Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products

Christian Mehl^{*} André C. M. Ran[†] Leiba Rodman[‡]

Abstract

It is proved that under certain essential additional hypotheses, a nonpositive invariant subspace of a hyponormal matrix admits an extension to a maximal nonpositive subspace which is invariant for both the matrix and its adjoint. Nonpositivity of subspaces and the hyponormal property of the matrix are understood in the sense of a nondegenerate inner product in a finite dimensional complex vector space. The obtained theorem combines and extends several previously known results. A Pontryagin space formulation, with essentially the same proof, is offered as well.

Key Words. Indefinite inner products, semidefinite invariant subspaces, hyponormal matrices.

Mathematics Subject Classification. 15A63, 15A57.

1 Introduction

On the vector space \mathbb{C}^n , equipped with the standard inner product, we fix an indefinite inner product $[\cdot, \cdot]$ determined by an invertible Hermitian $n \times n$ matrix H via the formula

$$[x, y] = \langle Hx, y \rangle, \qquad x, y \in \mathbb{C}^n.$$

Here, $\langle \cdot, \cdot \rangle$ denotes the standard inner product.

A subspace $\mathcal{M} \subseteq \mathbb{C}^n$ is said to be *H*-nonnegative if $[x, x] \geq 0$ for every $x \in \mathcal{M}$, *H*positive if [x, x] > 0 for every nonzero $x \in \mathcal{M}$, *H*-nonpositive if $[x, x] \leq 0$ for every $x \in \mathcal{M}$, *H*-negative if [x, x] < 0 for every nonzero $x \in \mathcal{M}$, and *H*-neutral if [x, x] = 0 for every

^{*}Fakultät II; Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany. E-mail: mehl@math.tu-berlin.de

[†]Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. E-mail: ran@cs.vu.nl

[‡]College of William and Mary, Department of Mathematics, P.O.Box 8795, Williamsburg, VA 23187-8795. E-mail: lxrodm@math.wm.edu The research of this author is partially supported by NSF Grant DMS-0456625.

 $x \in \mathcal{M}$. Note that by default the zero subspace is *H*-positive as well as *H*-negative. An *H*-nonnegative subspace is said to be *maximal H*-nonnegative if it is not properly contained in any larger *H*-nonnegative subspace. It is easy to see that an *H*-nonnegative subspace is maximal if and only if its dimension is equal to the number $i_+(H)$ of positive eigenvalues of *H* (counted with multiplicities). Analogously, an *H*-nonpositive subspace is maximal if and only its dimension is equal to the number of negative eigenvalues of *H*.

Let $X^{[*]}$ denote the adjoint of a matrix $X \in \mathbb{C}^{n \times n}$ with respect to the indefinite inner product, i.e., $X^{[*]}$ is the unique matrix satisfying $[x, Xy] = [X^{[*]}x, y]$ for all $x, y \in \mathbb{C}^n$. One easily sees that $X^{[*]} = H^{-1}X^*H$. We recall that a matrix $X \in \mathbb{C}^{n \times n}$ is called *H*-normal if $X^{[*]}X = XX^{[*]}$, and *H*-hyponormal if $H(X^{[*]}X - XX^{[*]}) \ge 0$ (positive semidefinite). We note that it is easy to check that if X is *H*-normal, resp., *H*-hyponormal, then $P^{-1}XP$ is P^*HP -normal, resp., P^*HP -hyponormal, provided that $P \in \mathbb{C}^{n \times n}$ is nonsingular.

It is well known that several classes of matrices in indefinite inner product spaces allow extensions of invariant H-nonnegative subspaces to invariant maximal H-nonnegative subspaces. Those classes are for example the ones of H-expansive matrices (including Hunitary matrices), H-dissipative matrices (including H-selfadjoints), and H-skew-adjoint matrices, see, e.g. [5] for a proof. The natural question arises if this extension problem still has a solution for arbitrary H-normal matrices. A partial answer to this question is contained in the following result.

Theorem 1 Let $X \in \mathbb{C}^{n \times n}$ be *H*-normal, and let \mathcal{M}_0 be an *H*-neutral *X*-invariant subspace. Then there exists an *X*-invariant subspace \mathcal{M} which is also maximal *H*-nonnegative, *i.e.*, *H*-nonnegative of dimension $i_+(H)$, and such that $\mathcal{M}_0 \subseteq \mathcal{M}$. Also, there exists an *X*-invariant maximal *H*-nonpositive subspace containing \mathcal{M}_0 .

Theorem 1 can be obtained from results of [2], [3], and it holds also for Pontryagin spaces; see [6] for details. A more general theorem is proved in [5]. The proof of Theorem 1 given in [5] depends essentially on the *H*-neutrality of the given invariant subspace \mathcal{M}_0 .

Moreover, it was proven in [6] that if \mathcal{M} is a maximal *H*-nonnegative subspace invariant under an *H*-normal *X*, then it is also invariant under $X^{[*]}$. Also, the authors proved an extension result in the framework of *H*-hyponormal matrices. For sake of convenience, we recall the two main results from that paper.

Theorem 2 Let $X \in \mathbb{C}^{n \times n}$ be *H*-hyponormal. If the spectrum of $X + X^{[*]}$ is real or if the spectrum of $X - X^{[*]}$ is purely imaginary (including zero), then there exists an X-invariant maximal *H*-nonnegative subspace that is also invariant for $X^{[*]}$. Also, there exists an X-invariant maximal *H*-nonpositive subspace that is also invariant for $X^{[*]}$.

The assumption that either the spectrum of $X + X^{[*]}$ is real or the spectrum of $X - X^{[*]}$ is purely imaginary in Theorem 2 was shown in [6] to be essential even for the case of *H*-normal matrices.

For a subspace $\mathcal{M}_0 \subseteq \mathbb{C}^n$, we denote by

$$\mathcal{M}_0^{[\perp]} = \{ x \in \mathbb{C}^n \mid [x, y] = 0 \text{ for every } y \in \mathcal{M}_0 \}$$

the *H*-orthogonal companion of \mathcal{M}_0 .

Theorem 3 Let $X \in \mathbb{C}^{n \times n}$ be *H*-hyponormal and let \mathcal{M}_0 be an *X*-invariant *H*-negative subspace. Define $X_{22} = X^{[*]}|_{\mathcal{M}_0^{[\perp]}} : \mathcal{M}_0^{[\perp]} \to \mathcal{M}_0^{[\perp]}$. Equip $\mathcal{M}_0^{[\perp]}$ with the indefinite inner product induced by *H*. Assume that at least one of the two inclusions $\sigma(X_{22}^{[*]}+X_{22}) \subset \mathbb{R}$ and $\sigma(X_{22}^{[*]}-X_{22}) \subset i\mathbb{R}$ holds true. Then there exists an *X*-invariant maximal *H*-nonpositive subspace that contains \mathcal{M}_0 .

The aim of this note is to unify and complete the theory of extensions of semidefinite subspaces for *H*-normal and *H*-hyponormal subspaces. In particular, we prove a generalization of Theorem 3, where we start with an *H*-nonpositive *X*-invariant subspace \mathcal{M}_0 instead of an *H*-negative one. The extension result is then not true without further conditions, as it was already shown in [6].

2 Extension of nonpositive invariant subspaces.

We start by generalizing the fact that, for H-normal matrices X, invariant maximal Hsemidefinite subspaces are also invariant under the adjoint $X^{[*]}$. Indeed, it turns out that
this results holds true even for H-hyponormal matrices if the subspace under consideration
is assumed to be H-nonpositive.

Proposition 4 Let $X \in \mathbb{C}^{n \times n}$ be *H*-hyponormal and let \mathcal{M} be an *X*-invariant maximal *H*-nonpositive subspace. Then \mathcal{M} is invariant also for $X^{[*]}$.

Proof. The proof is essentially the same as the corresponding proof for the case that X is H-normal (see [6]). Nevertheless we provide the proof here to keep the paper selfcontained. Applying otherwise a suitable transformation $X \mapsto P^{-1}XP$, $H \mapsto P^*HP$, where P is invertible, we may assume that \mathcal{M} is spanned by the first (say) m unit vectors and that X and H have the forms

$$X = \begin{bmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{21} & X_{22} & X_{23} & X_{24} \\ 0 & 0 & X_{33} & X_{34} \\ 0 & 0 & X_{43} & X_{44} \end{bmatrix}, \quad H = \begin{bmatrix} -I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & I \end{bmatrix}.$$
 (1)

Indeed, this follows easily by decomposing $\mathcal{M} = \mathcal{M}_p \oplus \mathcal{M}_0$ into an *H*-neutral subspace \mathcal{M}_0 and its orthogonal complement \mathcal{M}_p (in \mathcal{M}), and choosing an *H*-neutral subspace \mathcal{M}_{sl} that is skewly linked to \mathcal{M}_0 (see [1], [4] for the definition and properties of skewly linked subspaces). Note that the *H*-orthogonal complement to $\mathcal{M} + \mathcal{M}_{sl}$ is necessarily an *H*-positive subspace due to the maximality of \mathcal{M} . Then, selecting appropriate bases in all subspaces constructed above, and putting the bases as the consecutive columns of a matrix P, we get a transformation that yields the desired result. From (1), we then obtain that

$$X^{[*]} = \begin{bmatrix} X_{11}^* & 0 & -X_{21}^* & 0\\ -X_{13}^* & X_{33}^* & X_{23}^* & X_{43}^*\\ -X_{12}^* & 0 & X_{22}^* & 0\\ -X_{14}^* & X_{34}^* & X_{24}^* & X_{44}^* \end{bmatrix}$$
(2)

and

Since X is H-hyponormal, i.e., $H(X^{[*]}X - XX^{[*]}) \ge 0$, we obtain from the block (2, 2)entry in (3) that $X_{12} = 0$ and $X_{34} = 0$. But then the inequality for the block (4, 4)-entry of (3) becomes

$$X_{44}^* X_{44} - X_{44} X_{44}^* \ge X_{14}^* X_{14} \ge 0, \tag{4}$$

which is easily seen to imply (by taking traces of both sides in (4)) that X_{44} is normal and that $X_{14} = 0$. Thus, we obtain from (2) that \mathcal{M} is also invariant for $X^{[*]}$. \Box

The following example illustrates Proposition 4 and shows that we cannot replace Hnonpositivity in the hypothesis of the proposition by H-nonnegativity.

Example 5 Let

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$
 (5)

Then one easily computes

$$X^{[*]} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad H(X^{[*]}X - XX^{[*]}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X + X^{[*]} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix}$$

that is, X is H-hyponormal and the spectrum of $\sigma(X + X^{[*]}) = \{2\}$ is real. Then the only X-invariant subspace that is maximal H-nonpositive is given by $\mathcal{M}_{-} = \operatorname{Span}(e_2, e_3)$. Obviously, \mathcal{M}_{-} is also invariant under $X^{[*]}$. On the other hand, $\mathcal{M}_{+} = \operatorname{Span}(e_1)$ is a maximal H-nonnegative subspace that is invariant under X, but \mathcal{M}_{+} is not invariant under $X^{[*]}$. However, Theorem 2 implies that X has a maximal H-nonnegative subspace that is also invariant under $X^{[*]}$. Such a subspace is given by $\widetilde{\mathcal{M}}_{+} = \operatorname{Span}(e_2)$. \Box

The main results of this note is the following. It combines elements of Theorems 1, 2, and 3.

Theorem 6 Let X be H-hyponormal, and let \mathcal{M} be an H-nonpositive subspace that is invariant under X. Let \mathcal{M}_0 be the isotropic part of \mathcal{M} and decompose $\mathcal{M}^{[\perp]}$ as

$$\mathcal{M}^{[\perp]} = \mathcal{M}_0 \dot{+} \mathcal{M}_{nd},\tag{6}$$

for an *H*-nondegenerate subspace \mathcal{M}_{nd} . Denote by X_{44} and H_4 the compressions of X and H to \mathcal{M}_{nd} , respectively. Assume that \mathcal{M}_0 is invariant under $X^{[*]}$ and that, in addition, one of the three following conditions holds:

- (a) $\sigma(X_{44} + X_{44}^{[*]}) \subset \mathbb{R},$
- (b) $\sigma(X_{44} X_{44}^{[*]}) \subset i\mathbb{R},$
- (c) X_{44} is H_4 -normal.

Then \mathcal{M} can be extended to a maximal H-nonpositive subspace \mathcal{M}_{-} that is invariant under both X and $X^{[*]}$.

The conditions (a)–(c) are independent of the particular choice of a nondegenerate subspace \mathcal{M}_{nd} subject to (6).

Proof. A decomposition similar to (1) will be used. Since \mathcal{M}_0 is the isotropic part of \mathcal{M} we have that $\mathcal{M}_0 = \mathcal{M} \cap \mathcal{M}^{[\perp]}$. Let \mathcal{M}_{sl} be a subspace skewly linked to \mathcal{M}_0 , let \mathcal{M}_2 be a nondegenerate subspace of \mathcal{M} which is *H*-orthogonal to both \mathcal{M}_0 and \mathcal{M}_{sl} , and finally, let \mathcal{M}_4 be the *H*-orthogonal complement of $\mathcal{M}_0 + \mathcal{M}_2 + \mathcal{M}_{sl}$. Observe that \mathcal{M}_2 is an *H*-negative subspace in \mathcal{M} while \mathcal{M}_4 is a nondegenerate subspace in $\mathcal{M}^{[\perp]}$. With respect to the decomposition

$$\mathbb{C}^{n} = \left(\mathcal{M}_{0} \dot{+} \mathcal{M}_{2} \dot{+} \mathcal{M}_{sl}\right) [\dot{+}] \mathcal{M}_{4}, \tag{7}$$

where [+] stands for an *H*-orthogonal sum, and with respect to an appropriate choice of basis in each of the components we write

$$H = \begin{bmatrix} 0 & 0 & I & 0 \\ 0 & -I & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & 0 & 0 & H_4 \end{bmatrix}, \qquad X = \begin{bmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{21} & X_{22} & X_{23} & X_{24} \\ 0 & 0 & X_{33} & X_{34} \\ 0 & 0 & X_{43} & X_{44} \end{bmatrix}$$

Using this we easily see that $X^{[*]}$ is given by

$$X^{[*]} = \begin{bmatrix} X_{33}^* & -X_{23}^* & X_{13}^* & X_{43}^* H_4 \\ 0 & X_{22}^* & -X_{12}^* & 0 \\ 0 & -X_{21}^* & X_{11}^* & 0 \\ H_4^{-1} X_{34}^* & -H_4^{-1} X_{24}^* & H_4^{-1} X_{14}^* & H_4^{-1} X_{44}^* H_4 \end{bmatrix}$$

Partitioning $Y := H(X^{[*]}X - XX^{[*]})$ conformably with respect to the decomposition (7), we obtain that the (4,4)-block Y_{44} takes the form

$$Y_{44} = X_{34}^* X_{14} - X_{24}^* X_{24} + X_{14}^* X_{34} + H_4 (X_{44}^{[*]} X_{44} - X_{44} X_{44}^{[*]}),$$
(8)

where $X_{44}^{[*]}$ denotes the H_{44} -adjoint $H_{44}^{-1}X_{44}^*H_{44}$ of X_{44} . By assumption, the isotropic part \mathcal{M}_0 of \mathcal{M} is invariant under $X^{[*]}$ which implies $X_{34} = 0$. But then, we obtain that X_{44} is H_4 -hyponormal, because we get from (8) that

$$H_4(X_{44}^{[*]}X_{44} - X_{44}X_{44}^{[*]}) = Y_{44} + X_{24}^*X_{24} \ge Y_{44} \ge 0,$$

since X is H-hyponormal and, therefore, Y and Y_{44} are positive semidefinite.

Next, we show that the conditions (a)–(c) are independent of the particular choice of a nondegenerate subspace \mathcal{M}_{nd} subject to (6), i.e., we may assume without loss of generality that $\mathcal{M}_{nd} = \mathcal{M}_4$. Indeed, choosing another nondegenerate subspace \mathcal{M}_{nd} in $\mathcal{M}^{[\perp]}$ in place of \mathcal{M}_4 amounts to a change of basis in $\mathcal{M}^{[\perp]}$ given by a matrix of the form

$$S = \begin{bmatrix} I & 0 & 0 & S_{14} \\ 0 & I & 0 & S_{24} \\ 0 & 0 & I & S_{34} \\ 0 & 0 & 0 & S_{44} \end{bmatrix},$$

with S_{44} invertible. Thus, we obtain that with respect to the new decomposition

$$\mathbb{C}^n = ig(\mathcal{M}_0 \dot{+} \mathcal{M}_2 \dot{+} \mathcal{M}_{sl}ig) \dot{+} \mathcal{M}_{nd},$$

and the new basis, X and H take the forms

$$\widetilde{X} = S^{-1}XS = \begin{bmatrix} X_{11} & X_{12} & * & * & * \\ X_{21} & X_{22} & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & S_{44}^{-1}X_{44}S_{44} + S_{44}^{-1}X_{43}S_{34} \end{bmatrix}$$
$$\widetilde{H} = S^*HS = \begin{bmatrix} 0 & 0 & I & S_{34} \\ 0 & -I & 0 & S_{34} \\ I & 0 & 0 & S_{14} \\ S_{34}^* & -S_{24}^* & S_{14}^* & S_{44}H_4S_{44} + S_{34}^*S_{14} + S_{14}^*S_{34} - S_{24}^*S_{24} \end{bmatrix}$$

Since \mathcal{M}_{nd} is assumed to be a subspace in $\mathcal{M}^{[\perp]}$, we must have

$$0 = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{bmatrix} (S^*)^{-1} (S^* HS) \begin{bmatrix} 0 \\ 0 \\ 0 \\ I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{bmatrix} H \begin{bmatrix} S_{14} \\ S_{24} \\ S_{34} \\ S_{44} \end{bmatrix} = \begin{bmatrix} S_{34} \\ -S_{24} \end{bmatrix}$$

which implies $S_{24} = 0$ and $S_{34} = 0$. Thus, the compressions \widetilde{X}_{44} and \widetilde{H}_{44} of \widetilde{X} resp. \widetilde{H} to \mathcal{M}_{nd} are

$$\widetilde{X}_{44} = S_{44}^{-1} X_{44} S_{44}, \quad \widetilde{H}_4 = S_{44}^* H_4 S_{44}.$$

Clearly it follows from this that if each of the three conditions (a)–(c) holds for X_{44} and \tilde{H}_4 , then it holds also for X_{44} and H_4 . In particular, the conditions (a)–(c) are independent of the choice of \mathcal{M}_{nd} .

Consequently, assuming $\mathcal{M}_{nd} = \mathcal{M}_4$ and that we have either $\sigma(X_{44} + X_{44}^{[*]}) \subset \mathbb{R}$ or $\sigma(X_{44} - X_{44}^{[*]}) \subset i\mathbb{R}$ or that X_{44} is H_4 -normal, we obtain from Theorems 1 and 2 and Proposition 4 that there exists an X_{44} -invariant maximal H_4 -nonpositive subspace \mathcal{N}_4 that is also invariant under $X_{44}^{[*]}$. In that case $\mathcal{M}_- := \mathcal{M} + \mathcal{N}_4$ is maximal H-nonpositive, X-invariant, and thus, by Proposition 4 also $X^{[*]}$ -invariant. \Box

The following example, adapted from [6], shows that the conditions (a)-(c) are essential in Theorem 6.

Example 7 Let

$$H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} i & -i \\ i & -i \end{bmatrix}$$

Then one easily calculates

$$X^{[*]} = \begin{bmatrix} i & i \\ -i & -i \end{bmatrix}, \quad A := \frac{1}{2}(X + X^{[*]}) = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad S := \frac{1}{2}(X - X^{[*]}) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

and $H(X^{[*]}X - XX^{[*]}) = 4 \cdot I$. Hence X is *H*-hyponormal but not normal. Moreover, the spectrum of A is not real, and neither is the spectrum of S purely imaginary. Clearly, the zero space $\{0\}$ is *H*-neutral, invariant both under X and $X^{[*]}$, and coincides with its isotropic subspace. Now the only nontrivial invariant subspace for X is

$$\mathcal{M}_{+} = \operatorname{Span}\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)$$

which is easily seen to be maximal H-nonnegative, but it is not invariant under $X^{[*]}$, because otherwise it would also be invariant for A and S which is obviously not the case. Thus, $\{0\}$ cannot be extended neither to a maximal H-nonnegative nor to a maximal H-nonpositive subspace that is invariant for both X and $X^{[*]}$.

On the other hand, Example 5 shows that also the hypothesis in Theorem 6 that the isotropic subspace \mathcal{M}_0 of \mathcal{M} is $X^{[*]}$ -invariant is essential. Thus, the question arises under which conditions the isotropic subspace \mathcal{M}_0 of an X-invariant H-nonpositive subspace \mathcal{M} (where X is an H-hyponormal matrix) is $X^{[*]}$ -invariant. One immediate answer is given in the following remark that can be verified in a straightforward manner.

Remark 8 If X is H-hyponormal and \mathcal{M} is a maximal H-nonpositive subspace that is invariant under both X and $X^{[*]}$, then its isotropic part $\mathcal{M}_0 = \mathcal{M} \cap \mathcal{M}^{[\perp]}$ is also invariant under both X and $X^{[*]}$.

Remark 9 Theorem 6 contains Theorem 3 as a special case, because clearly, the isotropic part of an *H*-negative subspace is the zero space which is always invariant under $X^{[*]}$.

We conclude the note with an observation that Proposition 4 and Theorem 6 are valid also for Pontryagin space operators, where H is an invertible selfadjoint operator on a Hilbert space with only finite dimensional invariant subspace corresponding to the positive part of the spectrum of H. In the case of Theorem 6 an additional hypothesis that the codimension of \mathcal{M} is finite has to be imposed; this hypothesis would guarantee that \mathcal{M}_{nd} is finite dimensional. The proofs remain essentially the same.

References

- I. S. Iohvidov, M. G. Kreĭn, and H. Langer. Introduction to the spectral theory of operators in spaces with an indefinite metric. Mathematical Research 9, Akademie-Verlag, Berlin, 1982.
- [2] G. K. Langer. Invariant subspaces of linear operators acting in a space with indefinite metric. Dokl. Akad. Nauk SSSR, 169 (1966), 12–15. (Russian).
- [3] H. Langer. Invariante Teilräume definisierbarer J-selbstadjungierter Operatoren. Ann. Acad. Sci. Fenn. Ser. A I, 475 (1971). (German).
- [4] C. V. M. van der Mee, A. C. M. Ran, and L. Rodman. Polar decompositions and related classes of operators in spaces Π_{κ} . Integral Equations and Operator Theory, 44 (2002), 50–70.
- [5] C. Mehl, A. C. M. Ran, and L. Rodman. Semidefinite invariant subspaces: degenerate inner products. *Operator Theory: Advances and Applications*, 149 (2004), 475–494.
- [6] C. Mehl, A. C. M. Ran, and L. Rodman. Hyponormal matrices and semidefinite invariant subspaces in indefinite inner products. *Electronic Journal of Linear Algebra*, 11 (2004), 192–204.