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Abstract
In this paper we consider real or complex skew-Hamiltonian/Hamiltonian pencils
AS — H, i.e., pencils where S is a skew-Hamiltonian and H is a Hamiltonian matrix.
These pencils occur for example in the theory of continuous time, linear quadratic
optimal control problems. We reduce these pencils to canonical and Schur-type

forms under structure-preserving transformations, i.e., J-congruence-transformations
(AS — H) — —JP*J(\S — H)P, where P is non-singular or unitary.
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1 Introduction

The motivation for the study of pencils AS — H, where S is a skew-Hamiltonian and H is
a Hamiltonian matrix, comes mainly from the linear quadratic optimal control problem;
see [10], [13], [14], and the references therein. This is the problem of minimizing the cost
functional

5 (o0 Qun + o) Rut))ar
subject to the dynamics
Ei(t) = Az(t)+ Bul(t), (1)
I(to) = X, (2)
y(t) = Cx(t), (3)

where A, K € C"" . Q € CP*P B € C™™, C' € CP*", R € C™™ B with full column rank,
C' with full row rank, () Hermitian, and R Hermitian positive definite. Solutions of (1) can
be obtained via the solution of the generalized continuous algebraic Riccati equation

C*QC + A*XE+ E*XA— (B*XE)'R™Y(B*XE) =0, (4)
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or directly via the computation of deflating subspaces of the pencil

; (5)

—1 pRx*x
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0 B C*QC  —A*

see again [10], [13], [14], and the references therein.
From (5) we obtain immediately that Sy is a skew-Hamiltonian and Hy is a Hamiltonian
matrix.

Definition 1 Let J,, := [_(}n 1. (We drop the index n if the dimension is clear from the
contezt.)

1. A matriz H € C**?" s called Hamiltonian if
HJ+JH*=0.

The set of Hamiltonian matrices is denoted by Ho,.

2. A matriz S € C***" s called skew-Hamiltonian if
SJ—JS*=0.
The set of skew-Hamiltonian matrices is denoted by SHay,.

3. A pencil A\S — H € C*™2" js called skew-Hamiltonian/Hamiltonian if S is skew-
Hamiltonian and H is Hamiltonian.

The set of Hamiltonian matrices and the set of skew-Hamiltonian matrices have a
special algebraic structure. The first is a Lie algebra (see e.g. [21]) and the latter is a
Jordan algebra (see [1]). If the matrices under consideration are complex, there exists a
vector space isomorphism between these two algebras.

Lemma 2 The map A — iA is a vector space isomorphism between Ha, and SHa,.

Proof. The proof follows directly from the definition. 0O

If £ in (5) is the identity matrix, then the study of the pencil ASy — Hy reduces to
the study of a Hamiltonian matrix. Condensed forms for Hamiltonian matrices have been
extensively studied in recent years; see,e.g., [2], [3], [4], [11], [17], or [5] for a more general
approach concerning elements from classical Lie or Jordan algebras. There also have been
extensive studies concerning symplectic matrices and symplectic pencils that occur in the
context of the discrete algebraic Riccati equation corresponding to (5); see, e.g., [6], [11],
[22].

If £ in (5) is nonsingular, then it is well known that

. 0 E°* . 0 E°*
SO |:—E_1 0 :| HO = _HO |:—E'_1 :| S(), (6)
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ie., A(iSy) — Hp is an i[_]g,l E(;*}—self—adjoint pencil or in the real case A\Sy; — Hj is a

il g5, "J-skew-symmetric pencil in the sense of [10], where canonical forms for these kinds
of pencils were discussed. Obviously this terminology cannot be used if E in (5) is singular.
But in recent years, there has been great interest in the singular case; see [13] and the refer-
ences therein. Therefore we use in this paper the concept of skew-Hamiltonian /Hamiltonian
pencils. The case that E is singular is included here.

In the following we will look for condensed forms, i.e., forms from which the eigenvalues
of the pencil can be read off in a simple way. For an arbitrary pencil these are the Kronecker
canonical form (see [8]) that yields the eigenvalues and eigenvectors and the (generalized)
Schur form (see [9]) that yields the eigenvalues and a nested set of invariant subspaces and
that is obtained by a transformation (AA— B) +— U(AMA— B)V, where U and V' are unitary
matrices. Following the notation in [13] we use the term “Kronecker canonical form” also
in the case of regular pencils, but we note that in this case the canonical form is due to
Weierstraf; see [8].

The following Lemma is helpful in finding out what kind of structure-preserving trans-
formations we may use to obtain corresponding forms for skew-Hamiltonian/ Hamiltonian
pencils.

Lemma 3 The map H — JH is a bijection between Ho, and the set of 2n x 2n Hermitian
matrices.

Proof. The proof follows directly from the definitions. O

The general structure-preserving equivalence transformations for Hermitian matrices
are the congruence transformations A — P*AP, where P is nonsingular. Lemma 3 implies
that the transformations H — —JP*JH P, where P is nonsingular, preserve the Hamilton-
ian structure. We will call these transformations .J-congruence transformations by analogy
to the congruence transformations. More general are the transformations H — puJP*JHP,
where P is nonsingular and p € R. These transformations are the analogue of the u-
congruence transformations A — puP*AP (see also [16] for related u-symplectic transfor-
mations).

Definition 4

1. Two matrices A, B € C>* are called J-congruent if there exists a nonsingular
matriz P € C™" such that
— JP*JAP = B. (7)

2. Two pencils N\A — B,\C — D € C?>?" qgre called J-congruent if there exists a non-
singular matriz P € C™" such that

— JP*J(AM — B)P = \C — D. (8)

Analogously we define p-J-congruence. We easily obtain the following lemma.



Lemma 5 Let S € C?>"*?" be skew-Hamiltonian, H € C?"*?" Hamiltonian, P € C*"*?",
and let p € R. Then

1. uJP*JSP is skew-Hamiltonian,
2. pnJP*JHP is Hamiltonian,
3. uJP*J(AS — H)P is skew-Hamiltonian/Hamiltonian.

Proof. The proof follows directly from the definitions. 0O

If A\S—H is a skew-Hamiltonian /Hamiltonian pencil, then A(¢.J.S)—(JH) is a Hermitian
pencil in the sense of [19], where a canonical form for Hermitian pencils is given. In the
theory of Hermitian pencils this form is the analogue of the Kronecker canonical form in the
theory of general matrix pencils. The numerical computation of the Kronecker canonical
form is in general ill-conditioned (see, e.g., [9]) in contrast to the computation of the Schur
form (see again [9]). But for a Hermitian matrix the Schur form and the Jordan canonical
from coincide; i.e., a triangular form of a Hermitian pencil would be diagonal. Thus,
the problem of finding a triangular form for a Hermitian pencil under unitary congruence
transformations is equivalent to the problem of the simultaneous diagonalization of two
Hermitian matrices. This is possible if and only if the matrices commute; see [18].

In contrast to this, the concept of skew-Hamiltonian/Hamiltonian pencils enables us
to obtain both a canonical form and a Schur-type form under J-congruence. After stating
some preliminary results in section 2 we discuss this canonical form in section 3. In regard
of our interest in finding eigenvalues we restrict our examination to regular pencils. In
section 4 we discuss under which conditions it is possible to obtain a structured Schur form
under unitary J-congruence transformations, i.e., J-congruence transformations, where the
matrix P in (8) is unitary. We will call this form a J-Schur form. Since in general not
every skew-Hamiltonian/Hamiltonian pencil has a J-Schur form, we present in section 5 a
closely related form that is almost a Schur form and that is obtained by using also some
nonunitary J-congruence transformations.

Throughout the paper we use the following notation and expressions:

1. By the direct sum of two square matrices A, B, we mean the matrix [6‘ g]. Analo-
gously we define the direct sum of square pencils.

2. By Span(zy, ..., x,) we denote the subspace of C*¥ spanned by the vectors z1, . .., Tp,.
3. By e; we denote the ith unit vector.
4. By ~. we denote the equivalence relation by congruence.

5. Let AMA — B € C™" be a regular pencil. Introducing homogeneous parameters,
aA— (BB, see [8], the eigenvalues of the pencils €A — 3B can be represented by pairs
(o, ) € C?\{0}, such that

aAzx — fBx =0 for an z € C"\{0}.
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Obviously (ta, t(3) represents the same eigenvalue for all ¢ € C\{0}; thus, we denote
them by A\ = % if 5 # 0. Pairs (a,0),a # 0 represent the eigenvalue infinity of
aA — (BB that we will denote by co. We note that we always include the eigenvalue
oo when we are talking about real or about purely imaginary eigenvalues.

2 Preliminaries
We first review some properties of the pencils under consideration.

Lemma 6 Let AS — H be a skew-Hamiltonian/Hamiltonian pencil. If Ay is an eigenvalue
of AS — H, then so is —\j with the same partial multiplicities.

Proof. Since S is skew-Hamiltonian and H is Hamiltonian we find that
JAS —H)J =—-\S"— H,

i.e., A\S—H and —\S*— H* are equivalent. Thus, these two pencils have the same Kronecker
canonical form. [

To every block associated with an eigenvalue Ay with nonzero real part in the Kronecker
canonical form, we find by Lemma 6 a paired block of the same size associated with
the eigenvalue —\j. In general we have no pairing of blocks for the purely imaginary
eigenvalues.

In the following we will use the concept of principle vectors of matrix pencils see ([7], [8],
and [13]) that is analogous to the concept of principle vectors of matrices or the concept of
Jordan chains. Since the chains of principle vectors lead in the pencil case to the Kronecker
canonical form, we call them Kronecker chains.

Definition 7 Let AA — B € C™*™ be a reqular pencil.

1. A Kronecker chain associated with a finite eigenvalue Ao of NA — B is a tuple
(x1,...,xm) of vectors from C"\{0} such that

)\()All,‘l = Bl’l (9)
and MgAx; — Br; = —Ax;1 fori=2,...,m. (10)

2. A Kronecker chain associated with the eigenvalue oo of NA — B is a tuple (y1, ..., yx)
of vectors from C"\{0} such that

Ay, = 0 (11)
and Ay; = By,_.1 fori=2,... k. (12)

It is clear that if the Kronecker chains in Definition 7 are of maximal length, we find a
block A\oI,,, — Jin(A) in the Kronecker canonical form of AA — B, whose associated deflating
subspace is spanned by xi,...,x, and a block AJ,(0) — I, whose associated deflating
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subspace is spanned by yi, ..., yx. Here J;(u) denotes an [ x [ Jordan block with eigenvalue
TR

w1 0 0
0 pn
Ji(p) = : 0
: |
|0 ... ... 0 pu |

Furthermore, we have the following property.

Lemma 8 Let \A— B € C™™ be a regular pencil. If (xy,...,xy) is a Kronecker chain as-
sociated with the eigenvalue 0 of N\A— B, then (x1,...,xy) is a Kronecker chain associated
with the eigenvalue oo of AB — A.

Proof. The proof follows directly from Definition 7. 0O
The structure of skew-Hamiltonian/Hamiltonian pencils leads to special properties of
the Kronecker chains.

Lemma 9 Let A\S — H € C*"*?" be a reqular skew-Hamiltonian/Hamiltonian pencil. Fur-
thermore let (x1,. .., Ty) be a Kronecker chain associated with the eigenvalue Ag € CU{o0}
and (Y1, -..,y;) a Kronecker chain associated with the eigenvalue py € C U {oo}, where
to # —A5. Then for all i, 5, where 1 < ¢ <1l and1 < j <m, we have

y'JSx; =y JHx; = 0. (13)

Proof. The proof proceeds via induction on k =17 + j.

1. k=2,ie.,i=j =1: Since u # —\*, at most one of these eigenvalues is infinite.
Thus, we may assume without loss of generality (w.l.o.g.) that A # oo.

(a) In the case p = oo, we have Sy; = 0. Since S is skew-Hamiltonian, we have

yiJ Sz =y S*Jx, = 0.
Furthermore, we obtain from A\Sz; = Hx, that
yiJHxy = \yi JJ Sz = 0.
(b) In the case p # oo, we have
wSy1 = Hys.
Noting that S is skew-Hamiltonian and H is Hamiltonian, we see that this implies

Wy JSzy = (paiJSy)”



Since we also have A\yjJSz; =y JHz; = 0, we obtain
(A + ")y J Sz = 0.

Thus, we obtain yJSz, = 0, since u # —\*, and therefore also yjJHz, = 0.
2. k = k+ 1: Suppose that we have already proved (13) for all 7, j, where i <1, j <m
and ¢ + j = k. Obviously it is sufficient to show that

y;‘JijH = y;kJHZL‘j_H =0

for all 4, j, where ¢ <[, 5 <m and ¢ + j = k. Now assume again w.l.o.g., that A\ # co and
let yo := 0.

(a) In the case u = oo we have Sy; = Hy;_1. Note that this holds also in the case i = 1,
since yo = 0. By this or in the case ¢ > 1 by induction, we obtain

y; JSzi = yiS i
= Y H Jxjn
= 0.
From A\Sxj11 — Hxjy1 = —Sx; we also obtain
y;kJijJrl = /\y:JSLL’j+1 + y:‘JSxJ =0.
(b) In the case y # oo we have uSy; — Hy; = —Sy;_1. Since 7}, ,JSy; 1 = 0, this yields

Wy JSrin = (ijﬂjs%‘)*
= (zjJHy)"
= _y;‘kJijJrla

once more using the fact that S is skew-Hamiltonian and that H is Hamiltonian. Noting
that y7JSz; = 0, we also have

/\y:JSJZj_H = y;JHZL'j_;,_l.
Therefore, we obtain
(A + p1")y; JSwjpa,
and finally
y;‘JS:CjH = y:Jij+1 =0. O

Lemma 10 Let A\S—H € C**" pe a reqular skew-Hamiltonian/Hamiltonian pencil. Fur-
thermore let (x1,...,xy) be a Kronecker chain associated with the eigenvalue A € CU{oo}
and (Y1, - ..,y) a Kronecker chain associated with the eigenvalue p, where p = —\*. Then
for alli,j where 1 <i <1, 1<j<m andi+ j<max(l,m), we have

y:JSz; =y JHz; = 0.



Proof. If A = oo, then Lemma 8 implies that (z1,...,2,,) and (y1,...,y) are Kronecker
chains of AH — S associated with the eigenvalue zero. This also holds for the skew-
Hamiltonian /Hamiltonian pencil A(iH) — (iS). Thus, it remains to prove the assertion for
the case that \ # oc.

1. First of all we prove that for all 7, j, where 1 <7 <[ and 0 < 57 < m, we have

yiJSz; = -y 1 JSxj and y JHz; = —y' JHziq, (14)
where o := 0 and yo := 0. Since (x1,...,2,) and (yi,...,y;) are Kronecker chains we
have

)\S(L’j.ﬂ - Hl‘j.H = —ij and — /\*Syz - Hyz = —Syi_l. (15)

Note that this is also true for i = 1 and j = 0. From (15) and since S is skew-Hamiltonian
and H is Hamiltonian, we obtain

—yi1 S8z = —y STz
= ;S Jxjp —y H x4
= —Ay;JSzjp + vy JH 4
= vy JSx;

and analogously

—yiJHzj = =My JSxjp1 —y;_ 1 JSx;
— A JSw; -yl J S
= (A S" —yi 157y
= vy JHzx;.

2. Now assume w.l.o.g. that [ = max(l,m). Since i + 7 < [ and zy = 0 we obtain by
(14) that 4
y; JSx; = (=1)y;;J Sz =0

and .
y; JHr; = (—1)y;, ;JHro = 0. O

3 A canonical form under J-congruence
In this section we present a canonical form for skew-Hamiltonian/Hamiltonian pencils

under J-congruence. In the study of skew-Hamiltonian/Hamiltonian pencils this form is
the analogue of the Kronecker canonical form in the study of general matrix pencils.



Theorem 11 Let AS — H € C***" be a regular skew-Hamiltonian/Hamiltonian pencill.
Then there exists a nonsingular matriz P € C?*"**" such that

—JP*J(AS — H)P

Sy 0 0 0 Hiy 0 0 0
. 0 522 0 524 0 H22 0 H24
Moo 0 s 0 0 0 -Hy; 0 |’ (16)
0 S 0 55 0 Hyp 0 —Hs,

where

1. AS11 — Hyy is a pencil in Kronecker canonical form and has only eigenvalues with
positive real part.

2. AS —A[:I = /\[gzz gg;‘] — [gzz _1232} is a skew-Hamiltonian/Hamiltonian pencil, such that
J(AS — H) is the direct sum of blocks of the form
[0 i [0 .
e _ ' —€ ‘ L € Ch*k (17)
K 0 | N 0
or _ ; _
0 0 0 1
e _ R . ' c CHk, (18)
| 0 4 0 | 1 0
where p 1s real and € = 1.
Proof.

1. We first prove that A\S — H is, up to the permutation of rows and columns, J-
congruent to the direct sum of two skew-Hamiltonian/Hamiltonian pencils such that the
eigenvalues of one pencil have all nonzero real part and the eigenvalues of the other pencil
are all purely imaginary.

Let us consider a basis (1,...,%m, Y1, -, Ym:V1s - - - s Va(n—m)) Of C?" consisting of Kro-
necker chains of A\S— H such that (z1, ..., z,,) is a basis of the deflating subspace associated
with the eigenvalues with positive real part, (y1,. .., yn) is a basis of the deflating subspace
associated with the eigenvalues with negative real part, and (v1,...,v2;-m)) is a basis of
the deflating subspace associated with the purely imaginary eigenvalues. Setting

Q = [5(71, s Tmy Vs ooy Unems Y1y - -5 Yms Un—mt 15 - - aUQ(n—m)]
we find by Lemma 9 that
—JQ*J(ANS — H)Q

55 0 0 0 Hy 0 0 0
0 22 0 524 0 H 22 0 H 24

~ A - - - 19
0 0 8y 0 0 0 -H; 0 |’ (19)
0 w2 0 S5 0 Hyp 0 —Hs,



where A\S;; — Hiy has only eigenvalues with positive real part and the skew-Hamiltonian /-

Hamiltonian pencil A\S — H := )\[giz gi“] — [giz _I%‘i | has only purely imaginary eigenvalues.
22 22

2. For the proof of (16) we note that J(A(iS) — H) is a Hermitian pencil that has only
purely imaginary eigenvalues. Thus, applying Lemma 2 from [19], we find that there exists
a nonsingular matrix X = [);; ﬁ;g], where X;, € C*=mx(=m) “guch that X*J(AS — H)X
is a direct sum of blocks of the form (17) or (18). Furthermore, we find nonsingular matrices
R, T such that R(ASy; — Hy1)T is in Kronecker canonical form. Hence we obtain (16) by
setting

R 0 0 0

0 Xu 0 Xp
P=@-19 0 -1 o

0 Xor 0 Xy

Note that the blocks of the submatrices S and H in (16) in general occur in patterns

such as
_ alg _

[ ]
. [

L]
]|
|0

In general it is not possible to reduce the subpencil AS — H to a direct sum of skew-
Hamiltonian /Hamiltonian pencils that have only one eigenvalue. As an example, consider

the pencil
02 01
A L’O} B {—10} ‘

Further reduction is impossible, since the pencil has purely imaginary eigenvalues with odd
algebraic multiplicity.

Lemma 12 Let \S — H € C**?" be a regular skew-Hamiltonian/Hamiltonian pencil with
pairwise distinct eigenvalues A1, ..., N\, that are all purely imaginary. Then the following
statements are equivalent.

1. The eigenvalues Ay, ..., \p all have even algebraic multiplicity.

2. There exists a nonsingular matriz P such that

[ Sh 0 S1kt1 0
0 Skk 0 Sk.2k
—JP*JSP = !
Sk+1,1 0 | Skt k41 0
. 0 Sok ke 0 Sok.2k
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and

i H11 0 Hl,k’-i—l 0 1
0 Hyy, 0 Hi o,
—JP*JHP = ’ 5
Hy1n 0 | Hip1p41 0
. 0 Hop . 0 Hop o |
where )\[Sli’” sif:ﬂ] — [HI::“ Hﬂf:ﬂ],z =1,...,k, is a skew-Hamiltonian/Hamilton-

tan pencil having only one eigenvalue.

Proof. 1 = 2: For the deflating subspace associated with \;, we find a basis (21, ..., zm,)
consisting of Kronecker chains. Now set

Py =z, .. ,x%] and P = [x%ﬂ, ey Ty
This is possible, since every eigenvalue has even algebraic multiplicity. Setting
P = [P117-"7Pk17P127-"7Pk2]7

Lemma 9 implies the required result.
2 = 1: is clear, since the subpencils

)\{ Sii Si ki ] B { Hy  Hipy }

Shtini Skt kti Hyyii Higi oy

have even sizes. 0
There exists a real analogue to Theorem 11.

Theorem 13 Let \S — H € R?*™ 2" be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matriz P € R*?" such that

—JP*J(AS — H)P

Syt 0 0 0 Hy 0 0 0

- 0 Sp 0 Sou | 0 Hyp 0 Hyy

=AM o o0 s 0 0 0 -—Hy, 0 | (20)
0 S 0 S5 0 Hw 0 —H

where

1. A\S11— Hiyq 1s a pencil in real Kronecker canonical form and has only eigenvalues with
positive real part.

11



2.

Sy 555 Hyo —H3,

that J()\S’ — f[) is the direct sum of blocks either of the form

AS — H := A [S” 524} — [H” Mo ] is a skew-Hamiltonian/Hamiltonian pencil such

R jiap
e ‘ h —€ ‘ N‘IQ L2 € C2<2k (21)
R [LIQ [2
where >0, R = [? _01] and Iy = [[1)(1)}, or of one of the forms
0 0 0
X | 0 0 A — €A2k+1, ke N, (22)
0 —A; 0
0 Ay 0 Ay
A — k 2
{—Ak()} [Ak()}’ even, (23)
0 A
e |:_Ak Ok} —eNo, k€N, (24)
o 0 A 0 A
A Fl— "1k odd 25
where ¢ = £1 and furthermore
0 1 0 0
Ay = ‘ ' and Ay = 1
1 0 01 0

Proof. The proof is similar to the proof of Theorem 11 using results on pencils A\A — B,
where A is skew symmetric and B is symmetric; see, e.g., [20]. O

Corollary 14 Let \S — H be a real skew-Hamiltonian/Hamiltonian pencil. Then the
following conditions apply:

1.

Every block of odd size belonging to the eigenvalue zero in the (general) Kronecker
canonical form occurs with even multiplicity.

. Bvery block of even size belonging to the eigenvalue oo in the (general) Kronecker

canonical form occurs with even multiplicity.

Proof. This follows directly from the structures of the blocks (23) and (25) in the
structured canonical form (20). 0O
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4 The existence of J-Schur forms

As shown in [17] not every Hamiltonian matrix can be reduced by unitary symplectic sim-
ilarity transformations to a matrix in a Schur-type form that is called Schur-Hamiltonian
form in [17] or Hamiltonian Schur form in [13]. This is a Hamiltonian matrix

1

where T" € C™*" is upper triangular and R € C"*" is Hermitian. The analogous Schur-type
form for a skew-Hamiltonian matrix is

TR

o (27)

0T

where T' € C™*" is upper triangular and R € C™*" is skew-Hermitian. We call matrices of
the form (26) or (27) matrices in J-Schur form. In [12] and [15] a necessary and sufficient
condition for the existence of the Hamiltonian Schur form, resp., J-Schur form is presented.

Theorem 15 Let H € C**2" pe q Hamiltonian matriz and let X1, ..., A\, be the pairwise
distinct purely imaginary eigenvalues of H with algebraic multiplicities py,...,pm. Then
the following statements are equivalent:

1. There exists a unitary symplectic matriz P € C**?" sych that PHP~! is in J-Schur
form (26).

2. If the columns of U, € C*Pr k= 1,...,m, form a basis of the invariant subspace

associated with A\, then
U TUs ~e Ty o (28)

Note that (28) implies that the multiplicities p;, are even.
Proof. See [12] or [15].
An analogous result holds in the case that H is skew-Hamiltonian.

Theorem 16 Let S € C>*®" be a skew-Hamiltonian matriz and let \i,..., \,, be the
pairwise distinct real eigenvalues of S with algebraic multiplicities py,...,pm. Then the
following statements are equivalent.

1. There exists a unitary symplectic matriz P € C?**?" such that PSP~ is in J-Schur
form (27).

2. If the columns of U, € C*Pr k= 1,...,m, form a basis of the invariant subspace

associated with A\, then
Upg JUi ~c Jp, 2- (29)
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Proof. The proof follows directly from Lemma 2 and Theorem 15. 0O
We also obtain a similar result for the skew-Hamiltonian/Hamiltonian pencils. For the
proof of this result, we need the following lemma.

Lemma 17 Let P € C**2", Then there exists a factorization

Rll R121

P=0.
Ay

where Q € C* 2" js unitary and Ry1, Ry € C™™ are upper triangular.

Proof. After performing n steps of the QR Householder algorithm (see, e.g., [9]), we
find a unitary matrix ); € C"*" such that

Rll EH

P=0Q,-
1 0 P,

Y

where Ry; € C™*™ is upper triangular. Then we compute the QL factorization
Py = Q2+ Ry,

where Q)2 € C™*" is unitary and R}, € C"*" is lower triangular; see again [9]. Thus, setting
Q=Q- [15‘ 32] implies (30). O

Theorem 18 Let \S — H € C?"*" be a skew-Hamiltonian/Hamiltonian pencil. Let
Ay .oy A be the pairwise distinct, finite, purely imaginary eigenvalues of NS — H with
algebraic multiplicities py, ..., pm and let po, be the algebraic multiplicity of the eigenvalue
0o. Then the following statements are equivalent.

1. There exists a nonsingular matriz P € C**?" such that

S11 512 Hy Hio
—JP*JAS—H)P =\ — 31
] e B Y

where Sy, and Hyy are upper triangular.
2. There is a unitary matriz Q € C**" such that

S iz Hy Hy
—JQ*JANS—H)Q =\ 0 = -~ 32
eons mans[3%] [ he]

where SH and I;TH are upper triangular.
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3. If the columns of U, € C**Pv_ k= 1,...,m, form a basis of the deflating subspace
associated with Ay, then
Up JSUy ~¢ Iy, 2 (33)

Furthermore, if ps # 0 and if the columns of Uy, € C?>"*P~ form a basis of the
deflating subspace associated with the eigenvalue oo, then

UsJHUs ~ i, _so. (34)

Proof. 1 = 2: If P € C*"*?" is nonsingular such that (31) holds, Lemma 17 implies
that there exists a factorization (30). Using this we obtain from (31), that

—JQ*J(AS — H)Q
_ g Ri1 Rip 7*J A\ Su S| [Hu Hi Ry Rip] ™"
— )\ [_}32_21&1}31_11 * } _ [—R2_21H11R1_11 * }
0 —Ryy ST Ray 0 RiTHY Ry |
where the upper left subpencil — R, (AS1; — Hy1) Ry is still upper triangular.
2 = 3: Let AS — H be in the form (32). First we show that the pencil is (up to
the permutation of rows and columns) J-congruent to a direct sum of skew-Hamilton-

ian/Hamiltonian pencils in the form (32) that have only one pair (u;, —u}) of eigenvalues.
Therefore, consider a 4 x 4 subpencil

511 S12 S13 S14 hir hia  his R4

& 1T 0 S99 —ST4 So4 . 0 hgg hT4 h24
A5 —H =2 0 0 511 0 0 0 —h, 0

0 0 S1a S 0 0 —hiy —hi

of the pencil in (32) such that As;; — hy; has the eigenvalue Ay and such that Asas — hop has
the eigenvalue pg. Furthermore, let Ao # 10, —p5. Next we show that the (1,2)-elements
of S and H, respectively, can be simultaneously set to zero. Therefore, let

o O~ 8
_— o O O

o O O
< = O O

where z,y € C, and consider —JP*JSP and —JP*JHP. If we want to set the (1,2)-
elements of both matrices to zero, we have to solve the equations

s12 + 82y +spwr = 0,
and h12 + hgzy* + h11$ = 0.
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This implies (haos11 — h11522)T = S20h12 — haas12. Since Ao # o, it follows that

haasi1 — hi1522 7’é 0.

Therefore, z (and y) can be chosen such that the (1,2)-elements of both —JP*JSP and
—JP*JHP are zero. In an analogous way we show that using a J-congruence transforma-
tion with the matrix

1 0 0 =z
101y 0
p_0010
0001

the (1,4)-elements of S and H can also be simultaneously set to zero. Here, we need
Ao # —pg- (We note that this transformation has no effect on the 2 x 2 diagonal blocks
of \S — H.) Now it is clear that a sequence of J-congruence transformations can be used
to obtain a pencil that is (up to the permutation of rows and columns) a direct sum of
skew-Hamiltonian/Hamiltonian pencils in the form (32) such that each pencil has only one
pair (u;, — u;‘) of eigenvalues, and we may consider the blocks separately.

Furthermore, we may assume w.l.o.g. that the bases U, and U, are canonical, for if
(33) holds for a special basis Uy, it holds for every basis of the deflating subspace associated
with A\, because a change of basis means the transition from Uy, to U, X, where X &€ CP+*Pk
is nonsingular. (The same argument holds for Us,.) Thus, if

AS — H =)\ ol

5 Si1 Si 1
0 —Hy

]:lll f{12 ]

is a skew-Hamiltonian/Hamiltonian pencil satisfying (31) and that has only one eigenvalue
that is finite and purely imaginary, it remains to show that JS is congruent to J. This also
proves (34), for we can reduce the case of the eigenvalue co to the case of the eigenvalue
zero by considering A(iH) — (iS) according to Lemma 2.3. Now we obtain

(St —195180, | 5 1S5 —185 S,
0 I S 0 I
_—%SESHK I —511 —S19 0 I
[0 I
T 0} =

ie., JS is congruent to J.

3 = 1: Since (33) and (34) imply that all the algebraic multiplicities of the purely
imaginary eigenvalues are even, it is by Theorem 11 and Lemmas 12 8 again sufficient to
consider the case that A\S — H has only one eigenvalue that is finite and purely imaginary.

16



Since JS is congruent to J we have that S is J-congruent to the identity matrix. Thus
there exists P, € C?*?" nonsingular such that

—JP:J(\S — H)P, =\ — H,

where H is a Hamiltonian matrix having only one eigenvalue, which is purely imaginary.
Thus, H trivially satisfies (28) and by Theorem 15 we find a symplectic matrix P, € C2x2n,
i.e., Pyt = —JP;J, such that Py *HP, is in J-Schur form (26). We obtain (31) by setting
P == P1P2. 0

We call a pencil of the form (31) a pencil in J-Schur form.

5 An almost-Schur form under ./-congruence

We have seen in section 4 that not every skew-Hamiltonian/Hamiltonian pencil can be
reduced to a J-Schur form by unitary J-congruence transformation. Thus, if we want to
obtain a condensed form from which the eigenvalues can be read off in a simple way, we
have to use also nonunitary J-congruence transformations. In this section we will present a
condensed form that we will call almost-Schur form and that can be obtained by applying
J-congruence transformations, where P in (8) is a product of unitary or almost unitary
matrices.

Definition 19 Let P = [py,...,p,] € C" be nonsingular. Then P is called almost unitary
if there exists an index k such that (p1,...,Pk—1,Pkt1,---,Pn) @S an orthonormal tuple of
vectors.

Theorem 20 Let \S — H € C?*™?" be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matriz P € C*>*?" and k € N such that

—JP*J(AS — H)P

Sll 512 513 Sl4 Hll H12 H13 H14

B 0 0 -5y Seu| | 0 0 Hfy Ha

=AM o o0 sy 0 0 0 =—Hy 0 |’ (35)
0 Sp S5 0 0 Hp —Hf 0

where the following conditions hold:

1. ASyy — Hyy € C*** s an upper triangular pencil having only eigenvalues with non-
negative real part.

2. Sau, Sia, Hoy, Hyp € CO=RX(=k) gre diggonal and all the eigenvalues of the skew-
Hamiltonian/Hamiltonian pencil

W[ 0 Su] [0 Ha
Siz 0 Hy 0

17
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3. The spectrum of A\S — H 1is equal to the union of the spectra of

)\ 511313 o Hll H13 cmd )\ O 524 _ O H24
0 5% 0 —H Sip 0 Hp 0 |

4. P is a product of unitary and almost unitary matrices.

Proof. We consider two cases:
(a) Let us assume that there exists an eigenvector x # 0 associated with an eigenvalue
Ao of AS — H such that
2*JSx =0 and z*JHz = 0. (36)

Since A\S — H is regular, we have JSz # 0 or JHx # 0. Assume that JSx # 0; i.e., \g # 00
(otherwise the argument proceeds analogously by exchanging JSz and JHz). Then (36)

implies in particular that  and JSz are linearly independent. Let (qa, ..., Gn, Gni2, - - -, G2n)
be an orthonormal basis of Span(z, JSz)+. We assume that Re(\g) > 0 and set
Q:: [x792a'-an,JS%Qn—s—Q;---:an]- (37)

(In the case Re(\g) < 0 we set Q = [JSx,q2,...,qn, T, qni2, - -, (2] and the argument
proceeds analogously.)

Note that (after having normalized x and JSz) the matrix @) is unitary by (36) and by
definition of the ¢;. We obtain

—(JSz)*JSx —x*S*Sx

0 0

—JQ*JSQe; = : = :

0 0

and

—(JSz)*JHzx —x*S*Hx

0 0

Q" THQe, = | -

0 0

Since —JQ*J(AS — H)Q is still skew-Hamiltonian/Hamiltonian, we obtain
—JQ*J(AS — H)Q

S11 % * * hi1 % * *
— 0 Ss * Su . 0  Hy * Hoy
0 0 s3; O 0 0 —hj; 0 ’
0 542 * S;Q 0 H42 * —H§2

where SQQ,SQ4,S4Q,H22,H24,H42 € C(n—l)x(n—l)) S11 = —.T*S*S.T, and hn = —x*S*Hzx.
Obviously the pencil As;; — hy; has the eigenvalue \g and by permutation of rows and
columns we see that the spectrum of AS — H is equal to the union of the spectra of

A {811 * ] _ [hn * ] and )\ {522 524} _ [Hm Hyy 1
O Sh O _hfl S42 552 H42 —Hékz .
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(b) If the assumption in (a) does not hold, then for every eigenvector x # 0 associated
with an eigenvalue of AS — H we have

x*JSz #0 or x*JHx #0. (38)

In this case we see by Lemma 9 that all the eigenvalues of AS — H are purely imaginary
and by Lemma 10 they all have partial multiplicities equal to one. Once again we assume
x*JSx # 0. (Otherwise the argument proceeds analogously by exchanging J Sz and JHx.)
Let (q1,---,Gn-1,qns1,- - - q2n) be an orthonormal basis of Span(JSx)*. Then

Pl = [qla'"7Qn717x7QH+17--'7QQn] (39)
is invertible. This follows, since if aq, ..., as, € C are such that
a1qr+ -+ O 1Gn1 + T + O p1Qngr + 0 QonGon = 07 (40)
then multiplying (40) from the left by z*S*J we obtain as, = 0, since z*J Sz # 0, and
therefore a; = 0 for all © = 1,...,2n, since the ¢; form a basis. Hence we obtain
0 0
P JSz=| * | and —JPJHz=| ® |,
0 0
S42 hao

where sy = 2*JSx and hyy = x*JHx. This implies that

—JP:J(\S — H)P,

Sll 0 513 Sl4 Hll 0 H13 H14
— Sor 0 _Sik4 Sa4 B Hy 0 Hy, Hy (41)
531 0 Sikl 551 Hs; 0 _Hikl _Hgl ’
0 S492 0 0 0 h42 0 0

where Sy, Hy; € C=D*(=1) and the other blocks have corresponding sizes. Now set

5 5 Sll SIS Sl4 Hll H13 H14
MS—H:=\| Sy =S, Su | —| Hn H, Hy (42)
531 Sﬁ 551 HSl _Hikl _H§1

and let 3 be an eigenvalue of A\S — H associated with the eigenvalue jio. By (38) we find
v JSy#£0 or y*JHy 0,
which implies, in particular, that also g is purely imaginary with partial multiplicity equal

to one. Again we assume y*.J Sy # 0 and choose an orthonormal basis (p1, ..., pan_z) of
Span(JSxz)+. Analogous to the proof of the nonsingularity of (39), we can show that the
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vectors y and (py, . . . , Pan—2) are linearly independent. Embedding these vectors canonically
in C" and then setting

P2 = [p17 ceyPn—1,€nyPny - - - 7p2n727y]7

we obtain

—JP;PrJ(\S — H)P, P

Sn 0 S 0 Hy 0 Hgz 0
0 0 0 s 0 0 0 hy )
Sy 0 S, 0 Ay 0 —Hy 0 |
0 S49 0 0 0 h42 0 0

where 51175137531,[:[11,1{[13,1{[31 € C(n_l)x(n_l), S2q4 = ?fjgy, and hyy = ?/*ng- Thus,
the spectrum of AS — H is equal to the union of the spectra of

511 Sls ﬁn gm 0 s4 0 hoy
A ~ N* — ~ ~ % and )\ - 9

and the eigenvalues of A[Si R h(iQ hg“] are Ao and .

In both cases we have reduced the problem to a problem of smaller dimension and the
proof follows by induction. [

Remark 21 The matrices —JP*JSP and —JP*JHP in (35) have the pattern

L

N

N

Remark 22 The proof of Theorem 20 also suggests a procedure to compute the almost-
Schur form (35). But during the computation the following difficulties may occur:

1. In the first step we may compute only one eigenvalue and then reduce the pencil as
indicated in part (a) or (b) of the proof of Theorem 20. This means that if we compute
an eigenvector satisfying (38), we do not know whether (38) holds for all the eigenvalues
or if there exists an eigenvalue such that (36) holds. In particular we might fail in finding
an eigenvector of the subpencil (42) that satisfies (38). Consider, for example, the pencil

0 0 i 001 2
Wi i o 102 0
00 0 —i 000 -1
0 —i 0 0 010 0
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The subpencil

0 2 01 2
Al2 ¢ 0 | =12 0
00 —2 00 -1

has the eigenvalue ¢ with partial multiplicity 3. Thus, Lemma 10 implies that we do not
find an eigenvector satisfying (38). Therefore, the following observation may be helpful.

Given a skew-Hamiltonian/Hamiltonian pencil in the form (41) and an eigenvector x
satisfying (36), we can perform a step as indicated in part (a) of the proof of Theorem
20 by choosing the basis of Span(z, JSz)* (resp., Span(x, JHz)) such that g, in (37) is
equal to e,. This is always possible, since e,, is an eigenvector. Then we obtain by Lemmas
9 or 10 that

erJSx =0

and by the special structure of the pencil (41) also

e,r=0.
Hence we can proceed reducing the matrix as indicated in (a) until we find another eigen-
vector y satisfying (38).

2. If we compute an eigenvector satisfying (38) during the reduction of AS — H, we
do not achieve the J-Schur form by proceeding as indicated in part (b) of the proof of
Theorem 20. But this does in general not mean that there is no J-Schur form. Consider
as an example the skew-Hamiltonian matrix

—1-0.5i 0 0.5 0
5. 0 —1— 0.5 0 0.5
' —0.5i 0 —1+0.50 0
0 —0.5i 0 —1+0.5i

and the skew-Hamiltonian/Hamiltonian pencil AS — (iS). We note that e; and e3 are
eigenvectors associated with the eigenvalue 7. Now we have

e;JSe; #0 and e3JSes # 0,

but
(61 + 63)*<]S(€1 + 63) = 0 = (61 + 63)*JH(61 -+ 63).

Thus, if we choose the eigenvector e; instead of (e; + e3) for the reduction of the pencil,
we would create the almost-Schur form, although there exists a J-Schur form. Setting

1 0 -1 0
1 01 0 -1
U'—ﬁjlol 0
01 0 1
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we obtain

—JU*J(AS —iS)U

10 —i 0 i 010
N I S A I O
00 1 0 00 i 0
00 0 1 000 i

Since we do not know how to compute an eigenvector satisfying (36), if it exists, we
currently see no method to avoid this problem.

In the real case we obtain a result similar to Theorem 20.

Definition 23 Let P = [py,...,p,] € R™ be nonsingular. Then P is called almost orthog-
onal if there exists indices k,l such that

(D1 Ph—1,Pha1s - s D1, Digds - - - 5 P)
1s an orthonormal tuple of vectors.

Theorem 24 Let \S — H € R*"?" be a regular skew-Hamiltonian/Hamiltonian pencil.
Then there exists a nonsingular matriz P € R**" and k € N such that

—JP*J(AS — H)P

Sll 512 Sl3 Sl4 Hll H12 H13 H14

_ 0 0 =S5 Sy 0 0 Hfy Hy

=AM o S, o | | 0o 0 —-Hy 0 |° (44)
0 Sp Sih 0 0 Hp —Hfy 0

where the following conditions hold:

1. AS11 — Hyy € R¥*F s a quasi upper triangular pencil having only eigenvalues with
nonnegative real part.

2. The pencils \Sos — Hou, NSso — Hyo € ROTRIX(=K) qre block diagonal and the diagonal
blocks are either of the form

0 1
A _ e Rmxm (45)

0 s] h 0
A\ - 46
) Lon) 10
where s,h € R\{0}. In particular, all the eigenvalues of the skew-Hamiltonian/-
Hamiltonian pencil
N

542 0 Hyp O

are nonzero and purely imaginary.

for m € N or of the form
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3. The spectrum of A\S — H 1is equal to the union of the spectra of

\ Sudis| [ Hu His and ) 0 Soa| | 0 Ho
0 S 0 —H, Sip 0 Hy 0 |

4. P is a product of orthogonal and almost orthogonal matrices.

Proof. Analogous to the proof of Theorem 20 we distinguish two cases.
(a) Let us assume that there exists an eigenvector x € C™\{0} associated with an
eigenvalue \g € C of AS — H such that

x*JSxr =0 and z*JHz = 0. (48)

If A\p and = are real we can proceed as in the proof of Theorem 20. So let us assume
that A9 has nonzero real part and that x = y + ¢z, where y,z € R". Furthermore we
assume once again w.l.o.g. that JSx # 0. (Otherwise the argument proceeds analogously
by exchanging JSx and JHx.) This means in particular that both JSy and JSz do not
vanish. Otherwise y or z would be an eigenvector associated with the eigenvalue oco. It is
well known that y, z form a basis of a two-dimensional subspace; i.e., in particular y and
z are linearly independent. Furthermore, we have by (48) that

Yy JSy+ 2" ISz +i(y*JSz — 2" JSy) (49)
= (y+1i2)*JS(y +iz) = 0.

Since \j # —\§ and y — iz is an eigenvalue associated with A§, we also have by Lemma 9
that

y*JSy — 2" JSz+i(y*JSz — 2*JSy) (50)
= (y—iz)"JS(y +iz) = 0.

Hence by adding, resp., subtracting (49) and (50) we obtain
Yy JSy =2"JSz=2"JSy=y"JSz=0.
If we choose a real orthonormal basis (ry,re) of Span(y, z), we still have
ri,ro L JST1, JSTS.

Now let (qi,...,q2n—4) be a real orthonormal basis of Span(ry,rq, JSry, JST). Then (as-
suming again w.l.o.g. that g has nonnegative real part and after having normalized
r1,79, JSr, and JSTs) the matrix

Q = [T17T27Q17 <oy Qn—2, JS?"l, JSTQaQn—la cee 7q2n—4]
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is orthogonal and we obtain

—JQ*J(\S — H)Q

Siiox % % Hyp o ox * *
— 0 Sy * S . 0  Hy * Hyy
0 0o Sy 0 0 0 -0y 0 ’
0 S * 55 0 Hyp * —H3,

where Sy, Hi1 € R?*2 and Sag, Sa4, Siz, Hog, Hoy, Hys € RO2x(=2) Obviously the pencil
ASi1 — Hyp has the eigenvalues \g and Ajj and the spectrum of AS — H is equal to the union
of the spectra of

\ [Su * } _ [Hu * } nd [5'22 524] _ [sz Hoy }
0 Sh 0 —Hf Sz S5y Hyo —H3, '

(b) If the assumption in (a) does not hold, then for every eigenvector x € C"\{0}
associated with an eigenvalue of A\S — H we have

x*JSx #0 or x*JHx #0. (51)

This means again that all the eigenvalues of AS — H are purely imaginary and all their
partial multiplicities are one. In addition we have that AS — H cannot have the eigenvalue
zero, for if w € R™ is an eigenvector associated with zero, i.e., Hw = 0, since S is skew-
Hamiltonian, we obtain

w*JSw = (w*JSw)* = w*S* Jw = —w* JSw;

ie, w*JSw = 0=w*"JHw. In the case of the eigenvalue co, we can find a real eigenvector
and so we proceed as in the proof of Theorem 20. Thus it remains to consider the case
that = is an eigenvector associated with the eigenvalue iy for a p € R\{0} and that
xr =y + iz, where y,z € R". Again y and z are linearly independent and we have both
JSy # 0 and JSz # 0. Now let (q1,-..,¢@n—2,Gns1,---,G2n) be a real orthonormal basis of
Span(JSy, JSz)*. Analogous to the proof of the nonsingularity of (39) we can show that

P = [Q17 s qn—2,Y, 2, qn+1, - - - aq2n]

is nonsingular. We obtain

—JP*J(\S — H)P

Su 0 Sz Su Hy 0 Hiz  Hy
- 521 0 —Sﬁ 524 _ Hgl 0 Hf4 H24 (52)
S 0 ST S5 Hy 0 —-Hy, —Hy |’
0 Sy 0 0 0 Hyp 0 0
where
g _ y*JSy y*JSz and Hoo — y*JHy y*JHz
2 ISy 2+ JSz 27 | *JHy z*JHz |’
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and Sy, Hyy € R(=2x(=2) " The other blocks have corresponding sizes. Since Syo is
skew-symmetric and y*.JJSz = —2z*.JSy we obtain

0 s
542 - |:—SO:| )

where s := —y*JSz. This yields in particular that y*JSy = 0. On the other hand we have
inS(y +iz) = H(y +iz); i.e.,

—puSz=Hy and uSy= Hz.

Therefore, we obtain that
vy JHz = py*JSy =0

and
Yy JHy = —puy*JSz = pz*S*Jy = pz*JSy = z* JH z.
Thus,
h 0
H42 - |:0 h:| ’

where h := —y*JHy. The rest of the proof of (b) follows analogous to the proof of Theorem
20, reducing the subpencil

Sll Sl3 5'14 Hll H13 H14
)\ 321 _ST4 524 - H21 Hik4 H24
S31 ST Sy H; —Hy, —Hj

by choosing a nonreal eigenvector associated with an eigenvalue iji, i € R, or two real
eigenvectors associated with the eigenvalue oco. (Note that the eigenvalue oo must have
even algebraic multiplicity, since all the other eigenvalues of the pencil occur in pairs and
the size of the pencil is even.)

In both cases we have reduced the problem to a problem of smaller dimension and the
proof follows by induction. 0

Lemma 25 Let AS — H be a real skew-Hamiltonian/Hamiltonian pencil. Then the follow-
ing conditions hold:

1. Ewvery block of odd size belonging to the eigenvalue zero in the Kronecker canonical
form occurs with even multiplicity.

2. FEwvery block of even size belonging to the eigenvalue oo in the Kronecker canonical
form occurs with even multiplicity.

Proof. See the proof in [20] of the analogous result for pencils A\A — B, where A is
symmetric and B is skew symmetric. 0O
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6

Conclusions

We have discussed canonical forms and almost-Schur forms for skew-Hamiltonian/Hamil-
tonian pencils under J-congruence. Also a necessary and sufficient condition for the exis-
tence of a J-Schur form has been given.
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