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Abstract This chapter provides a survey on the development of canonical forms
for matrices and matrix pencils with symmetry structures and on their impact in the
investigation of application problems. The survey mainly focuses on the results from
three topics that have been developed during the past 15 years: structured canonical
forms for Hamiltonian and related matrices, structured canonical forms for doubly
structured matrices and pencils, and singular value-like decompositions for matrices
associated with two sesquilinear forms.

1 Introduction

Eigenvalue problems frequently arise in several applications from natural sciences
and industry and therefore the corresponding theory is a fundamental topic in Linear
Algebra, Matrix Theory, and Numerical Analysis. The practical applications typi-
cally lead to matrices, matrix pencils, or matrix polynomials with additional sym-
metry structures that reflect symmetries in the underlying physics. As a consequence
also the eigenstructures (i.e., eigenvalues, eigenvectors, root vectors, Jordan blocks,
singular blocks and other invariants as, e.g., algebraic, geometric, and partial mul-
tiplicities) of such matrices, matrix pencils, and matrix polynomials inherit certain
symmetries or patterns. As these reflect the nature and characteristics of the original
application problems, they play critical roles both in theory and practice.
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Typically, the solution of structured eigenvalue problems is a challenge, because
there is demand for the design of new algorithms that are structure-preserving in
each step, so that the corresponding symmetry in the spectrum is maintained in fi-
nite precision arithmetic and the obtained results are physically meaningful [48].
Simple variations of the QR algorithm or methods based on standard Krylov sub-
spaces may not be sufficient to achieve this goal so that new ideas and concepts
need to be developed. This requires a deeper understanding of the corresponding
eigenstructures and therefore the derivation of structured canonical forms is essen-
tial. It is the aim of this chapter to review such forms for some particular classes of
structured matrices or matrix pencils.

The most important and well-known matrices with symmetry structures are prob-
ably real or complex Hermitian, skew-Hermitian, and unitary matrices. Still, there
are many other kinds of important structured matrices like complex symmetric,
skew-symmetric, and orthogonal matrices as well as nonnegative matrices all of
which are discussed in the classical books [13, 14]. In this chapter, we focus on
structured matrices that are self-adjoint, skew-adjoint, or unitary with respect to an
inner product associated with a possibly indefinite Hermitian or skew-Hermitian
matrix and give a brief review on their theory, also including the corresponding ma-
trix pencils that generalize those structures. We do not consider the corresponding
structured matrix polynomials in this chapter, but refer the reader to Chapter 12 of
this book instead.

Let F be either the real field R or the complex field C. Suppose M ∈ Fm×m is an
invertible Hermitian or skew-Hermitain matrix, and define the bilinear or sesquilin-
ear form

[x,y]M = x∗My =: [x,y], x,y ∈ Fm, (1)

where ∗ is the conjugate transpose, which reduces to just T , the transpose, if F=R.
Then three sets of structured matrices can be defined:

1) the set of M-Hermitian matrices or M-selfadjoint matrices:
HM =

{
A
∣∣A∗M = MA

}
=
{

A
∣∣ [Ax,y]M = [x,Ay]M for all x,y ∈ Fm

}
,

2) the set of M-skew-Hermitian matrices or M-skew-adjoint matrices:
SM =

{
K
∣∣K∗M =−MK

}
=
{

K
∣∣ [Kx,y]M =−[x,Ky]M for all x,y ∈ Fm

}
,

3) the set of M-unitary matrices:
UM =

{
U
∣∣U∗MU = M

}
=
{

U
∣∣ [Ux,Uy]M = [x,y]M for all x,y ∈ Fm

}
.

The concept of M-Hermitian and M-skew-Hermitian matrices can be generalized
to matrix pencils via

λM−B; with M =±M∗, B =±B∗. (2)

In fact, if M is invertible, the generalized eigenvalue problem with underlying matrix
pencil as in (2) is equivalent to the eigenvalue problem for the matrix A = M−1B,
which is M-Hermitian or M-skew-Hermitian, depending on whether M and B are
Hermitian or skew-Hermitian. M-unitary matrices may be related to structured pen-
cils indirectly by using a Cayley-transformation [24, 28, 38].
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Another structured matrix pencil of the form

λA∗−A,

which is called palindromic ([22, 29, 43, 44]), can also be transformed to a
Hermitian/skew-Hermitian pencil with a Cayley-transformation and can therefore
be considered a generalization of M-unitary matrices as well.

The study of matrices and matrix pencils with the symmetry structures outlined
above started about one and a half centuries ago (we refer to the review article [25]
and the references therein for more details) and continues to be of strong interest as
there are many important applications in several areas of science and engineering,
see, e.g., [16, 24, 38, 24, 41, 45, 48, 49, 55].

A particular example is given by Hamiltonian matrices that arise, e.g., in sys-
tems and control theory [27, 38, 45, 55] and in the theory of dynamical and Hamil-
tonian systems [19, 20, 21]. These matrices are J-skew-Hermitian, where the skew-
symmetric matrix J is given by

J := Jn :=
[

0 In
−In 0

]
∈ R2n×2n. (3)

(We drop the subscript n whenever it is clear from the context.) Due to their many
applications, in particular those in system and control theory, the investigation of
Hamiltonian matrices has been an important part of Volker Mehrmann’s research in-
terest and he and his coauthors have contributed many results to their theory, like dis-
covering the reason for the difficulty in computing Hamiltonian Hessenberg forms
[1], finding necessary and sufficient conditions for the existence of the Hamiltonian
Schur form [28], and developing several algorithms for the Hamiltonian eigenvalue
problem [4, 8, 38, 39]. For the understanding of the underlying theory, it was cru-
cial to be aware of the presence of additional invariants besides the eigenvalues,
eigenvectors, and root vectors of Hamiltonian matrices, the so called signs in the
sign characteristic of purely imaginary eigenvalues. The classical Jordan canon-
ical form cannot display these additional invariants, because it is obtained under
general similarity transformations that ignore the special structure of Hamiltonian
matrices. Therefore, it was important to develop a canonical form that is obtained
under structure-preserving transformations, so that additional information like the
sign characteristic is preserved and can be read off.

The phenomenon of presence of a sign characteristic not only occurs for the
special case of Hamiltonian matrices, but for all three types of matrices structured
with respect to the inner product (1) induced by M. To be more precise, it oc-
curs for real eigenvalues of M-Hermitian, purely imaginary eigenvalues of M-skew-
Hermitian, and unimodular eigenvalues of M-unitary matrices, as well as for the
classes of related matrix pencils as in (2). In all cases, the sign characteristic has
proven to play a fundamental role in theory and applications, like in the analysis
of structured dynamic systems [19, 20, 21], in perturbation analysis of structured
matrices [31, 32, 33, 40], and in the investigation of solutions of Riccati equations
[12, 24, 28], to name a few examples.
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After introducing the well-known canonical forms for Hermitian pencils and M-
Hermitian matrices in the next section, we will give a survey on three related topics
in the following sections:

(a) structured canonical forms for Hamiltonian and related matrices,
(b) canonical forms for doubly structured matrices,
(c) singular value-like decompositions for matrices associated with two sesquilinear

forms.

Throughout the chapter, we will use the following notation. A1⊕·· ·⊕Am is the
block diagonal matrix diag(A1, . . . ,Am). The n× n identity matrix is denoted by In
and 0m×n (0n) stand for the m× n (n× n) zero matrix. If the size is clear from the
context, we may use I and 0 instead for convenience. We denote by e j the jth unit
vector, i.e., the jth column of I.

The n×n reverse identity will be denoted by Rn while Jn(α) stands for the upper
triangular n×n Jordan block with eigenvalue α , that is

Rn =

 1
. . .

. . .
1

 ∈ Fn×n, Jn(α) =


α 1

. . . . . .
. . . 1

α

 ∈ Fn×n

Finally, the m× (m+ 1) singular block in the Kronecker canonical form of matrix
pencils is denoted by

Lm(λ ) =

λ 1
. . . . . .

λ 1

 .

2 Canonical forms for Hermitian pencils and M-Hermitian
matrices

For all the structured pencils of one of the forms in (2), the theory of structured
Kronecker canonical forms is well-established, see, e.g., [9, 25, 26, 46, 47], follow-
ing the work from the second half of the 19th century [23, 52, 51]. These forms
are obtained under congruence transformations (λM−B) 7→ X∗(λM−B)X with X
invertible, because those preserve both the Hermitian and the skew-Hermitian struc-
ture of matrices and thus the structure of pencils λM−B of the forms in (2). For
instance, a Hermitian pencil λM−B, i.e., a pencil such that both M and B are Her-
mitian, has the following structured Kronecker canonical form under congruence.

Theorem 1. Let λM−B be a complex n×n Hermitian pencil. Then there exists an
invertible matrix X such that

X∗(λM−B)X = JC(λ )⊕JR(λ )⊕J∞(λ )⊕L (λ ), (4)
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where

JC(λ ) =

(
λ

[
0 Rm1

Rm1 0

]
−
[

0 Rm1Jm1(λ1)

Rm1Jm1(λ̄1) 0

])
⊕·· ·

⊕
(

λ

[
0 Rmp

Rmp 0

]
−
[

0 Rmp Jmp(λp)

RmpJmp(λ̄p) 0

])
,

JR(λ ) = s1Rn1

(
λ In1 − Jn1(α1)

)
⊕·· ·⊕ sqRnq

(
λ Inq − Jnq(αnq)

)
,

J∞(λ ) = sq+1Rk1

(
λJk1(0)− Ik1

)
⊕·· ·⊕ sq+rRkr

(
λJkr(0)− Ikr

)
,

L (λ ) =

[
0 L`1(λ )

L`1(λ )
T 0

]
⊕·· ·⊕

[
0 L`t (λ )

L`t (λ )
T 0

]
⊕0ν×ν ,

with Imλ j > 0, j = 1, . . . , p; α j ∈ R, j = 1, . . . ,q; s j = ±1, j = 1, . . . ,q + r and
p,q,r, t ∈ N.

If two pencils C(λ ) and D(λ ) are equivalent, i.e., X1C(λ )X2 = D(λ ) for some in-
vertible matrices X1,X2 independent of λ , we use the notation C(λ ) ∼ D(λ ). It is
easy to show that the blocks in (4) satisfy

JC(λ ) ∼
(
λ Im1 − Jm1(λ1)

)
⊕
(
λ Im1 − Jm1(λ̄1)

)
⊕

·· ·⊕
(
λ Imp − Jmp(λp)

)
⊕
(
λ Imp − Jmp(λ̄p)

)
JR(λ ) ∼

(
λ In1 − Jn1(α1)

)
⊕
(
λ Inq − Jnq(αq)

)
J∞(λ ) ∼

(
λJk1(0)− Ik1

)
⊕·· ·⊕

(
λJks(0)− Iks

)
L (λ ) ∼ L`1(λ )⊕LT

`1
(λ )⊕·· ·⊕L`t (λ )⊕LT

`t
(λ )⊕0ν×ν .

Therefore, the classical Kronecker canonical form of the pencil λM−B can eas-
ily be read off from the structured version (4). In particular, the pairing of blocks
elegantly displays the corresponding symmetry in the spectrum: the block JC(λ )
contains the nonreal eigenvalues that occur in complex conjugate pairs λ j, λ̄ j, both
having exactly the same Jordan structures. If the pencil is singular, then the singular
blocks - contained in L (λ ) - are also paired: each right singular block L` j(λ ) has
a corresponding left singular block L` j(λ )

T .
However, the structured canonical form (4) has an important advantage over the

classical Kronecker canonical form of a Hermitian pencil. It displays additional in-
variants that are present under concruence transformations, the signs s1, . . . ,sq+r
attached to each Jordan block of a real eigenvalue and each Jordan block of the
eigenvalue infinity. The collection of these signs is referred to as the sign character-
istic of the Hermitian pencil [25], see also [15].

As a corollary of Theorem 1, one obtains a canonical form for M-Hermitian
matrices, also known as M-selfadjoint matrices, see [15, 25].

Corollary 1. Let M ∈ Cn×n be Hermitian and invertible and let A ∈ Cn×n be M-
Hermitian. Then there exists an invertible matrix X ∈ Cn×n such that

X−1AX = JR⊕JC, X∗MX = MR⊕MC,
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where
JR = Jn1(α1)⊕·· ·⊕ Jnq(αq), Mr = s1Rn1 ⊕·· ·⊕ sqRnq

JC =

[
Jm1(λ1) 0

0 Jm1(λ̄1)

]
⊕·· ·⊕

[
Jmp(λp) 0

0 Jmp(λ̄p)

]
, MC = R2m1⊕·· ·⊕R2mp ,

where α j ∈ R, s j =±1, j = 1, . . . ,q Imλ j > 0, j = 1, . . . , p and p,q ∈ N.

Indeed, the form is easily obtained by recalling that a matrix A is M-Hermitian
if and only if the pencil λM−MA is a Hermitian pencil and applying Theorem 1
to this pencil. By convention, we will call s j in Corollary 1 the sign of the Jordan
block Jn j(α j).

For the other three types of matrix pencils in (2), structured canonical forms
can be derived directly from (4). If λM−B is Hermitian/skew-Hermitian, skew-
Hermitian/Hermitian, or skew-Hermitian/skew-Hermitian, then Theorem 1 can be
applied to the Hermitian pencils λM− (−iB), λ (−iM)−B or λ (−iM)− (−iB),
respectively, to obtain (4). As a consequence, these pencils also have a sign charac-
teristic. In the case of pencils of “mixed” structure, i.e., one matrix being Hermitian
and the other skew-Hermitian, now the purely imaginary eigenvalues (including the
eigenvalue infinity) have signs.

For the case of real pencils of the form (2), also real structured Kronecker canon-
ical forms under real congruence transformations are known. We refer the reader to
[26, 47] for details.

3 Structured canonical forms for Hamiltonian matrices

When the matrix defining the inner product (1) is the skew-symmetric matrix J
from (3), then a J-Hermitian matrix is called skew-Hamiltonian, a J-skew-Hermitian
is called Hamiltonian, and a J-unitary matrix is called symplectic.

In many applications, in particular in systems and control, invariant Lagrangian
subspaces are of interest. A Lagrangian subspace is an n-dimensional subspace
L ⊆ F2n that is J-neutral, i.e., [x,y]J = 0 for all x,y ∈L . Suppose the columns of
the matrix W1 ∈ F2n×n span an invariant Lagrangian subspace L of a Hamiltonian
matrix H ∈ Fn×n. Then there exists a 2n× n matrix W2 such that W = [W1,W2] is
sympectic. Indeed, one may choose W2 = JTW1(W ∗1 W1)

−1. Then

W ∗JW =

[
W ∗1 JW1 W ∗1 JW2
W ∗2 JW1 W ∗2 JW2

]
=

[
0 In
−In 0

]
= J,

because W ∗1 JW1 = 0 = (W ∗1 W1)
−1W ∗1 JJJTW1(W ∗1 W1)

−1 =W ∗2 JW2 as L is J-neutral.
Since L is also an invariant subspace of H, we obtain

W−1HW =

[
T D
0 −T ∗

]
, D = D∗. (5)
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From the decomposition (5), we can easily see that a necessary condition for the
existence of an invariant Lagrangian subspace is that the algebraic multiplicities
of all purely imaginary eigenvalues must be even, because any purely imaginary
eigenvalue iα of T is also an eigenvalue of −T ∗. This condition, however, is not
sufficient as the following example shows.

Example 1. Consider the Hamiltonian matrices

H1 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

= J2, H2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

=

[
J1 0
0 −JT

1

]

Then the matrix H1 does not have a decomposition (5) since for any symplectic
matrix W , by definition, W ∗H1W =W ∗J2W = J2. The matrix H2 on the other hand
already is of the form (5). Surprisingly, the matrices H1 and H2 are similar. It is easy
to check that they both have the semi-simple eigenvalues i and −i, which both have
the algebraic multiplicity two.

To explain this surprising behavior, a closer look at a structured canonical form
of Hamiltonian matrices is necessary. One way is to consider instead of a Hamilto-
nian matrix H the iJ-Hermitian matrix iH and to apply Corollary 1. This yields the
existence of an invertible matrix X such that

X−1HX = HI⊕HC, X∗JX = MI⊕MC

where
HI = iJn1(α1)⊕·· ·⊕ iJnq(αq), MI = s1iRn1 ⊕·· ·⊕ sqiRnq

HC = i
[

Jm1(λ1) 0
0 Jm1(λ̄1)

]
⊕·· ·⊕ i

[
Jmp(λp) 0

0 Jmp(λ̄p)

]
, MC = iR2m1⊕·· ·⊕ iR2mp .

Here, s j is the sign of the Jordan block Jn j(iα j) of H, for j = 1, . . . ,q, i.e., the purely
imaginary eigenvalues come with a sign characteristic. Although this canonical form
reveals these additional invariants, one cannot tell immediately whether a decompo-
sition as (5) exists. One possible way to proceed is to apply further transformations
to transform X∗JX back to J, say by constructing an invertible matrix Y such that

H := (XY )−1H(XY ), (XY )∗J(XY ) = J

Then, the matrix XY is symplectic, because (XY )∗J(XY ) = J. Clearly, there are
many such transformations and then the task is to choose among all these transfor-
mations a particular one so that H is as close to a block upper triangular form (5)
as possible. In [28] such an optimal canonical form is presented in the sense that the
(2,1) block of H has the lowest possible rank. The result is given in the following
theorem.
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Theorem 2 ([28]). Let H ∈ C2n×2n be a Hamiltonian matrix. Then there exists a
symplectic matrix W ∈ C2n×2n such that

W−1HW =



Tc 0
Tie Die

Tio Dio
Tior Dior
−T ∗c

−T ∗ie
−T ∗io

Mior −T ∗ior


,

where the blocks have the following properties:

(i)
Tc = Jm1(λ1)⊕ Jm2(λ2)⊕·· ·⊕ Jmp(λp),

where λ1, . . . ,λp ∈ C with Reλ1, . . . ,Reλp > 0.
(ii)

Tie = Jn1(iα1)⊕·· ·⊕ Jnq(iαq), Die = s1en1 e∗n1
⊕·· ·⊕ sqenqe∗nq ,

where α1, . . . ,αq ∈ R and s1, . . . ,sq =±1. Each sub-matrix[
Jn j(iα j) s jen j e

∗
n j

0 −(Jn j(iα j))
∗

]
corresponds to an even-sized Jordan block J2n j(iα j) of H with sign s j.

(iii)
Tio = T (1)

io ⊕·· ·⊕T (r)
io , Dio = D(1)

io ⊕·· ·⊕D(r)
io ,

and

T ( j)
io =

 J` j(iβ j) 0 −
√

2
2 e` j

0 Jk j(iβ j) −
√

2
2 ek j

0 0 iβ j

 , D( j)
io =

√
2i

2
σ j

 0 0 e` j

0 0 −ek j

−e∗` j
e∗k j

0

 ,
where β1, . . . ,βr ∈ R and σ1, . . . ,σr =±1. For each j = 1, . . . ,r, the sub-matrix[

T ( j)
io D( j)

io

0 −(T ( j)
io )∗

]

corresponds to two odd-sized Jordan blocks of H associated with the same purely
imaginary eigenvalue iβ j. The first is J2` j+1(iβ j) with sign σ j and the second is
J2k j+1(iβ j) with sign −σ j.

(iv)

Tior = T (1)
ior ⊕·· ·⊕T (t)

ior , Mior = M(1)
ior ⊕·· ·⊕M(t)

ior, Dior = D(1)
ior ⊕·· ·⊕D(t)

ior,
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where

T ( j)
ior =

 Jη j(iγ j) 0 −
√

2
2 eη j

0 Jν j(iδ j) −
√

2
2 eν j

0 0 i
2 (γ j +δ j)

 , M( j)
ior = σr+ j

0 0 0
0 0 0
0 0 − 1

2 (γ j−δ j)

 ,

D( j)
ior =

√
2i

2
σr+ j

 0 0 eη j

0 0 −eν j

−e∗η j
e∗ν j
−
√

2i
2 (γ j−δ j)


and γ j,δ j ∈ R, γ j 6= δ j, σr+ j =±1 for j = 1, . . . , t. The submatrix[

T ( j)
ior D( j)

ior

M( j)
ior −(T

( j)
ior )

∗

]

corresponds to two odd-sized Jordan blocks of H associated with two distinct
purely imaginary eigenvalues iγ j and iδ j. The first one is J2η j+1(iγ j) with sign
σr+ j and the second one is J2ν j+1(iδ j) with sign −σr+ j.

Thus, the spectrum of H can be read of from the Hamiltonian submatrices

Hc :=
[

Tc 0
0 −T ∗c

]
, Hie :=

[
Tie Die
0 −T ∗ie

]
, Hio :=

[
Tio Dio
0 −T ∗io

]
, Hior :=

[
Tior Dior
Mior −T ∗ior

]
of smaller sizes. The submatrix Hc contains all Jordan blocks associated with eigen-
values that are not purely imaginary. To be more precise, Tc contains all the Jordan
blocks of eigenvalues of H with positive real parts, and −T ∗c contains all the Jor-
dan blocks of eigenvalues of H with negative real parts. The submatrix Hie contains
all even-sized Jordan blocks associated with purely imaginary eigenvalues of H,
whereas Hio and Hior contain all Jordan blocks associated with purely imaginary
eigenvalues of H that have odd sizes. Here, Hio consists of pairs of Jordan blocks
of (possibly different) odd sizes that are associated with the same purely imaginary
eigenvalue, but have opposite signs. On the other hand, Hior consists of the remain-
ing Jordan blocks that do not allow such a pairing. In particular, if Hior contains
more than one Jordan block associated to a particular purely imaginary eigenvalue,
then all such blocks must have the same sign in the sign characteristic.

While the canonical form in Theorem 2 looks quite complicated at first sight, its
advantage is that the conditions for the existence of a decomposition of the form (5)
can now be trivially derived by requesting the submatrix Hior being void. Thus, with
the interpretation of Hior in terms of the sign characteristic, we immediately obtain
the following result that is in accordance with a corresponding result in [42] in terms
of M-selfadjoint matrices.

Theorem 3 ([28]). A Hamiltonian matrix H has a decomposition (5) if and only
if for each purely imaginary eigenvalue of H, it has an even number of odd-sized
Jordan blocks half of which have sign +1 and half of which have sign −1.
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The theorem also gives necessary and sufficient conditions for the existence of
the Hamiltonian Schur form. A Hamiltonian matrix H is said to have a Hamilton-
ian Schur form, if it allows a decomposition of the form (5) with T being upper
triangular and W being both symplectic and unitary, i.e., satisfying W ∗JW = J and
W ∗W = I. Under the same conditions as in Theorem 3, we obtain the existence of
a symplectic matrix W such that W−1HW is in the Hamiltonian canonical form of
Theorem 2 without the blocks from Hior. Since the blocks Tc, Tie, and Tio are upper
triangular, we find that W−1HW has the form (5) with T being upper triangular. A
Hamiltonian Schur form can then be derived by performing a symplectic QR-like
decomposition to the symplectic matrix W , see [7, 28].

Corollary 2 ([28]). Let H be a Hamiltonian matrix. Then there exists a unitary and
symplectic matrix W such that W−1HW has the form (5) with T being upper trian-
gular if and only if for each purely imaginary eigenvalue, H has an even number of
odd-sized Jordan blocks half of which have sign +1 and half of which have sign−1.

The following example, borrowed from [30], shows that the two Jordan blocks
that are paired in one of the particular submatrices of Hio in Theorem 2 may indeed
have different sizes.

Example 2. Consider the two matrices

H =


i 1 1 0
0 i 0 0
0 0 i 0
0 0 −1 i

 and X =
1√
2


2i 0 i 2i
0 1 −i −i
0 0 1 0
0 −i 1 1

 .
Then H is a Hamiltonian matrix in Hamiltonian Schur form and X is the transfor-
mation matrix that brings the pair (iH, iJ) into the canonical form of Corollary 1:

X−1(iH)X =


−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 −1

 , X∗(iJ)X =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1

 ,
Thus, H has the eigenvalue i and two corresponding Jordan blocks with sizes 3 and
1. The Jordan block of size 3 has the sign +1 and the Jordan block of size 1 has the
sign −1 thus satisfying the condition of Theorem 3.

Example 3. Revisiting the matrices H1 and H2 from Example 1, one can easily check
that the eigenvalues i and−i of H2 have one Jordan block with sign +1 and one Jor-
dan block with sign−1 each. In fact, H2 is a matrix of the form Hio as in Theorem 2.
On the other hand, for the matrix H1 the signs corresponding to i are both +1 and
the signs corresponding to −i are both −1. In fact, H1 is in the canonical form of
Theorem 2 corresponding exactly to a matrix in the form Hior.

However, for the matrix X = [e1,e3,e2,e4], which is not symplectic, we obtain
that X−1H1X = H2 is in the form (5). Although the transformation with X maps the
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Hamiltonian matrix H1 to the Hamiltonian matrix H2, it is not a structure-preserving
transformation in the sense that for small Hamiltonian perturbations H1 +∆H the
transformed matrix H2 + X−1∆HX is in general not Hamiltonian. This fact in a
sense allows the similarity transformation with X to take a bypass by ignoring the
sign constraints shown in Theorem 3. It was shown in [28] that the existence of the
decomposition (5) with a non-symplectic similarity transformation only requires the
algebraic multiplicities of all purely imaginary eigenvalues of H to be even.

In the case that the Hamiltonian matrix under consideration is real, there is also a
canonical form under real symplectic similarity, see [28, Theorem 22]. In this case,
the eigenvalues of a Hamiltonian matrix are not only symmetric with respect to the
imaginary axis, but also with respect to the real axis. Thus, in particular the Jordan
blocks associated with purely imaginary eigenvalues iα , α > 0 occur in complex
conjugate pairs and it turns out that their signs in the sign characteristic are related.
It can be shown that if Jm1(iα), . . . ,Jmp(iα) are the Jordan blocks of a Hamiltonian
matrix H associated with the eigenvalue iα and having the signs s1, . . . ,sp, then the
signs of the corresponding Jordan blocks Jm1(−iα), . . . ,Jmp(−iα) are−s1, . . . ,−sp,
respectively. Another key difference between the real and the complex case is the
behavior of the eigenvalue 0 when H is singular. While in the complex case this
eigenvalue can be treated as any other purely imaginary eigenvalue, it has a special
Jordan structure in the real case: each odd-sized Jordan block associated with zero
must have an even number of copies and in the corresponding sign characteristic,
half of the sign must be +1 and half of the signs must be −1. In contrast, there is
no such pairing for Jordan blocks associated with zero that have even sizes. This
extraordinary behavior of the eigenvalue zero leads to a real version of Theorem 3
that yields slightly different conditions in comparison with the complex case.

Theorem 4 ([28]). A real Hamiltonian matrix H has a decomposition (5) with a real
symplectic transformation matrix W if and only if for each nonzero purely imaginary
eigenvalue, H has an even number of odd-sized Jordan blocks half of which have
sign +1 and half of which have sign −1.

For most of the problems arising from systems and control, one actually is in-
terested in special invariant Lagrangian subspaces of Hamiltonian matrices. For in-
stance, for the existence of solutions of algebraic Riccati equations ([24, 38, 55])
one is interested in the invariant Lagrangian subspaces of a Hamiltonian matrix cor-
responding to the eigenvalues in the closed or open left half complex plane. A more
general question is the following: if H is an 2n×2n Hamiltonian matrix and a list Λ

of n of its eigenvalues (counted with multiplicities) is prescribed, does there exists
an invariant Lagrangian subspace associated with the eigenvalues in Λ , and if so, is
this subspace unique? This question can be answered with the help of Theorem 3
or its corresponding real version. As we already know, the existence of an invariant
Lagrangian subspace for a Hamiltonian matrix H is equivalent to the existence of
a decomposition of the form (5). From (5), the spectrum of H is the union of the
spectra of both T and −T ∗. So one may assume that H has pairwise distinct non
purely imaginary eigenvalues
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λ1,−λ̄1, . . . ,λp,−λ̄p, with algebraic multiplicities ν1,ν1, . . . ,νp,νp

and pairwise distinct purely imaginary eigenvalues

iα1, . . . , iαq with algebraic multiplicities 2µ1, . . . ,2µq.

In order to have an invariant Lagrangian subspace, or, equivalently, a decomposi-
tion (5), it is necessary that the spectrum of T contains λ j and −λ̄ j with algebraic
multiplicities k j and ν j − k j, respectively, for each j = 1, . . . , p, and µ j copies of
iα j for each j = 1, . . . ,q. Let Ω(H) denote the set of all possible spectra for T in a
decomposition of the form (5) of H. Then this set contains ∏

p
j=1(ν j + 1) different

selections, because k j can be any number from 0 to ν j for each j. Among them there
are 2p selections that contain either λ j or −λ̄ j, but not both, for all j. This subset of
Ω(H) is denoted by Ω̃(H).

The answer to the question of existence of invariant Lagrangian subspaces with
a prescribed spectrum is then given in the following theorem.

Theorem 5 ([12]). A Hamiltonian matrix H has an invariant Lagrangian subspace
corresponding to every ω ∈Ω(H) if and only if the conditions Theorem 3 (or Theo-
rem 4 in real case) hold. Concerning uniqueness, we have the following conditions.

(i) For every ω ∈ Ω(H), H has a unique corresponding invariant Lagrangian sub-
space if and only if for every non purely imaginary eigenvalue λ j (and −λ̄ j) H
has only a single Jordan block, and for every purely imaginary eigenvalue iα j H
only has even-sized Jordan blocks all of them having the same sign.

(ii) For every ω ∈ Ω̃(H), H has a unique corresponding invariant Lagrangian sub-
space if and only if for every purely imaginary eigenvalue iα j H has only even-
sized Jordan blocks all of them having the same sign.

When the Lagrangian invariant subspaces corresponding to the eigenvalues in
Ω(H) or Ω̃(H) are not unique, then it is possible to parameterize their bases. More-
over, the results in Theorem 5 can be used to study Hermitian solutions to algebraic
Riccati equations, see [12].

We will now turn to skew-Hamiltonian matrices. Analogously to the case of
Hamiltonian matrices, it can be shown that if the columns of W1 span an invariant
Lagrangian subspace of a skew-Hamiltonian matrix K, then there exists a symplectic
matrix W = [W1,W2] such that

W−1KW =

[
T D
0 T ∗

]
, D =−D∗. (6)

Structured canonical forms for complex skew-Hamiltonian matrices can be con-
structed in the same way as for complex Hamiltonian matrices, using the fact that K
is skew-Hamiltonian if and only if iK is Hamiltonian. Thus, the conditions for the
existence of invariant Lagrangian subspaces are the same as in Theorem 3 replacing
“purely imaginary eigenvalues” with “real eigenvalues”.
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Interestingly, for any real skew-Hamiltonian matrix the real version of the de-
composition (6) always exists, see [50]. Also, it is proved in [10] that for a real
skew-Hamiltonian matrix K, there always exists a real symplectic matrix W such
that

W−1KW = N⊕NT ,

where N is in real Jordan canonical form. The result shows clearly that every Jordan
block of K has an even number of copies.

Finally, if S ∈ Fn×n is a symplectic matrix and if the columns of W1 span an
invariant Lagrangian invariant subspace of S, then similar to the Hamiltonian case
one can show that there exists a symplectic matrix W = [W1,W2] such that

W−1SW =

[
T D
0 T−∗

]
, DT ∗ = (DT ∗)∗. (7)

The case of symplectic matrices can be reduced to the case of Hamiltonian matrices
with the help of the Cayley transformation, see Chapter 2 in this book for details on
the Cayley transformation. Therefore, structured Jordan canonical forms for sym-
plectic matrices can be derived using the structured canonical forms for Hamiltonian
matrices in Theorem 2 and its real version. Then, conditions for the existence of a
decomposition of the form (7) can be obtained which are essentially the same as
in Theorem 3 and 4, with purely imaginary eigenvalues replaced by unimodular
eigenvalues in the symplectic case, see [28].

4 Doubly structured matrices and pencils

In this section we discuss canonical forms of doubly structured matrices and pen-
cils. This research was mainly motivated by applications from quantum chemistry
[2, 3, 16, 41, 49]. In linear response theory, one has to solve a generalized eigenvalue
problem with a pencil of the form

λ

[
C Z
−Z −C

]
−
[

E F
F E

]
, (8)

where C,E,F are n×n Hermitian matrices and Z is skew-Hermitian. The simplest
response function model is the time-dependent Hartree-Fock model (also called ran-
dom phase approximation) in which the pencil (8) takes the simpler structure C = I
and Z = 0 so that the corresponding eigenvalue problem can be reduced to a standard
eigenvalue problem with a matrix of the form

A =

[
E F
−F −E

]
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with E and F being Hermitian. It is straightforward to check that A is Hamiltonian
(or J-skew-Hermitian) and M-Hermitian, where

M =

[
In 0
0 −In

]
.

In the general setting, we consider matrices that are structured with respect to
two invertible Hermitian or skew-Hermitian matrices K and M. Because any skew-
Hermitian matrix K can be transformed to the Hermitian matrix iK and any K-
skew-Hermitian matrix A can be transformed to the K-Hermitian matrix iA, we may
assume that both K and M are invertible and Hermitian and consider two cases only:

(a) A is K-Hermitian and M-Hermitian, i.e., KA = A∗K, MA = A∗M,
(b) A is K-Hermitian and M-skew-Hermitian, i.e., KA = A∗K, MA =−A∗M.

The task is now to find an invertible matrix X to perform a transformation

A = X−1AX , K = X∗KX , M = X∗MX

so that the canonical form of Corollary 1 (or the corresponding version for M-skew-
Hermitian matrices) for both pairs (A,K) and (A,M) can simultaneously be recov-
ered. As shown in [34], this is not always possible, because the situation is too gen-
eral. So it is reasonable to restrict oneself to the situation where the pencil λK−M
is nondefective, meaning that all the eigenvalues of the Hermitian pencil λK−M are
semisimple. (This assumption is satisfied in the case K = iJn and M = diag(In,−In)
which is relevant for the applications in quantum chemistry.) Then by (4), there
exists an invertible matrix Q such that

Q∗(λK−M)Q = (λK1−M1)⊕·· ·⊕ (λKp−Mp), (9)

where, for each j = 1, . . . , p, either

λK j−M j = λ

[
0 1
1 0

]
−
[

0 λ j

λ̄ j 0

]
containing a pair of nonreal eigenvalues λ j, λ̄ j, or

λK j−M j = s j
(
λ
[

1
]
−
[

α j
])
, s j =±1,

containing a single real eigenvalue α j with a sign s j. (We highlight that the same
eigenvalues λ j, λ̄ j or α j, respectively, may appear multiple times among the blocks
λK1−M1, . . . ,λKp−Mp.)

Under this assumption, the following structured canonical form can be obtained
for a matrix that is doubly structured in the sense of case (a) above.
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Theorem 6 ([34]). Suppose K,M are Hermitian and invertible, such that the pencil
λK−M is nondefective. Suppose A is both K-Hermitian and M-Hermitian. Then
there exists an invertible matrix X such that

A := X−1AX = A1 ⊕A2 ⊕·· ·⊕Ap
K := X∗KX = K1 ⊕K2 ⊕·· ·⊕Kp
M := X∗MX = M1⊕M2⊕·· ·⊕Mp,

where for each j = 1,2, . . . , p the blocks A j,K j,M j are in one of the following forms.

(i) Blocks associated with a pair of conjugate complex eigenvalues of A:

A j =

[
Jm j(λ j) 0

0 Jm j(λ̄ j)

]
, K j =

[
0 Rm j

Rm j 0

]
, M j =

[
0 γ jRm j

γ̄ jRm j 0

]
,

where λ j ∈ C\R, γ j = c j + id j 6= 0 with c j,d j ∈ R and d j ≥ 0.
(ii) Blocks associated with real eigenvalues of A and real eigenvalues of λK−M:

A j = Jn j(α j), K j = s jRn j , M j = s jη jRn j ,

where s j =±1, 0 6= η j ∈R, and α j ∈R. The sign of the block A j with respect to
K is s j and the sign with respect to M is sign(s jη j).

(iii) Blocks associated with real eigenvalues of A and a pair of conjugate complex
eigenvalues of λK−M:

A j =

[
Jn j(α j) 0

0 Jn j(α j)

]
, K j =

[
0 Rn j

Rn j 0

]
, M j =

[
0 γ jRn j

γ̄ jRn j 0

]
,

where α j ∈ R and γ j = c j + id j with c j,d j ∈ R and d j > 0. Thus A j contains a
pair of two n j×n j Jordan blocks of A associated with the same real eigenvalue
α j. The pairs of corresponding signs are (+1,−1) with respect to both K and M.

It is easily seen that the structured canonical forms for A with respect to K and M,
respectively, can immediately be read off from the canonical form in Theorem 6.
In addition, the structured canonical form of λK−M as in (9) can easily be de-
rived from λK −M . Therefore, Theorem 6 combines three different structured
canonical forms into one.

On the other hand, Theorem 6 shows that the presence of two structures in
A leads to additional restrictions in the Jordan structure of A which can be seen
from the blocks of type (iii) of Theorem 6. This block is indecomposable in a
sense that there does not exist any transformation of the form (A j,K j,M j) 7→
(Y−1A jY,Y ∗K jY,Y ∗M jY ) that simultaneously block-diagonalizes all three matrices.
As a consequence, the Jordan structure of a matrix A that is both K-Hermitian and
M-Hermitian is rather restricted if the pencil λK−M (is defective and) has only
nonreal eigenvalues. In that case, each Jordan block associated with a real eigen-
value of A must occur an even number of times in the Jordan canonical form of A.
In particular, all real eigenvalues of A must have even algebraic multiplicity.
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In case (b), i.e., when A is K-Hermitian and M-skew-Hermitian, then the eigen-
structure of A has even richer symmetry than in case (a), because now the spectrum
has to be symmetric to both the real and the imaginary axes. Also, the Jordan blocks
associated with real eigenvalues of A will have signs with respect to K while the
ones associated with purely imaginary eigenvalues will have signs with respect to
M. Thus, the eigenvalue zero will play a special role, because it will have signs both
with respect to K and to M. A structured canonical form for this case will be given
in the next theorem, for which we need extra notation. By Σn, we denote the n× n
anti-diagonal matrix alternating sign matrix, i.e.,

Σn =


(−1)0

(−1)1

. . .

(−1)n−1

 .
Theorem 7 ([34]). Suppose K,M are Hermitian and invertible, and λK−M is non-
defective. Suppose A is both K-Hermitian and M-skew-Hermitian. Then there exists
an invertible matrix X such that

A := X−1AX = A1 ⊕A2 ⊕·· ·⊕Ap
K := X∗KX = K1 ⊕K2 ⊕·· ·⊕Kp
M := X∗MX = M1⊕M2⊕·· ·⊕Mp,

where for each j = 1,2, . . . , p the blocks A j,K j,M j are in one of the following forms.

(i) Blocks associated with nonreal, non purely imaginary eigenvalues of A:

A j =


Jm j(λ j) 0 0 0

0 −Jm j(λ j) 0 0
0 0 Jm j(λ̄ j) 0
0 0 0 −Jm j(λ̄ j)

 ,

K j =


0 0 Rm j 0
0 0 0 Rm j

Rm j 0 0 0
0 Rm j 0 0

 , M j =


0 0 0 γ jRm j

0 0 γ jRm j 0
0 γ̄ jRm j 0 0

γ̄ jRm j 0 0 0

 ,
where λ j = a j + ib j with a j,b j ∈ R and a jb j > 0, and the parameter γ j satisfies
one of the following three mutually exclusive conditions: (a) γ j = β j with β j > 0,
(b) γ j = iβ j with β j > 0, or (c) γ j = c j + id j with c j,d j ∈ R and c j d j > 0.
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(ii) Blocks associated with a pair of real eigenvalues ±α j of A and nonreal non
purely imaginary eigenvalues of λK−M:

A j =


Jn j(α j) 0 0 0

0 −Jn j(α j) 0 0
0 0 Jn j(α j) 0
0 0 0 −Jn j(α j)

 ,

K j =


0 0 Rn j 0
0 0 0 Rn j

Rn j 0 0 0
0 Rn j 0 0

 , M j =


0 0 0 γ jRn j

0 0 γ jRn j 0
0 γ̄ jRn j 0 0

γ̄ jRn j 0 0 0

 ,
where 0 < α j ∈R and γ j = c j + id j with c j,d j ∈R and c j d j > 0. The two Jordan
blocks associated with α j have the signs 1 and −1 with respect to K and the two
Jordan blocks associated with −α j also have the signs 1 and −1 with respect to
K.

(iii) Blocks associated with a pair of real eigenvalues ±α j of A and real or purely
imaginary eigenvalues of λK−M:

A j =

[
Jn j(α j) 0

0 −Jn j(α j)

]
,

K j = s j

[
Rn j 0

0
(

γ j
|γ j |

)2
Rn j

]
, M j =

[
0 γ jRn j

γ̄ jRn j 0

]
,

where 0<α j ∈R, s j =±1, γ j = β j or γ j = iβ j with 0< β j ∈R. The Jordan block
of A associated with α j has the sign s j with respect to K and the one associated
with −α j has the sign (−1)n j+1s j (γ j/|γ j|)2 with respect to K.

(iv) Blocks associated with a pair of purely imaginary eigenvalues ±iα j of A and
nonreal non purely imaginary eigenvalues of λK−M:

A j =


iJn j(α j) 0 0 0

0 −iJn j(α j) 0 0
0 0 iJn j(α j) 0
0 0 0 −iJn j(α j)

 ,

K j =


0 0 0 Rn j

0 0 Rn j 0
0 Rn j 0 0

Rn j 0 0 0

 , M j =


0 0 γ jRn j 0
0 0 0 γ jRn j

γ̄ jRn j 0 0 0
0 γ̄ jRn j 0 0

 ,
where 0 < α j ∈R and γ j = c j + id j with c j,d j ∈R and c j d j > 0. The two Jordan
blocks associated with iα j have the signs 1 and−1 with respect to M and the two
Jordan blocks associated with −iα j also have the signs 1 and −1 with respect to
M.
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(v) Blocks associated with a pair of purely imaginary eigenvalues±iα j of A and real
or purely imaginary eigenvalues of λK−M:

A j =

[
iJn j(α j) 0

0 −iJn j(α j)

]
,

K j =

[
0 Rn j

Rn j 0

]
, M j = s j|γ j|

[
Rn j 0

0
(
|γ j |
γ j

)2
Rn j

]
,

where 0 < α j ∈ R, s j = ±1, γ j = β j or γ j = iβ j with 0 < β j ∈ R. The Jordan
block of A associated with iα j has the sign s j with respect to M and the one
associated with −α j has the sign (−1)n j+1s j(γ j/|γ j|)2 with respect to M.

(vi) A pair of blocks associated with the eigenvalue zero of A and nonreal, non purely
imaginary eigenvalues of λK−M:

A j =

[
Jn j(0) 0

0 Jn j(0)

]
, K j =

[
0 Rn j

Rn j 0

]
, M j = s j

[
0 γ jΣn j

(−1)n j+1γ̄ jΣn j 0

]
,

where s j =±1, γ j = c j + id j with c j,d j ∈R and c j d j > 0. The two Jordan blocks
of A associated with the eigenvalue 0 have the signs 1 and−1 with respect to both
K and M.

(vii) A pair of blocks associated with the eigenvalue zero of A and real or purely
imaginary eigenvalues of λK−M:

A j =

[
Jn j(0) 0

0 Jn j(0)

]
, K j =

[
0 Rn j

Rn j 0

]
, M j =

[
0 γ jΣn j

−γ jΣn j 0

]
,

where γ j = β j if n j is even and γ j = iβ j if n j is odd for some 0 < β j ∈R. The two
Jordan blocks of A associated with the eigenvalue zero of A have the signs 1 and
−1 with respect to both K and M.

(viii) A single block associated with the eigenvalue zero of A and real or purely imag-
inary eigenvalues of λK−M:

A j = Jn j(0), K j = s jRn j , M j = σ jγ jΣn j ,

where s j,σ j = ±1; and γ j = β j if n j is odd and γ j = iβ j if n j is even for some
0 < β j ∈ R. The Jordan block of A associated with the eigenvalue zero has the
sign s j with respect to K and the sign γ j

|γ j |σ j in j−1 with respect to M.

Theorem 7 shows the intertwined connection of the three different structures: the
double structure of A with respect to K and M and the structure of the Hermitian
pencil λK−M. The property of being K-Hermitian forces the spectrum of A to be
symmetric with respect to the real axis and the property of being M-skew-Hermitian
forces the spectrum to be symmetric with respect to the imaginary axis. The partic-
ular structure of blocks, however, depends in addition on the eigenvalues of the
Hermitian pencil λK−M. Interestingly, there is not only a distinction between real
and nonreal eigenvalues of λK−M, but also the purely imaginary eigenvalues of
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λK−M play a special role. This effect can in particular be seen in the blocks as-
sociated with the eigenvalue zero, the only point in the complex plane that is both
real and purely imaginary. Depending on the type of the corresponding eigenvalues
of λK−M, we have the following cases:

a) real eigenvalues of λK−M: in this case, even-sized Jordan blocks of A associated
with zero must occur in pairs (vii), but odd-sized Jordan blocks need not (viii);

b) purely imaginary eigenvalues of λK−M: in this case, odd-sized Jordan blocks
of A associated with zero must occur in pairs (vii), but even-sized Jordan blocks
need not (viii);

c) nonreal, non purely imaginary eigenvalues of λK−M: in this case, all Jordan
blocks of A associated with the eigenvalue zero must occur in pairs (vi).

Structured canonical forms for A as a K-Hermitian matrix, for A as an M-
Hermitian matrix and for the Hermitian pencil λK−M can be easily derived from
the canonical form in Theorem 7, so again the result combines three different canon-
ical forms into one.

As the particular application from quantum chemistry shows, there is also interest
in doubly structured generalized eigenvalue problems. In general, we can consider
a matrix pencil λA−B with both A,B being doubly structured with respect to two
invertible Hermitian or skew-Hermitian matrices K and M. It turns out that a struc-
tured Weierstraß canonical form for a regular doubly structured pencil can easily be
derived by using the results of the matrix case as in Theorems 6 and 7.

Theorem 8 ([34]). Suppose K,M are both invertible and each is either Hermitian
or skew-Hermitian, i.e.,

K∗ = σKK, M∗ = σMM, σK ,σM =±1.

Let λA−B be a regular pencil (that is det(λA−B) 6≡ 0) with A,B satisfying

A∗K = εAKA, A∗M = δAMA, εA, δA =±1
B∗K = εBKB, B∗M = δBMB, εB, δB =±1.

Then there exist invertible matrices X ,Y such that

Y−1(λA−B)X = λ

[
I 0
0 E

]
−
[

H 0
0 I

]
X∗KY =

[
K1 0
0 K2

]
, X∗MY =

[
M1 0
0 M2

]
,

where E is nilpotent and all three matrices in (H,K1,M1) and (E,K2,M2), respec-
tively, have the same sizes. Furthermore, we have that

K∗1 = σKεAK1, M∗1 = σMδAM1; H∗K1 = (εAεB)K1H, H∗M1 = (δAδB)M1H,

K∗2 = σKεBK2, M∗2 = σMδBM2; E∗K2 = (εAεB)K2E, E∗M2 = (δAδB)M2E.
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Clearly, H is a doubly structured matrix associated with the Hermitian or skew-
Hermitian matrices K1,M1, and E is a doubly structured matrix associated with the
Hermitian or skew Hermitian matrices K2,M2. Thus, the pencil λA−B is decoupled
and becomes (λ I−H)⊕ (λE − I). Hence a structured Weierstraß canonical form
of λA−B can be derived by applying the results in Theorems 6 and 7 to H and E
separately.

Note that in Theorem 8 one does not require λK−M to be nondefective. How-
ever, in order to apply Theorems 6 or 7 to obtain structured Jordan canonical forms
for the matrices H and E, the condition that both λK1−M1 and λK2−M2 are non-
defective is necessary.

Finally, we point out that for the special type of doubly structured matrices and
matrix pencils from linear response theory ([16, 41, 49]), necessary and sufficient
conditions for the existence of structured Schur-like forms (obtained under unitary
transformations) were provided in [36].

5 Structured singular value decompositions

The singular value decomposition (SVD) is an important tool in Matrix Theory
and Numerical Linear Algebra. For a given matrix A ∈ Cm×n it computes unitary
matrices X ,Y such that Y ∗AX is diagonal with nonnegative diagonal entries. The
condition that X and Y are unitary can be interpreted in such a way that the standard
Euclidean inner product is preserved by the transformation with X and Y . Thus, to
be more precise, we have a transformation on the matrix triple (A, In, Im) that yields
the canonical form

Y ∗AX =

[
∆ 0
0 0

]
, X∗InX = In, Y ∗ImY = Im,

where ∆ is diagonal with positive diagonal entries. But the singular value decom-
position even yields more information as the nonzero singular values are the square
roots of the positive eigenvalues of the matrices AA∗ and A∗A. Thus, in addition to a
canonical form for A under unitary equivalence, the SVD simultaneously provides
two spectral decompositions

Y ∗(AA∗)Y =

[
∆ 2 0
0 0

]
, X∗(A∗A)X =

[
∆ 2 0
0 0

]
,

for the Hermitian (positive semi-definite) matrices AA∗ and A∗A.
This concept can be generalized to the case of possibly indefinite inner products.

Suppose that the two spaces Cn and Cm are equipped with inner products given by
the Hermitian invertible matrices K ∈ Cn×n and M ∈ Cm×m, respectively. Then the
task is to find invertible matrices X and Y such that

A = Y ∗AX , K = X∗KX , M = Y ∗MY, (10)
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are in a canonical form, so that also the canonical forms of the K-Hermitian matrix
T and the M-Hermitian matrix Z can easily be derived, where

T = K−1A∗M−1A, Z = M−1AK−1A∗. (11)

Equivalently, we obtain structured canonical forms for the two Hermitian pencils
λK−A∗M−1A and λM−AK−1A∗

The transformation (10) has several mathematical applications. For instance, the
existence of a generalization of a polar decompositions for a matrix A in a space
equipped with an indefinite inner product as in (1) given by the invertible Hermitian
matrix M ∈ Cn×n is related to the matrices AA[∗] and A[∗]A, where A[∗] := M−1AM.
By definition, a matrix A ∈ Cn×n is said to have an M-polar decomposition, if there
exists an M-Hermitian matrix H and an M-unitary matrix U , such that A =UH, see
[5, 6]. In contrast to the classical polar decomposition in the case of the Euclidean
inner product, an M-polar decomposition need not exist for a given matrix A∈Cn×n.
In [37], it was proved that a matrix A ∈ Cn×n allows an M-polar decomposition if
and only if the two M-Hermitian matrices AA[∗] and A[∗]A have the same canonical
forms (as in Corollary 1) - a fact that was already conjectured in [18]. If a canon-
ical form under a transformation as in (10) is given with the matrices T and Z as
in (11), then we have that AA[∗] = MT M−1 and A[∗]A = Z with K = M−1. Thus,
structured canonical forms can easily be derived from the canonical form under the
transformation (10).

On the other hand, the simultaneous transformation (10) provides more flexibility
in solving the eigenvalue problem of a structured matrix as B = A∗M−1A from a
numerical point of view. That is, instead of performing similarity transformations
on B, one may use two-sided transformations on A. For example, when K = J and
M = I, a structured condensed form for a matrix A was proposed in [53] and a
numerical method was given in [54].

In the case when A is invertible (hence square), the following theorem provides
the desired canonical form for the transformation in (10). Here, we use the nota-
tion J2

m(α) for the square of a Jordan block Jm(α) of size m associated with the
eigenvalue α .

Theorem 9 ([35]). Let A ∈ Cn×n be nonsingular and let K,M ∈ Cn×n be Hermitian
and invertible. Then there exist invertible matrices X ,Y ∈ Cn×n such that

Y ∗AX = Ac⊕Ar, X∗KX = Kc⊕Kr, Y ∗MY = Mc⊕Mr. (12)

Consequently, for the K-Hermitian matrix T = K−1A∗M−1A and the M-Hermitian
matrix Z = M−1AK−1A∗, one has

X−1T X = Tc⊕Tr, Y−1ZY = Zc⊕Zr. (13)

The diagonal blocks in (12) and (13) have the following forms.
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(i)

Ac =

[
Jm1(µ1) 0

0 Jm1(µ̄1)

]
⊕·· ·⊕

[
Jmp(µp) 0

0 Jmp(µ̄p)

]
,

Kc =

[
0 Rm1

Rm1 0

]
⊕·· ·⊕

[
0 Rmp

Rmp 0

]
,

Mc =

[
0 Rm1

Rm1 0

]
⊕·· ·⊕

[
0 Rmp

Rmp 0

]
,

Tc =

[
J2

m1
(µ1) 0
0 J2

m1
(µ̄1)

]
⊕·· ·⊕

[
J2

mp(µp) 0
0 J2

mp(µ̄p)

]
,

Zc =

[
J2

m1
(µ1) 0
0 J2

m1
(µ̄1)

]∗
⊕·· ·⊕

[
J2

mp(µp) 0
0 J2

mp(µ̄p)

]∗
,

where µ j = a j + ib j with 0 < a j,b j ∈ R for j = 1, . . . , p. For each j, both
the diagonal block diag

(
J2

m j
(µ j),J2

m j
(µ̄ j)

)
of Tc as well as the diagonal block

diag
(
J2

m j
(µ j),J2

m j
(µ̄ j)

)∗ of Zc are similar to a matrix consisting of two m j×m j
Jordan blocks, one of them associated with the nonreal and non purely imaginary
eigenvalue µ2

j and the other one with µ̄2
j .

(ii)
Ar = Jn1(β1) ⊕·· ·⊕ Jnq(βq),
Kr = s1Rn1 ⊕·· ·⊕ sqRnq ,
Mr = σ1Rn1 ⊕·· ·⊕ σqRnq ,
Tr = s1σ1J2

n1
(β1) ⊕·· ·⊕ sqσqJ2

nq(βq),

Zr = s1σ1
(
J2

n1
(β1)

)∗⊕·· ·⊕ sqσq
(
J2

nq(βq)
)∗
,

where β j > 0, and s j,σ j =±1 for j = 1, . . . ,q. For each j, the block s jσ jJ2
n j
(β j)

of Tr is similar to an n j × n j Jordan block associated with a real eigenvalue
s jσ jβ

2
j of T with the sign with respect to K being{

s j if n j is odd, or if n j is even and s jσ j = 1,
σ j if n j is even and s jσ j =−1,

and the block s jσ j
(
J2

n j
(β j)

)∗ of Zr is similar to an n j× n j Jordan block associ-
ated with a real eigenvalue s jσ jβ

2
j of Z with the sign with respect to M being{

σ j if n j is odd, or if n j is even and s jσ j = 1,
s j if n j is even and s jσ j =−1.

For a general rectangular matrix A ∈ Cm×n, the situation is more complicated
because of (a) the rectangular form of A and (b) the presence of the eigenvalue 0 in
T or Z. Indeed, note that these two matrices T and Z can be represented as products
of the same two factors, but with different order, i.e., T = BC and Z = CB, where
B = K−1A∗ and C = M−1A. By a well-known result [11], the Jordan structures of
the nonzero eigenvalues of the two matrix products BC and CB are identical, while
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this is not the case for the eigenvalue zero. Despite this additional complexity in
the problem of finding a canonical form under the transformation (10), a complete
answer is still possible as shown in the next theorem.

Theorem 10 ([35]). Let A ∈ Cm×n, and let K ∈ Cn×n and M ∈ Cm×m be Hermitian
and invertible. Then there exist invertible matrices Y ∈ Cm×m and X ∈ Cn×n such
that

Y ∗AX = Ac⊕Ar⊕A1⊕A2⊕A3⊕A4,

X∗KX = Kc⊕Kr⊕K1⊕K2⊕K3⊕K4, (14)
Y ∗MY = Mc⊕Mr⊕M1⊕M2⊕M3⊕M4.

Moreover, for the K-Hermitian matrix T = K−1A∗M−1A ∈ Cn×n and for the M-
Hermitian matrix Z = M−1AK−1A∗ ∈ Cm×m we have that

X−1T X = Tc⊕Tr⊕T1⊕T2⊕T3⊕T4,

Y−1ZY = Zc⊕Zr⊕Z1⊕Z2⊕Z3⊕Z4.

The blocks Ac,Ar,Kc,Kr,Mc,Mr have the same forms as in (12). Therefore, the
blocks Tc,Tr and Zc,Zr have the same forms as in (13). The remaining blocks are
associated with the eigenvalue 0 of T and Z and have the following forms.

(i)

A1 = 0`×k, K1 = diag(Ik1 ,−Ik2), M1 = diag(I`1 ,−I`2), T1 = 0k, Z1 = 0`,

where k1 + k2 = k and `1 + `2 = `. So there are k copies of 1× 1 Jordan blocks
associated with the eigenvalue 0 of T such that k1 of them have the sign +1 and
k2 of them the sign −1 with respect to K, and there are ` copies of 1×1 Jordan
blocks associated with the eigenvalue 0 of Z such that `1 of them have the sign
+1 and `2 of them the sign −1.

(ii)
A2 = J2r1(0) ⊕ J2r2(0) ⊕·· ·⊕ J2ru(0) ,

K2 = R2r1 ⊕ R2r2 ⊕·· ·⊕ R2ru ,

M2 = R2r1 ⊕ R2r2 ⊕·· ·⊕ R2ru ,

T2 = J2
2r1

(0) ⊕ J2
2r2

(0) ⊕·· ·⊕ J2
2ru

(0) ,

Z2 =
(
J2

2r1
(0)
)T⊕

(
J2

2r2
(0)
)T⊕·· ·⊕

(
J2

2ru
(0)
)T

.

For each j = 1, . . . ,u, the block J2
2r j

(0) of T2 is similar to a matrix consisting of
two copies of the Jordan block Jr j(0) of T with one of them having the sign +1

and the other having the sign −1 with respect to K, and the block
(
J2

2r j
(0)
)T is

similar to a matrix consisting of two copies of the Jordan block Jr j(0) of Z with
one of them having the sign +1 and the other having the sign −1 with respect to
M.
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(iii)

A3 =

[
Is1
0

]
(s1+1)×s1

⊕
[

Is2
0

]
(s2+1)×s2

⊕·· ·⊕
[

Isv

0

]
(sv+1)×sv

,

K3 = φ1Rs1 ⊕ φ2Rs2 ⊕·· ·⊕ φvRsv ,

M3 = ψ1Rs1+1 ⊕ ψ2Rs2+1 ⊕·· ·⊕ ψvRsv+1 ,

T3 = φ1ψ1Js1(0) ⊕ φ2ψ2Js2(0) ⊕·· ·⊕ φvψvJsv(0) ,

Z3 = φ1ψ1JT
s1+1(0)⊕ φ2ψ2JT

s2+1(0)⊕·· ·⊕φvψvJT
sv+1(0),

where for j = 1, . . . ,v, φ j = 1 and ψ j =±1 if s j is even, and φ j =±1 and ψ j = 1
if s j is odd. Hence, for each j, the block φ jψ jJs j(0) of T3 is a modified s j × s j
Jordan block associated with the eigenvalue 0 of T with sign φ j if s j is odd and
ψ j if s j is even; the block φ jψ jJT

s j
(0) of Z3 is a modified (s j +1)×(s j +1) Jordan

block associated with the eigenvalue 0 of Z with sign φ j if s j is odd and ψ j if s j
is even.

(iv)
A4 =

[
0 It1
]

t1×(t1+1)⊕
[
0 It2
]

t2×(t2+1)⊕·· ·⊕
[
0 Itw

]
tw×(tw+1) ,

K4 = θ1Rt1+1 ⊕ θ2Rt2+1 ⊕·· ·⊕ θwRtw+1 ,

M4 = ρ1Rt1 ⊕ ρ2Rt2 ⊕·· ·⊕ ρwRtw ,

T4 = θ1ρ1Jt1+1(0)⊕ θ2ρ2Jt2+1(0)⊕·· ·⊕ θwρwJtw+1(0),

Z4 = θ1ρ1JT
t1 (0) ⊕ θ2ρ2JT

t2 (0) ⊕·· ·⊕ θwρwJT
tw(0) ,

where for j = 1, . . . ,w, θ j = 1 and ρ j =±1 if t j is odd, and θ j =±1 and ρ j = 1
if t j is even. Hence, for each j, the block θ jρ jJt j+1(0) of T4 is a modified (t j +
1)× (t j +1) Jordan block associated with the eigenvalue 0 of T with sign ρ j if t j
is odd and θ j if t j is even; the block θ jρ jJT

t j
(0) of Z4 is a modified t j× t j Jordan

block associated with the eigenvalue 0 of Z with sign ρ j if t j is odd and θ j if t j is
even.

Theorem 10 shows that the sizes of the Jordan blocks and signs associated with the
eigenvalue zero may be different for the matrices T and Z. Still, they are related and
the canonical form for A exactly explains in which way.

As mentioned earlier, the investigation of the canonical forms of the matrices
AA[∗] and A[∗]A is crucial if one wants to check if A ∈ Cn×n has an M-polar decom-
position with respect to the invertible Hermitian matrix M. Therefore, the possible
difference in the canonical forms of AA[∗] and A[∗]A has been analyzed in [17]. With
the canonical form from Theorem 10 there is now a complete classification of all
possible canonical forms for the matrices AA[∗] and A[∗]A for a general matrix A.

A real version of (14) for real A, K, M can be derived essentially in the same
way. In the case that all A, K, and M are real and at least one of K and M is skew-
symmetric, the real canonical forms of the simultaneous transformation (10) can be
derived too, but with some additional techniques. The details can be found in [35].
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6 Conclusion

Applications in different areas provide a variety of eigenvalue problems with differ-
ent symmetry structures that lead to symmetries in the spectra of the corresponding
matrices or matrix pencils. It is crucial to use structure-preserving algorithms so
that the symmetry in the spectra is not lost due to roundoff errors in the numerical
computation and that the computed results are physically meaningful. For the un-
derstanding of the behavior of these algorithms and the effect in the corresponding
perturbation theory, structured canonical forms are an essential tool. In this sur-
vey, we have presented three particular structured canonical forms with respect to
matrices that carry one or two structures with respect to possible indefinite inner
products. Moreover, we have highlighted the important role that the sign charac-
teristic plays in the understanding of the behavior of Hamiltonian matrices under
structure-preserving transformations.
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