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Part | statements
background
proof

variants / generalizations

Part |l quick applications

Part Il  application: adjacency labelling scheme
open problems / further research
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adjacency tester A ({0,1}*)2 — 40,1}
labelling function ¢: V(G) —  {0,1}*

(G, ) A if 0 fow g B(G)
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A(000, 100) = 1

100 101
(G, )
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A family of graphs g has an
if E a function A : ({0,1}*)? — {0, 1} such that

\v/ n-vertex graph G € g — ¢:V(G) — {0,1}* such that

> |€(v)| < f(n) for each v in G
> (G, £) works with A
(Dujmovi¢, Joret, Morin, PM, Ueckerdt, Wood 2019)



J(n)-bit ad; .
A family of graphs g has an Jacency labelling scheme

if - afunction A :({0,1}*)* — {0, 1} such that

\v/ n-vertex graph G € g E ¢:V(G) — {0,1}* such that

> |l(v)| < f(n) for each v in G
> (G, £) works with A
(Dujmovi¢, Joret, Morin, PM, Ueckerdt, Wood 2019)

The family of planar graphs has adjacency labellin




Examples

> when G contains a single n-vertex graph

labels = unique ids of length [logn|

function A = adjacency matrix
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Examples

> when G contains a single n-vertex graph
you cannot do better

labels = unique ids of length [logn| than [log 7]
an [logn

function A = adjacency matrix

> when G is a family of linear forests

lus an extra bit
labels = unique ids assigned along the paths g

indicating . ..

. . . . ......... .—. .—.

100 -0 L1 i 5 vertex is adjacent
to a vertex to the left
logn + O(1) scheme

> when G is a family of
root a tree and take any topological ordering of its vertices

assign unique ids
labels = concatenation of
vertex id and id of its parent

010 100-010 2[logn] scheme
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Examples

> when G contains a single n-vertex graph
you cannot do better

labels = unique ids of length [logn| than [log 7]
an [logn

function A = adjacency matrix

> when G is a family of linear forests

lus an extra bit
labels = unique ids assigned along the paths g

indicating . ..

. . . . ......... .—. .—.

100 -0 L1 i 5 vertex is adjacent
to a vertex to the left
logn + O(1) scheme

> when G is a family of
root a tree and take any topological ordering of its vertices

assign unique ids
labels = concatenation of
vertex id and id of its parent

010000 100010 2[logn| scheme



Examples

> when G is a family of
take a vertex ordering witnessing that GG is 5-degenerate

assign unique ids
<O _
labels = concatenation of
vertex id and ids of left neighbors

6(logn| scheme
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history and related work
Forests

(Chung 1990)

logn 4+ O(loglogn)-bit scheme

(Alstrup, Rauhe 2006)

logn + O(log™ n)-bit scheme planar graphs have

(Alstrup, Dahlgaard, Knudsen 2017) N arboricity 3
logn 4+ O(1)-bit scheme 3logn + O(1)-bit
Bounded treewidth graphs scheme
(Gavoille, Labourel 2007)
(1 4 o(1)) log n-bit scheme
every graph with no K;-minor (2 4+ o(1)) log n-bit
can be edge 2-colored so that — scheme

each monochromatic subgraph has bounded tw

Planar graphs

(Bonamy, Gavoille, Mi. Pilipczuk 2020)
(5 + o(1)) log n-bit scheme



product structure theorem

(Dujmovi¢, Joret, Morin, PM, Ueckerdt, Wood 2020)

Every planar graph G is a subgraph of a strong product H XI P where
H is a graph of treewidth at most 8 and P is a path.




labelling scheme through the Product Structure Thm

tw(H) < 8 path P
n vertices m vertices h vertices
o
o
G C H X °

C (.

plus 8 - 3 bits to check if
edge in H X P is present in G
all we can say is m < n and h < n, so we get

(14 o(l)l)lllog(n - n)-bit
(24 o(1)) log(n)-bit

schemes

(1+0(1))log(m - h)



(5 + o(1)) log n-bit scheme

> "remove" every other n!/? edge of the path P H P
so that there are O(n?/?) vertices 5 :
in boundary layers CD I
boundary { .
S
-l > e
-l > e
. > nl/3
_ >
S
boundary { C> L

i
Uy



(5 + o(1)) log n-bit scheme

> "'remove" every other n'/3 edge of the path P 1 P
so that there are O(n?/3) vertices : '
in boundary layers < — {
boundary { % N
> {
S nl/3

I

Il

boundary {




(5 + o(1)) log n-bit scheme

> "remove" every other /3 edge of the path P 1
so that there are O(n?/?) vertices Z o

in boundary layers

boundary { % ' \

S /3

boundary { % /



(5 + o(1)) log n-bit scheme

> "remove" every other /3 edge of the path P 1 P
so that there are O(n?/?) vertices ; :
in boundary layers — > {
boundary { CD O
> each piece between the cuts CD
Is a subgraph of H X P’ where | P/| — n1/3< i

(1+0(1))log(n-n'/3) = (4 +o(1)) logn

-bit scheme : e nt/3

in
J\

QOO




(5 + o(1)) log n-bit scheme

> "remove" every other /3 edge of the path P 1 P
so that there are O(n?/?) vertices ; :
in boundary layers — > {
boundary { : \
> each piece between the cuts CD
Is a subgraph of H X P’ where | P'| = n1/3< i
(1+0(1))log(n-n'/3) = (4 +o(1)) logn '
-bit scheme ' e /3
> boundary vertices get shorter labels _ I 5
(2 4+ o(1)) log n-bit length < i I
S——

_v



(5 + o(1)) log n-bit scheme

> "remove" every other /3 edge of the path P 1 P

so that there are O(n?/?) vertices :

in boundary layers — > {

boundary { C> N

> each piece between the cuts CD

Is a subgraph of H X P’ where | P'| = n1/3< i

(1+0(1))log(n-n'/3) = (4 +o(1)) logn

-bit scheme ' P

> boundary vertices get shorter labels _ I 5

(2 4+ o(1)) log n-bit length < i I
> the graph induced by boundary vertices CD )

has bounded treewidth and size O(n2/3) — — {
(2 + o(1)) log n-bit scheme

in total: (5 + o(1)) log n-bit scheme

W~

1/3



special case: subgraphs of PX P
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special case: subgraphs of PX P




weighted scheme for paths: preliminaries (1)

A binary search tree T is a binary tree whose node set V(T') consists of
distinct real numbers and that has the property:
For each node x in T,

z < x for each node z in x's left subtree and
z > x for each node z in z's right subtree.

Tr <y

0

or(x) is lexicographically less than o (y)



weighted scheme for paths: preliminaries (2)

S finite subset of R W=y (s)

w: S — RT weight function — Zuses W2

Observation

There exists a binary search tree T" with V(T') = S such that
dr(y) < log(W) — log(w(y)), for each y € S.



weighted scheme for paths: preliminaries (2)

S finite subset of R
W —
w: S — RT weight function 2ses W)
Observation
There exists a binary search tree T" with V(T') = S such that
dr(y) < log(W) — log(w(y)), for each y € S.

To construct the tree:
> choose the root of T" to be the unique node s € S such that

D zesw(z) KW/2 and ) .esw(z) <W/2

A zZ>8

> then recurse on {z | z € S and z < s} and {z | z € S and z < s}
to obtain the left and right subtrees of s, respectively.



weighted scheme for paths: preliminaries (3)

x, y nodes in bst T such that x < y and there is no z in T with x < z < y,
so x and y are consecutive in the sort of V(T).
Then
> if y has no left child, o (x) is obtained from o7 (y) by
removing all trailing O's and the last 1;
> if y has a left child, o (x) is obtained from o7 (y) by
appending a 0 followed by dr(y) — dr(x) —1 1’s.

Thus, there exists a universal function D : ({0,1}*)? — {0,1}* such that
for every bst T" with x, y being consecutive in V (T'), there exists
or(y) € {0,1}* with |67 (y)| = O(log h(T')) such that
D(or(y),0r(y)) = or(z).



weighted scheme for paths

There exists a universal function A : ({0,1}*)? — {—1,0,1, L} such that,
for any h € N, and any weight function w : {1,...,h} — R*
there is a prefix-free code o : {1,... A} — {0, 1}* such that

> for each i € {1,...,h}, |a(i)| =logW —logw(i) + O(loglog h);
> for any 4,5 € {1,...,h}, where W = S w(s)

(0 ifj =7

1 itj=1+4+1;
-1 ifj=1-—1;
L otherwise.

Ala(i), a(j)) = «
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XX

define label(v)as a concatenation of

RN

row label: logn — logn; + o(logn) weighted scheme
column label: logn; + o(logn)

h
forv=(7,7) in G C\Z;':n



for v = (4,
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define label(v)as a concatenation of

N/

D
K

N——"

row label: logn — logn; + o(logn) weighted scheme

column label: logn; + o(logn)



m

XL NIXIX

DX XX XXX

given label(v), label(w)



m

XL NIXIX
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m

XL NIXIX

DDXIXDXIXPXIX XXX
iven label(v), label(w)
g|> if row(v) = row(w) then column labels will do{\N(léS



m

XL NIXIX

DX XX XXX

given label(v), label(w)
_ » YES
v) = row(w) then column labels will do g NO

TOW
| row(v) — row(w)| > 1 then output NO

> if
> if
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given label(v), label(w)
_ - YES
> if row(v) = row(w) then column labels will do\
_ NO
> if |row(v) — row(w)| > 1 then output NO
> if | row(v) — row(w)| = 1 then 777
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row label: logn — logn; + o(logn)
column label: logn; + o(logn)

transition label: o(logn)

L RCOXKRK
A EX T
- 4 NN , 4N ,) Git1









a-chunking sequence

X, YCR a=>1
X a-chunks Y if, for any a + 1-element subset S C Y, there exists x € X,
h that
>Ue | minS <z <max=S

Vi,..., Wy is a-chunking if V,, a-chunks V41 and V41 a-chunks V,



a-chunking sequence

X, YCR a=>1
X a-chunks Y if, for any a + 1-element subset S C Y, there exists x € X,

such that
minS <z <max=S

Vi,..., Wy is a-chunking if V,, a-chunks V41 and V41 a-chunks V,

Lemma For any finite sets S1,...,5, C R and any integer a > 1,
there exist sets V1, ...,V C R such that
>V, 298, foreachy e{1,...,h};
> Vi,...,Vn is a-chunking;

> SV, < (4H) 308, .



a-chunking sequence

X, YCR a=>1
X a-chunks Y if, for any a + 1-element subset S C Y, there exists x € X,

such that
minS <z <max=S

Vi,..., Wy is a-chunking if V,, a-chunks V41 and V41 a-chunks V,

Lemma For any finite sets S1,...,5, C R and any integer ,
there exist sets V1, ...,V C R such that
>V, 298, foreachy e{1,...,h};
> Vi, ...,V is ;

> 2 [Vl < 42018y
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., T},) — a trace of a single dynamic binary search tree
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(T1, T3, . . ., Ty) — a trace of a single dynamic binary search tree
> Insertions
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, WV ‘WNW
B NIXPX
_ é ::::::::::: ::::::::.:::: )
XX XXX
XX )X

XA X
XIXIXIXIXIXIXIXIXIXIXIX] 5,
(T1,Ts, ..., Tp) — a trace of a single dynamic binary search tree

> deletions
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, WV ‘WNW
B NIXPX
_ é ::::::::::: ::::::::.:::: )
XX XXX
XX )X

XN X
DXXDXXIXXIXIXIXIXI]

(Ty,Ts, ..., Ty) — a trace of a single dynamic binary search tree
> Insertions

> deletions
> rebalancing
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> Insertions
h(T") < h(T;) + 1
no impact on signatures of elements that are in both 7; and T} ¢
> deletions
with a standard bst algorithm
signatures of elements in T are prefixes of their signatures in 1"
h(T") < h(T")
LT < T < [T —>  log|T"] < log |T"| +2
> rebalancing

balance(x, k) /\

effect on signature can

be encoded in /\ /\
O(kloglogn) bits ‘ ’ ‘
























W)

WTi) < log|T;| + O(5 log | T3)




so we have a trade-off:
transition code of length O(kloglogn)
VS
signatures of length log |T;| + O(+ log |T;])



so we have a trade-off:
transition code of length O(kloglogn)
VS
signatures of length log |T;| + O(+ log |T;])



resulting labels of length

logn — log |T;]| + O(loglogn)
log |T;| + O(v/log nloglogn)




l

missing pieces?’

resulting labels of length

logn — log |T;]| + O(loglogn)
log |T;| + O(v/log nloglogn)




indueed subgraphs of P X P
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indueed subgraphs of P X P

m

XN\
L NXIX
N\ N
XX XV
XN N

AN 1N
DDXINDXPXIDXIXIXIX XXX

(G is an n-vertex subgraph of this

X
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subgraphs of H X P

e e e - Te—e e e e
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(G is an n-vertex subgraph of this



universal graphs

Observation [Kannan, Naor, Rudich 1988]

A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph U,, such that
> |V(U,)| =2/,
> (G is an induced subgraph of U,,, for each n-vertex GG in C.
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universal graphs

Observation [Kannan, Naor, Rudich 1988]

A class of graphs C has an f(n)-bit adjacency labelling iff
for each n > 1, there exists a graph U,, such that
> |V(U,)| =2/,
> (G is an induced subgraph of U,,, for each n-vertex GG in C.

Proof.
V(Un) = {0,137
EU,) ={uw | A(u,v) =1}

Corollary
n-vertex planar graphs have a universal graph on n't°(1) vertices

Theorem [Esperet, Joret, Morin 2020+]

n-vertex planar graphs have a universal graph on n't°(1) vertices
and n'to) edges
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> what is the asymptotics of the lower order term?
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+Q(1)
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open problems

> what is the asymptotics of the lower order term?
logn + O(y/log nloglogn)
+Q(1)
> adjacency labelling for K;-minor free graphs?

2logn + o(logn)

Thank you.



