B´ } and p := |B|

L := { j ∈ { 1,...,n } | xj ∉ B´ and sj ∈ B´ } and s := |L|

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-5

L := { j ∈ { 1,...,n } | xj ∉ B´ and sj ∈ B´ } and s := |L|

U := { j ∈ { 1,...,n } | xj ∈ B´ and sj ∉ B´ } and q := |U|

Identifying B = AB and U = AU we can permute B´ such that:

PB�QT =





B Bq 0 0

Ip 0 Ip 0

0 Iq 0 0

0 0 0 Is



 rows for
x + s = u

with permutation matrices P and Q

Counting the rows of B´ gives m + n = m + p + q + s

Counting the columns of B´ gibes m + n = 2p + q + s

=> p = m => B is an mxm-matrix

Laplace expansion of det(B´) = det(P B´Q) along the last n rows gives |det(B´)| = |det(B)|

B´ is a basis of the large LP => det(B´) $ 0 => det(B) $ 0

=> B is basis of A

Since B´(x,s)T = (b,u)T, the permuted form of B´ transforms into (5.6)

BxB + UxU = b

 xB + sB = uB

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-6

 xB + sB = uB

 xU = uU

 sL = uL

So the partition B, L, U defines a basic solution BxB + UxU = b of the form (5.5)

=> every basic feasible solution of the large LP corresponds to a basic feasible solution of (5.4) in the form

of (5.5)

=> statement with the Fundamental Theorem of linear optimization (Theorem 3.12) !

Optimality criterion for LPs with upper bounds

5.3 Theorem (Optimality criterion for LPs with upper bounds)

A basic feasible solution of the form (5.5) is optimal

<=> the reduced costs in the tableau fulfill

c̄j = 0 for xj ∈ B
c̄j ≥ 0 for xj ∈ L
c̄j ≤ 0 for xj ∈ U





(5.7)

Proof:

By transforming the optimality conditions of the large LP !

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-7

By transforming the optimality conditions of the large LP !

Choosing the pivot element for LPs with upper bounds

Choosing the pivot column

Choose column Aj with j ∈ L and
!!" < 0 or column Aj with j ∈ U and

!!" > 0 (5.8)

Choosing the pivot row

xs ∈ L => increase xs as much as possible

xs ∈ U => decrease xs as much as possible

Use the representation of x(θ) according to (3.16)

!�!"" #






#$!%" ! "!%& � # $!%"' % # $' (((')

" � # &

% &'(&)

and take into account that xs = us is possible

xis < 0 => xB(i) increases

⇒ bound θi =
ui − xi0
−xis

for θ

xis > 0 => xB(i) decreases

5. Computational aspects of the Simplex algorithm
5.4 The simplex algorithm with lower and upper bounds

32-8

xis > 0 => xB(i) decreases

⇒ bound θi =
xi0
xis

for θ

(as in the ordinary simplex algorithm)

Choose θ as minimum of the θi and us. There are 2 cases

The minimum is attained at us

leave the basis unchanged, variable xs moves from U to L or vice versa

The minimum is attained at θ = θr

pivot with xrs

the new value of xs is θ (if xs = 0) or us - θ (if xs = us)

Termination

requires additional arguments

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-1

A more detailed treatment of the network simplex algorithm will be done in the exercises

Here: a proof that it is a specialization of the simplex algorithm with upper bounds

Network problem (Input for the network simplex)

min cTx s.t. Ax = b, 0 ! x ! u

A = vertex-edge-incidence matrix of a digraph G = (V, E)

In the terminology of ADM I this is a Minimum Cost Flow Problem (MCFP)

Basic solutions of the network problem

we assume in the sequel that V = { 1,...,n } and that G is connected.

rows of A add up to 0

=> delete w.o.l.g. the row for vertex 1 and denote the resulting matrix again by A

=> A has n-1 rows

Consider a spanning tree T of G

=> T has n-1 edges

Let B be the set of the associated columns of A

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-2

Let B be the set of the associated columns of A

Example:

1

3 2

5 4

T
!"!#$!%! "$!%!&$!#!'$

" " !"

!" "

% " "

' !"

& !"

B

Consider T as undirected tree with root 1

Order the vertices of T in preorder traversal (i.e., root-left-right recursively)

in the example: 1, 3, 5, 2, 4

Order the edges according to this vertex order,

i.e., for each vertex j $ 1 take the (unique) last edge on the path from 1 to j.

in the example: (3,1) (3,5) (1,2) (2,4)

 consider the permuted matrix B´ according to these row and column orders

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-3

!"! #$!"!%$!#!&$!&!'$

!#

" # #

% !#

& !# #

' !#

5.4 Lemma

The permuted matrix B´ obtained from the preorder traversal of the tree is (after deleting row 1) an upper

triangular matrix with entries $ 0 on the diagonal.

Proof

Suppose that the preorder traversal just visits vertex i.

Let j be the father of i in T.

=> (i,j) or (j,i) is tree edge, say (i,j)

Permutation of the rows and columns => (i, (i,j)) is an entry on the diagonal of B´

Preorder traversal => j was visited from i

=> column (i,j) contains

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-4

=> column (i,j) contains

-1 in row j

+1 in row i

 0 in all later rows !

5.5 Consequence

The rows and columns of the vertex-edge-incidence matrix of a spanning trees of G can be permuted by a

preorder traversal so that the resulting matrix is non-singular and upper triangular.

The linear systems Bx = b and πTB = cB
T of the revised simplex algorithm can easily be solved by exploiting

the upper triangular form and the fact that every column contains at most 2 entries $ 0. This amounts to

simple iterative substitution along the triangular form.

5.6 Theorem (correspondence basis <-> spanning tree)

Every spanning tree of G defines a basis of the network problem (which need not be feasible w.r.t. 0 ! x ! u).

Every basis of the network problem defines a spanning tree of G.

Proof

=>:

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-5

=>:

Lemma 5.4.

In particular, every basis has n-1 columns.

<=:

Let B be a basis of the network problem

=> the associated columns correspond to a subgraph G´ with n-1 edges

Claim: G´ has no undirected cycles

Assume that G´ has an undirected cycle C.

choose an orientation of C and let C+ be the set of forward edges and C- be the set of backward

edges of C w.r.t. the chosen orientation.

every vertex i in C is incident to exactly 2 edges from C

⇒ ∑
e∈C+

Ae − ∑
e∈C−

Ae = 0

this contradicts the fact that B is a basis.

ADM I, Theorem 2.3 => every undirected graph with n vertices and n-1 edges and without cycles is a

tree !

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-6

Steps in the revised simplex algorithm

Basis B = tree together with partition B, L, U.

1. Computing the right hand side

It is the solution of

BxB = b - UuU =: b´

=> solve the linear system BxB = b´

iteratively along the triangular form of B according to Consequence 5.4

2. Computing the simplex multipliers πi

They are the solution of

πTB = cB
T

=> πi - πj = cij for column/edge (i,j) ∈ B

=> iteratively along the triangular form of B , πi of the last row can be read of directly, then iterate

backwards

3. Optimality criterion

reduced cost of column/edge (i,j) is

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-7

reduced cost of column/edge (i,j) is
!!"# " !"# ! $

%&"# " !"# ! $" # $#

Section 5.4 =>

c̄ij ≥ 0 for (i, j) ∈ L

c̄ij ≤ 0 for (i, j) ∈ U

4. Computing the transformed column Xrs

-Xrs corresponds to the change of the basic variables when the value xrs of the non-basic pivot column is set

to 1

so (r,s) enters the basis, B is a tree

=> B + (r,s) contains a unique cycle C

Orienting C according to (r,s) partitions C into a set of forward edges and a set of backward edges.

Setting xrs to 1 then implies in C a change by

+1 on forward edges

-1 on backward edges

=> pivot operation corresponds exchanging edges on this cycle.

If the non-basic variable xrs is the "bottleneck", then there it changes only from L to U or vice versa (see

5. Computational aspects of the Simplex algorithm
5.5 A special case: the network simplex algorithm

33-8

If the non-basic variable xrs is the "bottleneck", then there it changes only from L to U or vice versa (see

Section 5.4).

5. Computing an initial basic feasible solution

= Phase I, see Exercises

6. Anti-cycling

by considering only strong tree solutions, see Exercises.

Literature on the network simplex algorithm

Chapter 11 in

K. Ahuja, T.L. Magnanti, J.B. Orlin

Network Flows: Theory, Algorithms, and Applications

Prentice Hall, 1993

6. Primal-dual algorithms

34

.. 356.1 Introduction
.. 366.2 The primal-dual algorithm

... 376.3 Remarks on the primal-dual algorithm
... 386.4 A primal-dual algorithm for the shortest path problem
.. 396.5 A primal-dual algorithm for the transportation problem

.. 406.6 A primal-dual algorithm for the weighted matching problem (a sketch)

6. Primal-dual algorithms
6.1 Introduction

35-1

Background

Primal-dual algorithms are based on complementary slackness.

They were originally developed for network problem [Dantzig, Ford, Fulkerson 1956]

They provide a general method to derive "specialized" algorithms for combinatorial optimization problems, exact

and approximate.

Basic idea

Start with an LP in standard form

(P) min z = cTx

Ax = b " 0 (w.o.l.g.)

x " 0

The associated dual LP is

(D) max w = πTb

πTA ! cT

π unrestricted

Complementary slackness yields

x ∈ SP, π ∈ SD are optimal

6. Primal-dual algorithms
6.1 Introduction

35-2

x ∈ SP, π ∈ SD are optimal

<=> πi(ai
Tx - bi) = 0 for all i (this holds since Ax = b)

(cj - πTAj)xj = 0 for all j (6.1)

So: (6.1) = is the only condition for optimality

Primal-dual algorithm

Given π ∈ SD, find x ∈ SP such that x and π fulfill (6.1)

We search for such an x ∈ SP solving an auxiliary problem, called the restricted primal (RP), determined by

the given dual feasible solution π ∈ SD.

If no such x exists, we use information from the dual (DRP) of the restricted primal (RP) in order to

construct a "better" dual solution π ∈ SD.

We iterate this process until we (hopefully) find an optimal pair x, π

6. Primal-dual algorithms
6.1 Introduction

35-3

primal
problem

P

dual
problem

D
RP DRP

x ?π π´

improving π

Remark: this is essentially a dual algorithm, since we have a dual feasible solution π in every step and obtain

an optimal primal feasible solution x only at termination. It is nevertheless called primal-dual because of the

role of the complementary slackness conditions.

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-1

Constructing a dual feasible start solution π
All cj " 0

=> π = 0 is dual feasible, as πTA ! cT

Some cj < 0

Use a trick:

Introduce another primal variable xn+1 " 0

Introduce another primal constraint

x1 + x2 + ... + xn+1 = bm+1

with bm+1 " n·M (M from Lemma 3.4) and cm+1 = 0

Lemma 3.4 => this constraint does not change SP

The dual problem then is

max w = πTb + πm+1bm+1

πTAj + πm+1 ! cj j = 1,...,n

 πm+1 ! 0

πi unrestricted, i = 1,...,m

A feasible solution of this dual LP is given by

πi = 0 i = 1,...,m

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-2

πi = 0 i = 1,...,m

πm+1 = minj cj < 0 (since at least one cj < 0)

=> a dual feasible solution can be constructed quite easily (much simpler than a primal with the Two-Phase-

method)

The Restricted Primal (RP)

Assume that we have a dual feasible solution π of (D)

To fulfill (6.1), set

J := { j | πTAj = cj }

We call J the set of admissible columns

(6.1) => x ∈ SP is optimal <=> xj = 0 for all j ∉ J

So we are looking for an x with

% j # J Ajxj = b

x " 0, xj = 0 for all j ∉ J

This search is a pure feasibility problem, which we will solve with Phase I of the simplex algorithm. The Phase I

problem is called the Restricted Primal (RP):

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-3

!"# ! $
�"

#$% $
%
#

&'()*
�

+∈, %#+$#+ & $
%
$ -# # $ %. / / / . "

$+ ! ' + ∈ ,

$+ $ ' + �∈ ,

$%
! ' # $ %. / / / . "






(01)

may delete
these xj

We can solve (RP) with the simplex algorithm. (RP) searches for a feasible solution of (P) without the columns Aj

with j ∉ J. The artificial variables define the initial basis of (RP).

If ξopt = 0, then each artificial variable is 0 and x is a feasible solution of (RP)

=> x is an optimal solution of (P)

If ξopt > 0, then there is no x in (RP) fulfilling (6.1)

=> we investigate the dual LP of (RP)

The dual (DRP) of the restricted primal

(DRP) reads

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-4

max w = πTb (6.2)

s.t. πT Aj ≤ 0 j ∈ J (6.3)

πi ≤ 1 i = 1, . . . , m (6.4)

πi unrestricted i = 1, . . . , m (6.5)






(DRP)

Let π´ be an optimal solution of (DRP) (it exists because of Strong Duality)

Idea: combine π´ with the original dual solution π to

π* := π + θπ´ (6.6)

where θ is chosen such that π* stays feasible in (D) and the dual objective function of (D) strictly increases

Consequence for the dual objective function of (D):

(π*)Tb = πTb + θ(π´)Tb

= ξopt > 0 as (RP) and (DRP)
are a primal dual pair

Hence θ > 0 is required for a strict increase of the dual objective function

Consequences for dual feasibility in (D)

dual feasibility means

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-5

dual feasibility means

(π*)TAj = πTAj + θ(π´)TAj ! cj for j = 1, ..., n

this is no problem if (π´)TAj ! 0 (this holds for all j ∈ J since π´∈ SDRP)

There are 2 cases

(π´)TAj ! 0 for all j = 1, ..., n

=> θ can be made arbitrarily large

=> the dual objective function of (D) is unbounded

Theorem 4.3 => (P) has no feasible solution

(π´)TAj > 0 for some j ∉ J

Then we obtain a constraint for θ:

!
TAj + "(!´)TAj ! cj

> 0

so θ ≤
cj − πT Aj

(π�)T Aj

We summarize

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-6

6.1 Theorem (Infeasibility of (P) in the primal-dual algorithm)

If ξopt > 0 in (RP) and (π´)TAj ! 0 for all j = 1, ..., n w.r.t. the optimal solution π´ of (DRP), then (P) has

no feasible solution.

Proof: clear from the above !

6.2 Theorem (Improvement of the dual solution in the primal-dual algorithm)

If ξopt > 0 in (RP) and (π´)TAj > 0 for some j ∉ J, then

!! "# $%& !
"# " $%&#

'$�(%&#

�∈ '('$�(%&#)) $ '**+(

is the largest θ, such that π* := π + θπ´ is dual feasible. Then

w* := (π*)Tb = πTb + θ1(π´)Tb > w (= πTb)

Proof: clear from the above !

The primal-dual algorithm

Algorithm (Primal-Dual)

Input

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-7

Input

Primal LP (P) in standard form

Associated dual LP (D) with feasible solution π (possibly constructed by the above trick)

Output

At termination : an optimal solution or a message that (P) has no feasible solution

Termination can be guaranteed by anti-cycling rules

Method

repeat

Construct (RP) by computing J := { j | πTAj = cj }

call Phase I with cost vector ξ = % xi
a for (RP)

if ξopt > 0 then

call dual Simplex for (DRP) and take the computed optimal solution π´

if (π´)TAj ! 0 for all j = 1, ..., n

then return "(P) has no feasible solution"

else

compute θ1 according to (6.7)

set π := π + θ1π´

6. Primal-dual algorithms
6.2 The primal-dual algorithm

36-8

set π := π + θ1π´

until ξopt = 0

return solution x of (RP)

6. Primal-dual algorithms
6.3 Remarks on the primal-dual algorithm

37-1

(1) Restart: The basic optimal solution of the previous (RP) is a basic feasible solution for the new (RP)

6.3 Theorem (Keeping admissible basic columns)

Every admissible column of the optimal basis of (RP) remains admissible at the start of the next iteration of

the primal-dual algorithm

Proof

Let Aj be an admissible column of the optimal basis of (RP)

Definition of admissible column => Aj is a column of A, i.e., does not belong to an artificial variable

reduced cost of a basic column is 0, π´ is a dual optimal solution of (RP)
⇒ ! " #!" " !" ! $#

�%$%" " ! ! $#�%$%"

⇒ !!�""#$ # $

Then

(π*)TAj = πTAj + θ1(π´)TAj = πTAj + 0 = πTAj = cj

since Aj is an admissible column w.r.t. π

=> Aj remains admissible w.r.t. π*

An optimal basis of (RP) is composed of

admissible columns => stay admissible because of Theorem 6.3

6. Primal-dual algorithms
6.3 Remarks on the primal-dual algorithm

37-2

admissible columns => stay admissible because of Theorem 6.3

columns of artificial variables => stay in the new (RP)

=> Theorem and (1) !

(2) (RP) can be solved with the revised simplex algorithm

this follows from Theorem 6.3. We only need to update the set J for the non-basic columns

(3) Termination can be achieved by anti-cycling rules

6.4 Theorem (Termination of the primal-dual algorithm)

The primal-dual algorithm solves (P) in finitely many steps

Proof

Interpret (RP) as a sequence of pivots of variables x1
a, ..., xm

a, x1, ..., xn

(possible since xj = 0 for j ∉ J and thus can be interpreted as a non-basic variable)

=> (RP) traverses a sequence of basic feasible solutions of (I | A)

Claim: The objective function decreases monotonically along that sequence (not necessarily strictly)

this is clear within the repeat-loop, because then the algorithm is just the ordinary (revised) simplex

algorithm.

6. Primal-dual algorithms
6.3 Remarks on the primal-dual algorithm

37-3

algorithm.

consider now a new entry into the repeat-loop

=> we compute θ1

Let r be the index at which the minimum is attained in the computation of θ1

Sub-Claim: column r is admissible and has negative reduced cost in the new (RP)

!!∗""#$ # !

"
#$ $ %%!!

�""#$ # !
"
#$ $

&$! !
"#$

!!�""#$

" !!�""#$ # &$

=> Ar is admissible w.r.t. π* => r admissible in the new (RP)

in the new (RP) column r has reduced cost (see Proof of Theorem 6.3 in this subsection)

0 - (π´)TAr < 0

as (π´)TAr > 0 by definition of θ1

Sub-Claim => when entering the repeat-loop, we may choose column r as pivot column in the sense of the

ordinary simplex algorithm with monotonically decreasing cost

Claim => adapting the lexicographic rule to the sequence of basic solutions of (I | A) yields termination !

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-1

Deriving (P), (D), (RP), (DRP)

We consider the formulation of (SP) from Section 4.3

(P) min cTf

Af = b (A = vertex-edge-incidence matrix)

f " 0

where the row of vertex t is deleted

The dual LP is

(D) max πs - πt

πi - πj ! cij for all edges (i, j) ∈ E(G)

πi unrestricted

πt = 0 (corresponds to deleted row t)

The set of admissible columns is

IJ = { (i,j) ∈ E | πi - πj = cij }

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-2

(RP) then is

min ξ = % i=1,...,n-1 xi
a

xa + Af =

1
0

0

...

row s

fij " 0 for all edges (i,j) ∈ E(G)

fij = 0 for all edges (i,j) ∉ IJ

xi
a " 0 for i = 1, ..., n-1

The associated dual (DRP) is

max w = πs

πi - πj ! 0 for all edges (i, j) ∈ IJ

πi ! 1 for i = 1, ..., n-1 (obtained from the columns of the xi
a)

πt = 0

Interpretation of the primal-dual algorithm

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-3

(1) ξopt = 0 in (RP) <=> there is a path from s to t using only edges from IJ.

Each such path is an optimal solution of (P), i.e., a shortest s,t-path

Proof

"=>"

Let ξopt = 0

=> every basic optimal solution of (RP) is an s,t-path with fij = 0 for all edges (i,j) ∉ IJ

=> this path uses only edges from IJ.

"<="

every s,t-path containing only edges from IJ is feasible in (RP) and has ξ = 0

=> this path is optimal for (P) because of the primal-dual method (is satisfies complementary slackness) !

(2) If there is no path from s to t with edges only from IJ, then π´ with

π�
i :=

�
0 t can be reached from i via edges from I J or i = t
1 otherwise

is optimal for (DRP)

Proof

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-4

π´ is feasible for (DRP)

πi ! 1 and πt = 0 holds by definition

Assume that πi´ - πj´ ! 0 is violated for edge (a,b) ∈ IJ

π´ has only values 0 and 1 => πa´ = 1 and πb´ = 0

Definition of π´ => t can be reached from b via edges from IJ

(a,b) ∈ IJ => t can be reached from a via edges from IJ

=> πa´ = 0, a contradiction

π´ is optimal for (DRP)

The objective function is max w = πs

Constraint πs ! 1 => every π with πs = 1 is optimal

=> π´ is optimal !

(3) For ξopt > 0 and π´ defined in (2) we obtain

θ1 = min { cij - (πi - πj) | (i, j) ∉ IJ, πi´- πj´ = 1 }

Proof

Let ξopt > 0 and π´ be defined as in (2), so in particular optimal for (DRP).

(6.7) implies

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-5

!! " #$% !
"#$ " %&'#$

&%�'&'#$

&#($' �∈)*(&%�'&'#$ + ($

(π´)TAij = πi´ - πj´ > 0 <=> πi´ = 1 and πj´ = 0 => (π´)TAij = πi´ - πj´ = 1 !

(4) The primal-dual algorithm reduces (SP) to a sequence of reachability problems

Can t be reached from i via edges from IJ ?

or., after inverting the orientation of all edges,

Which vertices can be reached from t via edges from IJ ?

Proof

Follows from (1)-(3) !

6.5 Example

Input data

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-6

s

1

2

3

4

t

2

3

1

1

5

23

2

cij

cij " 0 => π = 0 is feasible in (D)

Iteration 1

s

1

2

3

4

t

!

0

0

0 0

0

0

s

1

2

3

4

t

!´

1

1

1 1

1

0
IJ = Ø

2

5

θ1 = min { cij - (πi - πj) | (i, j) ∉ IJ, πi´- πj´ = 1 } = 2 for edge (3,t)

=> π* = π + θ1π´ = (0,...,0)T + 2·(1,1,1,1,1,0)T = (2,2,2,2,2,0)T

Iteration 2

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-7

s

1

2

3

4

t

!

2

2

2 2

2

0

2

s

1

2

3

4

t

!´

1

1

1 0

1

05

3

2

2

θ1 = min { 3 - (2 - 2), 2 - (2 - 2), 5 - (2 - 0) } = 2 for edge (4,3)

=> π* = π + θ1π´ = (2,2,2,2,2,0)T + 2·(1,1,1,0,1,0)T = (4,4,4,2,4,0)T

Iteration 3

s

1

2

3

4

t

!

4

4

4 2

4

0

2

2

s

1

2

3

4

t

!´

1

1

1 0

0

0

3

2

2

1

θ1 = min { 3 - (4 - 2), 1 - (4 - 4) } = 1 for edges (1,3) and (2,4)

=> π* = π + θ1π´ = (4,4,4,2,4,0)T + 1·(1,1,1,0,0,0)T = (5,5,5,2,4,0)T

Iteration 4

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-8

s

1

2

3

4

t

!

5

5

5 2

4

0

2

2

3

1

s

1

2

3

4

t

!´

1

0

0 0

0

0

3

2

2

1

2

1

θ1 = min { 2 - (5 - 5), 1 - (5 - 5) } = 1 for edge (s,2)

=> π* = π + θ1π´ = (5,5,5,2,4,0)T + 1·(1,0,0,0,0,0)T = (6,5,5,2,4,0)T

Iteration 5

s

1

2

3

4

t

π

6
5

5 2

4
0

2
2

3

1
1

optimum
reached

π = (6,5,5,2,4,0)T is dual optimal = vector of shortest distances to t

Detailed interpretation of the different steps

(1) Define W as

W := { i ∈ V | t can be reached from i via edges from IJ } = { i ∈ V | πi´ = 0 }

6. Primal-dual algorithms
6.4 A primal-dual algorithm for the shortest path problem

38-9

W := { i ∈ V | t can be reached from i via edges from IJ } = { i ∈ V | πi´ = 0 }

πi remains unchanged as soon as i ∈ W, since πi´ = 0 afterwards

(2) When an edge (i, j) enters IJ, it stays in IJ,

because πi and πj change by the same amount => πi - πj stays the same

(3) i ∈ W => πi = length of a shortest path from i to t

(inductive proof)

In every iteration of the algorithm, one adds those vertices from V - W to W that are closest to t

(inductive Proof)

Consequence

The primal-dual algorithm for (SP) with c " 0 is essentially Dijkstra's algorithm, as in the chord model in

Section 4.3

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-1

Deriving (P), (D), (RP), (DRP)

Primal LP (P) and dual LP (D)

We consider the formulation of the transportation problem from Section 4.1

(P) min %i,j cijfij s.t.

%j fij = ai for all i (pick up supply ai from vertex i)

%i fij = bj for all j (deliver demand bj to vertex j)

fij " 0 for all i, j

with (w.o.l.g.) %i ai = %j bj

Introduce dual variables αi, βj for the two groups of constraints

αi %j fij = ai for all i

βj %i fij = bj for all j

The dual (D) then is

(D) max %i aiαi + %j bjβj s.t.

αi + βj ! cij for all i, j

αi, βj unconstrained

A feasible solution of (D) is

αi = 0 for all i

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-2

αi = 0 for all i

βj = mini cij for all j does not require that all cij " 0)

Restricted primal (RP)

The set of admissible columns is

IJ = { (i,j) ∈ E | αi + βj = cij }

Restricted primal (RP)

min ξ = % i=1,...,m+n xi
a

%j fij + xi
a = ai for i = 1, ..., m

%i fij + xm+j
a = bj for j = 1, ..., n

fij " 0 for all edges (i,j) ∈ IJ

fij = 0 for all edges (i,j) ∉ IJ

xi
a " 0 for i = 1, ..., m+n

We modify (RP) by substituting the artificial variables xi
a in the objective function and obtain (with fij = 0

for all edges (i,j) ∉ IJ)

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-3

ξ = !i ai + !j bj - 2 !(i,j) ! IJ fij

constant

=> minimizing ξ <=> maximizing %(i,j) # IJ fij

Deleting the artificial variables then yields (because of xi
a " 0)

(RP') max %(i,j) # IJ fij

%j fij ! ai for i = 1, ..., m

%i fij ! bj for j = 1, ..., n

fij " 0 for all edges (i,j) ∈ IJ

fij = 0 for all edges (i,j) ∉ IJ

=> (RP') corresponds to a max-flow problem in the graph G of admissible edges

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-4

s t

a1

a2

am

b1

bn

!

!

!
!

= capacities

admissible edges

I J

The primal-dual algorithm yields:

f is optimal in (P) <=> the maximum flow value fulfills v(f) = %i ai = %j bj

The dual (DRP) of (RP)

Introduce dual variables ui, vj for the two groups of constraints

ui %j fij + xi
a = ai for i = 1, ..., m

vj %i fij + xm+j
a = bj for j = 1, ..., n

The dual of (RP) is

(DRP) max w = %i aiui + %j bjvj s.t.

ui + vj ! 0 for all (i,j) ∈ IJ

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-5

ui + vj ! 0 for all (i,j) ∈ IJ

ui, vj ! 1

ui, vj unrestricted

6.6 Lemma (Optimal solution of (DRP))

Let ξopt > 0 in (RP) and let f be a maximum s,t-flow in G.

Let I* ! I be the set of vertices that can be reached from s in Gf (i.e. there is a flow augmenting path

from s to these vertices).

Let J* ! J be the set of vertices that can be reached from s in Gf (i.e. there is a flow augmenting path

from s to these vertices).

Then

αi := 1 if i ∈ I* αi := -1 if i ∉ I*

βj := -1 if j ∈ J* βj := 1 if j ∉ J*

is an optimal solution of (DRP).

Proof

From ADM I we know that X := {s} $ I* $ J* is a cut of minimum capacity of G, and that every max-flow

algorithm computes such a cut. Hence the sets I* and J* can be determined efficiently.

We analyze this cut of G

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-6

We analyze this cut of G

-1

1

s t

I*

J*
-1

1

flow = 0 on the edges
from I-I* to J*

no edges
from I* to J-J*

saturated
edges

saturated
edges

(1) there is no edge (i,j) from I* to J-J*

otherwise j ∈ J* because of the infinite capacity of (i,j)

(2) fij = 0 for all edges (i,j) from I-I* to J*

otherwise (j,i) is a backward edge in Gf, implying i ∈ I*

(3) edges (s,i) from s to I-I* are saturated

otherwise i ∈ I*

(4) the edges (j,t) from J* to t are saturated

otherwise there is a flow augmenting s,t-path

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-7

otherwise there is a flow augmenting s,t-path

(5) the flow value is v(f) = %i # I-I* ai + %j # J* bj

since: v(f) = net outflow out of X = {s} $ I* $ J* into V(G) - X

 => (5) follows from (1) - (4)

(A) αi and βj are feasible for (DRP)

Show that αi + βj ! 0

If αi + βj > 0 => αi = 1 and βj = 1 => i ∈ I* and j ∈ J-J*

=> a contradiction to (1)

(B) αi and βj are optimal for (DRP)

The objective function value for αi and βj is

w = %i aiαi + %j bjβj

= %i # I* ai - %i # I-I* ai - %j # J* bj + %j # J-J* bi

Because of (DRP') and (5)

ξopt = %i ai + %j bj - 2v(f)

 = %i ai + %j bj - 2(%i # I-I* ai + %j # J* bj) = w

Weak duality => αi and βj are optimal !

Updating the dual solution

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-8

Updating the dual solution

Let αi and βj be a dual solution of (D) and let αi´ and βj´ be the optimal solution of (DRP)

If ξopt > 0, then there are 2 cases in the primal-dual algorithm (Theorem 6.2)

Case 1: αi´ + βj´ ! 0 for all (i,j) ∉ IJ

=> (P) is infeasible by Theorem 6.2

this cannot happen as (P) has a feasible solution,

e.g. fij = (1/%k ak)·ai·bj

Case 2: αi´ + βj´ > 0 for some (i,j) ∉ IJ

So this case is the standard case. (6.7) yields

!! " #$% !
"#$ " %&'#$

&%�'&'#$

&#($' �∈)*(&%�'&'#$ + ($

! "#$!

!"# " $" " %#

$�
" % %

�
#

&"& #' �∈ '(& $�
" % %

�
) ($

! "#$!

!"# " $" " %#

%
" ∈ &∗' # �∈ (∗ $

We summarize

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-9

6.7 Lemma (Updating the dual solution)

Let ξopt > 0 in (RP) and let f be a maximum s,t-flow in G.

Let I* ! I be the set of vertices that can be reached from s in Gf

Let J* ! J be the set of vertices that can be reached from s in Gf

Then

!! " #$% !
"#$ " %# " &$

&
∈ '∗($ �∈)∗ $

and the new dual solution is obtained as

αi* = αi + θ1 if i ∈ I* αi* = αi - θ1 if i ∉ I*

βj* = βj - θ1 if j ∈ J* βj* = βj + θ1 if i ∉ J*

Every optimal flow of the old (RP') stays feasible in the new (RP').

Proof

The new dual solution is obtained as π* := π + θ1π´

Hence the values of αi* and βj* follow from the value of θ1 and Lemma 6.6

It remains to show that the optimal flow stays feasible. This follows already from Theorem 6.3, since the

optimal flow is a basic feasible solution of (RP'). We give a direct proof below.

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-10

optimal flow is a basic feasible solution of (RP'). We give a direct proof below.

Claim: edges (i,j) with positive flow stay admissible in the new (RP)

fij > 0 => edge (i,j) is admissible in the old (RP) => αi + βj = cij

analysis of the cut of G (Proof of Lemma 6.6) => two possible cases

Case 1: i ∈ I* and j ∈ J*

=> αi* + βj* = αi + θ1 + βj - θ1 = αi + βj = cij

Case 2: i ∈ I-I* and j ∈ J-J*

=> αi* + βj* = αi - θ1 + βj + θ1 = αi + βj = cij !

The primal-dual algorithm for the transportation problem

Algorithm alpha-beta

Input

Instance of the transportation problem, i.e., numbers ai > 0, bj > 0, and cij with %i ai = %j bj

Output

A minimum cost transportation plan fij

Method

Determine a feasible solution of (D) by

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-11

Determine a feasible solution of (D) by

αi := 0 for all i

βj := mini cij for all j

repeat

construct graph G of admissible edges from IJ := { (i,j) ∈ E | αi + βj = cij }

compute a maximum s,t-flow f in G // warmstart with the flow from the previous iteration is possible

if v(f) < %i ai then

set I* := { i ∈ I | there is a flow augmenting s,i-path in Gf }

set J* := { j ∈ J | there is a flow augmenting s,j-path in Gf }

set

!! "# $%& !

"#$ " %# " &$

'
∈ '∗($ �∈)∗ $

and take as new dual solution

αi := αi + θ1 if i ∈ I* αi := αi - θ1 if i ∉ I*

βj := βj - θ1 if j ∈ J* βj := βj + θ1 if i ∉ J*

until v(f) = %i ai

return flow f

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-12

return flow f

Interpretation

For the transportation problem, the paradigm of the primal-dual algorithm leads to two nested loops of

reachability problems . The loops "combinatorialize" cost and capacities.

Transportation Problem
combinatorialize cost

Max-Flow-Problem
combinatorialize capacities

Reachability Problem
find a flow augmenting path

6.8 Example

Input data

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-13

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

cij matrix

1

2

3

1

2

3

4

5

3

4

3

2

2

5

ai bj

Calculating the dual solution

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

= mini cij
αi
0
0
0

βj 1 1 2 2

marks the admissible
edges (i,j)

Iteration 1

Construct graph G of admissible edges and compute a maximum s,t-flow in G and the sets I* and J*

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-14

1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

1

2

3

1

2

3

4

s t

2

3

3

2

f

4

4

4

3

2

I*

J*

flow value v(f) = 9 < %i ai = 12 => update the dual solution

Updating the dual solution

Determine θ1

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
0
0
0

βj 1 1 2 2

cij matrix

!! "# $%& !
"#$ " %# " &$

'
∈ '∗($ �∈)∗ $

I* = { 1 }, J* = { 2 }

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-15

I* = { 1 }, J* = { 2 }

edge (1,1) -> (2 - 0 - 1) / 2 = 1/2

edge (1,3) -> (3 - 0 - 2) / 2 = 1/2 => θ1 = 1/2

edge (1,4) -> (4 - 0 - 2) / 2 = 1

Computing the new dual solution

αi := αi + θ1 if i ∈ I* αi := αi - θ1 if i ∉ I*

βj := βj - θ1 if j ∈ J* βj := βj + θ1 if i ∉ J*

So α1 = 1/2 α2 = -1/2 α3 = -1/2

β1 = 3/2 β2 = 1/2 β3 = 5/2 β4 = 5/2

Iteration 2

Construct graph G of admissible edges

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-16

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
1/2
-1/2
-1/2

!"
!

"

#

"

$

"

$

"

marks admissible edges

1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

Compute a maximum s,t-flow in G and the sets I* and J*

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-17

1

2

3

1

2

3

4

s t

2

3

3

2

f

4

4

4

3

2

I*

J*

1

2

3

1

2

3

4

s t

4

3

3

2

f

4

4

4

3

2

I*

J*

2

2

 previous flow new flow

flow value v(f) = 11 < %i ai = 12 => update the dual solution

Updating the dual solution

Determine θ1

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-18

!! "# $%& !
"#$ " %# " &$

'
∈ '∗($ �∈)∗ $

1 2 3 4

1 2 1 3 4

2 1 2 2 3

3 3 1 4 2

!
i

1/2

-1/2

-1/2

!"
!

"

#

"

$

"

$

"

I* = { 1, 2 }, J* = { 1, 2, 3 }

edge (1,4) -> (4 - 1/2 - 5/2) / 2 = 1/2

edge (2,4) -> (3 + 1/2 - 5/2) / 2 = 1/2 => θ1 = 1/2

Compute the new dual solution

αi := αi + θ1 if i ∈ I* αi := αi - θ1 if i ∉ I*

βj := βj - θ1 if j ∈ J* βj := βj + θ1 if i ∉ J*

So α1 = 1 α2 = 0 α3 = -1

β1 = 1 β2 = 0 β3 = 2 β4 = 3

Iteration 3

Construct graph G of admissible edges

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-19

1 2 3 4
1 2 1 3 4
2 1 2 2 3
3 3 1 4 2

αi
1
0
-1

βj 1 0 2 3

marks admissible edges

1

2

3

1

2

3

4

s t

5

3

4

3

2

2

5

G

Compute a maximum s,t-flow in G and the sets I* and J*

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-20

1

2

3

1

2

3

4

s t

4

3

3

2

f

4

4

4

3

2

I*

J*

2

2

1

2

3

1

2

3

4

s t

5

3

3

2

f

4

4

5

3

2

2

2

1

 previous flow new flow

flow value v(f) = 12 = %i ai = 12 => have constructed an optimal solution

Runtime of the algorithm

Let w.o.l.g. m ! n => G has O(n) vertices and O(n2) edges

The primal objective of (RP') increases with every flow augmenting path and is bounded from above by %i ai .

=> total runtime for flow augmentations is (%i ai)·O(breadth first search) = (%i ai)O(n2)

All other computations (constructing G, θ1, the new dual solution) are in O(n2) and happen at most (%i ai)

6. Primal-dual algorithms
6.5 A primal-dual algorithm for the transportation problem

39-21

All other computations (constructing G, θ1, the new dual solution) are in O(n2) and happen at most (%i ai)

times

=> Total runtime of the primal-dual algorithm is (%i ai)O(n2)

=> the primal-dual algorithm is only pseudo-polynomial

It can be improved by Capacity Scaling for the ai and bj (see ADM I, Section 6.4, for capacity scaling)

=> essentially only log(max { ai, bj }) many max-flow problems with runtime O(n3)

An interesting special case is the assignment problem, which is defined by ai = bj = 1 (then n = m)

=> %i ai = n => runtime O(n3)

The alpha-beta algorithm was first developed for maximum weighted matching in bipartite graph (Paul Kuhn

1955) and is known as Hungarian method, see e.g.

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency

Volume 1, Chapter 17.2

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-1

Goal of this section

Sketch of a primal dual algorithm for weighted (perfect) matching.

This closes the gap from ADM I, Section 7.1

Matching

Let G be an undirected graph. A matching of G is

a set M ! E(G) of edges such that no 2 edges of M share an endpoint

a matching M is called perfect if every vertex of G is incident to an edge of M

a graph with a perfect matching (red edges)

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-2

Maximum weight matching problem (MWMP)

Instance

Undirected graph G, edge weights c(e)

Task

Find a matching M with maximum weight c(M)

!!"" #
�

#∈"

!!#"

Minimum weight perfect matching problem (MWPMP)

Instance

Undirected graph G, edge weights c(e)

Task

Find a perfect matching M with minimum weight c(M)

or report that there is no perfect matching

6.8 Lemma (Equivalence of matching problems)

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-3

MWMP and MWPMP are equivalent in the sense that there is a simple transformation from one problem to the

other such that one can construct from an optimal solution of one problem an optimal solution of the other.

Proof

"=>"

Let (G,c) be an instance of the minimum weight perfect matching problem.

Choose K large enough so that c'(e) := K - c(e) > 0 for all edges e, and only maximum cardinality

matchings of G have maximum weight w.r.t. c'. (K := 1 + %e # M |c(e)| suffices)

Let M be an optimal solution of the maximum weight matching problem for (G, c')

M has maximum cardinality => M is a perfect matching for (G,c) or there is no perfect matching in G

If M is perfect, then c'(M) = Kn/2 - %e # M c(e). So M has maximum weight w.r.t. c' iff M has

minimum weight w.r.t. c.

"<="

Let (G,c) be an instance of the maximum weight matching problem.

Add |V(G)| many new vertices to G and so many edges that the new graph G' is complete.

Set c'(e) := - c(e) if e ∈ E(G) and c'(e) := 0 if e is a new edge.

Let M' be an optimal solution of the minimum weight perfect matching problem for (G', c')

=> M := M' " E(G) is an optimal solution of the maximum weight matching problem !

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-4

=> M := M' " E(G) is an optimal solution of the maximum weight matching problem !

The primal-dual algorithm for the minimum weight perfect matching problem

Primal LP (P)

There is no obvious LP-formulation. The following theorem was one of the pioneering results of Edmonds.

Given an instance (G,c) with G = (V, E), he considers the LP (P)

min %e # E c(e)xe

x(δ(v)) = 1 for all v ∈ V

x(δ(S)) " 1 for all odd vertex sets S of G

x " 0

Here x(δ(S)) := %e # δ(S) xe

6.9 Theorem (Matching polytope Theorem, Edmonds 1965)

Let (G,c) be an instance of the minimum weight perfect matching problem. Then:

(1) G has a perfect matching <=> (P) has a feasible solution

(2) In this case the minimum weight of a perfect matching of G is equal to the optimal value of (P).

Proof

The primal-dual algorithm constructs an optimal solution x of (P) (if there is one) that is a perfect

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-5

The primal-dual algorithm constructs an optimal solution x of (P) (if there is one) that is a perfect

matching of G.

=> Theorem 6.9 and Lemma 3.5 imply that all basic feasible solutions of (P) correspond to perfect

matchings. !

Dual LP (D)

We do not transform (P) into standard form. The primal-dual algorithm can be adapted also to other forms of

(P).

Let U be the set of all odd vertex sets of G. The dual LP of (P) is (D)

max %(yv : v ∈ V) + %(YS : S ∈ U)

yv + yw + %(YS : e ∈ S ∈ U) ! c(e) for all edges e = vw ∈ E

YS " 0 for all S ∈ U

yv unrestricted

Complementary slackness conditions

xe > 0 => c(e) - (yv + yw + %(YS : e ∈ S ∈ U)) = 0

YS > 0 => x(δ(S)) = 1

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-6

YS > 0 => x(δ(S)) = 1

If x is the incidence vector of a perfect matching M, then the complementary slackness conditions are

equivalent to

e ∈ M => c(e) - (yv + yw + %(YS : e ∈ S ∈ U)) = 0 (6.8)

YS > 0 => |M " δ(S)| = 1 (6.9)

Remarks on the primal-dual algorithm

(6.8) defines "admissible" edges for the matching that we look for in the (RP)

(6.9) corresponds to |M " δ(S)| = 1, if S has been shrunk to a pseudo-node v (a blossom)

=> a solution of (RP) corresponds essentially to searching a perfect (so a maximum cardinality) matching in the

graph of admissible edges in which all sets S with YS > 0 are shrunk

=> we can compute such a solution with the algorithm for a maximum cardinality matching (e.g. the one from

ADM I).

An optimal solutions of (DRP) can (similar to the transportation problem) be obtained directly from the best

matching in (RP), but this is more complicated than for the transportation problem.

Altogether, the minimum weight perfect matching problem reduces to a sequence of maximum cardinality

matching problems.

6. Primal-dual algorithms
6.6 A primal-dual algorithm for the weighted matching problem (a sketch)

40-7

matching problems.

The algorithm can be implemented to run in O(n2m) time. In particular, at most n variables YS > 0

throughout the algorithm.

There are improvements for dense graphs (that work only on sparse subsets of the edges)

For details see Chapter 5.3 in

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver

Combinatorial Optimization

Wiley 1998

7. Integer linear optimization

41

.. 427.1 Introduction
.. 437.2 Totally unimodular matrices
.. 447.3 Branch and bound algorithms

... 457.4 Lagrangian relaxation
.. 467.5 Cutting plane algorithms

.. 477.6 Optimization and separation

7. Integer linear optimization
7.1 Introduction

42-1

Integer linear programs (Integer Linear Program, ILP, IP) require all variables to be integer, i.e., xj ∈ Z for all j.

Mixed integer linear programs (Mixed Integer Linear Program, MILP, MIP) may require only some of them to be

integer.

In this section:

Integer variables add much modeling power. Many non-linear effects can be modeled by IPs.

The drawback is that IPs are NP-hard in general.

LP relaxation of an IP

standard form of an IP

min cTx

s.t. Ax = b

x " 0 and integer

Special case: 0/1 IP or Binary Integer Program

min cTx

s.t. Ax = b

xj ∈ { 0, 1 }

7. Integer linear optimization
7.1 Introduction

42-2

The LP relaxation of an IP is obtained be dropping the integrality constraints, i.e.,

min cTx

s.t. Ax = b

x " 0

in the general case, and

min cTx

s.t. Ax = b

0 ! xj ! 1

in the 0/1 case.

Solving the LP relaxation and rounding

need not yield a feasible solution

may work when variables have large values, but even then large errors can occur.

7. Integer linear optimization
7.1 Introduction

42-3

objective function

IP optimum

LP optimum

If xj ∈ { 0, 1 } (decision variables)

e.g. the fij in the shortest path problem

then rounding a fractional solution need not make sense

(we will use it nevertheless later with some care for approximation algorithms)

Modeling with IPs

(1) Fixed Charge Cost

7. Integer linear optimization
7.1 Introduction

42-4

0

b

x

c(x)

c(x) =

�
ax + b i f x > 0
0 i f x = 0

! ∈ R!" #" $ % "

Introduce a 0/1-variable δ and the constraint x ! δ·U,

where U is an upper bound for the values of x

Claim: the cost function can now be modeled as c(x,δ) = ax + bδ
x > 0 => δ = 1 => c(x) = ax + b

x = 0 => δ = 0 in the optimum, as a, b > 0 => c(x) = 0 !

(2) Disjunctive constraints

x " a or y " b with a, b " 0 and x, y " 0

Introduce a 0/1-variable δ

Claim: The inequalities x " δa and y " (1-δ)b model the disjunctive constraint

clear since δ is a 0/1 variable !

7. Integer linear optimization
7.1 Introduction

42-5

(3) Conditional constraints

if x < a then y " b else y " 0 with a, b > 0

Claim: A conditional constraint can be reduced to case (2)

the conditional constraint is equivalent to

y " 0

x " a or y " b !

(4) Discrete variables

x ∈ { s1, ..., sm }

Claim: a discrete variable x ∈ { s1, ..., sm } can be modeled as

 x = s1δ1 + ... + smδm with δj ∈ { 0, 1 } and δ1 + ... + δm = 1

clear !

7.1 Example (Minimum weight perfect matching problem as IP)

Every solution of the IP

min %e # E c(e)xe

7. Integer linear optimization
7.1 Introduction

42-6

min %e # E c(e)xe

x(δ(v)) = 1 for all v ∈ V

xe ∈ { 0, 1 }

is a perfect matching

Complexity of ILPs

7.2 Theorem (Complexity of ILPs)

(1) SATISFIABILITY (SAT) is reducible to ILP

(2) Deciding if an ILP has a feasible solution is an NP-hard problem

(3) It is NP-hard to round a feasible solution of the LP relaxation of an ILP to a feasible solution of the ILP

Proof

Consider an instance of SAT given by m clauses C1, ..., Cm with Boolean variables x1, ..., xn

Introduce for every Boolean variable xi a 0/1-variable zi with zi = 1 if xi = TRUE

Satisfying a clause can then be written as a linear inequality, and the existence of a satisfying truth

assignment is equivalent to the existence of a feasible solution of the ILP.

Example:

7. Integer linear optimization
7.1 Introduction

42-7

!! ∨ !" ∨ !#� �� �
"!

!! ∨ !"� �� �
""

!" ∨ !#� �� �
"#

!# ∨ !!� �� �
"$

!! ∨ !" ∨ !#� �� �
"%

is equivalent to

z1 + z2 + z3 " 1

z1 + (1-z2) " 1

z2 + (1-z3) " 1

z3 + (1-z1) " 1

(1-z1) + (1-z2) + (1-z2) " 1

zi ∈ { 0, 1 }

If every clause has " 2 literals (this is the non-trivial case), then zi = 1/2 is a feasible solution of the LP

relaxation. So rounding to a feasible solution of the ILP is as hard as finding a satisfying truth assignment

for the given SAT instance. !

Remark:

The proof does not show that testing for feasibility is NP-complete. To that end we need a certificate for

feasibility of polynomial length (see ADM I). It is not directly obvious if such a certificate exists.

One can, however, show that the entries xj of an integer feasible solution x are not too large (a statement

7. Integer linear optimization
7.1 Introduction

42-8

One can, however, show that the entries xj of an integer feasible solution x are not too large (a statement

similar to Lemma 3.4). Thus x itself can serve as a certificate. So NP-hard can be replaced by NP-complete in

Theorem 7.2.

7. Integer linear optimization
7.2 Totally unimodular matrices

43-1

Main question of this section

When does an LP have integer basic solutions?

=> Then the corresponding ILP can be solved by solving the LP relaxation with the simplex algorithm.

We consider here the following special case:

When does Ax = b have only integer basic solutions for an arbitrary choice of integer right hand side b?

This is then a property of the matrix A

Totally unimodular matrices

A quadratic matrix B with integer entries is called unimodular

:<=> det B ∈ { -1, 1 }

A matrix A with integer entries is called totally unimodular (TUM)

:<=> every quadratic non-singular submatrix is unimodular

First properties

A TUM => A has only entries aij ∈ { -1, 0, 1 }

the smallest non-unimodular matrix is

7. Integer linear optimization
7.2 Totally unimodular matrices

43-2




! ! "

" ! !

! " !





Given a basis B of A with B = (AB(1), AB(2), ..., AB(m)), Cramer's rule yields

xB(i) =

det Bi

det B
with Bi = (AB(1), . . . , AB(i−1), b, AB(i+1), . . . , AB(m))

=> xB(i) is integer if A is TUM and b is integer

Polyhedra of linear optimization problems with integer vertices

Let R1(A) := { x ∈ R! | Ax = b, x " 0 } be the polyhedron of the standard form of the LP

Let R2(A) := { x ∈ R! | Ax ! b, x " 0 } be the polyhedron of the canonical form of the LP

Remark:

Both polyhedra are are defined here as subsets of R!.

The definition of R2(A) follows the correspondence between geometric and algebraic interpretation of LPs in

Section 3.3. Thus the vertices of R2(A) correspond to the basic feasible solutions of the LP { Ax + s = b, x, s

" 0 } enhanced by slack variables s.

The vertices of R1(A) correspond also to the basic feasible solutions of the LP { Ax = b, x " 0 }

7. Integer linear optimization
7.2 Totally unimodular matrices

43-3

The vertices of R1(A) correspond also to the basic feasible solutions of the LP { Ax = b, x " 0 }

because:

If x is a basic feasible solution with basis B, then xN = 0, i.e., x lies in the intersection of the n-m

hyperplanes xi = 0 with i ∈ N and the m hyperplanes aix = bi, i = 1, ..., m.

The opposite direction follows with arguments similar to those in the proof of Theorem 3.6.

Example:

x2

x1

x3

(1,0,0)

R1(A)

A = (1,1,1)

x2

x1

(1,0)

R2(A)

A = (1,1)

Here x3 takes the role of a slack variable for R2(A)

7. Integer linear optimization
7.2 Totally unimodular matrices

43-4

7.3 Theorem (Integrality of R1(A))

If A is totally unimodular, then all vertices of R1(A) are integer for any integer right hand side b.

In particular, for an LP in standard form with totally unimodular matrix A and integer right hand side b, the

simplex algorithm always terminates with an integer optimal solution.

Proof:

follows from section "first properties" !

7.4 Theorem (Integrality of R2(A))

If A is totally unimodular, then all vertices of R2(A) are integer for any integer right hand side b.

In particular, for an LP in canonical form with totally unimodular matrix A and integer right hand side b, the

simplex algorithm applied to the corresponding standard form with slack variables always terminates with an

integer optimal solution.

Proof:

Adding slack variables gives the matrix (A|I).

Let C be a non-singular quadratic submatrix of (A|I)

=> after a suitable permutation of the rows, C has the form

7. Integer linear optimization
7.2 Totally unimodular matrices

43-5

=> after a suitable permutation of the rows, C has the form
�

! !

" #$

�

with B = quadratic submatrix of A

Ik = (k,k)-identity matrix

=> |det(C)| = |det(B)| = 1, since A is TUM

=> (A|I) is TUM

=> statement with Theorem 7.3 and Theorem 3.10 !

So Theorems 7.3 and 7.4 say that the polyhedra R1(A) and R2(A) have integer vertices, if A is totally

unimodular and the right hand side b is integer.

Recognizing totally unimodular matrices

The complexity of recognizing totally unimodular matrices has been open for a long time and was solved by

Seymour only in 1980. He proved a "Decomposition Theorem" stating that every totally unimodular matrix can be

constructed from "simple" totally unimodular matrices by certain construction rules. His Decomposition

Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)

7. Integer linear optimization
7.2 Totally unimodular matrices

43-6

Theorem leads to a polynomial algorithm for recognizing totally unimodular matrices. It has a runtime of O((m+n)
4m).

For details see Chapters 19 and 20 in

A. Schrijver

Theory of Linear and Integer Programming

Wiley 1986

We will only show a sufficient criterion

7.5 Theorem (A sufficient criterion for total unimodularity)

A matrix A with entries aij ∈ { -1, 0, 1 } is totally unimodular if it fulfills (1) and (2) below:

(1) A has at most 2 entries $ 0 per column

(2) The rows of A can be partitioned into two disjoint sets I1, I2 such that

for every column with 2 entries $ 0 and the same sign, the associated rows lie in different sets Ij

for every column with 2 entries $ 0 and different signs, the associated rows lie in the same set Ij

Proof by induction on the size k of the quadratic submatrix

Base case k = 1

7. Integer linear optimization
7.2 Totally unimodular matrices

43-7

Base case k = 1

obvious, as A has only entries aij ∈ { -1, 0, 1 }

Inductive step to k

Let C be a quadratic non-singular (k,k)-submatrix of A

=> each column of C has at least one entry $ 0

Case 1: C has a column with exactly one entry aij $ 0

Laplace expansion of det(C) along this column yields

 |det(C)| = |aij|·|det(C')|

where C' is the submatrix of C after deleting row i and column j

C non-singular => |det(C')| $ 0

inductive assumption => |det(C')| = 1

aij ∈ { -1, 1 } => |det(C)| = 1

Case 2: all columns of C have at least 2 entries $ 0

(1) => all columns have exactly 2 entries $ 0

consider the partition of the rows in I1, I2 according to (2)

=>
�

!∈"!
#!$ "

�
!∈"#

#!$ for every column j

=>

7. Integer linear optimization
7.2 Totally unimodular matrices

43-8
=> for every column j

=>
�

!∈"!
#! !

�
!∈""

#! # $

i.e., a linear combination of the row vectors of C yields the null vector

=> this contradicts that C is non-singular

=> this case cannot occur !

7.6 Corollary (Important classes of totally unimodular matrices)

Every LP in standard form or canonical form, whose matrix of coefficients is the

1. vertex-edge incidence matrix of a digraph

2. vertex-edge incidence matrix of a bipartite graph

has only integer basic optimal solutions (for an integer right hand side b).

This covers LP formulations of

shortest path problems

max-flow problems

transportation problems

Proof

Case 1

In this case, A contains exactly one +1 and one -1 per column

7. Integer linear optimization
7.2 Totally unimodular matrices

43-9

In this case, A contains exactly one +1 and one -1 per column

=> set I1 = set of all rows, I2 = Ø

Case 2

Let G be a bipartite graph with bipartition A and B

i

j
A B

=> the column of edge ij contains exactly 2 entries $ 0, a +1 for vertex i, and a +1 for vertex j

=> set I1 = A, I2 = B !

The Theorem of Birkhoff & von Neumann for doubly stochastic matrices

We show with our results a famous theorem on doubly stochastic matrices

An nxn-matrix with entries 0 ! aij ! 1 is called doubly stochastic

:<=> each of its rows and columns sums to 1

7. Integer linear optimization
7.2 Totally unimodular matrices

43-10

:<=> each of its rows and columns sums to 1

An nxn-matrix with entries aij ∈ { 0, 1 } is called a permutation matrix

:<=> each of its rows and columns contains exactly one 1

7.7 Theorem (Birkhoff 1946, von Neumann 1953)

Every doubly stochastic nxn-matrix is a convex combination of nxn-permutation matrices

Proof

A doubly stochastic matrix M can be seen as a feasible solution of the assignment problem

min %i,j cijfij s.t.

%j fij = 1 for all i = 1, ..., n

%i fij = 1 for all j = 1, ..., n

fij " 0 for all i, j

Let A be the associated matrix of coefficients and let R1(A) be the associated polyhedron of the

standard form

=> R1(A) is a polytope, as the feasibility domain is bounded because of 0 ! fij ! 1

Minkowski's Theorem (Theorem 3.9) => M is a convex combination of the vertices of R1(A)

A is the vertex-edge incidence matrix of the complete bipartite graph Kn,n

7. Integer linear optimization
7.2 Totally unimodular matrices

43-11

A is the vertex-edge incidence matrix of the complete bipartite graph Kn,n

=> A is totally unimodular because of Corollary 7.6

=> The vertices von R1(A) are integer because of Theorem 7.3

0 ! fij ! 1 => the vertices of R1(A) are permutation matrices !

7. Integer linear optimization
7.3 Branch and bound algorithms

44-1

Goal of this section

Introduction of Branch and Bound as a standard technique for solving NP-complete problems exactly, in

particular IPs.

Although quite simple, Branch and Bound is the basis and the workhorse for all commercial IP solvers, but of

course improved by quite a number of additional methods and tricks.

The basic idea of Branch and Bound

Branch and Bound (B&B) = problem dependent, cleverly organized systematic search in the set of feasible

solutions for an optimal solution, or until termination with a "good" solution (i.e., one with an instance-dependent

performance guarantee)

The use of lower bounds for a minimization problem

7. Integer linear optimization
7.3 Branch and bound algorithms

44-2

gap

solution

cost

we do not know how good a feasible solution is, if it was computed with a heuristic (e.g. with local search)

gap solution

cost

lower bound

lower bounds for the optimal value narrow the "optimality gap"

So: If the optimum is unknown, then lower bounds yield quality guarantees for solutions of a hard optimization

problem

Branch & Bound

7. Integer linear optimization
7.3 Branch and bound algorithms

44-3

illustrated for the disjoint path problem (see Section 4.4)

We imagine the solution space (= set of feasible solutions) as a set of points

Every point represents a feasible solution

Branching = partition the current set of solutions into " 2 subsets (not necessarily disjoint)

7. Integer linear optimization
7.3 Branch and bound algorithms

44-4

branching is usually displayed in a tree (Branch and Bound Tree)

here: partition the set of solutions into 4 subsets depending on which red edge is used on a path between the

red terminals

7. Integer linear optimization
7.3 Branch and bound algorithms

44-5

the subsets are displayed as children of the parent

branching is iterated, this generates the B&B tree

here: the choice of the topmost red edge generates the subproblem given by the graph below, which no

longer contains the topmost red edge, as it is reserved for den path connecting the red terminals above. So

in the subproblem, the red terminal has been moved.

7. Integer linear optimization
7.3 Branch and bound algorithms

44-6

the set of feasible solutions of that subproblem can then be partitioned again w.r.t. to edges of the same or

another pair of terminals

here: choose the green terminals and partition the set of solutions into 2 subsets representing the 2 ways to

choose a green edge for the path

7. Integer linear optimization
7.3 Branch and bound algorithms

44-7

Bounding is used for pruning branches of the B&B tree with the use of lower bounds

Assumption 1: we know a feasible solution with cost k

7. Integer linear optimization
7.3 Branch and bound algorithms

44-8

Assumption 1: we know a feasible solution with cost k

Assumption 2: we know a lower bound s for the optimal value in L1

=> we need not search L1 if s " k and thus may delete the subtree of the B&B tree rooted in L1

This way of deleting subtrees of the B&B tree is called pruning, and is depicted here by brown (withered)

branches. The node (and its subtree) is then called fathomed.

7. Integer linear optimization
7.3 Branch and bound algorithms

44-9

Branching and Bounding is used together with

Good search strategies for choosing the next node (= subset of feasible solutions) in the B&B tree

depth-first search

breadth-first search

best-first-search (node with best (= smallest) lower bound)

combinations of the above

The tree is of course maintained implicitly and will never be generated explicitly

Techniques for generating good lower bounds (next chapter)

Lagrangian relaxation

7. Integer linear optimization
7.3 Branch and bound algorithms

44-10

Lagrangian relaxation

LP-relaxation (natural for IPs)

Techniques for constructing feasible solutions in tree nodes (they provide upper bounds on the optimum)

Runtime is exponential, depends very much on the quality of the lower bounds

7. Integer linear optimization
7.3 Branch and bound algorithms

44-11

good lower bounds bad lower bounds

small B&B tree huge B&B tree

Generic Branch and Bound Algorithm

Input

7. Integer linear optimization
7.3 Branch and bound algorithms

44-12

Input

instance I of a problem

Output

feasible solution x ∈ SI with performance guarantee given by the objective function value c(x) and a lower

bound � for the optimum

Ingredients

lower bounding strategy

branching strategy

search strategy

Method

1. Work in the root

consider a slightly modified, easier to solve instance I' (a relaxation) for computing a lower bound for I;

compute the optimal solution x' of I', let z' be the objective function value;

if x' ∈ SI then return x' // x' is optimal

set � := z' // initial global lower bound

// initialize data structure D for maintaining the already generated still unsearched nodes of the B&B tree

add I with (I) := to D

7. Integer linear optimization
7.3 Branch and bound algorithms

44-13

add I with �(I) := � to D

use heuristics to generate feasible solutions

set x* := best feasible solution found

set u := c(x*) // initial upper bound

2. Main loop

while performance guarantee (u-�)/� is not small enough and we have not run out of time or memory do

choose next node v of the B&B tree from D for searching // search strategy

if �(v) " u then delete v from D // pruning

else

generated the children v1, ..., vk of v // branching rule

// union of the feasibility domains of the children = feasibility domain of v

for each child vi do

compute the optimal solution x' of (the relaxation of) the associated subproblem, let z' be its

objective function value // bounding rule

if x' ∈ SI and z' < u then

x* := x' // update the best known feasible solution

u := z' // update the global upper bound

7. Integer linear optimization
7.3 Branch and bound algorithms

44-14

u := z' // update the global upper bound

else

if z' < u then add vi with �(vi) := z' to D // new subproblem

delete v from D // v is fathomed

� := min { �(w) | w in D } // update global lower bound

return x* and �

Branch and Bound for IPs

natural for bounding: LP relaxation

natural for branching: branch w.r.t. fractional variables in the LP relaxation

7.8 Example (The KNAPSACK problem, see ADM I)

KNAPSACK

Instance

n items with weight wi and profit ci

a knapsack with capacity (= total weight) W

Task

7. Integer linear optimization
7.3 Branch and bound algorithms

44-15

Task

find a subset S ! { 1, ..., n } with

maximum value c(S) := % { cj | j ∈ S }

capacity of the knapsack is respected, i.e., w(S) := % { wj | j ∈ S } ! W

An IP formulation of KNAPSACK

Introduce 0/1-variable xj with xj = 1 if item j is put into the knapsack

min %j -cjxj s.t.

%j wjxj ! W

xj ∈ { 0, 1 }

7.9 Lemma (Optimal solutions of the LP relaxation of KNAPSACK)

An optimal solution of the LP-relaxation

min %j -cjxj

%j wjxj ! W

0 ! xj ! 1

of the IP formulation of KNAPSACK is obtained as follows

sort and number the items is such a way that c1/w1 " c2/w2 " ... cn/wn (largest profit per unit weight

7. Integer linear optimization
7.3 Branch and bound algorithms

44-16

sort and number the items is such a way that c1/w1 " c2/w2 " ... cn/wn (largest profit per unit weight

first)

compute in this order the smallest k, such that w1 + w2 + ... + wk+1 > W

set x1 = x2 = ... = xk = 1

xk+1 = (W - w1 - w2 - ... - wk)/wk+1

xj = 0 otherwise

Proof by checking complementary slackness

the primal dual pair is given by

c
1
 ... c

n

w
1
 ... w

n

1

1

!

!

!

x
1
 ... x

n

W

1

1

u

v
1

v
n

complementary slackness conditions give

(1) xj > 0 => wju + vj = cj

(2) u > 0 => %j wjxj = W (is satisfied by x from the lemma)

(3) vj > 0 => xj = 1

7. Integer linear optimization
7.3 Branch and bound algorithms

44-17

(3) vj > 0 => xj = 1

Define a dual feasible solution that, together with x, satisfies conditions (1) and (3)

(3) => vk+1 = vk+2 = ... = vn := 0

=> (with (1) for j = k+1) wk+1u = ck+1 => u = ck+1/wk+1

=> (with (1) for j = 1, ... k) wj(ck+1/wk+1) + vj = cj

=> vj := cj - wj(ck+1/wk+1) for j = 1, ... k

=> we have defined values for all dual variables from observing conditions (1) and (3)

show: this defines a dual feasible solution

need only show vj " 0, i.e., cj - wj(ck+1/wk+1) " 0 for j = 1, ... k.

This follows from cj/wj " ck+1/wk+1 for j = 1, ... k !

Use the generic B&B algorithm with the following ingredients

lower bounding strategy = LP relaxation solved with Lemma 7.9

branching strategy = branch on fractional variables xk+1

search strategy = best first

Instance

7. Integer linear optimization
7.3 Branch and bound algorithms

44-18

Instance

W = 35! "! #!
#!
"!

! !" !!# $

!% &' "

((!% %

) (!#)

% (& (

") !# (

$!(#" #

heuristic solution x1 = x2 = x3 = 1, xj = 0 otherwise => upper bound u = -217

LP relaxation gives x1 = x2 = x3 = 1, x4 = 1/3, xj = 0 otherwise => lower bound � = -221

Branch and Bound Tree

7. Integer linear optimization
7.3 Branch and bound algorithms

44-19

x1 = x2 = x5 = 1

x3 = 1/3

lb = -216 > u

x1 = x2 = x4 = 1

x5 = 1/3

lb = -217 ! u

x1 = x3 = x4 = 1

x2 = 13/15

lb = -217 ! u

x1 = x2 = x3 = 1

feasible
z' = -217 ! u

x1 = x2 = x3 = 1

x7 = 1/13

lb = -219

x1 = x2 = x6 = 1

feasible
z' = -214 > u

x1 = x2 = x3 = 1

x6 = 1/4

lb = -220

x1 = x2 = x3 = 1

x5 = 1/3

lb = -220

x1 = x2 = x4 = 1

x3 = 1/3

lb = -219

x1 = x2 = x3 = 1

x4 = 1/3

lb = -221 1

5 2

3

4

x1 = x7 = 1

x2 = 2/5

lb = -174 > u

x4 = 1 x4 = 0

k = order of
 the search

x5 = 1 x5 = 0

lb = lower bound

x6 = 1 x6 = 0

x7 = 1 x7 = 0

x3 = 1 x3 = 0

= pruned

= not added
 to D

7. Integer linear optimization
7.3 Branch and bound algorithms

44-20

x1 = x2 = x5 = 1

x3 = 1/3

lb = -216 > u

x1 = x2 = x4 = 1

x5 = 1/3

lb = -217 ! u

x1 = x3 = x4 = 1

x2 = 13/15

lb = -217 ! u

x1 = x2 = x3 = 1

feasible
z' = -217 ! u

x1 = x2 = x3 = 1

x7 = 1/13

lb = -219

x1 = x2 = x6 = 1

feasible
z' = -214 > u

x1 = x2 = x3 = 1

x6 = 1/4

lb = -220

x1 = x2 = x3 = 1

x5 = 1/3

lb = -220

x1 = x2 = x4 = 1

x3 = 1/3

lb = -219

x1 = x2 = x3 = 1

x4 = 1/3

lb = -221 1

5 2

3

4

x1 = x7 = 1

x2 = 2/5

lb = -174 > u

x4 = 1 x4 = 0

k = order of
 the search

x5 = 1 x5 = 0

lb = lower bound

x6 = 1 x6 = 0

x7 = 1 x7 = 0

x3 = 1 x3 = 0

= pruned

= not added
 to D

Using other relaxations than the LP-relaxation

This is possible, e.g. by deleting constraints

=> the feasibility domain gets larger => minimum gets smaller

7.10 Example (TSP in a digraph)

An IP formulation

Introduce 0/1-variable xij with xij = 1 <=> edge (i,j) is in the TSP tour

min %ij cijxij

%j xij = 1 for all i = 1, ..., n (7.1)

%i xij = 1 for all j = 1, ..., n (7.2)

%i,j # S xij ! |S|-1 for all Ø $ S % { 1, ..., n } (7.3)

xij ∈ { 0, 1 } (7.4)

7. Integer linear optimization
7.3 Branch and bound algorithms

44-21

xij ∈ { 0, 1 } (7.4)

The Cycle Cover Relaxation of the TSP

Is obtained by deleting constraints (7.3).

The remaining constraints define an assignment problem in which edges (i,i) are not permitted. One can

model this in objective function with high costs cii. Such assignment problems can be solved efficiently, e.g.

with the primal-dual method of Section 6.5.

Using the cycle cover relaxation in a Branch and Bound algorithm

Take the cycle cover relaxation as lower bounding strategy

The optimal assignment (xij) is a tour if it fulfills constraint (7.3). Otherwise branch as follows:

choose a cycle with smallest number of edges and branch by setting every edge to 0

=> each edge of the cycle generates a child in the B&B tree

7. Integer linear optimization
7.4 Lagrangian relaxation

45-1

Main statements of this chapter

Lagrangian relaxation is an important technique to generate "good" lower bounds for IPs. It relaxes side

constraints, but punishes their violation in the objective function. By varying the penalty costs, the lower bound

can be improved.

A systematic improvement of the penalty costs leads to subgradient optimization. This is a method to maximize

a non-differentiable concave function.

The lower bound obtained in this way is at least as good as that obtained by LP relaxation, and both are equal

under certain conditions. The advantage of Lagrangian relaxation over LP relaxation is due to a quicker

(approximate) lower bound computation by combinatorial methods instead of solving an LP as in the LP-

relaxation.

Lagrangian relaxation is one of the workhorses in branch and bound algorithms

The basics of Lagrangian relaxation

Consider the integer linear program

(P) min cTx

s.t. Ax " b (k "difficult" side constraints)

Bx " d (m-k "easy" side constraints)

7. Integer linear optimization
7.4 Lagrangian relaxation

45-2

Bx " d (m-k "easy" side constraints)

x integer

Relax the "difficult" side constraints Ax " b and punish their violation in the objective function.

To this end, introduce Lagrange multipliers λ1, ..., λk for the relaxed side constraints. They form a kind of dual

variable for these side constraints and must fulfill the conditions

aix " bi => λi " 0 (7.5)

aix = bi => λi unrestricted (7.6)

For fixed such λ = (λ1, ..., λk)T the Lagrangian relaxation (LRλ) of (P) is defined as

(LRλ) min cTx + λT(b - Ax) =: L(λ, x)

s.t. Bx " d

x integer

L(λ,x) is called the Lagrange function, λ = (λ1, ..., λk)T is also called Lagrange vector and can be seen as

vector of penalty costs.

We denote the feasibility domains of (P) and (LRλ) with S(P) and S(LRλ) and the associated optimal values

with z(P) and z(LRλ), respectively.

7. Integer linear optimization
7.4 Lagrangian relaxation

45-3

7.11 Lemma (Lagrangian relaxation yields lower bounds)

For every Lagrange vector λ:

(1) S(LRλ) & S(P)

(2) z(LRλ) ! z(P)

Proof

(1) is trivial, as side constraints have been deleted

(2):

Let x be optimal w.r.t. (P)

=> bi - aix ! 0, or bi - aix = 0 for equality constraints

=> λi(bi - aix) ! 0 for all i => λT(b - Ax) ! 0

=> z(P) = cTx " cTx + λT(b - Ax) " z(LRλ) as x ∈ S(P) ! S(LRλ) !

7.12 Lemma (Optimality criterion)

If x and λ fulfill

(1) x is optimal w.r.t. (LRλ)

(2) aix " bi, or aix = bi for equality constraints

7. Integer linear optimization
7.4 Lagrangian relaxation

45-4

(2) aix " bi, or aix = bi for equality constraints

(3) λT(b - Ax) = 0

then x is optimal w.r.t. (P). If (3) is violated, then x is !-optimal with ! = λT(b - Ax)

Proof

(1), (2) => x ∈ S(P)

=> z(LRλ) = cTx + λT(b - Ax) = cTx " z(P) because of (3) and x ∈ S(P)

=> z(LRλ) = z(P) because of Lemma 7.11.

If x violates (3), then λT(b - Ax) is the error term !

The aim of Lagrangian relaxation

Partition the constraints of (P) is such a way that (LRλ) is much easier to solve than (P)

Make z(P) - z(LRλ) as small as possible (duality gap of Lagrangian relaxation)

i.e., make L(λ) := z(LRλ) as large as possible by varying the Lagrange multipliers

=> this leads to the optimization problem maxλ L(λ)

When used for B&B, it is not required to solve this optimization problem optimally. A good value of L(λ) usually

suffices, as each such value provides a lower bound for z(P).

7. Integer linear optimization
7.4 Lagrangian relaxation

45-5

Lagrangian relaxation of the symmetric TSP via 1-trees

IP formulation of the symmetric TSP

Introduce 0/1-variable xe with xe = 1 <=> edge e is in the tour

(P) min %e cexe

x(δ(i)) = 2 for all i = 1, ..., n (7.7)

x(S) ! |S|-1 for all Ø $ S ! { 2, ..., n } (7.8)

observe: S ! { 2, ..., n } suffices to

 exclude short cycles

xe ∈ { 0, 1 } (7.9)

Here x(S) := %e = ij, i,j # S xe and x(δ(i)) := %e # δ(i) xe

A variation of (P) gives (LRλ)

Partition (7.7) into

%e xe = n (7.10) redundant in (P)

x(δ(i)) = 2 for i = 2, ..., n (7.11)

x(δ(1)) = 2 (7.12)

7. Integer linear optimization
7.4 Lagrangian relaxation

45-6

x(δ(1)) = 2 (7.12)

(LRλ) is defined by relaxing (7.11)

(LRλ) min %e cexe + %i = 2,...,n λi(2 - x(δ(i))

s.t. (7.8), (7.9), (7.10), (7.12)

Observe: (7.10) is not redundant in (LRλ)

Combinatorial structure of the feasible solutions of (LRλ)

7.13 Lemma (Feasible solutions von (LRλ) are 1-trees)

x is a feasible solution von (LRλ) <=> x is a 1-tree, i.e.,

x is a spanning tree on the vertex set { 2, ..., n }

with 2 additional edges out of vertex 1

Proof

"=>"

let x be a feasible solution of (LRλ)

(7.9), (7.10), (7.12) => x has n-2 edges on vertices 2, ..., n

(7.8) => x is connected

ADM I => a connected graph with n-2 edges and n-1 vertices is a spanning tree

7. Integer linear optimization
7.4 Lagrangian relaxation

45-7

ADM I => a connected graph with n-2 edges and n-1 vertices is a spanning tree

(7.12) => 2 additional edges out of vertex 1

=> x is a 1-tree

"<="

every 1-tree fulfills conditions (7.8), (7.9), (7.10), (7.12) !

The Lagrange function L(λ,x)

L(λ,x) = %e cexe + %i = 2,...,n λi(2 - x(δ(i)), λi unrestricted

=> replace w.o.l.g. λi by -λi (this gives a better combinatorial interpretation)

=> L(λ,x) = %e cexe + %i = 2,...,n λi(x(δ(i) - 2)

with x(δ(i)) - 2 = deviation from the desired degree 2 of vertex i

With λ1 := 0 we obtain

L(λ,x) = %e cexe + %i = 1,...,n λi(x(δ(i) - 2)

= %e cexe + %i = 1,...,n λix(δ(i)) - 2 %i = 1,...,n λi

= %e cexe + %e=ij (λi + λj)xe - 2 %i = 1,...,n λi

= %e=ij (ce + λi + λj) xe - 2 %i = 1,...,n λi

This gives new edge costs ce´ = ce + λi + λj for e = ij minus the constant term 2 %i = 1,...,n λi

7. Integer linear optimization
7.4 Lagrangian relaxation

45-8

This gives new edge costs ce´ = ce + λi + λj for e = ij minus the constant term 2 %i = 1,...,n λi

Interpretation of the Lagrangian relaxation

Relaxed problem

= computing a 1-tree with minimum weight w.r.t. edge costs ce + λi + λj for edge e = ij

Varying the Lagrange multipliers λi

= varying the edge costs ce via node values λi

This variation of edge costs has no influence on the optimality of a tour, but may change the 1-tree

because:

%e=ij (ce + λi + λj) xe - 2 %i = 1,...,n λi = %e cexe if x is a tour

If the minimum 1-tree is a tour, then this tour is optimal for (P) because of Lemma 7.12, as λT(b - Ax) = 0

for any tour

A minimum 1-tree can be constructed in polynomial time as follows:

(1) Compute a MST on the vertices 2, ..., n with an algorithm from ADM I (Kruskal or Prim)

(2) Choose the two cheapest edges out of vertex 1

Algorithm for improving the lower bound (varying the λi)

Input

7. Integer linear optimization
7.4 Lagrangian relaxation

45-9

Input

graph G = (V, E) with V = { 1, ..., n }

edge costs ce

Output

optimal tour or 1-tree with "good" lower bound z(LRλ)

Method

// initialize the λi

set λi := 0 for every vertex i

// initialize a step length w > 0 for varying the λi

set w := 1

repeat

compute a minimum 1-tree x for edge costs cij + λi + λj

if x is tour then return x // x is an optimal tour

// varying the λi

for all vertices i $ 1 do

determine the degree di of vertex i

if di $ 2 then λi := λi + (di - 2)w

7. Integer linear optimization
7.4 Lagrangian relaxation

45-10

if di $ 2 then λi := λi + (di - 2)w

vary the step length w if appropriate

until z(LRλ) = z(x) is "good" enough

return best x found and the associated λ

7.14 Example (1-tree relaxation of the symmetric TSP)

Step length w is always 1

Graph with edge costs

1

2

3

c
e

4

5

6

7

8

4 1

2

2

1

1

2 3 2 5

1 3

3

Iteration 1

minimum 1 tree, varying the λi and new edge costs

7. Integer linear optimization
7.4 Lagrangian relaxation

45-11

1

2

3

4

5

6

7

8

+1

-1

z = 13

1

2

3

4

5

6

7

8

4 1

3

2

1

1

2 3 2 4

2 3

2

Iteration 2

minimum 1 tree, varying the λi and new edge costs

1

2

3

4

5

6

7

8

-1-1

+1 +2 -1

z = 13

1

2

3

4

5

6

7

8

3 1

1

5

1

2

2 4 4 3

3 1

3

Iteration 3

minimum 1 tree, varying the λi and new edge costs

7. Integer linear optimization
7.4 Lagrangian relaxation

45-12

1

2

3

4

5

6

7

8

+1

-1

z = 14

1

2

3

4

5

6

7

8

3 1

2

4

1

2

2 4 3 3

3 2

2

Iteration 4

minimum 1 tree is a tour => optimal tour constructed

1

2

3

4

5

6

7

8

z = 15

7.15 Example (In general there is no λ such that an optimal 1-tree is a tour)

Graph with edge costs and optimal tour

7. Integer linear optimization
7.4 Lagrangian relaxation

45-13

Graph with edge costs and optimal tour

1

2

3

c
e

4

5

6

1

1

0

0

1

1

1

1

0

1

2

3

4

5

6

z = 4

T

Claim: for every choice of λi (with λ1 = 0), there is no tour w.r.t. cij + λi + λj that is a minimum 1-tree

Consider the 1-trees

1

2

3

4

5

6

T
1

1

2

3

4

5

6

T
2

The values of these 1-trees w.r.t. edge costs cij + λi + λj is

value of T1 = 3 + 2λ2 + 1λ3 + 2λ4 + 3λ5 + 2λ6 =: z1

value of T2 = 3 + 2λ2 + 3λ3 + 2λ4 + 1λ5 + 2λ6 =: z2

7. Integer linear optimization
7.4 Lagrangian relaxation

45-14

value of T2 = 3 + 2λ2 + 3λ3 + 2λ4 + 1λ5 + 2λ6 =: z2

The value of an optimal tour w.r.t. cij + λi + λj is

4 + 2λ2 + 2λ3 + 2λ4 + 2λ5 + 2λ6 =: z0

=> z0 - z1 = 1 + λ3 - λ5 and z0 - z2 = 1 - λ3 + λ5

=> either z0 > z1 or z0 > z2

since z0 < z1 and z0 < z2 imply that 1 + λ3 - λ5 < 0 and 1 - λ3 + λ5 < 0

=> λ3 - λ5 > 1 and - λ3 + λ5 > 1, a contradiction !

Observe: What we observe here for the TSP, viz. that maxλ L(λ) $ z(P), is generally the case. Lagrangian

relaxation provides in general only lower bounds for z(P). But these are very valuable in a Branch & Bound

algorithm.

For more information about Lagrangian relaxations of the TSP see

E.#L. Lawler, J.#K. Lenstra, A.#H.#G. Rinnooy Kan, and D.#B. Shmoys, eds.

The Traveling Salesman problem: A Guided tour of Combinatorial Optimization

John Wiley & Sons, New#York, 1985.

7. Integer linear optimization
7.4 Lagrangian relaxation

45-15

Computing maxλ L(λ) by subgradient optimization

maxλ L(λ) = maxλ minx L(λ,x) = maxλ min { L(λ,x) | x ∈ S(LRλ) }

Subgradient optimization uses the fact that S(LRλ) is finite when S(LRλ) is a polytope. This follows from the

integrality of x, and we will assume it in the sequel.

S(LRλ) finite => we can write S(LRλ) as S(LRλ) = { x1, x2, ..., xR }

=> L(λ) = min { cTxr + λT(b - Axr) | r = 1, ..., R }

=> L(λ) is the minimum of finitely many affine linear functions cTxr + λT(b - Axr) of λ
=> L(λ) is piecewise linear and concave, but in general not differentiable

!

L(!)

cTxr + !T(b - Axr)

Subgradient optimization

7. Integer linear optimization
7.4 Lagrangian relaxation

45-16

Subgradient optimization

~ gradient method for maximizing a concave continuously differentiable function f : R! → R!

Gradient and subgradient

Gradient of a continuously differentiable function in u

= vector of partial derivatives in u:

∇!!"" #

�
#!

#$$

!""% & & & %
#!

#$'

!""

�

From calculus we know:

f is concave <=>

f(v) - f(u) ! ∇f(u)T(v-u) for all v, u

7. Integer linear optimization
7.4 Lagrangian relaxation

45-17

u v

f(v) - f(u)
!f(u)T(v-u)

f

Subgradient of a continuous concave function in u

= vector d with f(v) - f(u) ! dT(v-u) for all v

The set of subgradients in u is called the subdifferential of f in u and is denoted by 'f(u)

Then: f is differentiable in u => 'f(u) = { ∇f(u) }

Conditions for the maximum of a concave function

The continuously differentiable case

From calculus we know:

f attains its maximum at λ* <=> ∇f(λ*) = 0

7. Integer linear optimization
7.4 Lagrangian relaxation

45-18

The non-differentiable case

7.16 Lemma (Condition for the maximum of a continuous concave function)

Let f : R! → R! be continuous and concave. Then

f attains its maximum at λ* <=> 0 ∈ 'f(λ*)

Proof

"<="

let 0 ∈ 'f(λ*)

=> 0 = 0T(v - λ*) " f(v) - f(λ*) for all v => f attains its maximum at λ*

"=>"

let f attain its maximum at λ*

=> 0 = 0T(v - λ*) " f(v) - f(λ*) for all v => 0 ∈ 'f(λ*) !

Generic subgradient optimization

Input

a continuous concave function f : R! → R!

Output

7. Integer linear optimization
7.4 Lagrangian relaxation

45-19

Output

a point λ* at which f attains its maximum, or a point λ with a "good" value f(λ)

Method

choose a starting point u0

initialize a counter i := 0

repeat

if 0 ∈ 'f(ui) then return ui // f attains its maximum at ui

// this step my be skipped if the test "0 ∈ 'f(ui)" is computationally too expensive

compute a subgradient di ∈ 'f(ui) and a step length wi > 0

set ui+1 := ui + wi·di

i := i+1

until no more computing time or hardly any progress

return the best point of the sequence u0, ..., ui

A typical run of the algorithm

7. Integer linear optimization
7.4 Lagrangian relaxation

45-20

f

iterations

200100

The run shows that improvement need not be monotone

Main ingredients of the subgradient optimization

determine a step length wi > 0

solved in theory by a theorem of Polyak, but still difficult in practice, usually requires experiments

7.17 Theorem (Polyak 1967)

Let f : R! → R! be concave and continuous and let f attain its maximum at λ*.

Let (wi)i # N be a sequence of step lengths with

7. Integer linear optimization
7.4 Lagrangian relaxation

45-21

Let (wi)i # N be a sequence of step lengths with

(1) wi " 0 for all i

(2) (wi)i # N is a monotonically decreasing null sequence

(3) the series % wi is divergent

Then the sequence of points ui generated by subgradient optimization fulfills

lim i ! & f(ui) = f(λ*)

without proof !

This theorem ensures convergence under relatively weak conditions, which can easily be met in practice.

The only problem is to control the speed of convergence. But this is not that important for the use in

B&B.

Computing a subgradient di ∈ 'f(ui)

This is simple, subgradients come for free in Lagrangian relaxation

7.18 Lemma (Subgradients in Lagrangian relaxation)

Let x* be an optimal solution of (LRλ) in λ = u.

7. Integer linear optimization
7.4 Lagrangian relaxation

45-22

Let x* be an optimal solution of (LRλ) in λ = u.

Then b - Ax* is a subgradient of L(λ) = minx L(λ,x) in λ = u, i.e., b - Ax* ∈ 'f(u).

Proof by checking the definition of subgradient

L(v) - L(u) = minx L(v,x) - minx L(u,x)

= minx L(v,x) - L(u,x*) since x* is optimal for (LRu)

! L(v,x*) - L(u,x*) since x* is feasible for (LRv)

= (cTx* + vT(b - Ax*)) - (cTx* + uT(b - Ax*))

= (vT - uT)(b - Ax*) = (b - Ax*)T(v - u) !

Remark: In the 1-tree relaxation of the symmetric TSP, a transition of λi to -λi reveals x(δ(i)) - 2 as

subgradient. The change of multipliers λi in this example are therefore an application of subgradient

optimization.

Lagrangian relaxation vs. LP relaxation

There is a relationship between the optimal value of a Lagrangian relaxation and the optimal value of the LP

relaxation of an IP.

We consider:

7. Integer linear optimization
7.4 Lagrangian relaxation

45-23

We consider:

The initial problem

(P) min cTx

s.t. Ax " b

Bx " d

x integer

we do not consider sign constraints for x, but assume that these are contained in Bx " d

The Lagrangian relaxation of (P)

(LRλ) min cTx + λT(b - Ax) = minx L(λ, x) = L(λ)

s.t. Bx " d

x integer

The LP relaxation of (P)

(LP) min cTx

s.t. Ax " b

Bx " d

x unconstrained

7. Integer linear optimization
7.4 Lagrangian relaxation

45-24

x unconstrained

with optimal value z(LP)

7.19 Theorem (Relationship between Lagrangian relaxation and LP relaxation)

maxλ L(λ) " z(LP)

Equality holds if the polyhedron defined by Bx " d is integer (so that the integrality condition in (LRλ) may be

dropped).

Proof

we show this for side constraints of the form Ax " b (=> λ " 0), the proof can easily be adapted to equations

(λ unconstrained).

max L(λ) = max min L(λ,x) = max min L(λ,x)
λ ! 0 λ ! 0 x

Bx ! d
x gzz

λ ! 0 x
Bx ! d

holds if Bx ! d induces an integer
polyhedron, otherwise we have !

7. Integer linear optimization
7.4 Lagrangian relaxation

45-25

= max min (cTx + !T(b - Ax))
! ! 0 x

Bx ! d

= max [λTb + min (cT - λTA)x]
λ ! 0 x

Bx ! d

= max [λTb + max dTy]
λ ! 0 y ! 0

BTy = c - ATλ
LP duality

= max [bTλ + dTy]
λ ! 0
y ! 0

BTy = c - ATλ

= min cTx
x unconstrained

Ax ! b
Bx ! d

LP duality

 = z(LP) !

7.20 Remark

The 1-tree relaxation bound is because of Theorem 7.19 just the LP-relaxation bound of the TSP-polytope.

Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-

7. Integer linear optimization
7.4 Lagrangian relaxation

45-26

Since LPs can in principle be solved in polynomial time (by interior point methods), it seems that the LP-

relaxation should be preferred above the Lagrangian relaxation if Bx " d defines an integer polyhedron. But in

practice one very often favors subgradient optimization, since it is usually much faster (very often, L(λ) con

be computed combinatorially), and since approximate values of maxλ L(λ) are usually sufficient.

7. Integer linear optimization
7.5 Cutting plane algorithms

46-1

Main statements of this chapter

We introduce cutting plane algorithms as another method to solve IPs exactly.

We show that that these are in principle finite methods.

From the proofs we learn more about integer polytopes (Gomory-Chvátal-Cuts, Chvátal Closure)

The integer hull of a polyhedron

The integer hull PI of a polyhedron P is the convex hull of all its integer points.

P
I

P

7. Integer linear optimization
7.5 Cutting plane algorithms

46-2

A polyhedron P is called integer (or integral) if all its vertices are integer.

Then a polyhedron P fulfills:

(1) P is integer <=> P = PI

(2) integer optimization on P <=> linear optimization on PI

Therefore, one is interested in linear descriptions of PI (= description of PI by linear inequalities)

One difficulty here is that PI need not be a polyhedron any more in general.

An example is given by

P := {(y, x) ∈ R2 | y
x
≤

√
2}

(exercise)

One can show, however, that PI is a polyhedron when P is rational, and we will do this for rational polytopes P.

A polyhedron P = { x ∈ R! | Ax ! b } is called rational, if all entries of A and b are rational numbers. We will

assume in this chapter that all polyhedra are rational. For the sake of completeness, we will mention this as an

assumption in all theorems.

Criteria for the existence of feasible points and valid inequalities

7. Integer linear optimization
7.5 Cutting plane algorithms

46-3

These criteria are alternative formulations of Farkas' Lemma (Lemma 4.5).

An inequality wTx ! t is called valid for polyhedron P, if all points x ∈ P fulfill that inequality.

7.21 Lemma (Farkas' Lemma for the existence of feasible solutions)

Consider a polyhedron P = { x ∈ R! | Ax ! b }. Then:

(1) P $ Ø <=> yTb " 0 for all y ∈ R! with y " 0 and yTA = 0

(2) P = Ø <=> there is y ∈ R!, y " 0 with yTA = 0 and yTb ! -1

(3) P = Ø <=> the inequality 0Tx ! -1 can be obtained as non-negative linear combination of the inequalities

in Ax ! b

Proof

(1)

"=>"

Consider the LP max { 0Tx | Ax ! b }

P $ Ø => every x ∈ P is an optimal solution of the LP

Duality theorem => the dual LP has an optimal solution and

0 = max { 0Tx | Ax ! b } = min { yTb | yTA = 0, y " 0 }

=> yTb " 0 for all y " 0 with yTA = 0

7. Integer linear optimization
7.5 Cutting plane algorithms

46-4

=> yTb " 0 for all y " 0 with yTA = 0

"<="

Consider the LP min { yTb | yTA = 0, y " 0 }

0 is a feasible solution of this LP

Assumption => the objective function yTb is bounded from below by 0

Duality theorem => P has an optimal solution, so in particular a feasible solution

(2)

follows from the negation of (1)

P = Ø <=> there is y' ∈ R!, y' " 0 with (y')TA = 0 and (y')Tb < 0.

Let g := (y')Tb < 0

With y := y'/|g| we obtain

P = Ø <=> there is y ∈ R!, y " 0 with yTA = 0 and yTb ! -1

(3)

"<="

clear

"=>"

take y from (2) and multiply Ax ! b by y from the left =>

7. Integer linear optimization
7.5 Cutting plane algorithms

46-5

take y from (2) and multiply Ax ! b by y from the left =>

0Tx = yTAx ! yTb ! -1 => 0Tx ! -1 !

7.22 Lemma (Farkas' Lemma for valid inequalities)

The following statements are equivalent for a non-empty polyhedron P = { x ∈ R! | Ax ! b }:

(1) wTx ! t is a valid inequality for P

(2) There is y ∈ R!, y " 0 with yTA = wT and yTb ! t

Proof

(1) => (2)

Consider the LP max { wTx | Ax ! b }

P $ Ø, wTx ! t => the LP has an optimal solution

duality theorem => the dual LP has an optimal solution y* and

t " max { wTx | Ax ! b } = min { yTb | yTA = wT, y " 0 } = (y*)Tb

=> y* fulfills (2)

(2) => (1)

Ax ! b, y " 0 => wTx = (yTA)x = yT(Ax) ! yTb ! t !

7. Integer linear optimization
7.5 Cutting plane algorithms

46-6

Cutting planes and cutting plane algorithms

Idea: use hyperplanes to cut off parts of polyhedron P, but without cutting off points from PI. So these

hyperplanes are valid for PI (possibly even a supporting hyperplane or a facet). Such a hyperplane is called a

cutting plane. A cutting plane H that cuts off a point x* ∈ P - PI, is called an x* separating hyperplane.

P
I

P

Cutting plane algorithm (Idea)

Input

7. Integer linear optimization
7.5 Cutting plane algorithms

46-7

Input

Integer linear program (IP)

min { cTx, x ∈ PI } with P = polyhedron of the LP relaxation of (IP)

Output

optimal solution of (IP)

Method

repeat forever

solve the LP min { cTx, x ∈ P }

let x* be the computed optimal solution of the LP

if x* is integer then return x* // x* is an optimal solution of (IP)

compute a cutting plane that cuts off x* from P and is valid for PI // x* separating hyperplane

let H be the associated halfspace containing PI

set P := P " H

Obvious questions

(1) how does one prove that an inequality is a cutting plane?

(2) do cutting plane algorithms terminate?

7. Integer linear optimization
7.5 Cutting plane algorithms

46-8

(2) do cutting plane algorithms terminate?

(3) how does one compute an x* separating hyperplane for a given x* ∈ P - PI ?

We will answer here only (1) and (2) and show that there are proof techniques for (1), and that there is a

finite set of cutting planes of a special structure such that cutting plane algorithms using them terminate with

P = PI.

(3) depends very much on the specific problem, we will show some examples in Chapter 8.

Cutting plane proofs

For a polytope P = { x ∈ R! | Ax ! b }, the validity of an inequality wTx ! t can be shown by Farkas' Lemma

(Lemma 7.22). This is more complicated for cutting planes.

7.23 Example (Example of a cutting plane proof)

Consider the system of linear inequalities

 2 x1 + 3 x2 ! 27 (1)

 2 x1 - 2 x2 ! 7 (2)

 -6 x1 - 2 x2 ! -9 (3)

 -2 x1 - 6 x2 ! -11 (4)

7. Integer linear optimization
7.5 Cutting plane algorithms

46-9

 -2 x1 - 6 x2 ! -11 (4)

 -6 x1 + 8 x2 ! 21 (5)

The associated polytope P and its integer hull

7. Integer linear optimization
7.5 Cutting plane algorithms

46-10

P
I

P

x2 ! 5 is a valid inequality for PI

how can we derive it from the given inequalities for P ?

Multiply (5) with 1/2

7. Integer linear optimization
7.5 Cutting plane algorithms

46-11

Multiply (5) with 1/2

=> -3x1 + 4x2 ! 21/2

=> -3x1 + 4x2 ! ⎣21/2⎦ = 10 is valid for PI (as there are only integer coefficients on the left hand side)

=> this gives the new inequality -3x1 + 4x2 ! 10 (6) for PI

Multiply (6) with 2, (1) with 3 and add the resulting inequalities

=> -6x1 + 8x2 ! 20

 6x1 + 9 x2 ! 81

=> 17 x2 ! 101

=> we obtain the wanted inequality x2 ! ⎣101/17⎦ = 5 by rounding down the right hand side

In general, these inequalities have the form

yTAx ! ⎣yTb⎦ with y " 0 and yTA integer

where Ax ! b is the system of inequalities after the "previous" step.

This observation leads to the general definition of a cutting plane proof.

General definition

Let Ax ! b be a system of m linear inequalities.

A cutting plane proof for the inequality wTx ! t with integer w and t starting from Ax ! b is a finite

7. Integer linear optimization
7.5 Cutting plane algorithms

46-12

A cutting plane proof for the inequality wTx ! t with integer w and t starting from Ax ! b is a finite

sequence of inequalities of the form

 !
"
#!$% ! &#!$ "$ # $' (((')%

together with non-negative numbers

 !"# !" ! " ! $% " ! # ! & # " " "$

such that, for each k = 1, ..., M, the inequality
!"
#!$

% ! &#!$

is obtained as non-negative linear combination

!!"" # $ $ $ # !"%#"!"
$





&""'" # $ $ $ # &"('(

%%%

&%#"!"#"'" # $ $ $ # &%#"!"#('(



 " �!!"" # $ $ $ # !"%#"!"
$





)"

%%%

)%#"!"



�

of the previous inequalities (initial and already generated), where

- the coefficients of the variables on the left hand side are integer

- the right hand side is not integer is and is rounded down

- the last inequality of the sequence is the inequality wTx ! t

Inequalities of the form

yTAx ! ⎣yTb⎦ with y " 0 and yTA integer

7. Integer linear optimization
7.5 Cutting plane algorithms

46-13

yTAx ! ⎣yTb⎦ with y " 0 and yTA integer

are called Gomory-Chvátal cuts.

Gomory has shown in 1960 that these cuts lead to finite cutting plane algorithms.

Chvátal has introduced cutting plane proofs in 1973. These proofs are similar to Farkas' Lemma in the variants

Lemma 7.21 (2) and 7.22.

7.24 Theorem (Cutting plane proofs for rational polytopes, Chvátal 1973)

Let P = { x ∈ R! | Ax ! b } be a rational polytope and let wTx ! t be an inequality with integer w and t that

is valid for PI. Then there exists a cutting plane proof of wTx ! t' from Ax ! b, for some t' ! t.

Proof: see below. !

7.25 Theorem (Cutting plane proofs for rational polytopes without integer points, Chvátal 1973)

Let P = { x ∈ R! | Ax ! b } be a rational polytope without integer points. Then there exists cutting plane

proof of 0Tx ! -1 from Ax ! b.

Proof: see below. !

For the proof we need a lemma that enables an inductive argument on the dimension of P. It shows that

7. Integer linear optimization
7.5 Cutting plane algorithms

46-14

For the proof we need a lemma that enables an inductive argument on the dimension of P. It shows that

Gomory-Chvátal cuts for a face of a rational polyhedron can be lifted to the the polyhedron itself "by rotation".

7.26 Lemma (Rotation of Gomory-Chvátal cuts)

Let F be a non-empty face of a rational polytope P. Assume that F is given by a linear system and that

cTx !⎣d⎦ is a Gomory-Chvátal cut for F.

Then there exists a Gomory-Chvátal cut (c')Tx !⎣d'⎦ for P with

F " { x | cTx !⎣d⎦} = F " { x | (c')Tx !⎣d'⎦} (equality on F)

7. Integer linear optimization
7.5 Cutting plane algorithms

46-15

P

F

c
T
x ! d

c
T
x ! ⎣d⎦

P

F

(c')Tx ! d'

(c')Tx ! ⎣d'⎦

Proof

Let w.o.l.g. P = { x | A'x ! b', A''x ! b'' } with A'', b'' integer.

Let F := { x | A'x ! b', A''x = b'' } (equations A''x = b'' describes F)

Let cTx !⎣d⎦be the given Gomory-Chvátal cut for F

and let w.o.l.g. d = max { cTx | x ∈ F } (deepest cut with cTx; it exists since P is a polytope).

Duality theorem => the dual LP has an optimal solution

=> there are y' " 0 and y'' unconstrained with

(y')TA' + (y'')TA'' = cT (*)

7. Integer linear optimization
7.5 Cutting plane algorithms

46-16

(y')TA' + (y'')TA'' = cT (*)

(y')Tb' + (y'')Tb'' = d (**)

We now construct c' and d' from y''

(c')T := cT - (⎣y''⎦)TA'' = (y')TA' + (y'' - ⎣y''⎦)TA'' because of (*)

 integer " 0 " 0

d' := d - (⎣y''⎦)Tb'' = (y')Tb' + (y'' - ⎣y''⎦)Tb'' because of (**)

c is integer as part of a Gomory-Chvátal cut, (⎣y''⎦)TA'' is integer => c' integer

(c')Tx ! d' is a valid inequality for P

because (c')Tx = (y')TA'x + (y'' - ⎣y''⎦)TA''x ! (y')Tb' + (y'' - ⎣y''⎦)Tb'' = d'

 " 0 " 0

Definition of d' => d = d' + (⎣y''⎦)Tb''

integer since b'' is integer

=> ⎣d⎦ = ⎣d'⎦+ (⎣y''⎦)Tb''

Equality on F

F " { x | (c')Tx !⎣d'⎦}

= F " { x | (c')Tx !⎣d'⎦, (⎣y''⎦)TA''x = (⎣y''⎦)Tb'' }

 fulfilled in F because of A''x = b''

7. Integer linear optimization
7.5 Cutting plane algorithms

46-17

 fulfilled in F because of A''x = b''

= F " { x | (c' + (⎣y''⎦)TA'')Tx ! (⎣d'⎦ + ⎣y''⎦)Tb'' }

= F " { x | cTx ! ⎣d⎦ } !

Proof of Theorem 7.25

(cutting plane proofs for rational polytopes P = { x ∈ R! | Ax ! b } without integer points)

Induction on dim(P)

Inductive base

P = Ø

=> statement follows from Farkas' Lemma 7.21 (3)

dim(P) = 0

=> P = {x*} and x* is not integer.

=> there is an integer vector w such that wTx* is not an integer (set wi := 1 for one non-integer entry

of x* and wi := 0 otherwise).

Let t be such that the hyperplane H = { x | wTx = t } contains x* (can easily be achieved by

translation).

wTx* not integer => t = wTx* not integer

7. Integer linear optimization
7.5 Cutting plane algorithms

46-18

wTx* not integer => t = wTx* not integer

=> wTx ! t is valid for P, but P':= P " { x | wTx !⎣t⎦} = Ø

Farkas Lemma 7.22 => there is cutting plane proof for wTx !⎣t⎦ from Ax ! b

P' = Ø => (Farkas Lemma 7.21 (3)) there is cutting plane proof for 0Tx ! -1 from Ax ! b and wTx

!⎣t⎦

Inductive step to dim(P) " 1

Let wTx ! r, w integer, be an inequality that defines a proper face of P.

Let P':= { x ∈ P | wTx !⎣r⎦}

w
T
x !⎣r⎦

w
T
x ! r

Case 1: P' = Ø

Farkas Lemma 7.22 => we can prove wTx ! r from Ax ! b

Farkas Lemma 7.21 => we can prove 0Tx ! -1 from Ax ! b, wTx !⎣r⎦

Case 2: P' $ Ø

Let F := { x ∈ P' | wTx = ⎣r⎦} => F is a face of P'

7. Integer linear optimization
7.5 Cutting plane algorithms

46-19

Let F := { x ∈ P' | wTx = ⎣r⎦} => F is a face of P'

w
T
x =⎣r⎦F

Claim: dim(F) < dim(P)

because:

either F is a proper face of P (if r is integral)

or wTx ! ⎣r⎦ cuts off something from P, i.e., P contains vectors that do not satisfy wTx = ⎣r⎦

=> we have a lower dimension in both cases

FI empty, inductive assumption

=> there is a cutting plane proof for 0Tx ! -1 from Ax ! b, wTx !⎣r⎦, - wTx ! -⎣r⎦

Use the cutting plane 0Tx ! -1 for F several times and apply the Rotation Lemma each time

7. Integer linear optimization
7.5 Cutting plane algorithms

46-20

P

F

P

F

P polytope => min { wTx | x ∈ P } is finite =>

Repeating the arguments with P'' := { x ∈ P | wTx !⎣r⎦- 1 } etc. leads after finitely many steps to a

cutting plane proof for an inequality wTx ! t with { x ∈ P | wTx ! t } = Ø

=> have shown a reduction to Case 1 !

Proof of Theorem 7.24 (cutting plane proofs for rational polytopes)

Case 1: PI = Ø

Theorem 7.25 => there is a cutting plane proof for 0Tx ! -1

P is a polytope => r := max { wTx | x ∈ P } is finite

7. Integer linear optimization
7.5 Cutting plane algorithms

46-21

P is a polytope => r := max { wTx | x ∈ P } is finite

=> wTx ! r is a valid inequality for P

Farkas' Lemma 7.22 => there is a cutting plane proof for wTx ! r

w integer => wTx !⎣r⎦ is Gomory-Chvátal cut

adding wTx !⎣r⎦and 0Tx ! -1 gives wTx ! ⎣r⎦-1

repeated addition of 0Tx ! -1 gives wTx ! t' ! t in finitely many steps

Case 2: PI $ Ø

P is a polytope => r := max { wTx | x ∈ P } is finite

w integer => wTx !⎣r⎦ is a Gomory-Chvátal cut for P

let P' := { x ∈ P | wTx !⎣r⎦}

we are done if ⎣r⎦! t

So assume ⎣r⎦ > t

Let F := { x ∈ P' | wTx =⎣r⎦} => F is a face of P'

F contains no integer points, as wTx ! t is valid for PI and t < ⎣r⎦

Theorem 7.25 => for F, there is a cutting plane proof of 0Tx ! -1 from Ax ! b, wTx =⎣r⎦

Rotation Lemma for F and P' => there is a cutting plane proof of an inequality cTx !⎣d⎦for P from Ax !

b, wTx !⎣r⎦ such that P' " { x | cTx !⎣d⎦, wTx =⎣r⎦} = Ø

7. Integer linear optimization
7.5 Cutting plane algorithms

46-22

b, wTx !⎣r⎦ such that P' " { x | cTx !⎣d⎦, wTx =⎣r⎦} = Ø

So, after applying this sequence of cuts to P', we have wTx ! ⎣r⎦- 1.

Repeating this argument eventually gives wTx ! t' ! t, completing the proof. !

Chvátal closure and Chvátal rank

Cutting plane proofs may use already generated cutting planes. We consider now what happens, if one can only

use the initially given cutting planes Ax ! b

Let P = { x ∈ R! | Ax ! b } be a rational polytope. If one adds to P all Gomory-Chvátal cuts yTAx ! ⎣yTb⎦

with y " 0, yTA integer, one obtains the Chvátal closure P' of P.

7.27 (Properties of the Chvátal closure)

The Chvátal closure of a rational polytope is again a rational polytope. In particular, it has a linear description

using only the given inequalities Ax ! b and finitely many Gomory-Chvátal cuts.

Proof

Let P = { x | Ax ! b } with A and b integer

Set P' := P " { x | yTAx ! ⎣yTb⎦ with y " 0, yTA integer }. Then:

7. Integer linear optimization
7.5 Cutting plane algorithms

46-23

Set P' := P " { x | yTAx ! ⎣yTb⎦ with y " 0, yTA integer }. Then:

(7.13) P' = P " { x | yTAx ! ⎣yTb⎦ with y " 0, yTA integer, 0 ! y < 1 }

Proof of (7.13):

Let wTx !⎣t⎦ be a Gomory-Chvátal cut with y " 0, yTA = w, yTb = t

Let y' := y -⎣y⎦ be the fractional part of y. Then 0 ! y' < 1

Let w' := (y')TA = yTA - (⎣y⎦)TA = w - (⎣y⎦)TA

=> w' is integer, as w and A are integer.

Let t' := (y')Tb = yTb - (⎣y⎦)Tb = t - (⎣y⎦)Tb

=> t and t' differ by an integer number, namely by (⎣y⎦)Tb

=> wTx !⎣t⎦is obtained as sum of

(w')Tx ! ⎣t'⎦ <-- formed according to (7.13)

 + (⎣y⎦)TAx ! (⎣y⎦)Tb <-- redundant as

non-negative linear combination of the rows of Ax ! b

=> the inequalities specified in (7.13) form the Chvátal closure

There are only finitely many inequalities of the form (7.13)

Denote the entries of matrix A by aij and let Aj be the j-th column of A

0 ! y < 1 => yTAj ∈ [-%i |aij|, %i |aij|]

7. Integer linear optimization
7.5 Cutting plane algorithms

46-24

0 ! y < 1 => yTAj ∈ [-%i |aij|, %i |aij|]

yTAj integer => there are only finitely many such yTAj

All inequalities of the form (7.13) have integer coefficients

=> They are again rational !

Iterating the Chvátal closure operation defines a sequence of Chvátal closures

P = P(0) & P(1) & P(2) & ... & PI

7.28 Theorem (The Chvátal closure operation terminates)

Let P be a rational polytope. Then there is k ∈ N with PI = P(k).

In particular, cutting plane algorithms with a good choice of Gomory Chvátal cuts terminate after finitely many

steps.

Proof

PI is a polytope and can thus be described by finitely many inequalities (Minkowski's Theorem).

Each of these inequalities has a cutting plane proof of some finite length r with inequalities only from

finitely many P(i) (i ! r)

=> the maximum of these r shows the statement !

7. Integer linear optimization
7.5 Cutting plane algorithms

46-25

Gomory has specified such a good choice of Gomory Chvátal cuts already in 1960.

The smallest k with PI = P(k) is called the Chvátal rank of P. It can be interpreted as a measure of complexity

of the integer hull of polytopes. Already in R! there are examples that the Chvátal rank can become

arbitrarily large. For 0/1-polytopes in R! is is bounded by 6n3log n.

7.29 Example (A polytope with Chvátal rank 2)

The initial polytope P

P is given by

 - 2 x1 + x2 ! 0 (1)

 2 x1 + x2 ! 6 (2)

 - x2 ! -1 (3)

7. Integer linear optimization
7.5 Cutting plane algorithms

46-26

P

The first Chvátal closure P(1)

yT = (0, 1/2, 1/2) gives x1 ! 5/2 => x1 ! 2

yT = (1/2, 0, 1/2) gives - x1 ! - 1/2 => - x1 ! - 1

yT = (5/6, 1/3, 1/6) gives - x1 + x2 ! 11/6 => - x1 + x2 ! 1

yT = (1/3, 5/6, 1/6) gives x1 + x2 ! 29/6 => x1 + x2 ! 4

7. Integer linear optimization
7.5 Cutting plane algorithms

46-27

P(1)

x2 ! 2 can not be derived from Ax ! b

the general form of a Gomory-Chvátal cut is

(-2y1 + 2y2)x1 + (y1 + y2 - y3)x2 !⎣6y2 - y3⎦

=> -2y1 + 2y2 = 0, y1 + y2 - y3 = 1, ⎣6y2 - y3⎦ = 2

=> y1 = y2, y3 = 2y2 - 1, ⎣4y2 + 1⎦ = 2 <=> 1 ! 4y2 < 2

=> y2 < 1/2 => y3 < 0 => a contradiction

The second Chvátal closure P(2)

x2 ! 2 is obtained from - x1 + x2 ! 1, x1 + x2 ! 4 with yT = (1/2, 1/2)

7. Integer linear optimization
7.5 Cutting plane algorithms

46-28

P(2)

Concluding remarks

All statements on cutting plane proofs and Chvátal rank hold also for arbitrary rational polyhedra (see Korte &

Vygen), but in general not for non-rational polyhedra.

Gomory-Chvátal cuts are a standard tool for solving IPs in CPLEX. They are generated automatically in the

Branch & Bound algorithm. Some of them directly in the root node from the LP-relaxation. Others for the

subproblems in nodes of the Branch & Bound tree.

For many combinatorial optimization problems, there are results on the Chvátal rank of particular inequalities:

The odd-set inequalities of the matching polytopes have Chvátal Rang 1 w.r.t. the LP formulation consisting only

of the degree constraints:

7. Integer linear optimization
7.5 Cutting plane algorithms

46-29

of the degree constraints:

x(δ(v)) = 1 for all v ∈ V degree constraints

%e ! R xe ! r for all sets R ! V(G) with |R| = 2r+1 odd-set inequalities

x " 0

The comb-inequalities of the TSP have Chvátal Rang 1 w.r.t. the 2-matching polytope (see Section 8.2)

7. Integer linear optimization
7.6 Optimization and separation

47-1

Separation is the problem to compute for a given point x* and a given polyhedron Q a hyperplane H that

separates x* from Q.

Separation is needed in cutting plane algorithms. Then Q = PI (integer hull of a rational polyhedron P) and x* is

the LP optimum over P.

There is a strong relationship between separation and optimization. We define:

Optimization (OPT)

Input:

rational polyhedron Q,

c ∈ R! such that cTx is bounded from below on P

Output:

x* ∈ Q with x* = min { cTx | x ∈ Q }

Separation (SEP)

Input:

rational polyhedron Q,

y ∈ R!

7. Integer linear optimization
7.6 Optimization and separation

47-2

Output:

"Yes" if y ∈ Q

aTx ! d ∈ R! with aTx ! d for all x ∈ Q but aTy > d if y ∉ Q (a separating hyperplane)

7.30 Theorem (Polynomial equivalence of separation and optimization; Grötschel, Lovász, Schrijver 1984)

(OPT) can be solved in polynomial time <=> (SEP) can be solved in polynomial time.

This holds also for !-approximations.

Without proof.

The following techniques are used for full-dimensional polyhedra:

"<=" ellipsoid method and duality theorem

"=>" antiblocking of polyhedra

For details see

M.#Grötschel, L.#Lovász, and A.#Schrijver,

Geometric Algorithms and Combinatorial Optimization,

Springer, Berlin, 2nd#ed., 1993. !

7. Integer linear optimization
7.6 Optimization and separation

47-3

Remarks

If (OPT) can be solved in polynomial time, then cutting planes can be found in polynomial time.

If (OPT) is NP-hard, then we will (if P $ NP) not be able to find all cutting planes in polynomial time. But we may

still be able to find many.

Therefore one uses in practice polynomial algorithms for constructing cutting planes until no more are found.

Then one branches on fractional variables and looks again for cutting planes for the resulting subproblems, etc.

This combination of Branch & Bound with cutting plane algorithms is called Branch & Cut. We will see examples in

Chapter 8.

Instead of the ellipsoid method (which has proven to be inefficient in practice) one uses the dual simplex

algorithm. The dual simplex algorithm can easily accommodate new cutting planes as additional constraints.

8. Polytopes induced by combinatorial optimization problems

48

.. 498.1 Introduction
... 508.2 Some linear descriptions

... 518.3 Separation and branch & cut

8. Polytopes induced by combinatorial optimization problems
8.1 Introduction

49-1

Goal of this chapter

Develop an abstract view on combinatorial optimization problems in order to describe induced polytopes in a

unified way.

An instance of an (abstract) combinatorial optimization problem is a triple (E, F, c) where

E is a finite set, the ground set (e.g. the set of edges of a graph)

F is the set system of feasible solutions F ! E (e.g. the set system of all matchings M ! E(G))

c : E -> R with c(F) := %e # F c(e) computes the value of feasible solution F (e.g. the weight of a matching M)

The polytope PF induced by (E, F c) is obtained as follows.

For a set F ! E we consider the incidence vector xF ∈ R! defined by

!
"
!"

�
∈ "

$ # �∈ "

We interpret c as vector c ∈ R! with ce := c(e)

and write for arbitrary vectors x ∈ R!

x(F) := %e # F xe

Then PF := conv { xF | F ∈ F },

i.e., it is the convex hull of all incidence vectors xF of feasible solutions F ∈ F

8. Polytopes induced by combinatorial optimization problems
8.1 Introduction

49-2
Then PF := conv { xF | F ∈ F },

i.e., it is the convex hull of all incidence vectors xF of feasible solutions F ∈ F

Minkowski's Theorem yields:

 PF is a polytope, and the vertices of PF are incidence vectors of feasible solutions

=> there is a system of linear inequalities Ax ! b, x " 0 whose set of solutions is PF

(the so-called linear description of PF)

=> the optimum of (E, F, c) is attained in a vertex of Ax ! b, x " 0

=> we can solve (E, F, c) with linear optimization, if we have a linear description Ax ! b, x " 0 of PF

Problems:

How does one find linear descriptions?

The proof of the Minkowski's Theorem is constructive, but "unsuited".

How large is the number of constraints?

In general exponential, see the matching polytope,

but we only need a partial description for a vertex attaining the optimum

These questions are studied in combinatorial polyhedral theory (polyhedral combinatorics)

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-1

Goal of this section

Illustration of some (partial) linear descriptions and of techniques how to prove them

The matching polytope

(E, F, c) is given by

E = edge set E(G) of an undirected graph

F = { M ! E | M is a matching } =: M
c(e) = non-negative edge weight of e

 PM := conv { xM | M ∈ M } is called the matching polytope of graph G

8.1 Theorem (linear description of the matching polytopes)

In bipartite graphs, PM has the linear description

x(δ(v)) ! 1 for all vertices v

x " 0

In arbitrary graphs, PM has the linear description

x(δ(v)) ! 1 for all vertices v

%e ! R xe ! r for all odd sets R ! V(G) with |R| = 2r+1, r " 1

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-2

%e ! R xe ! r for all odd sets R ! V(G) with |R| = 2r+1, r " 1

x " 0

Example

G bipartite

2

1

3

M = { Ø, {1}, {2}, {3}, {2,3} }

we have variables x1, x2, x3 for the edges 1, 2, 3

then PM := conv { xM | M ∈ M } is a tilted pyramid with quadratic ground set in the x2-x3 plane

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-3
then PM := conv { xM | M ∈ M } is a tilted pyramid with quadratic ground set in the x2-x3 plane

x
1

x
2

x
3

A linear description of PM is obtained as (redundant inequalities for vertices of degree 1 deleted)

x1 + x2 ! 1

x1 + x3 ! 1

xi " 0

G not bipartite

2

1

3

M = { Ø, {1}, {2}, {3} }

we have variables x1, x2, x3 for the edges 1, 2, 3

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-4

we have variables x1, x2, x3 for the edges 1, 2, 3

then PM := conv { xM | M ∈ M } is a tetrahedron

x
1

x
2

x
3

The inequalities for the bipartite case are fulfilled by x := (1/2, 1/2, 1/2)T, but x ∉ PM

So the additional inequalities for odd sets are needed, in this case

x1 + x2 + x3 ! 1

The proof uses in both cases the following ideas

(1) The inequalities are valid for PM, i.e., PM ! { x | Ax ! b, x " 0 }

(2) The optimization problem

max cTx subject to inequalities Ax ! b, x " 0

always attains its optimum in an incidence vector xM, M ∈ M

(this can e.g. by complementary slackness or the primal-dual algorithm)

(3) Lemma 3.5 (for each vertex x there is an objective function c such that the optimum is obtained in x

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-5

(3) Lemma 3.5 (for each vertex x there is an objective function c such that the optimum is obtained in x

only)

(2), (3) => every vertex of the linear description is an incidence vector xM, M ∈ M

=> { x | Ax ! b, x " 0 } ! PM
The polytope of antichains of a partial order

Basic facts about partial orders

A (finite) partial order (E, <) is given by

a (finite) ground set E and

a binary relation < on E with

a < b and b < c => a < c (< is transitive)

a < b => a $ b (< is irreflexive)

We represent partial orders by edge diagrams

= acyclic digraph G = (V, E) with

E(G) = ground set of the partial order

e < e' :<=> there is a directed path from head(e) to tail(e')

head(e) = head(e') for all minimal elements e, e' of the partial order (E, <)

tail(e) = tail(e') for all maximal elements e, e' of the partial order (E, <)

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-6

tail(e) = tail(e') for all maximal elements e, e' of the partial order (E, <)

(every partial order is an induced suborder of an edge diagram)

Example:

1

2

3
4

5

E = { 1, 2, 3, 4, 5 } and 1 < 4, 1 < 3 < 5, 2 < 5

a, b ∈ E are called comparable :<=> a < b or b < a

chain = set of pairwise comparable elements

in the example, Ø {3} {1, 5} {1,4} {1,3,5} are chains, the last two are maximal chains (i.e., !-maximal)

a, b ∈ E are called incomparable :<=> a, b are not comparable

antichain = set of pairwise incomparable elements

in the example, Ø {3} {2, 3} {4,5} {2,3,4} are antichains, the last two are maximal antichains (i.e., !-maximal)

Combinatorial optimization problem:

Compute an antichain of maximum weight w.r.t. weights c(e) " 0

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-7

Compute an antichain of maximum weight w.r.t. weights c(e) " 0

Application: project scheduling

partial order = processing structure of a construction project

chain = must be done sequentially

antichain = may be done simultaneously

weight of an antichain = amount of required resources if all jobs are processed simultaneously

maximum weight = maximum amount of required resources

(E, F, c) is given by

E = edge set E(G) of the edge diagram of the partial order

F = { A ! E | A is an antichain } =: A
c(e) = non-negative edge weights of e

 PA := conv { xA | A ∈ A } is called the antichain polytope of the partial order

Example

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-8

x1

x2

x3

"pyramid"
1

2
3

Linear description of PA

Necessary condition: every chain contains at most one element of any antichain.

As inequality: x(K) ! 1 for every chain K

8.2 Theorem (Linear description of the antichain polytope)

PA has the linear description

x(K) ! 1 for every chain K

x " 0

Proof

(1) all inequalities are valid for the antichain polytope

Let x ∈ PA and K be a chain

=> x is a convex combination of vertices of PA , i.e, of incidence vectors xA of antichains A

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-9
Let x ∈ PA and K be a chain

=> x is a convex combination of vertices of PA , i.e, of incidence vectors xA of antichains A

=> each incidence vector xA fulfills xA(K) ! 1

=> the convex combination x fulfills x(K) ! 1

(2) The LP given by the inequalities attains its optimum on incidence vectors of antichains

The LP is given by

(P) max cTx s.t. x(K) ! 1 for every chain K

x " 0

The dual LP is

(D) min 1Ty = %K yK s.t. %K : e #K yK " ce for all e ∈ E

yK " 0 for all chains K

Interpreting yK as "multiple occurrences" of chain K , the dual (D) says:

find as few as possible chains (multiple occurrences permitted) such that each element e is "covered" at

least ce times

=> consider only maximal chains

=> %K yK is a flow in the edge diagram G w.r.t. lower capacities ce

Example:

G with lower capacities

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-10

G with lower capacities

2

1

2
1

1
c
e

a covering with chains

yK = 2 yK = 1

yK = 1

the interpretation of %K yK as flow

3

1

2
1

3

=> we can apply the Min-Flow-Max-Cut Theorem

Similar to the Max-Flow-Min-Cut Theorem of ADM I:

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-11

Similar to the Max-Flow-Min-Cut Theorem of ADM I:

The minimum flow value in an s,t-network with lower capacities ce and upper capacities ue

equals the maximum capacity cap(X) of an s,t-cut X

In this case, the capacity of an s,t-cut X with s ∈ X defined as

!"#!$" #
�

%∈&$!$"

!% !
�

%∈&!!$"

'%

In the edge diagram all upper capacities are & and the flow value is bounded from below

=> the maximum capacity of a cut is finite

=> a cut of maximum capacity has only forward edges, i.e., δ-(X) = Ø

=> A := δ+(X) is an antichain (otherwise δ-(X) $ Ø) with weight = maximum capacity of a cut

Conversely, every maximal antichain A defines a cut X as

X := set of head vertices of edges in A and of all vertices of edges e with e < a for some a ∈ X.

Then A := δ+(X)

So:

optimum value of (P) = optimum value of (D)

= minimum flow value = maximum capacity of an s,t-cut

= maximum weight of an antichain

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-12

= maximum weight of an antichain

=> optimum of (P) is attained by an incidence vectors of an antichain

(1) and (2) prove Theorem 8.2 by the same arguments as for the matching polytope. !

8.3 Remark

(P) and (D) correspond to a weighted version Dilworth's Theorem

Theorem of Dilworth:

minimum number of chains covering all elements of a partial order

= maximum cardinality of an antichain

The traveling salesman polytope in the symmetric, complete case

Consider the TSP on an undirected, w.o.l.g. complete graph Kn with edge costs c(e) " 0.

Then (E, F, c) is given by

E = edge set E(Kn)

F = { T ! E | T is a TSP-tour }
c(e) = non-negative edge weight of e

 PF := conv { xT | T is TSP-tour } is called the TSP polytope and is denoted by Qn
TSP

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-13

 PF := conv { xT | T is TSP-tour } is called the TSP polytope and is denoted by Qn
TSP

The vertices must fulfill

x(δ(v)) = 2 for all vertices v (8.1)

!! "#$"%&
'()# ! $ " & !

&"& " $#

% dim(Qn
TSP) = m − nOne can even show that

=> (8.1) defines a linear system of maximum rank whose set of solutions contains Qn
TSP

Constraints (8.1) still permit subtours.

These can be avoided by the subtour elimination constraints:

x(E(W)) ! |W| - 1 for all Ø $ W % V (8.2)

where E(W) = set of edges with both end points in W

Furthermore (non-negativity constraints, upper bounds)

0 ! xe ! 1 for all edges e (8.3)

Qn
TSP is contained in the following polytopes (which are relaxations of Qn

TSP)

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-14

Qn
TSP is contained in the following polytopes (which are relaxations of Qn

TSP)

in the 1-tree polytope (= convex hull of the incidence vectors of 1-trees), see Section 7.4

in the 2-matching polytope Qn
2M (= convex hull of the incidence vectors of perfect 2-matchings)

perfect 2-matching = edge set F such that every vertex is incident to exactly 2 edges from F

For the perfect 2-matching polytope, a linear description is known for arbitrary graphs (Edmonds 1965)

Qn
2M = { x ∈ R! | 0 ! xe ! 1 for all edges e

 x(δ(v)) = 2 for all vertices v

!�

"!"

##$#%"$! "%"" %
&

'
#! # &$! &'()*+,) #(-)$k odd (8.4)

with W0, W1, ..., Wk ! V

|W0 " Wi | = 1 = |Wi - W0|,

Wi " Wj = Ø for i, j > 0 }

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-15

W
0

W
1

W
2

W
k

The 2-matching inequalities can be generalized to comb inequalities for the TSP polytope

Let G be a complete graph, and W0, W1, ..., Wk ! V with

|W0 " Wi | " 1 i = 1, ..., k

|Wi - W0| " 1 i = 1, ..., k

Wi " Wj = Ø for i, j > 0

k " 3, odd

Then
!�

"!"

##$#%"$! "%"" %
!�

"!"

#"%"" # &$ #
! % &

'
#(&)$

defines valid inequalities for the TSP polytope

The comb inequalities have Chvátal rank 1 w.r.t. the 2-matching polytope.

8. Polytopes induced by combinatorial optimization problems
8.2 Some linear descriptions

50-16

8.4 Theorem (Inequalities for the TSP polytope, Chvátal 1973, Grötschel & Padberg 1979)

For the TSP polytope Qn
TSP the following statements hold for n " 6

(a) dim(Qn
TSP) = m - n

(b) the inequalities (8.3) define facets for every edge e

(c) the subtour elimination constraints (8.3) are facets if 3 ! |W| ! n-3

(d) all comb inequalities (8.5) are facets

without proof !

8.5 Remark

(a) - (d) do not constitute a linear description, and none is known.

for Q10
TSP , more than 50 billion different facets are known, for Q120

TSP there are more than 10179

=> complete linear descriptions become too large to be solved by LP algorithms directly

But one can use partial linear descriptions in Branch & Cut. For a fixed objective function one needs only

cutting planes that lead to an optimal vertex. Other parts of the polytope are then of no interest.

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-1

Goal of this section

Discussion of a concrete branch & cut algorithm for the TSP problem

Examples for polynomial separation

Examples of how to show that inequalities define facets

A branch & cut algorithm for the TSP problem

The algorithm starts with the LP

(P) min cTx s.t.

x(δ(v)) = 2 for all vertices v (8.1)

0 ! xe ! 1 for all edges e (8.3)

and first adds subtour elimination inequalities and then comb inequalities

(first with a fast heuristic, then with an exact algorithm).

When no more such inequalities are found, one switches to branch and bound or a general cutting plane

algorithm

A flow diagram of the algorithm

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-2

take (P) as current LP

solve the current LP

solution x is a tour? stop
yes

find subtour- or comb-
inequalities with a heuristic

no

found a cut? add it to
the LP

yes

find subtour- or comb-
inequalities with an exact algo

no

found a cut?

use branch & bound or a general
cutting plane algorithm

no

yes

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-3

take (P) as current LP

solve the current LP

solution x is a tour? stop
yes

find subtour- or comb-
inequalities with a heuristic

no

found a cut? add it to
the LP

yes

find subtour- or comb-
inequalities with an exact algo

no

found a cut?

use branch & bound or a general
cutting plane algorithm

no

yes

This principle is used recursively in the nodes of the B&B tree. When good lower bounds are available one usually

needs only a few iterations in the final step.

This method can solve TSP problems with up to several thousands vertices exactly.

With additional techniques one can solve TSP problems with 100.000 and more vertices, see Concorde.

http://www.tsp.gatech.edu/concorde/index.html

Branch & Cut motivates

the construction of fast separation algorithms

the search for valid inequalities or facets

Designing fast separation algorithms

this often leads to other combinatorial optimization problems

Example 1: Chain inequalities for the antichain polytope

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-4

Example 1: Chain inequalities for the antichain polytope

They have the form

x(K) ! 1 for every chain K

For a vector x*, the separation problem for chain inequalities can be solved as follows:

(1) compute the longest chain K* w.r.t. weights given by x*

(2) if x*(K*) > 1, then x(K*) ! 1 is an x* separating chain inequality

if x*(K*) ! 1, then x* fulfills all chain inequalities

The longest chain can be computed in the edge diagram as longest path (this is polynomial, as the edge

diagram is acyclic)

Example 2: Subtour-elimination inequalities for the TSP polytope

we assume that the following inequalities are satisfied

x(δ(v)) = 2 for all vertices v degree constraints (8.1)

0 ! x ! 1 non-negativity and upper bounds (8.3)

(which can be checked efficiently)

8.6 Lemma (Separation of subtour elimination inequalities)

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-5

8.6 Lemma (Separation of subtour elimination inequalities)

Assume that x* fulfills inequalities (8.1) and (8.3)

Then there is an x* separating subtour inequality

<=> there is a cut δ(X) with x*(δ(X)) < 2

Proof

Let X be a vertex set, Ø $ X $ V. Then

x*(δ(X)) = %v # X %e # δ(v) xe* - 2 %e ! X xe*

 = %v # X 2 - 2 %e ! X xe* because of (8.1)

 = 2|X| - 2 %e ! X xe* = 2|X| - 2x*(E(X))

So x*(δ(X)) + 2x*(E(X)) = 2|X| (*)

"<=>"

x* violates the subtour inequality w.r.t. X

<=> x*(E(X)) > |X| - 1 <=> 2x*(E(X)) > 2|X| - 2 <=> x*(δ(X)) < 2 with (*) !

8.7 Consequence (Separation of subtour elimination inequalities)

Given (8.1), the separation problem for subtour-elimination inequalities leads to computing a cut δ(X) with

minimum capacity. This can be done by solving a sequence of s,t-max-flow problems.

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-6

Without proof !

Searching for valid inequalities or facets

We demonstrate this for the antichain polytope

8.8 Theorem (Facets of the antichain polytope)

Consider the antichain polytope PA. Then:

xe = 0 defines a facet for every edge e.

x(K) = 1 defines a facet <=> K is a maximal chain.

Proof

(1) dim(PA) = |E|, i.e., PA has full dimension

The unit vectors correspond to singleton antichains and are linearly independent.

Because of (1), a facet is a supporting hyperplane H whose cut with PA has dimension |E| - 1

=> to show this dimension, one must find m := |E| vectors x0, ..., xm-1 in H " PA such that xi - x0 are

linearly independent (i = 1, ..., m-1)

(2) xe = 0 defines a facet for every edge e

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-7

set x0 := 0, xi := i-th unit vector except for i = e

=> all these vectors lie on the hyperplane xe = 0

and the xi - x0 are linearly independent

(3) x(K) = 1 defines a facet <=> K is a maximal chain

"<="

let K = { e1, ..., ek } and E-K = { ek+1, ..., em }

K is maximal => for every ej ∈ E-K there is ei(j) ∈ K such that ej, ei(j) are incomparable

=> {e1}, ..., {ek}, {ek+1,ei(k+1)}, ..., {em,ei(m)} are antichains

and their incidence vectors y0, ..., ym-1 lie on the hyperplane x(K) = 1

y0, ..., ym-1 are obviously linearly independent

=> yi - y0 are linearly independent => x(K) = 1 is a facet

"=>"

Consider a chain K such that x(K) = 1 is facet, but K is not maximal.

Let K' be maximal chain with K % K', and let e' ∈ K'-K.

Claim: { x(K) = 1 } " PA ! { x(K') = 1 } " PA

let x ∈ PA and x(K) = 1

K ! K' => (x(K) = 1 => x(K') " 1)

8. Polytopes induced by combinatorial optimization problems
8.3 Separation and branch & cut

51-8

K ! K' => (x(K) = 1 => x(K') " 1)

but since x ∈ PA we have x(K') = 1 => x ∈ { x(K') = 1 } " PA

Facets H define inclusions-maximal sets H " PA among all faces of PA
But the incidence vector of {e'} lies in { x(K') = 1 } " PA – { x(K) = 1 } " PA ,

a contradiction !

9. LP-based approximation algorithms

52

.. 539.1 Simple rounding and the use of dual solutions
.. 549.2 Randomized rounding

... 559.3 Primal-dual approximation algorithms and network design

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-1

Goals of this chapter

Demonstrate on 3 selected techniques that LP-theory provides advanced methods to design approximation

algorithms

Please repeat the chapter on approximation algorithm from ADM I

Goals of this section

Approximation algorithms based on solving an LP with subsequent rounding to an integer solution

Proving approximation guarantees by the use of LP-duality and dual solutions

As an example, we consider WEIGHTED VERTEX COVER (WVC)

Instance

an undirected graph G with vertex weights wv " 0

Task

Determine a vertex cover C of G with minimum weight %v # C wv

Example

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-2

2

1

3
1 = wv

2
2 C = green vertices

Simple rounding (for a minimization problem)

Algorithm Simple Rounding

Formulate the given instance I as an integer program (IP)

solve the LP-relaxation (LP) of (IP) in polynomial time

Recall that approximation algorithms must run in polynomial time (in the encoding length <I> of I)

If (LP) has only polynomially many variables and inequalities in the encoding length of I, then it can be solved

in polynomial time with one of the known polynomial LP-algorithms (see Chapter 10).

However, (LP) often has exponentially many inequalities. Then we must show that the separation problem for

these inequalities is solvable in polynomial time. Theorem 7.26 then shows that (LP) can be solved in

polynomial time.

Round the fractional optimal solution of (LP) to a feasible solution of (IP)

This rounding is problem dependent. It need not work in general.

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-3

9.1 Lemma (Approximation guarantee for simple rounding)

Let A(I) be the feasible solution of (IP) obtained by rounding.

Let OPT(I) be an optimal solution of the given instance I and let LP(I) be an optimal solution of the LP-

relaxation.

If

A(I) ! ρ·LP(I) for every instance I,

then algorithm "Simple Rounding" is a ρ-approximation algorithm

Remark: it is common in the theory of approximation algorithms to use A(I), OPT(I) both for the solution

itself and for the value of that solution.

Proof

As (LP) is a relaxation of (IP), we have LP(I) ! IP(I) = OPT(I)

=> A(I) ! ρ·LP(I) ! ρ·OPT(I) !

Application to WVC

IP-formulation (IP)

Introduce 0/1-variables xv with xv = 1 :<=> v ∈ C

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-4

Introduce 0/1-variables xv with xv = 1 :<=> v ∈ C

Then WVC is equivalent to the IP

min %v wvxv

s.t. xu + xv " 1 for every edge e = (u,v) of G

xv ∈ { 0, 1 } for every vertex v of G

The LP-relaxation (LP) of (IP)

min %v wvxv

s.t. xu + xv " 1 for every edge e = (u,v) of G

xv " 0 for every vertex v of G

xv " 0 is sufficient, since each optimal LP solution fulfills xv ! 1 because of wv " 0

(LP) has only polynomially many inequalities and variables and can thus be solved in polynomial time with a

polynomial LP-algorithm (see Chapter 10)

The rounding

let x' be an optimal solution of (LP)

round x' to x* as follows:

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-5

!∗
" !"

�
#$!�

" ! $%%

$ &'()*+#,)

Then:

x* is feasible for (IP), i.e., a vertex cover

let (u,v) be an edge of G

=> xu' + xv' " 1 => xu' " 0.5 or xv' " 0.5 => xu* = 1 or xv* = 1

=> the edge (u,v) is covered by x*

A(I) ! 2·LP(I)

xv* ! 2xv' => A(I) ! 2·LP(I) as wv " 0

So algorithm "Simple Rounding" is a 2-approximation algorithm for WVC

The use of dual solutions (for minimization problems)

9.2 Lemma (The use of dual solutions in approximation algorithms)

Let (D) be the dual LP of the LP-relaxation (LP) of (IP).

Let dual(I) be a feasible solution of (D) for instance I.

Let A be a polynomial algorithm that constructs a feasible solution A(I) of (IP) with

A(I) ! ρ·dual(I) for every instance I

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-6

A(I) ! ρ·dual(I) for every instance I

Then A is a ρ-approximation algorithm

Proof:

weak duality theorem => dual(I) ! LP(I)

(LP) is a relaxation of (IP) => LP(I) ! OPT(I)

So A(I) ! ρ·dual(I) ! ρ·OPT(I) !

Remark

In contrast to Simple Rounding, the use of dual solutions need not solve an LP. It suffices that the algorithm

constructs a feasible solution A(I) of (IP). The dual solution dual(I) is only needed in the proof of the

inequality

A(I) ! ρ·dual(I)

but not in the algorithm.

Application to WVC (Bar-Yehuda & Even 1981)

The LP-relaxation (LP) of WVC (see above) is

min %v wvxv

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-7

min %v wvxv

s.t. xu + xv " 1 for every edge e = (u,v) of G

xv " 0 for all vertices v of G

The associated dual LP (D) has a variable ye for every edge e of G and reads

max %e # E ye

s.t. %e # δ(v) ye ! wv for every vertex v of G

ye " 0 for all edges e of G

It computes edge weights ye " 0 such that the total weight in the graph gets as large as possible, but the

weight in every "star" δ(v) is at most wv (i.e. it computes a w-packing with maximum value)

The special case wv = 1 for all vertices

Algorithm G (Gavril, 1974, see ADM I)

Input

an instance I of VERTEX COVER

Output

a vertex cover G(I) with G(I) ! 2·OPT(I)

Method

compute an !-maximal matching M of G

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-8

compute an !-maximal matching M of G

set U := both endpoints of every matching edge from M

return U

Proving the approximation guarantee with the use of dual solutions

The set U computed by the algorithm is a vertex cover

otherwise M would not be !-maximal

M is a dual feasible solution, M = dual(I)

clear, since every star δ(v) contains at most one matching edge

G(I) = |U| = 2|M| = 2·dual(I) => G(I) ! 2·dual(I) => approximation guarantee 2 with Lemma 9.2 !

The general case with arbitrary weights wv " 0

Call a vertex v saturated if %e # δ(v) ye = wv

Algorithm PACK

Input

an instance I of WVC with E $ Ø and w.o.l.g. wv > 0 for all v

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-9

an instance I of WVC with E $ Ø and w.o.l.g. wv > 0 for all v

// vertices v with wv = 0 will be taken and PACK is only applied to the graph induced by the remaining

vertices

Output

a vertex cover PACK(I) with PACK(I) ! 2·OPT(I)

Method

set C := Ø and ye = 0 for all edges e

repeat

choose an edge e

increase the value of the dual variable ye until one (or both) endpoints of e are saturated

add the saturated endpoint(s) of e to C

delete the saturated endpoint(s) of e and all incident edges

until no edges are left

return C

Proving the approximation guarantee with the use of dual solutions

The set C computed by the algorithm is a vertex cover

9. LP-based approximation algorithms
9.1 Simple rounding and the use of dual solutions

53-10

The set C computed by the algorithm is a vertex cover

an edge e is only deleted if at least one of its endpoints u is saturated

=> u ∈ C and u covers edge e

The edge weights at the end of the algorithm constitute a dual feasible solution dual(I)

clear, since ye " 0 and %e # δ(v) ye ! wv throughout the algorithm

PACK(I) = %v # C wv ! 2·%e # E ye = 2·dual(I)

=> approximation guarantee 2 with Lemma 9.2

interpret the increase of ye by k as paying k $ to each endpoint of e

=> a vertex v has been paid wv when it enters the set C

=> %v # C wv ! total payment to all vertices = 2 %e # E ye !

9. LP-based approximation algorithms
9.2 Randomized rounding

54-1

Goals of this section

Illustrate approximation algorithms based on solving an LP with subsequent randomized rounding,

i.e., rounding with probabilities obtained from the optimal LP solution

We take MAX SAT as illustrative example, see ADM I, Chapter 9.4

A trivial randomized rounding for MAX SAT (see ADM I, chapter 9.4)

Algorithm Randomize (Johnson 1974)

Input

an instance of MAX SAT

at least k literals (k " 1) per clause Z

weight c(Z) per clause Z

Output

a random truth assignment with expected performance

E[%Z c(Z)] " (1 - 1/2k)·OPT(I)

Method

toss a fair coin for every Boolean variable xj and set

9. LP-based approximation algorithms
9.2 Randomized rounding

54-2

xj := TRUE if the coin shows head

xj := FALSE if the coin shows number

return the resulting random truth assignment

This algorithm is good for k " 2 (it gives at least 3/4 of the optimal weight), but is bad for k = 1 (where it gives

only 1/2 of the optimal weight).

Randomized rounding based on an LP relaxation

The general principle of randomized rounding (Raghavan & Thompson 1987)

1. Model the problem as an IP variables xj ∈ { 0, 1 }

2. Relax the IP to an LP 0 ! xj ! 1

3. Solve the LP optimally values xj´

4. Round randomized

set xj = 1 with probability xj´

5. Show that the resulting vector x

is feasible for the IP

has a good expected approximation guarantee

9. LP-based approximation algorithms
9.2 Randomized rounding

54-3

has a good expected approximation guarantee

Randomized rounding based on an LP relaxation for MAX SAT (Goemans & Williamson 1993)

The IP

0/1 variable yi = truth value of Boolean variable xi

0/1 variable zj = truth value of clause Cj

Tj = set of unnegated variables in clause Cj

Fj = set of negated variables in clause Cj

The IP then is

max %j wjzj

s.t. ∑

i∈Tj

yi + ∑
i∈Fj

(1 − yi) ≥ zj

 yi ∈ { 0, 1 }, zj ∈ { 0, 1 }

Randomized rounding

Let (y*,z*) be an optimal solution of the LP relaxation of the IP

Use y* for randomized rounding, i.e., set

9. LP-based approximation algorithms
9.2 Randomized rounding

54-4

Use y* for randomized rounding, i.e., set

xi := TRUE with probability yi*

xi := FALSE with probability 1-yi*

This trivially produced a truth assignment of the given instance.

Of course, not all clauses will be satisfied (i.e., evaluate to TRUE).

The performance guarantee

Consider w.o.l.g. the clause Cj = x1 v x2 v ... v xk (it is similar for negated variables and other indices).

Then

Prob[Cj is satisfied] = 1 −
k

∏
i=1

(1 − y∗i)

≥ 1 −
�

1 − 1
k

k

∑
i=1

y∗i

�k

since geometric mean ≤ arithmetic mean

≥ 1 −
�

1 − 1
k

z∗j

�k
because of the LP inequality

Now set

9. LP-based approximation algorithms
9.2 Randomized rounding

54-5

f (z) := 1 −
�

1 − 1
k

z
�k

concave in z

and

!!"" #$

�
% !

�
% !

%

#

�#
�
" &'()*+ '(,

Hence f(z) " g(z) on the interval [0,1] if f(z) " g(z) for the endpoints z = 0 and z = 1 of the interval

Checking z = 0: f(0) = 0, g(0) = 0

Checking z = 1: f(1) = g(1)

So

Prob[Cj satisfied] ≥
�

1 −
�

1 − 1
k

�k
�

z∗j

=> E(total weight of all satisfied clauses)

! !"#
!

�
$ "

�
$ "

$

!

�!
�

�

"

#"$
∗
" !

�
$ "

$

%

� �

"

#"$
∗
"

9. LP-based approximation algorithms
9.2 Randomized rounding

54-6

≥
�

1 − 1
e

�
OPT(I) since z

∗ is an optimal solution of the LP-relaxation

! !!"#$ ""#$%%&

So this algorithm achieves in expectation a performance guarantee of at least 0,623 of the optimum weight

also for instances with only one literal in some clauses.

Combining both algorithms for MAX SAT

Toss a coin to decide which algorithm to use (Johnson or Randomized Rounding) and run the chosen algorithm.

This is again a randomized algorithm with an expected approximation guarantee of (3/4)

Proof:

Consider a clause Cj with k literals

Then

Prob[Cj satisfied] ≥ 1

2

�
1 − 1

2k

�
+

1
2

�
1 −

�
1 − 1

k

�k
�

z∗j

9. LP-based approximation algorithms
9.2 Randomized rounding

54-7

≥ 1

2

�
1 − 1

2k

�
z∗j +

1
2

�
1 −

�
1 − 1

k

�k
�

z∗j since 0 ≤ z∗j ≤ 1

= f (k) · z∗j with f (k) :=
1
2

�
1 − 1

2k

�
+

1
2

�
1 −

�
1 − 1

k

�k
�

Now f(1) = 3/4 and f(x) " 3/4 on the interval [2,&] (calculus)

0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3

0,5

0,75

1

1,25

1,5

1,75

=> E(total weight of all satisfied clauses) " 3/4 %j wjzj* " 3/4 OPT(I) !

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-1

Goals of this section

Introduction of the primal-dual scheme for constructing approximation algorithms

We demonstrate this on the network design problem

The network design problem

Instance

an undirected graph G = (V, E)

edge costs ce " 0

connection requirements rij for any 2 vertices i, j

Wanted

an edge set F ! E with minimal cost %e # F ce such that

G' := (V, F) contains at least rij pairwise edge disjoint paths between i and j for any 2 vertices i, j

The network design problem is NP-hard (Karp 1972).

It arises in designing low-cost networks that can survive edge failures

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-2

Construction of a VPN as special case (see Section 4.4)

Example

given vertices with requirements a solution of the

rij = 3 between colored vertices network design problem

rij = 2 otherwise

A

B

B

A

C

C

 A

B

B

A

C

C

The solution "survives" up to 2 edges failures on connections between colored vertices and one edge failure on

connections to a black vertex. The solution was the example VPN for the disjoint path problem in Section 4.4.

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-3

connections to a black vertex. The solution was the example VPN for the disjoint path problem in Section 4.4.

A

B

B

A

C

C

A formulation of the network design problem as IP

set f(S) := max { rij | i ∈ S, j ∉ S } for every vertex set S $ Ø, V (demand of S)

introduce a 0/1 variable xe for choosing edge e

(IP):

min %e cexe

%e # δ(S) xe " f(S) for all Ø $ S % V (cut conditions)

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-4

%e # δ(S) xe " f(S) for all Ø $ S % V (cut conditions)

xe ∈ { 0, 1 } for all edges e

x is a solution of (IP) <=> F = { e ∈ E | xe = 1 } is a solution of the network design problem

"<="

trivial

"=>"

Max Flow Min Cut Theorem (applied to any pair i, j with edge capacities 1) + cut constraints

=> there is a flow from i to j with value " rij

=> there is an integer flow from i to j with value " rij

=> there are rij pairwise edge disjoint paths from i to j

=> the conditions in the (IP) are also sufficient !

Some special cases

Shortest s,t-paths

rst = 1, rij = 0 otherwise

f(S) = 1 if |S " { s, t }| = 1, f(S) = 0 otherwise

Minimum spanning trees

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-5

Minimum spanning trees

rij = 1 for all pairs i, j

f(S) = 1 for all Ø $ S % V, f(S) = 0 otherwise

Minimum Steiner tree

rij = 1 for all i, j ∈ T (T = set of terminals that need to be connected)

f(S) = 1 if S " T $ Ø and T - S $ Ø, f(S) = 0 otherwise

Generalized Steiner tree problem

:<=> f(S) ∈ { 0, 1 }

The primal-dual scheme

It uses complementary slackness similar to the primal-dual algorithm of Chapter 6.

We recall it below in the form needed here:

Starting point are an LP

(P) min %j cjxj s.t. %j aijxj " bi for all i, xj " 0 for all j

and the associated dual

(D) max %i biyi s.t. %i aijyi ! cj for all j, yi " 0 for all i

Complementary slackness conditions then read

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-6

Complementary slackness conditions then read

xj > 0 => %i aijyi = cj (primal slackness condition)

yi > 0 => %j aijxj = bi (dual slackness condition)

A primal feasible x and a dual feasible y are optimal

<=> x and y fulfill these conditions (Theorem 4.4)

The primal dual algorithm of Chapter 6 then runs through the following loop

! x s.t.
x, y fulfill

complementary
slackness

y = 0

no Get direction
of increase

for dual

yes Stop.
x, y are
optimal

The primal-dual scheme for approximation algorithms

Model the problem as IP

Relax the IP to an LP

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-7

Relax the IP to an LP

Relax the dual slackness condition (yi > 0 => %j aijxj = bi)

Use the loop to construct a feasible solution x for the IP and a dual feasible solution y

Show that x and y fulfill the inequality %j cjxj ! α·%i biyi

=> α-approximation because of Lemma 9.2

The primal-dual pair for the network design problem with f(S) ∈ { 0, 1 }

IP:

min %e cexe

%e # δ(S) xe " f(S) for all Ø $ S % V (cut constraints)

xe ∈ { 0, 1 } for all edges e

LP relaxation = primal LP

min %e cexe

%e # δ(S) xe " f(S) for all S % V with f(S) = 1

xe " 0 for all edges e

The condition xe ! 1 may be dropped, as it will hold in the optimum because of ce " 0

Dual LP

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-8

Dual LP

max %S:f(S)=1 yS

 %S:e#δ(S) yS ! ce for all edges e

 yS " 0 for all variables yS

Call an edge e saturated if %S:e#δ(S) yS = ce

The primal slackness condition then says: xe > 0 => e saturated

The primal dual algorithm for f(S) ∈ { 0, 1 }

Input

Instance of the network design problem with f(S) ∈ { 0, 1 }

Output

Feasible solution (V, A) of the network design problem with performance guarantee 2

Method

Initialize all dual variables yS := 0

Initialize the primal solution (as edge set A) A := Ø

while A is not a feasible solution do

let C be the set of all connected components S in the graph (V, A) of the edges of A with f(S) = 1

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-9

let C be the set of all connected components S in the graph (V, A) of the edges of A with f(S) = 1

increase yS for all S ∈ C by the same amount until some edge e ∉ A becomes saturated

add all saturated edges to A

remove redundant edges from A (this makes A !-minimal feasible) // cleanup step

return A

Example for Euclidean distances

Dual variables are represented by moats around the connected components S ∈ C

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-10

Dual variables are represented by moats around the connected components S ∈ C

Initialize: A := Ø, yS := 0 for all S

a

a b

b

b

c
c

rij = 1 for i,j = a, i,j = b and i,j = c

=> initially, all connected components S ∈ C are singletons

Iteration 1

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-11

a

a b

b

b

c
c

Iteration 2

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-12

a

a b

b

b

c
c

The newly created connected component S (the two c-vertices) has f(S) = 0,

so the associated dual variable yS will not grow in the next iteration.

Iteration 3

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-13

a

a b

b

b

c
c

The newly created connected component S (the two c-vertices and the b-vertex) has f(S) = 0,

so the associated dual variable yS will grow in the next iteration.

Iteration 4

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-14

a

a b

b

b

c
c

Iteration 5

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-15

a

a b

b

b

c
c

This last iteration added 2 saturated edges to A.

Cleanup step

The edge between a and b is redundant and is removed.

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-16

a

a b

b

b

c
c

Performance guarantees of the primal dual scheme for f(S) ∈ { 0, 1 }
9.3 Theorem (Performance guarantee and runtime of the primal dual algorithm, Agarwal, Klein & Ravi 1991,

Goemans & Williamson 1992)

The primal dual algorithm for f(S) ∈ { 0, 1 } can be implemented with a runtime of O(n2 log n).

The computed primal solution A fulfills %e # A ce ! 2·OPT(I), i.e., the algorithm is a 2-approximation

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-17

The computed primal solution A fulfills %e # A ce ! 2·OPT(I), i.e., the algorithm is a 2-approximation

algorithm.

Proof

with Lemma 9.4 and 9.5 (only the performance guarantee, not the runtime) !

The essential combinatorial inequality

The algorithm runs through iterations k = 1, 2, ..., K

In iteration k, let

Ak be the edge set at the start of that iteration

Ck be the set of connected components that grow in iteration k (i.e. f(S) = 1)

!k be the value by which all yS with S ∈ Ck grow

9.4 Lemma (Combinatorial inequality giving the approximation guarantee)

The primal dual algorithm is an α-approximation algorithm if, in each iteration k, the inequality

%S # Ck
 |δ(S) " D| ! α·|Ck|

 holds for every !-minimal feasible solution D containing Ak

Interpretation of the combinatorial inequality:

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-18

Interpretation of the combinatorial inequality:

Every !-minimal feasible superset D of Ak must add some edges for every cut δ(S) with S ∈ Ck.

The inequality says that the number of these edges is bounded by α times the number of these sets S.

So every iteration k adds "on average" at most α edges to such a set S.

Proof for f(S) ∈ { 0, 1 } :

Let y be the dual solution constructed by the algorithm.

Let A be the primal solution constructed by the algorithm.

cleanup step => A is contained in a set D for which the combinatorial inequality holds by assumption.

=> the combinatorial inequality is also true for A

For the value of A we obtain:

∑
e∈A

ce = ∑
e∈A

∑
S:e∈δ(S)

yS because of primal slackness

= ∑
S : δ(S)∩A �= ∅

|A ∩ δ(S)| · yS rearranging terms

= ∑
S : δ(S)∩A �= ∅

|A ∩ δ(S)| · ∑
k : S∈Ck

εk total growth of yS

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-19

= ∑
k

�

∑
S∈Ck

|A ∩ δ(S)|
�

εk rearranging terms

≤ ∑
k
(α · |Ck|) εk because of the combinatorial inequality

= α ∑
k
|Ck|εk = α ∑

S
yS

! α·OPT(I) because of Lemma 9.2 !

9.5 Lemma (Combinatorial inequality for f(S) ∈ { 0, 1 })

For f(S) ∈ { 0, 1 }, the primal dual algorithm fulfills the combinatorial inequality with α = 2.

Proof:

Consider iteration k and an !-minimal feasible superset D of Ak

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-20

a

a b

b

b

c
c

Contract the connected components of (V, Ak) to "super nodes"

D is !-minimal feasible, f(S) ∈ { 0, 1 } => D is a forest in the contracted graph

Color the super nodes corresponding to sets S ∈ Ck red, the others blue

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-21

a

a b

b

c
c

Vertex v = S ∈ Ck => |δ(S) " D| = degree d(v)

=> the combinatorial inequality reduces to

 %v red d(v) ! 2·(# red vertices) in the contracted graph

Claim: no blue vertex has degree 1

otherwise the corresponding edge would be necessary for feasibility

=> the vertex should be red

Delete blue vertices with degree 0 (they do not influence the inequality that we must show).

The resulting subgraph (which still is a forest) fulfills:

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-22

The resulting subgraph (which still is a forest) fulfills:

 %v red d(v) = %v red or blue d(v) - %v blue d(v)

 ! 2·(# red + # blue) - %v blue d(v) because #edges ! #vertices in a forest,

 ! 2·(# red + # blue) - 2·(# blue) because of the claim

 = 2·(# red) !

Performance guarantees in the primal dual scheme for arbitrary values f(S)

Goemans, Mihail, Vazirani & Williamson 1993

Iteratively use a variation of the primal dual algorithm

This gives a 2·H(R)-approximation algorithm with

R := maxij rij and

H(R) := 1 + 1/2 + 1/3 + ... + 1/R ~ log R

Experience with the primal dual algorithm in practice

Steiner trees (Hall 1995)

60 instances from Beasley

500 - 1000 vertices, 600 - 60000 edges

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-23

500 - 1000 vertices, 600 - 60000 edges

On average only 7% deviation from the optimum

better than heuristics on large instances

Generalized Steiner tree problems (Hu & Wein 1995)

1000 randomly generated instances, 32 - 64 vertices

In general only 5% deviation from the optimum

Network design (Mihail, Mostrel, Dean & Shallcross 1996)

Used in a software package at Bellcore

(ITP/INPLANS CCS Network Topology Analyzer)

Is reported to do well, but details are confidential

Jain's algorithm for network design

Is based on simple rounding, gives a 2-approximation for general f(S)

9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-24

9.6 Theorem (Properties of basic solutions of the LP-relaxation of the network design problem, Jain 1998)

Every basic feasible solution x of the LP-relaxation of the general network design problem has an entry e

with xe " 1/2

For a proof see Korte & Vygen !

Jain's Algorithm

Input

instance of the general network design problem

Output

a feasible solution of the network design problem with performance guarantee 2

Method

let Q be the LP-relaxation of the IP formulation of the given instance

repeat forever

compute a basic optimal solution x of Q

if all xe are integer then return x

round xe to 1 for all edges e with xe " 1/2

modify Q as follows

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-25

modify Q as follows

set the rounded variables xe to their new value xe := 1

adapt the demands f(S) := f(S) - %e # δ(S) xe

9.7 Theorem (Performance guarantee of Jain's algorithm)

Jain's algorithm constructs a feasible solution x of the general network design problem with

%e # A ce ! 2·OPT(I),

i.e., the algorithm has a performance guarantee of 2.

Proof by induction on the number of iterations !

Remarks on Jain's algorithm

The LP-relaxation has exponentially many inequalities. It can be solved in polynomial time since

separation and optimization are polynomially equivalent (Theorem 7.26)

the separation problem for %e # δ(S) xe " f(S) can be solved in polynomial time by a sequence of min cut

problems

The algorithm is not so useful in practice since it must solve a sequence of LPs.

It is open if a "practical" 2-approximation algorithm exists.

9. LP-based approximation algorithms
9.3 Primal-dual approximation algorithms and network design

55-26

It is open if a "practical" 2-approximation algorithm exists.

10. Complexity of linear optimization and interior point methods

56

... 5710.1 LP is in NP ∩ coNP
.. 5810.2 Runtime of the simplex algorithm

.. 5910.3 The ellipsoid method
.. 6010.4 Interior point methods

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-1

Most important statements of this chapter (all only with proof sketches)

Linear programming (LP) is in NP ∩ coNP. Therefore it was conjectured that there is a polynomial algorithm for

LP.

All known variants of the simplex algorithm show an exponential worst-case runtime. However, the average case

analysis and the smoothed analysis show a polynomial runtime.

The ellipsoid method is the historically first method with a polynomial worst-case runtime for LP (Khachiyan

1979). It is, however, not practically relevant.

Interior points methods have been developed shortly after the ellipsoid method (first by Karmarkar 1984). They

also have a polynomial worst-case runtime. Today's variants (log barrier, primal-dual) are competitive with the

simplex algorithm and even superior for very large and sparse problems. But they rather unsuited for solving a

sequence of related optimization problems (which is important for many algorithms for integer optimization like

branch and bound or cutting-plane-methods).

Encoding length of an LP

Let the LP be given by

min cTx

s.t. Ax = b

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-2

s.t. Ax = b

 x " 0

with rational data A, b, c

The encoding length (size) of LP w.r.t. to the standard encoding (see ADM I) is

<LP> = <A> + + <c>

Another definition used with interior points methods is

L := <detmax> + <bmax> + <cmax> + m + n

with

detmax := max { |det A'| : A' is a quadratic submatrix of A }

bmax := maxi |bi|

cmax := maxj |cj|

10.1 Lemma (Encoding length of LP)

L ! <LP>

The proof is based on

|det A| = volume of the parallelepiped generated by the columns of A

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-3

|det A| = volume of the parallelepiped generated by the columns of A

⇒ !!"#!! "
�

" �!"�
 !

10.2 Lemma (Entries of basic solutions can be represented with L bits)

Let x be a basic solution of LP in simplified form (gcd of at least one nominator and denominator is 1)

!"
!

�
$#"#$

%
& ' ' ' &

$#"($

%

�

Then 0 ! pi < 2
L and 1 ! q < 2L

The proof is similar to that of Lemma 3.4 !

10.3 Lemma (The objective values of two basic solutions differ sufficiently)

Let x, y be basic feasible solutions of LP with cTx $ cTy.

Then |cTx - cTy| > 1/22L

Proof

Let p be the least common multiple of the denominators of x, q that of y

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-4

⇒ !!"# " !"$! !

�����
%!"#

%
"
&!"$

&

����� !

�����
%&"!"# " !"$#

%&

�����

" 1/pq as pq(cTx - cTy) $ 0 and integer

> 1/(2L2L) because of Lemma 10.2 !

10.4 Corollary (It suffices to compute objective values up to an additive error of 1/22L)

Let z := min { cTx | x ∈ P } with P = { x ∈ R! | Ax = b, x " 0 }

Let x ∈ P with cTx ! z + 1/22L

Then any basic feasible solution x* with cTx* ! cTx is optimal

Proof

Suppose that y is a basic optimal solution and that x* is not optimal.

Lemma 10.3 => |cTx* - cTy| > 1/22L

=> cTx* > cTy + 1/22L = z + 1/22L " cTx " cTx*, a contradiction !

LP ∈ NP ∩ coNP

To this end we must formulate LP as decision problem:

Input: LP and a rational number λ

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-5

Input: LP and a rational number λ
Question: Is min { cTx | Ax = b, x " 0 } ! λ ?

10.5 Theorem

LP ∈ NP ∩ coNP

Proof

LP ∈ NP

We must provide a certificate of polynomial length for min { cTx | Ax = b, x " 0 } ! λ
Case 1: LP has an optimal solution

=> LP has a basic feasible solution x' with cTx' ! λ

Lemma 10.2 => the entries of x' are polynomial in L

Ax' = b, x' " 0 and cTx' ! λ can be checked in polynomial time (in L)

=> x' is such a certificate

Case 2: LP has a feasible solution but the objective function is not bounded from below

=> the dual program (D) max { yTb | yTA ! cT, y unconstrained } has no feasible solution

Farkas' Lemma for (D) => there is x* " 0 with Ax* = 0, cTx* = -1

Take as certificate

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-6

Take as certificate

a basic feasible solution of LP to show feasibility

a basic feasible solution of { Ax = b, x " 0, cTx = -1 } to show unboundedness of the primal objective

Both basic solutions are polynomial in L because of Lemma 10.2

Case 3: LP has no feasible solution

then the instance is not a "yes"-instance => no certificate is required

LP ∈ coNP

We must provide a certificate of polynomial length for min { cTx | Ax = b, x " 0 } > λ
Case 1: LP has an optimal solution

duality theorem => inequality is equivalent to max { yTb | yTA ! cT, y unconstrained } > λ

this can be certified as in Case 1 above by a basic feasible solution of { yTA ! cT, y unconstrained } with

value > λ

Case 2: LP has a feasible solution but the objective function is not bounded from below

then the instance is not a "no"-instance => no certificate is required

Case 3: LP has no feasible solution

then the instance is a "yes"-instance, as min { cTx | Ax = b, x " 0 } = &

Farkas' Lemma => there is y " 0 with yTA = 0, yTb = -1

10. Complexity of linear optimization and interior point methods
10.1 LP is in NP ∩ coNP

57-7

Farkas' Lemma => there is y " 0 with yTA = 0, yTb = -1

=> take as certificate a basic feasible solution of { y " 0 with yTA = 0, yTb = -1 } !

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-1

Worst-case runtime of the simplex algorithm

The worst-case runtime of the simplex algorithm is exponential

The counterexamples are so-called Klee-Minty cubes, i.e., slightly distorted cubes on which the simplex

algorithm traverses all vertices, although it could get to the optimal solution with one pivot.

http://www.mathematik.de/ger/information/forschungsprojekte/zieglergeometrie/zieglergeometrie.html

Average runtime of the simplex algorithm

First results were obtained by Borgwardt 1982

Variant of the simplex algorithm: "Schattenecken" algorithm

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-2

The pivot rule is based on a 2-dimensional projection of the polyhedron

Probabilistic assumptions

b = 1 (w.o.l.g.)

c and the rows of A are independent, identically distributed random vectors whose distribution is invariant

under rotations around the origin

The expected number of pivot operations is O(n4m)

Improvement by Haimovich 1983

O(n+m) with the same algorithm and the same probabilistic assumptions

Caveats for these results

The statement holds only for the arithmetic complexity model with O(1) per operation

No statement for the standard simplex algorithm

The instances generated from the probabilistic assumptions are not sparse LPs

For fixed n, the probability that an instance has a feasible solution rapidly tends to 0 with increasing m

Smoothed analysis of the simplex algorithm

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-3

New complexity model introduced by Spielman & Teng 2002 and first applied to LP (95 page paper)

Consider for any instance I a neighborhood N(I) with a probability distribution on N(I), and compute
sup { EI∗∈ N(I)[runtime(I∗)] | all instances I }

Special cases:

Worst case analysis: N(I) = {I}

Average case: N(I) = set of all instances with the same dimensions n and m

Smoothed analysis "interpolates" between these extremes

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-4

ru
n

tim
e

input space

worst case

average
case

ru
n

tim
e

input space

smoothed
complexity

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-5

ru
n

tim
e

input space

smoothed
complexity

© Spielman & Teng

Results of Spielman & Teng

Variant of the simplex algorithm: two-stage Schattenecken algorithm

Instances are normally distributed, i.e., the values of A and b, that are $ 0, are "perturbed" by a normal

distribution N(0,σ)

The neighborhood N(I) is given by the standard deviation σ of the normal distribution

The runtime in the smoothed analysis is polynomial in n, m, and 1/σ

10. Complexity of linear optimization and interior point methods
10.2 Runtime of the simplex algorithm

58-6

The runtime in the smoothed analysis is polynomial in n, m, and 1/σ

Caveats

no statement for the standard simplex algorithm

the model preserves sparseness, but not degeneracy

10. Complexity of linear optimization and interior point methods
10.3 The ellipsoid method

59-1

The geometric intuition is simple, the technical details (and the proof of polynomial runtime) are difficult.

We will illustrate here only the geometric intuition.

Reducing linear optimization to finding a feasible point

One possibility: binary search w.r.t. the optimum d with inequality cx ! d

Another possibility: use duality

Use simultaneously the side constraints of the primal and the dual

and the constraint cTx ! bTy

=> the only feasible points are (x,y)T with x optimal in the primal, y optimal in the dual

The ellipsoid method computes a feasible point in a polytope P

start with a ball E around the origin containing P

while the volume of E is not too small do // there is still a point in E " P

if the center x of E is in P then return x

compute a hyperplane that separates x from P, let H be the halfspace containing P

compute the new ellipsoid E with smallest volume containing H " E and the intersection points of the

hyperplane with the boundary of the previous ellipsoid

10. Complexity of linear optimization and interior point methods
10.3 The ellipsoid method

59-2

hyperplane with the boundary of the previous ellipsoid

return "there is no feasible solution"

P

E
1

E
2

Remarks on the ellipsoid method

there is an analytic formula for the new ellipsoid (efficient update)

the volume per iteration shrinks by the factor exp(-1/2n) < 1

10. Complexity of linear optimization and interior point methods
10.3 The ellipsoid method

59-3

the volume per iteration shrinks by the factor exp(-1/2n) < 1

the volume check is done as follows for full dimensional polytopes P

translate the inequalities of P by 1/22L+1, such that P contains a ball with radius r = 1/22L

=> one can stop if the volume of E is below that of P

one need additional techniques for lower dimensional polytopes

the algorithm requires O(n2L) iterations with O(n4L) arithmetic operations with numbers of O(L) bits

more information about the ellipsoid method

M.#Grötschel, L.#Lovász, and A.#Schrijver

Geometric Algorithms and Combinatorial Optimization

Springer, Berlin, 2nd#ed., 1993

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-1

Goal of this section

A sketch of the interior point algorithm by Ye with improvements by Freund (both published in Mathematical

Programming 1991)

Starting point and general idea

given are a primal LP and the associated dual in the form

(P) min z = cTx

s.t. Ax = b, x " 0

(D) max w = bTy

s.t. ATy + s = c, s " 0 (slack variables), y unrestricted

The algorithm solves (P) and (D) simultaneously

It computes in each phase a primal solution x* > 0 and dual slack variables s* > 0

Basic idea:

Stay away from the boundary xj = 0, sj = 0, i.e. ensure xj > 0, sj > 0

but make the duality gap cTx* - bTy* = (ATy* + s)Tx* - (Ax*)Ty* = x*Ts* > 0 small

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-2

The two main ingredients

Ingredient 1: scaling

Let x* > 0 and s* > 0 be given

Scaling is a function R! → R! with

! !





!"

###

!"



 → !
�
!





!"

!
∗
"

###

!"

!
∗
"





Observe:

!
∗ →




!

"""

!





Scaling in matrix form:

x� = (X∗)−1x with X∗ =




x∗1 . . . 0

. . .
0 . . . x∗n





With scaling we can write (P) in the transformed space as

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-3

With scaling we can write (P) in the transformed space as

(P) min z = cTX*x´

s.t. AX*x´ = b, x´ " 0

Set c* := X*c, A* := X*A

=> (P) can be written as

(P) min z = c*Tx´

s.t. A*x´ = b, x´ " 0

Similarly, (D) is written in the transformed space as

(D) max w = bTy

s.t. A*Ty + s´ = c*, s´ " 0 with

!
�
!" "

∗
! ! "




!##

∗
#

$$$

!$#
∗
$





Observe: xjsj = xj´sj´ => the duality gap is invariant under scaling

=> one can do computations in the transformed space

Ingredient 2: potential function

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-4

Ingredient 2: potential function

It measures the size of the duality gap. It is a logarithmic barrier function

G(x,s) := q·ln(xTs) - %j ln(xj·sj)

with a suitable parameter q > 0

Observe

q·ln(xTs) → -& if the gap xTs → 0

- %j ln(xj·sj) → +& if xj → 0 or sj → 0, i.e., close to the boundary

Question: how to choose q ?

A good choice of q is

! !" " #
√
"

This choice leads to O(
√

n · L) iterations

where L := encoding length of Section 10.1

Stopping criterion

The potential function leads to a stopping criterion that is based on Lemma 10.2:

Let x, s be primal-dual feasible with for a constant k

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-5

Let x, s be primal-dual feasible with G(x, s) ≤ −k
√

nL for a constant k

Then xTs ! e-kL

So: stop when

!!"# $" ! "%
√
&'

with k = 2

Observe: Scaling does not change the value of G(x,s)

=> one may do calculations in the original or in the transformed space

Ye's algorithm

Structure of Ye's algorithm

Input

Primal-dual pair of the form

(P) min z = cTx

s.t. Ax = b, x " 0

(D) max w = bTy

s.t. ATy + s = c, s " 0 (slack variables), y unrestricted

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-6

s.t. ATy + s = c, s " 0 (slack variables), y unrestricted

Output

Primal dual pair (x,s) with
G(x, s) ≤ −k

√
nL

Method

Initialization

i := 0 // counter

choose x0, y0 primal-dual feasible with
G(x

0, s
0) = O(

√
nL)

// idea: modify phase I of the simplex algorithm such that x ~ 2L, s ~ 2L

Iteration

!"#$% &!'#()#" * !#
√
+, -.

do a primal step // change only xi

or a dual step // change si

this gives (xi+1, si+1)

i := i+1

Details of the iteration

Overview

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-7

Overview

Scale the current pair (xi, si) → (e, s´) with e = 1

=> (e, s´) is far from the boundary

the primal or dual step then computes (!!, !!) and reduces G

the re-transformation of (!!, !!) into the original space gives (xi+1, si+1)

Main property of the primal/dual step

do it in such a way that G(xi+1, si+1) - G(xi, si) ! -7/120 < 0
⇒ G(xN , sN) < −2

√
nL

 after N steps with

!
√
"#� �� �

! $!%"&'"#

" (
$

%&"
&

√
"#

⇒ ! !
!"#

$
%" & "'

√
#$ (%%

√
#$'

Computing (!!, !!)

Compute the x-gradient of G in the point (e, s´) :

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-8

! !" ∇"##"$ %$!#&$%�$ "
'

"(%
% "





%
"%

&&&
%
")





��������
#&$%�$

"
'

"(%�
%� " &

Go into the direction -g to decrease G, but stay feasible (i.e., A*·!! = b).

To this end, let d be the projection of g onto the subspace { x | A*x = 0 }

=> d = (I - A*(A*A*T)-1A*)g (without proof)

Go into direction -d

A possible problem: ||d|| is too small

=> the primal step does not decrease G enough

Therefore: make a primal step if ||d|| " 0.4

a dual step if ||d|| < 0.4

Primal step

x̃ := e − 1
4�d�d, s̃ := s

After the primal step, > 0 and G(,) - G(e, s´) ! -7/120

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-9

After the primal step, !! > 0 and G(!!, !!) - G(e, s´) ! -7/120

Dual step

compute the s-gradient of G in the point (e, s´) :

! !" ∇"##$% "$!#&%"�$ "
'

$("�
& "





%
"�
%

&&&
%
"�
)





=> hj = gj/sj => h and g show approximately into the same direction

go into direction -(g-d) and set

!! := s´- (g-d)(with (:= eTs´/ q

After the dual step,

!! "
"#!�

$
#% $ "%& !' " '� " "

!! > 0

G(!!, !!) - G(e, s´) ! -1/6

Analysis of Ye's algorithm

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-10

Analysis of Ye's algorithm

Advance per iteration

G decreases in every primal and dual step by a constant amount

⇒ O(
√

nL) iterations until
G(xi, si) < −2

√
nL

Runtime

Each iteration can be done with O(n3) operations

the only expensive calculation is that of the projected gradient d

= solution of the linear system (A*A*T)w = A*g

can be done by Gaussian elimination in O(n3) operations

=> O(n3.5L) operations in total

Problem: operations cannot be made exactly

||d|| may be irrational

=> compute only with fixed number of L bits and round

=> 19/352 instead of 7/120 by rounding when calculating ||d||

10. Complexity of linear optimization and interior point methods
10.4 Interior point methods

60-11

The numbers the Gaussian elimination must not become too large

Use <det B> ! <A> for every quadratic submatrix of A

=> (Cramers' Rule) all numbers in Gaussian elimination can be represented with L bits

10.6 Theorem (Polynomial runtime of Ye's algorithm)

Ye's algorithm runs in O(n3.5L) time.

without proof !

