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Abstract

In this paper we consider real or complex skew-Hamiltonian/Hamiltonian pencils
λS −H, i.e., pencils where S is a skew-Hamiltonian and H is a Hamiltonian matrix.
These pencils occur for example in the theory of continuous time, linear quadratic
optimal control problems. We reduce these pencils to canonical and Schur-type
forms under structure-preserving transformations, i.e., J-congruence-transformations
(λS −H) 7→ −JP ∗J(λS −H)P , where P is non-singular or unitary.
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1 Introduction

The motivation for the study of pencils λS −H, where S is a skew-Hamiltonian and H is
a Hamiltonian matrix, comes mainly from the linear quadratic optimal control problem;
see [10], [13], [14], and the references therein. This is the problem of minimizing the cost
functional

1

2

∫ ∞

t0

(

y(t)∗Qy(t) + u(t)∗Ru(t)
)

dt;

subject to the dynamics

Eẋ(t) = Ax(t) +Bu(t), (1)

x(t0) = x0, (2)

y(t) = Cx(t), (3)

where A,E ∈ Cn×n, Q ∈ Cp×p, B ∈ Cn×m, C ∈ Cp×n, R ∈ Cm×m, B with full column rank,
C with full row rank, Q Hermitian, and R Hermitian positive definite. Solutions of (1) can
be obtained via the solution of the generalized continuous algebraic Riccati equation

C∗QC + A∗XE + E∗XA− (B∗XE)∗R−1(B∗XE) = 0, (4)
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or directly via the computation of deflating subspaces of the pencil

λS0 −H0 = λ

[

E

0

0

E∗

]

−
[

A

C∗QC

BR−1B∗

−A∗

]

; (5)

see again [10], [13], [14], and the references therein.
From (5) we obtain immediately that S0 is a skew-Hamiltonian and H0 is a Hamiltonian

matrix.

Definition 1 Let Jn := [ 0
−In

In
0
]. (We drop the index n if the dimension is clear from the

context.)

1. A matrix H ∈ C2n×2n is called Hamiltonian if

HJ + JH∗ = 0.

The set of Hamiltonian matrices is denoted by H2n.

2. A matrix S ∈ C2n×2n is called skew-Hamiltonian if

SJ − JS∗ = 0.

The set of skew-Hamiltonian matrices is denoted by SH2n.

3. A pencil λS − H ∈ C2n×2n is called skew-Hamiltonian/Hamiltonian if S is skew-
Hamiltonian and H is Hamiltonian.

The set of Hamiltonian matrices and the set of skew-Hamiltonian matrices have a
special algebraic structure. The first is a Lie algebra (see e.g. [21]) and the latter is a
Jordan algebra (see [1]). If the matrices under consideration are complex, there exists a
vector space isomorphism between these two algebras.

Lemma 2 The map A 7→ iA is a vector space isomorphism between H2n and SH2n.

Proof. The proof follows directly from the definition.
If E in (5) is the identity matrix, then the study of the pencil λS0 − H0 reduces to

the study of a Hamiltonian matrix. Condensed forms for Hamiltonian matrices have been
extensively studied in recent years; see,e.g., [2], [3], [4], [11], [17], or [5] for a more general
approach concerning elements from classical Lie or Jordan algebras. There also have been
extensive studies concerning symplectic matrices and symplectic pencils that occur in the
context of the discrete algebraic Riccati equation corresponding to (5); see, e.g., [6], [11],
[22].

If E in (5) is nonsingular, then it is well known that

S∗
0

[

0

−E−1

E−∗

0

]

H0 = −H∗
0

[

0

−E−1

E−∗

0

]

S0; (6)
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i.e., λ(iS0) − H0 is an i[ 0
−E−1

E−∗

0
]-self-adjoint pencil or in the real case λS0 − H0 is a

i[ 0
−E−1

E−∗

0
]-skew-symmetric pencil in the sense of [10], where canonical forms for these kinds

of pencils were discussed. Obviously this terminology cannot be used if E in (5) is singular.
But in recent years, there has been great interest in the singular case; see [13] and the refer-
ences therein. Therefore we use in this paper the concept of skew-Hamiltonian/Hamiltonian
pencils. The case that E is singular is included here.

In the following we will look for condensed forms, i.e., forms from which the eigenvalues
of the pencil can be read off in a simple way. For an arbitrary pencil these are the Kronecker
canonical form (see [8]) that yields the eigenvalues and eigenvectors and the (generalized)
Schur form (see [9]) that yields the eigenvalues and a nested set of invariant subspaces and
that is obtained by a transformation (λA−B) 7→ U(λA−B)V , where U and V are unitary
matrices. Following the notation in [13] we use the term “Kronecker canonical form” also
in the case of regular pencils, but we note that in this case the canonical form is due to
Weierstraß; see [8].

The following Lemma is helpful in finding out what kind of structure-preserving trans-
formations we may use to obtain corresponding forms for skew-Hamiltonian/ Hamiltonian
pencils.

Lemma 3 The map H 7→ JH is a bijection between H2n and the set of 2n×2n Hermitian
matrices.

Proof. The proof follows directly from the definitions.
The general structure-preserving equivalence transformations for Hermitian matrices

are the congruence transformations A 7→ P ∗AP , where P is nonsingular. Lemma 3 implies
that the transformations H 7→ −JP ∗JHP , where P is nonsingular, preserve the Hamilton-
ian structure. We will call these transformations J-congruence transformations by analogy
to the congruence transformations. More general are the transformations H 7→ µJP ∗JHP ,
where P is nonsingular and µ ∈ R. These transformations are the analogue of the µ-
congruence transformations A 7→ µP ∗AP (see also [16] for related µ-symplectic transfor-
mations).

Definition 4

1. Two matrices A,B ∈ C2n×2n are called J-congruent if there exists a nonsingular
matrix P ∈ Cn×n such that

− JP ∗JAP = B. (7)

2. Two pencils λA− B, λC −D ∈ C2n×2n are called J-congruent if there exists a non-
singular matrix P ∈ Cn×n such that

− JP ∗J(λA−B)P = λC −D. (8)

Analogously we define µ-J-congruence. We easily obtain the following lemma.
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Lemma 5 Let S ∈ C2n×2n be skew-Hamiltonian, H ∈ C2n×2n Hamiltonian, P ∈ C2n×2n,
and let µ ∈ R. Then

1. µJP ∗JSP is skew-Hamiltonian,

2. µJP ∗JHP is Hamiltonian,

3. µJP ∗J(λS −H)P is skew-Hamiltonian/Hamiltonian.

Proof. The proof follows directly from the definitions.
If λS−H is a skew-Hamiltonian/Hamiltonian pencil, then λ(iJS)−(JH) is a Hermitian

pencil in the sense of [19], where a canonical form for Hermitian pencils is given. In the
theory of Hermitian pencils this form is the analogue of the Kronecker canonical form in the
theory of general matrix pencils. The numerical computation of the Kronecker canonical
form is in general ill-conditioned (see, e.g., [9]) in contrast to the computation of the Schur
form (see again [9]). But for a Hermitian matrix the Schur form and the Jordan canonical
from coincide; i.e., a triangular form of a Hermitian pencil would be diagonal. Thus,
the problem of finding a triangular form for a Hermitian pencil under unitary congruence
transformations is equivalent to the problem of the simultaneous diagonalization of two
Hermitian matrices. This is possible if and only if the matrices commute; see [18].

In contrast to this, the concept of skew-Hamiltonian/Hamiltonian pencils enables us
to obtain both a canonical form and a Schur-type form under J-congruence. After stating
some preliminary results in section 2 we discuss this canonical form in section 3. In regard
of our interest in finding eigenvalues we restrict our examination to regular pencils. In
section 4 we discuss under which conditions it is possible to obtain a structured Schur form
under unitary J-congruence transformations, i.e., J-congruence transformations, where the
matrix P in (8) is unitary. We will call this form a J-Schur form. Since in general not
every skew-Hamiltonian/Hamiltonian pencil has a J-Schur form, we present in section 5 a
closely related form that is almost a Schur form and that is obtained by using also some
nonunitary J-congruence transformations.

Throughout the paper we use the following notation and expressions:

1. By the direct sum of two square matrices A, B, we mean the matrix [A
0

0
B
]. Analo-

gously we define the direct sum of square pencils.

2. By Span(x1, . . . , xm) we denote the subspace of Ck spanned by the vectors x1, . . . , xm.

3. By ei we denote the ith unit vector.

4. By ∼c we denote the equivalence relation by congruence.

5. Let λA − B ∈ Cn×n be a regular pencil. Introducing homogeneous parameters,
αA−βB, see [8], the eigenvalues of the pencils αA−βB can be represented by pairs
(α, β) ∈ C2\{0}, such that

αAx− βBx = 0 for an x ∈ Cn\{0}.
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Obviously (tα, tβ) represents the same eigenvalue for all t ∈ C\{0}; thus, we denote
them by λ = α

β
if β 6= 0. Pairs (α, 0), α 6= 0 represent the eigenvalue infinity of

αA− βB that we will denote by ∞. We note that we always include the eigenvalue
∞ when we are talking about real or about purely imaginary eigenvalues.

2 Preliminaries

We first review some properties of the pencils under consideration.

Lemma 6 Let λS −H be a skew-Hamiltonian/Hamiltonian pencil. If λ0 is an eigenvalue
of λS −H, then so is −λ∗0 with the same partial multiplicities.

Proof. Since S is skew-Hamiltonian and H is Hamiltonian we find that

J(λS −H)J = −λS∗ −H∗;

i.e., λS−H and−λS∗−H∗ are equivalent. Thus, these two pencils have the same Kronecker
canonical form.

To every block associated with an eigenvalue λ0 with nonzero real part in the Kronecker
canonical form, we find by Lemma 6 a paired block of the same size associated with
the eigenvalue −λ∗0. In general we have no pairing of blocks for the purely imaginary
eigenvalues.

In the following we will use the concept of principle vectors of matrix pencils see ([7], [8],
and [13]) that is analogous to the concept of principle vectors of matrices or the concept of
Jordan chains. Since the chains of principle vectors lead in the pencil case to the Kronecker
canonical form, we call them Kronecker chains.

Definition 7 Let λA−B ∈ Cn×n be a regular pencil.

1. A Kronecker chain associated with a finite eigenvalue λ0 of λA − B is a tuple
(x1, . . . , xm) of vectors from Cn\{0} such that

λ0Ax1 = Bx1 (9)

and λ0Axi −Bxi = −Axi−1 for i = 2, . . . ,m. (10)

2. A Kronecker chain associated with the eigenvalue ∞ of λA−B is a tuple (y1, . . . , yk)
of vectors from Cn\{0} such that

Ay1 = 0 (11)

and Ayi = Byi−1 for i = 2, . . . , k. (12)

It is clear that if the Kronecker chains in Definition 7 are of maximal length, we find a
block λ0Im−Jm(λ) in the Kronecker canonical form of λA−B, whose associated deflating
subspace is spanned by x1, . . . , xm and a block λJk(0) − Ik, whose associated deflating
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subspace is spanned by y1, . . . , yk. Here Jl(µ) denotes an l× l Jordan block with eigenvalue
µ:

Jl(µ) =

















µ 1 0 . . . 0

0 µ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . 0 µ

















.

Furthermore, we have the following property.

Lemma 8 Let λA−B ∈ Cn×n be a regular pencil. If (x1, . . . , xm) is a Kronecker chain as-
sociated with the eigenvalue 0 of λA−B, then (x1, . . . , xm) is a Kronecker chain associated
with the eigenvalue ∞ of λB − A.

Proof. The proof follows directly from Definition 7.
The structure of skew-Hamiltonian/Hamiltonian pencils leads to special properties of

the Kronecker chains.

Lemma 9 Let λS−H ∈ C2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil. Fur-
thermore let (x1, . . . , xm) be a Kronecker chain associated with the eigenvalue λ0 ∈ C∪{∞}
and (y1, . . . , yl) a Kronecker chain associated with the eigenvalue µ0 ∈ C ∪ {∞}, where
µ0 6= −λ∗0. Then for all i, j, where 1 ≤ i ≤ l and 1 ≤ j ≤ m, we have

y∗i JSxj = y∗i JHxj = 0. (13)

Proof. The proof proceeds via induction on k = i+ j.
1. k = 2, i.e., i = j = 1: Since µ 6= −λ∗, at most one of these eigenvalues is infinite.

Thus, we may assume without loss of generality (w.l.o.g.) that λ 6=∞.
(a) In the case µ =∞, we have Sy1 = 0. Since S is skew-Hamiltonian, we have

y∗1JSx1 = y∗1S
∗Jx1 = 0.

Furthermore, we obtain from λSx1 = Hx1, that

y∗1JHx1 = λy∗1JSx1 = 0.

(b) In the case µ 6=∞, we have

µSy1 = Hy1.

Noting that S is skew-Hamiltonian and H is Hamiltonian, we see that this implies

µ∗y∗1JSx1 = (µx∗1JSy1)
∗

= (x∗1JHy1)
∗

= −y∗1JHx1.
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Since we also have λy∗1JSx1 = y∗1JHx1 = 0, we obtain

(λ+ µ∗)y∗1JSx1 = 0.

Thus, we obtain y∗1JSx1 = 0, since µ 6= −λ∗, and therefore also y∗1JHx1 = 0.
2. k ⇒ k+1: Suppose that we have already proved (13) for all i, j, where i ≤ l, j ≤ m

and i+ j = k. Obviously it is sufficient to show that

y∗i JSxj+1 = y∗i JHxj+1 = 0

for all i, j, where i ≤ l, j < m and i+ j = k. Now assume again w.l.o.g., that λ 6=∞ and
let y0 := 0.

(a) In the case µ =∞ we have Syi = Hyi−1. Note that this holds also in the case i = 1,
since y0 = 0. By this or in the case i > 1 by induction, we obtain

y∗i JSxj+1 = y∗i S
∗Jxj+1

= y∗i−1H
∗Jxj+1

= 0.

From λSxj+1 −Hxj+1 = −Sxj we also obtain

y∗i JHxj+1 = λy∗i JSxj+1 + y∗i JSxj = 0.

(b) In the case µ 6=∞ we have µSyi−Hyi = −Syi−1. Since x
∗
j+1JSyi−1 = 0, this yields

µ∗y∗i JSxj+1 = (µx∗j+1JSyi)
∗

= (x∗j+1JHyi)
∗

= −y∗i JHxj+1,

once more using the fact that S is skew-Hamiltonian and that H is Hamiltonian. Noting
that y∗i JSxj = 0, we also have

λy∗i JSxj+1 = y∗i JHxj+1.

Therefore, we obtain
(λ+ µ∗)y∗i JSxj+1,

and finally
y∗i JSxj+1 = y∗i JHxj+1 = 0.

Lemma 10 Let λS−H ∈ C2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil. Fur-
thermore let (x1, . . . , xm) be a Kronecker chain associated with the eigenvalue λ ∈ C∪{∞}
and (y1, . . . , yl) a Kronecker chain associated with the eigenvalue µ, where µ = −λ∗. Then
for all i, j where 1 ≤ i ≤ l, 1 ≤ j ≤ m and i+ j ≤ max(l,m), we have

y∗i JSxj = y∗i JHxj = 0.
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Proof. If λ =∞, then Lemma 8 implies that (x1, . . . , xm) and (y1, . . . , yl) are Kronecker
chains of λH − S associated with the eigenvalue zero. This also holds for the skew-
Hamiltonian/Hamiltonian pencil λ(iH)− (iS). Thus, it remains to prove the assertion for
the case that λ 6=∞.

1. First of all we prove that for all i, j, where 1 ≤ i ≤ l and 0 ≤ j < m, we have

y∗i JSxj = −y∗i−1JSxj+1 and y∗i JHxj = −y∗i−1JHxj+1, (14)

where x0 := 0 and y0 := 0. Since (x1, . . . , xm) and (y1, . . . , yl) are Kronecker chains we
have

λSxj+1 −Hxj+1 = −Sxj and − λ∗Syi −Hyi = −Syi−1. (15)

Note that this is also true for i = 1 and j = 0. From (15) and since S is skew-Hamiltonian
and H is Hamiltonian, we obtain

−y∗i−1JSxj+1 = −y∗i−1S
∗Jxj+1

= −λy∗i S∗Jxj+1 − y∗iH
∗Jxj+1

= −λy∗i JSxj+1 + y∗i JHxj+1

= y∗i JSxj

and analogously

−y∗i−1JHxj+1 = −λy∗i−1JSxj+1 − y∗i−1JSxj

= λy∗i JSxj − y∗i−1JSxj

= (λy∗i S
∗ − y∗i−1S

∗)Jxj

= −y∗iH∗Jxj

= y∗i JHxj.

2. Now assume w.l.o.g. that l = max(l,m). Since i + j ≤ l and x0 = 0 we obtain by
(14) that

y∗i JSxj = (−1)jy∗i+jJSx0 = 0

and
y∗i JHxj = (−1)jy∗i+jJHx0 = 0.

3 A canonical form under J-congruence

In this section we present a canonical form for skew-Hamiltonian/Hamiltonian pencils
under J-congruence. In the study of skew-Hamiltonian/Hamiltonian pencils this form is
the analogue of the Kronecker canonical form in the study of general matrix pencils.
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Theorem 11 Let λS − H ∈ C2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matrix P ∈ C2n×2n such that

−JP ∗J(λS −H)P

= λ









S11 0 0 0
0 S22 0 S24

0 0 S∗
11 0

0 S42 0 S∗
22









−









H11 0 0 0
0 H22 0 H24

0 0 −H∗
11 0

0 H42 0 −H∗
22









, (16)

where

1. λS11 − H11 is a pencil in Kronecker canonical form and has only eigenvalues with
positive real part.

2. λŜ−Ĥ := λ[S22

S42

S24

S∗22
]− [H22

H42

H24

−H∗
22

] is a skew-Hamiltonian/Hamiltonian pencil, such that

J(λŜ − Ĥ) is the direct sum of blocks of the form

λε









0 i

·
·

i 0









− ε









0 µ

· 1
· ·

µ 1 0









∈ Ck×k (17)

or

λε









0 0
· i

· ·
0 i 0









− ε









0 1
·

·
1 0









∈ Ck×k, (18)

where µ is real and ε = ±1.
Proof.
1. We first prove that λS − H is, up to the permutation of rows and columns, J-

congruent to the direct sum of two skew-Hamiltonian/Hamiltonian pencils such that the
eigenvalues of one pencil have all nonzero real part and the eigenvalues of the other pencil
are all purely imaginary.

Let us consider a basis (x1, . . . , xm, y1, . . . , ym, v1, . . . , v2(n−m)) of C2n consisting of Kro-
necker chains of λS−H such that (x1, . . . , xm) is a basis of the deflating subspace associated
with the eigenvalues with positive real part, (y1, . . . , ym) is a basis of the deflating subspace
associated with the eigenvalues with negative real part, and (v1, . . . , v2(n−m)) is a basis of
the deflating subspace associated with the purely imaginary eigenvalues. Setting

Q = [x1, . . . , xm, v1, . . . , vn−m, y1, . . . , ym, vn−m+1, . . . , v2(n−m)]

we find by Lemma 9 that

−JQ∗J(λS −H)Q

= λ









S̃11 0 0 0

0 S̃22 0 S̃24

0 0 S̃∗
11 0

0 S̃42 0 S̃∗
22









−









H̃11 0 0 0

0 H̃22 0 H̃24

0 0 −H̃∗
11 0

0 H̃42 0 −H̃∗
22









, (19)
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where λS̃11− H̃11 has only eigenvalues with positive real part and the skew-Hamiltonian/-

Hamiltonian pencil λS̃− H̃ := λ[ S̃22

S̃42

S̃24

S̃∗22
]− [ H̃22

H̃42

H̃24

−H̃∗
22

] has only purely imaginary eigenvalues.

2. For the proof of (16) we note that J(λ(iS̃)− H̃) is a Hermitian pencil that has only
purely imaginary eigenvalues. Thus, applying Lemma 2 from [19], we find that there exists
a nonsingular matrix X = [X11

X21

X12

X22
], where Xjk ∈ C(n−m)×(n−m), such that X∗J(λS̃ − H̃)X

is a direct sum of blocks of the form (17) or (18). Furthermore, we find nonsingular matrices
R, T such that R(λS̃11 − H̃11)T is in Kronecker canonical form. Hence we obtain (16) by
setting

P = Q ·









R 0 0 0
0 X11 0 X12

0 0 −T ∗ 0
0 X21 0 X22









.

Note that the blocks of the submatrices Ŝ and Ĥ in (16) in general occur in patterns
such as



















p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p



















.

In general it is not possible to reduce the subpencil λŜ − Ĥ to a direct sum of skew-
Hamiltonian/Hamiltonian pencils that have only one eigenvalue. As an example, consider
the pencil

λ

[

0

i

i

0

]

−
[

0

−1
1

0

]

.

Further reduction is impossible, since the pencil has purely imaginary eigenvalues with odd
algebraic multiplicity.

Lemma 12 Let λS−H ∈ C2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil with
pairwise distinct eigenvalues λ1, . . . , λk that are all purely imaginary. Then the following
statements are equivalent.

1. The eigenvalues λ1, . . . , λk all have even algebraic multiplicity.

2. There exists a nonsingular matrix P such that

−JP ∗JSP =



















S11 0 S1,k+1 0
. . . . . .

0 Skk 0 Sk,2k
Sk+1,1 0 Sk+1,k+1 0

. . . . . .

0 S2k,k 0 S2k,2k


















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and

−JP ∗JHP =



















H11 0 H1,k+1 0
. . . . . .

0 Hkk 0 Hk,2k

Hk+1,1 0 Hk+1,k+1 0
. . . . . .

0 H2k,k 0 H2k,2k



















,

where λ[ Sii

Sk+i,i

Si,k+i

Sk+i,k+i
]− [ Hii

Hk+i,i

Hi,k+i

Hk+i,k+i
], i = 1, . . . , k, is a skew-Hamiltonian/Hamilton-

ian pencil having only one eigenvalue.

Proof. 1⇒ 2: For the deflating subspace associated with λi, we find a basis (x1, . . . , xmi
)

consisting of Kronecker chains. Now set

Pi1 = [x1, . . . , xmi
2
] and Pi2 = [xmi

2
+1, . . . , xmi

].

This is possible, since every eigenvalue has even algebraic multiplicity. Setting

P = [P11, . . . , Pk1, P12, . . . , Pk2],

Lemma 9 implies the required result.
2⇒ 1: is clear, since the subpencils

λ

[

Sii

Sk+i,i

Si,k+i

Sk+i,k+i

]

−
[

Hii

Hk+i,i

Hi,k+i

Hk+i,k+i

]

have even sizes.
There exists a real analogue to Theorem 11.

Theorem 13 Let λS − H ∈ R2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matrix P ∈ R2n×2n such that

−JP ∗J(λS −H)P

= λ









S11 0 0 0
0 S22 0 S24

0 0 S∗
11 0

0 S42 0 S∗
22









−









H11 0 0 0
0 H22 0 H24

0 0 −H∗
11 0

0 H42 0 −H∗
22









, (20)

where

1. λS11−H11 is a pencil in real Kronecker canonical form and has only eigenvalues with
positive real part.

11



2. λŜ − Ĥ := λ
[

S22

S42

S24

S∗22

]

−
[

H22

H42

H24

−H∗
22

]

is a skew-Hamiltonian/Hamiltonian pencil such

that J(λŜ − Ĥ) is the direct sum of blocks either of the form

λε









R

R

·
R









− ε









µI2
µI2 I2

· ·
µI2 I2









∈ C2k×2k, (21)

where µ > 0, R =
[

0
1
−1
0

]

and I2 =
[

1
0

0
1

]

, or of one of the forms

λε





0 0 0
0 0 ∆k

0 −∆k 0



− ε∆2k+1, k ∈ N, (22)

λ

[

0

−Λk

Λk

0

]

−
[

0

∆k

∆k

0

]

, k even, (23)

λε

[

0

−∆k

∆k

0

]

− εΛ2k, k ∈ N, (24)

or

λ

[

0

−∆k

∆k

0

]

−
[

0

Λk

Λk

0

]

, k odd, (25)

where ε = ±1 and furthermore

∆k :=









0 1
·

·
1 0









and Λk :=









0 0
· 1

· ·
0 1 0









.

Proof. The proof is similar to the proof of Theorem 11 using results on pencils λA−B,
where A is skew symmetric and B is symmetric; see, e.g., [20].

Corollary 14 Let λS − H be a real skew-Hamiltonian/Hamiltonian pencil. Then the
following conditions apply:

1. Every block of odd size belonging to the eigenvalue zero in the (general) Kronecker
canonical form occurs with even multiplicity.

2. Every block of even size belonging to the eigenvalue ∞ in the (general) Kronecker
canonical form occurs with even multiplicity.

Proof. This follows directly from the structures of the blocks (23) and (25) in the
structured canonical form (20).

12



4 The existence of J-Schur forms

As shown in [17] not every Hamiltonian matrix can be reduced by unitary symplectic sim-
ilarity transformations to a matrix in a Schur-type form that is called Schur–Hamiltonian
form in [17] or Hamiltonian Schur form in [13]. This is a Hamiltonian matrix

[

T

0

R

−T ∗

]

, (26)

where T ∈ Cn×n is upper triangular and R ∈ Cn×n is Hermitian. The analogous Schur-type
form for a skew-Hamiltonian matrix is

[

T

0

R

T ∗

]

, (27)

where T ∈ Cn×n is upper triangular and R ∈ Cn×n is skew-Hermitian. We call matrices of
the form (26) or (27) matrices in J-Schur form. In [12] and [15] a necessary and sufficient
condition for the existence of the Hamiltonian Schur form, resp., J-Schur form is presented.

Theorem 15 Let H ∈ C2n×2n be a Hamiltonian matrix and let λ1, . . . , λm be the pairwise
distinct purely imaginary eigenvalues of H with algebraic multiplicities p1, . . . , pm. Then
the following statements are equivalent:

1. There exists a unitary symplectic matrix P ∈ C2n×2n such that PHP−1 is in J-Schur
form (26).

2. If the columns of Uk ∈ C2n×pk , k = 1, . . . ,m, form a basis of the invariant subspace
associated with λk, then

U∗
kJUk ∼c Jpk/2. (28)

Note that (28) implies that the multiplicities pk are even.
Proof. See [12] or [15].
An analogous result holds in the case that H is skew-Hamiltonian.

Theorem 16 Let S ∈ C2n×2n be a skew-Hamiltonian matrix and let λ1, . . . , λm be the
pairwise distinct real eigenvalues of S with algebraic multiplicities p1, . . . , pm. Then the
following statements are equivalent.

1. There exists a unitary symplectic matrix P ∈ C2n×2n such that PSP−1 is in J-Schur
form (27).

2. If the columns of Uk ∈ C2n×pk , k = 1, . . . ,m, form a basis of the invariant subspace
associated with λk, then

U∗
kJUk ∼c Jpk/2. (29)

13



Proof. The proof follows directly from Lemma 2 and Theorem 15.
We also obtain a similar result for the skew-Hamiltonian/Hamiltonian pencils. For the

proof of this result, we need the following lemma.

Lemma 17 Let P ∈ C2n×2n. Then there exists a factorization

P = Q ·
[

R11

0

R12

R∗
22

]

, (30)

where Q ∈ C2n×2n is unitary and R11, R22 ∈ Cn×n are upper triangular.

Proof. After performing n steps of the QR Householder algorithm (see, e.g., [9]), we
find a unitary matrix Q1 ∈ Cn×n such that

P = Q1 ·
[

R11

0

P̃12

P̃22

]

,

where R11 ∈ Cn×n is upper triangular. Then we compute the QL factorization

P̃22 = Q2 ·R∗
22,

where Q2 ∈ Cn×n is unitary and R∗
22 ∈ Cn×n is lower triangular; see again [9]. Thus, setting

Q = Q1 · [ In0
0
Q2

] implies (30).

Theorem 18 Let λS − H ∈ C2n×2n be a skew-Hamiltonian/Hamiltonian pencil. Let
λ1, . . . , λm be the pairwise distinct, finite, purely imaginary eigenvalues of λS − H with
algebraic multiplicities p1, . . . , pm and let p∞ be the algebraic multiplicity of the eigenvalue
∞. Then the following statements are equivalent.

1. There exists a nonsingular matrix P ∈ C2n×2n such that

− JP ∗J(λS −H)P = λ

[

S11

0

S12

S∗
11

]

−
[

H11

0

H12

−H∗
11

]

, (31)

where S11 and H11 are upper triangular.

2. There is a unitary matrix Q ∈ C2n×2n such that

− JQ∗J(λS −H)Q = λ

[

Ŝ11

0

Ŝ12

Ŝ∗
11

]

−
[

Ĥ11

0

Ĥ12

−Ĥ∗
11

]

, (32)

where Ŝ11 and Ĥ11 are upper triangular.
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3. If the columns of Uk ∈ C2n×pk , k = 1, . . . ,m, form a basis of the deflating subspace
associated with λk, then

U∗
kJSUk ∼c Jpk/2. (33)

Furthermore, if p∞ 6= 0 and if the columns of U∞ ∈ C2n×p∞ form a basis of the
deflating subspace associated with the eigenvalue ∞, then

U∗
∞JHU∞ ∼c iJp∞/2. (34)

Proof. 1 ⇒ 2: If P ∈ C2n×2n is nonsingular such that (31) holds, Lemma 17 implies
that there exists a factorization (30). Using this we obtain from (31), that

−JQ∗J(λS −H)Q

= J

[

R11

0

R12

R∗
22

]−∗

J

(

λ

[

S11

0

S12

S∗
11

]

−
[

H11

0

H12

−H∗
11

])[

R11

0

R12

R∗
22

]−1

= λ

[−R−1
22 S11R

−1
11

0

∗
−R−∗

11 S
∗
11R

−∗
22

]

−
[−R−1

22 H11R
−1
11

0

∗
R−∗

11 H
∗
11R

−∗
22

]

,

where the upper left subpencil −R−1
22 (λS11 −H11)R

−1
11 is still upper triangular.

2 ⇒ 3: Let λS − H be in the form (32). First we show that the pencil is (up to
the permutation of rows and columns) J-congruent to a direct sum of skew-Hamilton-
ian/Hamiltonian pencils in the form (32) that have only one pair (µj,−µ∗

j) of eigenvalues.
Therefore, consider a 4× 4 subpencil

λŠ − Ȟ = λ









s11 s12 s13 s14

0 s22 −s∗14 s24

0 0 s∗11 0
0 0 s∗12 s∗22









−









h11 h12 h13 h14

0 h22 h∗14 h24

0 0 −h∗11 0
0 0 −h∗12 −h∗22









of the pencil in (32) such that λs11−h11 has the eigenvalue λ0 and such that λs22−h22 has
the eigenvalue µ0. Furthermore, let λ0 6= µ0,−µ∗

0. Next we show that the (1,2)-elements
of Š and Ȟ, respectively, can be simultaneously set to zero. Therefore, let

P =









1 x 0 0
0 1 0 0
0 0 1 0
0 0 y 1









,

where x, y ∈ C, and consider −JP ∗JŠP and −JP ∗JȞP . If we want to set the (1,2)-
elements of both matrices to zero, we have to solve the equations

s12 + s22y
∗ + s11x = 0,

and h12 + h22y
∗ + h11x = 0.
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This implies (h22s11 − h11s22)x = s22h12 − h22s12. Since λ0 6= µ0, it follows that

h22s11 − h11s22 6= 0.

Therefore, x (and y) can be chosen such that the (1,2)-elements of both −JP ∗JŜP and
−JP ∗JĤP are zero. In an analogous way we show that using a J-congruence transforma-
tion with the matrix

P =









1 0 0 x

0 1 y 0
0 0 1 0
0 0 0 1









the (1,4)-elements of Š and Ȟ can also be simultaneously set to zero. Here, we need
λ0 6= −µ∗

0. (We note that this transformation has no effect on the 2 × 2 diagonal blocks
of λŠ − Ȟ.) Now it is clear that a sequence of J-congruence transformations can be used
to obtain a pencil that is (up to the permutation of rows and columns) a direct sum of
skew-Hamiltonian/Hamiltonian pencils in the form (32) such that each pencil has only one
pair (µj,−µ∗

j) of eigenvalues, and we may consider the blocks separately.
Furthermore, we may assume w.l.o.g. that the bases Uk and U∞ are canonical, for if

(33) holds for a special basis Uk it holds for every basis of the deflating subspace associated
with λk, because a change of basis means the transition from Uk to UkX, where X ∈ Cpk×pk

is nonsingular. (The same argument holds for U∞.) Thus, if

λS̃ − H̃ = λ

[

S̃11

0

S̃12

S̃∗
11

]

−
[

H̃11

0

H̃12

−H̃∗
11

]

is a skew-Hamiltonian/Hamiltonian pencil satisfying (31) and that has only one eigenvalue
that is finite and purely imaginary, it remains to show that JS̃ is congruent to J . This also
proves (34), for we can reduce the case of the eigenvalue ∞ to the case of the eigenvalue
zero by considering λ(iH̃)− (iS̃) according to Lemma 2.3. Now we obtain

[

S̃−1
11

0

−1
2
S̃−1

11 S̃12

I

]∗

JS̃

[

S̃−1
11

0

−1
2
S̃−1

11 S̃12

I

]

=

[

S̃−∗
11

−1
2
S̃∗

12S̃
−∗
11

0

I

][

0

−S̃11

S̃∗
11

−S̃12

][

S̃−1
11

0

−1
2
S̃−1

11 S̃12

I

]

=

[

0

−I
I

0

]

= J ;

i.e., JS̃ is congruent to J .
3 ⇒ 1: Since (33) and (34) imply that all the algebraic multiplicities of the purely

imaginary eigenvalues are even, it is by Theorem 11 and Lemmas 12 8 again sufficient to
consider the case that λS −H has only one eigenvalue that is finite and purely imaginary.
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Since JS is congruent to J we have that S is J-congruent to the identity matrix. Thus
there exists P1 ∈ C2n×2n nonsingular such that

−JP ∗
1 J(λS −H)P1 = λI − Ĥ,

where Ĥ is a Hamiltonian matrix having only one eigenvalue, which is purely imaginary.
Thus, Ĥ trivially satisfies (28) and by Theorem 15 we find a symplectic matrix P2 ∈ C2n×2n,
i.e., P−1

2 = −JP ∗
2 J , such that P−1

2 ĤP2 is in J-Schur form (26). We obtain (31) by setting
P = P1P2.

We call a pencil of the form (31) a pencil in J-Schur form.

5 An almost-Schur form under J-congruence

We have seen in section 4 that not every skew-Hamiltonian/Hamiltonian pencil can be
reduced to a J-Schur form by unitary J-congruence transformation. Thus, if we want to
obtain a condensed form from which the eigenvalues can be read off in a simple way, we
have to use also nonunitary J-congruence transformations. In this section we will present a
condensed form that we will call almost-Schur form and that can be obtained by applying
J-congruence transformations, where P in (8) is a product of unitary or almost unitary
matrices.

Definition 19 Let P = [p1, . . . , pn] ∈ Cn be nonsingular. Then P is called almost unitary
if there exists an index k such that (p1, . . . , pk−1, pk+1, . . . , pn) is an orthonormal tuple of
vectors.

Theorem 20 Let λS − H ∈ C2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matrix P ∈ C2n×2n and k ∈ N such that

−JP ∗J(λS −H)P

= λ









S11 S12 S13 S14

0 0 −S∗
14 S24

0 0 S∗
11 0

0 S42 S∗
12 0









−









H11 H12 H13 H14

0 0 H∗
14 H24

0 0 −H∗
11 0

0 H42 −H∗
12 0









, (35)

where the following conditions hold:

1. λS11 − H11 ∈ Ck×k is an upper triangular pencil having only eigenvalues with non-
negative real part.

2. S24, S42, H24, H42 ∈ C(n−k)×(n−k) are diagonal and all the eigenvalues of the skew-
Hamiltonian/Hamiltonian pencil

λ

[

0

S42

S24

0

]

−
[

0

H42

H24

0

]

are purely imaginary.
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3. The spectrum of λS −H is equal to the union of the spectra of

λ

[

S11

0

S13

S∗
11

]

−
[

H11

0

H13

−H∗
11

]

and λ

[

0

S42

S24

0

]

−
[

0

H42

H24

0

]

.

4. P is a product of unitary and almost unitary matrices.

Proof. We consider two cases:
(a) Let us assume that there exists an eigenvector x 6= 0 associated with an eigenvalue

λ0 of λS −H such that
x∗JSx = 0 and x∗JHx = 0. (36)

Since λS−H is regular, we have JSx 6= 0 or JHx 6= 0. Assume that JSx 6= 0; i.e., λ0 6=∞
(otherwise the argument proceeds analogously by exchanging JSx and JHx). Then (36)
implies in particular that x and JSx are linearly independent. Let (q2, . . . , qn, qn+2, . . . , q2n)
be an orthonormal basis of Span(x, JSx)⊥. We assume that Re(λ0) ≥ 0 and set

Q := [x, q2, . . . , qn, JSx, qn+2, . . . , q2n]. (37)

(In the case Re(λ0) < 0 we set Q = [JSx, q2, . . . , qn, x, qn+2, . . . , q2n] and the argument
proceeds analogously.)

Note that (after having normalized x and JSx) the matrix Q is unitary by (36) and by
definition of the qi. We obtain

−JQ∗JSQe1 =











−(JSx)∗JSx
0
...
0











=











−x∗S∗Sx

0
...
0











and

−JQ∗JHQe1 =











−(JSx)∗JHx

0
...
0











=











−x∗S∗Hx

0
...
0











.

Since −JQ∗J(λS −H)Q is still skew-Hamiltonian/Hamiltonian, we obtain

−JQ∗J(λS −H)Q

= λ









s11 ∗ ∗ ∗
0 S22 ∗ S24

0 0 s∗11 0
0 S42 ∗ S∗

22









−









h11 ∗ ∗ ∗
0 H22 ∗ H24

0 0 −h∗11 0
0 H42 ∗ −H∗

22









,

where S22, S24, S42, H22, H24, H42 ∈ C(n−1)×(n−1), s11 = −x∗S∗Sx, and h11 = −x∗S∗Hx.
Obviously the pencil λs11 − h11 has the eigenvalue λ0 and by permutation of rows and
columns we see that the spectrum of λS −H is equal to the union of the spectra of

λ

[

s11

0

∗
s∗11

]

−
[

h11

0

∗
−h∗11

]

and λ

[

S22

S42

S24

S∗
22

]

−
[

H22

H42

H24

−H∗
22

]

.
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(b) If the assumption in (a) does not hold, then for every eigenvector x 6= 0 associated
with an eigenvalue of λS −H we have

x∗JSx 6= 0 or x∗JHx 6= 0. (38)

In this case we see by Lemma 9 that all the eigenvalues of λS − H are purely imaginary
and by Lemma 10 they all have partial multiplicities equal to one. Once again we assume
x∗JSx 6= 0. (Otherwise the argument proceeds analogously by exchanging JSx and JHx.)
Let (q1, . . . , qn−1, qn+1, . . . , q2n) be an orthonormal basis of Span(JSx)⊥. Then

P1 := [q1, . . . , qn−1, x, qn+1, . . . , q2n] (39)

is invertible. This follows, since if α1, . . . , α2n ∈ C are such that

α1q1 + · · ·+ αn−1qn−1 + αnx+ αn+1qn+1 + · · ·+ α2nq2n = 0, (40)

then multiplying (40) from the left by x∗S∗J we obtain α2n = 0, since x∗JSx 6= 0, and
therefore αi = 0 for all i = 1, . . . , 2n, since the qi form a basis. Hence we obtain

−JP ∗
1 JSx =











0
...
0
s42











and − JP ∗
1 JHx =











0
...
0
h42











,

where s42 = x∗JSx and h42 = x∗JHx. This implies that

−JP ∗
1 J(λS −H)P1

= λ









S11 0 S13 S14

S21 0 −S∗
14 S24

S31 0 S∗
11 S∗

21

0 s42 0 0









−









H11 0 H13 H14

H21 0 H∗
14 H24

H31 0 −H∗
11 −H∗

21

0 h42 0 0









, (41)

where S11, H11 ∈ C(n−1)×(n−1) and the other blocks have corresponding sizes. Now set

λS̃ − H̃ := λ





S11 S13 S14

S21 −S∗
14 S24

S31 S∗
11 S∗

21



−





H11 H13 H14

H21 H∗
14 H24

H31 −H∗
11 −H∗

21



 (42)

and let y be an eigenvalue of λS̃ − H̃ associated with the eigenvalue µ0. By (38) we find

y∗JS̃y 6= 0 or y∗JH̃y 6= 0,

which implies, in particular, that also µ0 is purely imaginary with partial multiplicity equal
to one. Again we assume y∗JS̃y 6= 0 and choose an orthonormal basis (p1, . . . , p2n−2) of
Span(JS̃x)⊥. Analogous to the proof of the nonsingularity of (39), we can show that the
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vectors y and (p1, . . . , p2n−2) are linearly independent. Embedding these vectors canonically
in Cn and then setting

P2 := [p1, . . . , pn−1, en, pn, . . . , p2n−2, y],

we obtain

−JP ∗
2P

∗
1 J(λS −H)P1P2

= λ









S̃11 0 S̃13 0
0 0 0 s24

S̃31 0 S̃∗
11 0

0 s42 0 0









−









H̃11 0 H̃13 0
0 0 0 h24

H̃31 0 −H̃∗
11 0

0 h42 0 0









, (43)

where S̃11, S̃13, S̃31, H̃11, H̃13, H̃31 ∈ C(n−1)×(n−1), s24 = y∗JS̃y, and h24 = y∗JH̃y. Thus,
the spectrum of λS −H is equal to the union of the spectra of

λ

[

S̃11

S̃31

S̃13

S̃∗
11

]

−
[

H̃11

H̃31

H̃13

−H̃∗
11

]

and λ

[

0

s42

s24

0

]

−
[

0

h42

h24

0

]

,

and the eigenvalues of λ[ 0
s42

s24
0
]− [ 0

h42

h24

0
] are λ0 and µ0.

In both cases we have reduced the problem to a problem of smaller dimension and the
proof follows by induction.

Remark 21 The matrices −JP ∗JSP and −JP ∗JHP in (35) have the pattern



















@
@
@

@@

@
@
@

@@



















.

Remark 22 The proof of Theorem 20 also suggests a procedure to compute the almost-
Schur form (35). But during the computation the following difficulties may occur:

1. In the first step we may compute only one eigenvalue and then reduce the pencil as
indicated in part (a) or (b) of the proof of Theorem 20. This means that if we compute
an eigenvector satisfying (38), we do not know whether (38) holds for all the eigenvalues
or if there exists an eigenvalue such that (36) holds. In particular we might fail in finding
an eigenvector of the subpencil (42) that satisfies (38). Consider, for example, the pencil

λ









0 0 i i

i 0 i 0
0 0 0 −i
0 −i 0 0









−









0 0 1 2
1 0 2 0
0 0 0 −1
0 1 0 0









.
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The subpencil

λ





0 i i

i i 0
0 0 −i



−





0 1 2
1 2 0
0 0 −1





has the eigenvalue i with partial multiplicity 3. Thus, Lemma 10 implies that we do not
find an eigenvector satisfying (38). Therefore, the following observation may be helpful.

Given a skew-Hamiltonian/Hamiltonian pencil in the form (41) and an eigenvector x
satisfying (36), we can perform a step as indicated in part (a) of the proof of Theorem
20 by choosing the basis of Span(x, JSx)⊥ (resp., Span(x, JHx)⊥) such that qn in (37) is
equal to en. This is always possible, since en is an eigenvector. Then we obtain by Lemmas
9 or 10 that

e∗nJSx = 0

and by the special structure of the pencil (41) also

e∗nx = 0.

Hence we can proceed reducing the matrix as indicated in (a) until we find another eigen-
vector y satisfying (38).

2. If we compute an eigenvector satisfying (38) during the reduction of λS − H, we
do not achieve the J-Schur form by proceeding as indicated in part (b) of the proof of
Theorem 20. But this does in general not mean that there is no J-Schur form. Consider
as an example the skew-Hamiltonian matrix

S :=









−1− 0.5i 0 0.5i 0
0 −1− 0.5i 0 0.5i

−0.5i 0 −1 + 0.5i 0
0 −0.5i 0 −1 + 0.5i









and the skew-Hamiltonian/Hamiltonian pencil λS − (iS). We note that e1 and e3 are
eigenvectors associated with the eigenvalue i. Now we have

e∗1JSe1 6= 0 and e∗3JSe3 6= 0,

but
(e1 + e3)

∗JS(e1 + e3) = 0 = (e1 + e3)
∗JH(e1 + e3).

Thus, if we choose the eigenvector e1 instead of (e1 + e3) for the reduction of the pencil,
we would create the almost-Schur form, although there exists a J-Schur form. Setting

U :=
1√
2
J









1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1








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we obtain

−JU ∗J(λS − iS)U

= −λ









1 0 −i 0
0 1 0 −i
0 0 1 0
0 0 0 1









+









i 0 1 0
0 i 0 1
0 0 i 0
0 0 0 i









.

Since we do not know how to compute an eigenvector satisfying (36), if it exists, we
currently see no method to avoid this problem.

In the real case we obtain a result similar to Theorem 20.

Definition 23 Let P = [p1, . . . , pn] ∈ Rn be nonsingular. Then P is called almost orthog-
onal if there exists indices k, l such that

(p1, . . . , pk−1, pk+1, . . . , pl−1, pl+1, . . . , pn)

is an orthonormal tuple of vectors.

Theorem 24 Let λS − H ∈ R2n×2n be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matrix P ∈ R2n×2n and k ∈ N such that

−JP ∗J(λS −H)P

= λ









S11 S12 S13 S14

0 0 −S∗
14 S24

0 0 S∗
11 0

0 S42 S∗
12 0









−









H11 H12 H13 H14

0 0 H∗
14 H24

0 0 −H∗
11 0

0 H42 −H∗
12 0









, (44)

where the following conditions hold:

1. λS11 − H11 ∈ Rk×k is a quasi upper triangular pencil having only eigenvalues with
nonnegative real part.

2. The pencils λS24−H24, λS42−H42 ∈ R(n−k)×(n−k) are block diagonal and the diagonal
blocks are either of the form

λ







0
. . .

0






−







1
. . .

1






∈ Rm×m (45)

for m ∈ N or of the form

λ

[

0

−s
s

0

]

−
[

h

0

0

h

]

, (46)

where s, h ∈ R\{0}. In particular, all the eigenvalues of the skew-Hamiltonian/-
Hamiltonian pencil

λ

[

0

S42

S24

0

]

−
[

0

H42

H24

0

]

(47)

are nonzero and purely imaginary.
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3. The spectrum of λS −H is equal to the union of the spectra of

λ

[

S11

0

S13

S∗
11

]

−
[

H11

0

H13

−H∗
11

]

and λ

[

0

S42

S24

0

]

−
[

0

H42

H24

0

]

.

4. P is a product of orthogonal and almost orthogonal matrices.

Proof. Analogous to the proof of Theorem 20 we distinguish two cases.
(a) Let us assume that there exists an eigenvector x ∈ Cn\{0} associated with an

eigenvalue λ0 ∈ C of λS −H such that

x∗JSx = 0 and x∗JHx = 0. (48)

If λ0 and x are real we can proceed as in the proof of Theorem 20. So let us assume
that λ0 has nonzero real part and that x = y + iz, where y, z ∈ Rn. Furthermore we
assume once again w.l.o.g. that JSx 6= 0. (Otherwise the argument proceeds analogously
by exchanging JSx and JHx.) This means in particular that both JSy and JSz do not
vanish. Otherwise y or z would be an eigenvector associated with the eigenvalue ∞. It is
well known that y, z form a basis of a two-dimensional subspace; i.e., in particular y and
z are linearly independent. Furthermore, we have by (48) that

y∗JSy + z∗JSz + i(y∗JSz − z∗JSy) (49)

= (y + iz)∗JS(y + iz) = 0.

Since λ∗0 6= −λ∗0 and y − iz is an eigenvalue associated with λ∗0, we also have by Lemma 9
that

y∗JSy − z∗JSz + i(y∗JSz − z∗JSy) (50)

= (y − iz)∗JS(y + iz) = 0.

Hence by adding, resp., subtracting (49) and (50) we obtain

y∗JSy = z∗JSz = z∗JSy = y∗JSz = 0.

If we choose a real orthonormal basis (r1, r2) of Span(y, z), we still have

r1, r2 ⊥ JSr1, JSr2.

Now let (q1, . . . , q2n−4) be a real orthonormal basis of Span(r1, r2, JSr1, JSr2). Then (as-
suming again w.l.o.g. that λ0 has nonnegative real part and after having normalized
r1, r2, JSr1, and JSr2) the matrix

Q := [r1, r2, q1, . . . , qn−2, JSr1, JSr2, qn−1, . . . , q2n−4]
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is orthogonal and we obtain

−JQ∗J(λS −H)Q

= λ









S11 ∗ ∗ ∗
0 S22 ∗ S24

0 0 S∗
11 0

0 S42 ∗ S∗
22









−









H11 ∗ ∗ ∗
0 H22 ∗ H24

0 0 −H∗
11 0

0 H42 ∗ −H∗
22









,

where S11, H11 ∈ R2×2 and S22, S24, S42, H22, H24, H42 ∈ R(n−2)×(n−2). Obviously the pencil
λS11−H11 has the eigenvalues λ0 and λ∗0 and the spectrum of λS−H is equal to the union
of the spectra of

λ

[

S11

0

∗
S∗

11

]

−
[

H11

0

∗
−H∗

11

]

and

[

S22

S42

S24

S∗
22

]

−
[

H22

H42

H24

−H∗
22

]

.

(b) If the assumption in (a) does not hold, then for every eigenvector x ∈ Cn\{0}
associated with an eigenvalue of λS −H we have

x∗JSx 6= 0 or x∗JHx 6= 0. (51)

This means again that all the eigenvalues of λS − H are purely imaginary and all their
partial multiplicities are one. In addition we have that λS−H cannot have the eigenvalue
zero, for if w ∈ Rn is an eigenvector associated with zero, i.e., Hw = 0, since S is skew-
Hamiltonian, we obtain

w∗JSw = (w∗JSw)∗ = w∗S∗Jw = −w∗JSw;

i.e., w∗JSw = 0 = w∗JHw. In the case of the eigenvalue∞, we can find a real eigenvector
and so we proceed as in the proof of Theorem 20. Thus it remains to consider the case
that x is an eigenvector associated with the eigenvalue iµ for a µ ∈ R\{0} and that
x = y + iz, where y, z ∈ Rn. Again y and z are linearly independent and we have both
JSy 6= 0 and JSz 6= 0. Now let (q1, . . . , qn−2, qn+1, . . . , q2n) be a real orthonormal basis of
Span(JSy, JSz)⊥. Analogous to the proof of the nonsingularity of (39) we can show that

P̃ := [q1, . . . , qn−2, y, z, qn+1, . . . , q2n]

is nonsingular. We obtain

−JP̃ ∗J(λS −H)P̃

= λ









S11 0 S13 S14

S21 0 −S∗
14 S24

S31 0 S∗
11 S∗

21

0 S42 0 0









−









H11 0 H13 H14

H21 0 H∗
14 H24

H31 0 −H∗
11 −H∗

21

0 H42 0 0









, (52)

where

S42 =

[

y∗JSy

z∗JSy

y∗JSz

z∗JSz

]

and H42 =

[

y∗JHy

z∗JHy

y∗JHz

z∗JHz

]

,
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and S11, H11 ∈ R(n−2)×(n−2). The other blocks have corresponding sizes. Since S42 is
skew-symmetric and y∗JSz = −z∗JSy we obtain

S42 =

[

0

−s
s

0

]

,

where s := −y∗JSz. This yields in particular that y∗JSy = 0. On the other hand we have
iµS(y + iz) = H(y + iz); i.e.,

−µSz = Hy and µSy = Hz.

Therefore, we obtain that
y∗JHz = µy∗JSy = 0

and
y∗JHy = −µy∗JSz = µz∗S∗Jy = µz∗JSy = z∗JHz.

Thus,

H42 =

[

h

0

0

h

]

,

where h := −y∗JHy. The rest of the proof of (b) follows analogous to the proof of Theorem
20, reducing the subpencil

λ





S11 S13 S14

S21 −S∗
14 S24

S31 S∗
11 S∗

21



−





H11 H13 H14

H21 H∗
14 H24

H31 −H∗
11 −H∗

21





by choosing a nonreal eigenvector associated with an eigenvalue iµ̃, µ̃ ∈ R, or two real
eigenvectors associated with the eigenvalue ∞. (Note that the eigenvalue ∞ must have
even algebraic multiplicity, since all the other eigenvalues of the pencil occur in pairs and
the size of the pencil is even.)

In both cases we have reduced the problem to a problem of smaller dimension and the
proof follows by induction.

Lemma 25 Let λS−H be a real skew-Hamiltonian/Hamiltonian pencil. Then the follow-
ing conditions hold:

1. Every block of odd size belonging to the eigenvalue zero in the Kronecker canonical
form occurs with even multiplicity.

2. Every block of even size belonging to the eigenvalue ∞ in the Kronecker canonical
form occurs with even multiplicity.

Proof. See the proof in [20] of the analogous result for pencils λA − B, where A is
symmetric and B is skew symmetric.
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6 Conclusions

We have discussed canonical forms and almost-Schur forms for skew-Hamiltonian/Hamil-
tonian pencils under J-congruence. Also a necessary and sufficient condition for the exis-
tence of a J-Schur form has been given.
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