Extension to maximal semidefinite invariant subspaces
for hyponormal matrices in indefinite inner products
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Abstract

It is proved that under certain essential additional hypotheses, a nonpositive in-
variant subspace of a hyponormal matrix admits an extension to a maximal nonposi-
tive subspace which is invariant for both the matrix and its adjoint. Nonpositivity of
subspaces and the hyponormal property of the matrix are understood in the sense of
a nondegenerate inner product in a finite dimensional complex vector space. The ob-
tained theorem combines and extends several previously known results. A Pontryagin
space formulation, with essentially the same proof, is offered as well.
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1 Introduction

On the vector space C", equipped with the standard inner product, we fix an indefinite
inner product [, -] determined by an invertible Hermitian n x n matrix H via the formula

[z, y] = (Hz,y), z,y € C".

Here, (-,-) denotes the standard inner product.

A subspace M C C" is said to be H-nonnegative if [x,z] > 0 for every v € M, H-
positive if [z, xz] > 0 for every nonzero x € M, H-nonpositive if [z, x] < 0 for every z € M,
H-negative if [z,z] < 0 for every nonzero x € M, and H-neutral if [x,x] = 0 for every
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x € M. Note that by default the zero subspace is H-positive as well as H-negative. An
H-nonnegative subspace is said to be maxzimal H-nonnegative if it is not properly contained
in any larger H-nonnegative subspace. It is easy to see that an H-nonnegative subspace is
maximal if and only if its dimension is equal to the number i (H) of positive eigenvalues
of H (counted with multiplicities). Analogously, an H-nonpositive subspace is maximal if
and only its dimension is equal to the number of negative eigenvalues of H.

Let X denote the adjoint of a matrix X € C™*™ with respect to the indefinite inner
product, i.e., X is the unique matrix satisfying [z, Xy] = [X"z, y] for all z,y € C". One
easily sees that X" = H=1X*H. We recall that a matrix X € C™*" is called H-normal if
XMX = XXM and H-hyponormal if H(XMX — X X)) > 0 (positive semidefinite). We
note that it is easy to check that if X is H-normal, resp., H-hyponormal, then P X P is
P*H P-normal, resp., P*H P-hyponormal, provided that P € C™*" is nonsingular.

It is well known that several classes of matrices in indefinite inner product spaces
allow extensions of invariant H-nonnegative subspaces to invariant maximal H-nonnegative
subspaces. Those classes are for example the ones of H-expansive matrices (including H-
unitary matrices), H-dissipative matrices (including H-selfadjoints), and H-skew-adjoint
matrices, see, e.g. [5] for a proof. The natural question arises if this extension problem
still has a solution for arbitrary H-normal matrices. A partial answer to this question is
contained in the following result.

Theorem 1 Let X € C"" be H-normal, and let My be an H-neutral X -invariant sub-
space. Then there exists an X -invariant subspace M which is also mazximal H-nonnegative,
i.e., H-nonnegative of dimension i, (H), and such that My C M. Also, there exists an
X-invariant maximal H-nonpositive subspace containing M.

Theorem 1 can be obtained from results of [2], [3], and it holds also for Pontryagin
spaces; see [6] for details. A more general theorem is proved in [5]. The proof of Theorem 1
given in [5] depends essentially on the H-neutrality of the given invariant subspace M.

Moreover, it was proven in [6] that if M is a maximal H-nonnegative subspace invariant
under an H-normal X, then it is also invariant under X ™. Also, the authors proved an
extension result in the framework of H-hyponormal matrices. For sake of convenience, we
recall the two main results from that paper.

Theorem 2 Let X € C™*™ be H-hyponormal. If the spectrum of X 4+ X is real or if the
spectrum of X — X is purely imaginary (including zero), then there exists an X -invariant
mazimal H-nonnegative subspace that is also invariant for X", Also, there exists an X -
invariant mazimal H-nonpositive subspace that is also invariant for X .

The assumption that either the spectrum of X + X[ is real or the spectrum of X — X
is purely imaginary in Theorem 2 was shown in [6] to be essential even for the case of H-
normal matrices.

For a subspace My C C", we denote by

M([)L] ={z € C" | [z,y] =0 for every y € My}

the H-orthogonal companion of M.



Theorem 3 Let X € C™*" be H-hyponormal and let My be an X-invariant H-negative
subspace. Define Xqg = XM'M[” : MBL] — Mg“. Equip M%H with the indefinite inner
0

product induced by H. Assume that at least one of the two inclusions U(X2[§+X22) C R and

O'(X2[;] — X92) C iR holds true. Then there exists an X -invariant mazimal H-nonpositive
subspace that contains M.

The aim of this note is to unify and complete the theory of extensions of semidef-
inite subspaces for H-normal and H-hyponormal subspaces. In particular, we prove a
generalization of Theorem 3, where we start with an H-nonpositive X-invariant subspace
M, instead of an H-negative one. The extension result is then not true without further
conditions, as it was already shown in [6].

2 Extension of nonpositive invariant subspaces.

We start by generalizing the fact that, for H-normal matrices X, invariant maximal H-
semidefinite subspaces are also invariant under the adjoint X . Indeed, it turns out that
this results holds true even for H-hyponormal matrices if the subspace under consideration
is assumed to be H-nonpositive.

Proposition 4 Let X € C"*" be H-hyponormal and let M be an X-invariant mazimal
H -nonpositive subspace. Then M is invariant also for X,

Proof. The proof is essentially the same as the corresponding proof for the case that
X is H-normal (see [6]). Nevertheless we provide the proof here to keep the paper self-
contained. Applying otherwise a suitable transformation X +— P 'XP, H — P*HP,
where P is invertible, we may assume that M is spanned by the first (say) m unit vectors
and that X and H have the forms

X X2 Xiz Xu —I 0 0 0

| Xar Xoo Xog Xog 1 0 010
X=10 0 X Xl "= 0 100 (1)

0 0 Xuz Xu O 0 0 [

Indeed, this follows easily by decomposing M = M, ©& M, into an H-neutral subspace
M, and its orthogonal complement M, (in M), and choosing an H-neutral subspace
M that is skewly linked to My (see [1], [4] for the definition and properties of skewly
linked subspaces). Note that the H-orthogonal complement to M+M, is necessarily an
H-positive subspace due to the maximality of M. Then, selecting appropriate bases in all
subspaces constructed above, and putting the bases as the consecutive columns of a matrix
P, we get a transformation that yields the desired result. From (1), we then obtain that

X7 0 —-X5 0
—Xiz Xz Xz X ()
-X55 0 X5, 0
—Xiy Xz Xop X

X =

3



and

H(XWx — xxM)
*
—X1pX12 — X5 X3y
%

*
*

(3)

*

S S SR
* X X *x

Since X is H-hyponormal, i.e., H(XMX — XXI) > 0, we obtain from the block (2,2)-
entry in (3) that X2 = 0 and X34 = 0. But then the inequality for the block (4,4)-entry
of (3) becomes

XaXaa — Xaa X3y > X7, X104 > 0, (4)

which is easily seen to imply (by taking traces of both sides in (4)) that X4 is normal and
that X1, = 0. Thus, we obtain from (2) that M is also invariant for X*. [

The following example illustrates Proposition 4 and shows that we cannot replace H-
nonpositivity in the hypothesis of the proposition by H-nonnegativity.

Example 5 Let

1 00 01 0
X=|011|, H=|10 0 (5)
0 01 00 -1
Then one easily computes
1 00 1 00 2 00
XHM=10 10|, HX¥MX-XXFy=]1000]|, X+xM=] 0 21
-1 0 1 00O -1 0 2

that is, X is H-hyponormal and the spectrum of o(X + X)) = {2} is real. Then the
only X-invariant subspace that is maximal H-nonpositive is given by M_ = Span(eq, e3).
Obviously, M_ is also invariant under X, On the other hand, M, = Span(e;) is a
maximal H-nonnegative subspace that is invariant under X, but M, is not invariant
under X, However, Theorem 2 implies that X has a maximal H-nonnegative subspace
that is also invariant under X, Such a subspace is given by M, = Span(ey). O

The main results of this note is the following. It combines elements of Theorems 1, 2,
and 3.

Theorem 6 Let X be H-hyponormal, and let M be an H-nonpositive subspace that is
invariant under X. Let M, be the isotropic part of M and decompose MM as

MM = Mo+ M., (6)

for an H-nondegenerate subspace M, 4. Denote by X4 and Hy the compressions of X and
H to M,q, respectively. Assume that My is invariant under X" and that, in addition,
one of the three following conditions holds:



(a) o(Xy+ X)) CR,
(b) O'(X44 — XEE) C ZR,
(¢) Xy4 is Hy-normal.

Then M can be extended to a mazximal H-nonpositive subspace M _ that is invariant under
both X and X,

The conditions (a)—(c) are independent of the particular choice of a nondegenerate
subspace M4 subject to (6).

Proof. A decomposition similar to (1) will be used. Since M, is the isotropic part of M
we have that My = M N MM, Let M, be a subspace skewly linked to My, let M, be
a nondegenerate subspace of M which is H-orthogonal to both My and M, and finally,
let M, be the H-orthogonal complement of My+Msy+M,. Observe that My is an H-
negative subspace in M while M, is a nondegenerate subspace in M. With respect to
the decomposition

" = (Mo My EMy) [HM, ™)

where [+] stands for an H-orthogonal sum, and with respect to an appropriate choice of
basis in each of the components we write

0 0 I 0 X1 X2 Xz Xu
10 -1 0 O | X Xoo Xoz Xu
= I 0 0 0 |’ X = 0 0 X33 Xg
0 0 0 Hy 0 0 Xz Xy

Using this we easily see that X is given by

X33 — X33 X1 XizHa
Bl _ 0 X3 ~ X1, 0
0 X3 Xp 0

Hy X3, —Hy' X3, H{' Xy, Hi'XjH,

Partitioning Y := H(X™X — X X)) conformably with respect to the decomposition (7),
we obtain that the (4,4)-block Yy, takes the form

Yia = X5 X 14 — X5 Xoa + X5, X0 + Ha(X0/ Xug — X0 X3)), (8)
where X Eﬂ denotes the Hyy-adjoint H ;fX iHay of X4y, By assumption, the isotropic part
M, of M is invariant under X which implies X3, = 0. But then, we obtain that X4 is
Hy-hyponormal, because we get from (8) that

Hy( X0 Xas — X Xi]) = Y+ X3, X4 > Yy > 0,

since X is H-hyponormal and, therefore, Y and Yy, are positive semidefinite.
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Next, we show that the conditions (a)—(c) are independent of the particular choice of a
nondegenerate subspace M, subject to (6), i.e., we may assume without loss of generality
that M,y = M. Indeed, choosing another nondegenerate subspace M4 in MM in place
of M4 amounts to a change of basis in MM given by a matrix of the form

I 00 Siu
0 I 0 Sy
0 0 I Ss |’
0 0 0 Su

S =

with Sy invertible. Thus, we obtain that with respect to the new decomposition
C" = (Mo—i—Mz‘i‘Msl) ‘i‘Mnda

and the new basis, X and H take the forms

X1 Xy *
X osixg= | A Am o :
0 0 = *
0 0 % Spg' X4aSua + Sii Xu3Sa
0 0 I Sy
~ . | 0 - 0 —S24
H=S5HS=1 1 S

§4 - 54 ST4 S44H4S44 + S§4514 + Sik4S34 - 554524

Since M,,4 is assumed to be a subspace in MM, we must have

0 Sia
(T 00 07, a1 e 0| [7 000 Soi | [ Su
O_[O I 0 O}(S) (S™HS) 0 _{O I 0 O}H Sau _[—524}
I Saa

which implies So4 = 0 and S34 = 0. Thus, the compressions )?44 and ﬁ44 of X resp. H to
M, q are N N

Xy = 83 X4sSaa, Hy= SjHySus.
Clearly it follows from this that if each of the three conditions (a)-(c) holds for X and
Hy, then it holds also for X4 and Hy. In particular, the conditions (a)- (c) are independent
of the choice of M,,4.

Consequently, assuming M, = M, and that we have either o(Xy + Xﬁ) C Ror
o(Xyy — Xﬁ]) C iR or that X4, is Hs-normal, we obtain from Theorems 1 and 2 and
Proposition 4 that there exists an X 4-invariant maximal H -nonpositive subspace N, that
is also invariant under X H. In that case M_ := M+N; is maximal H-nonpositive, X-
invariant, and thus, by Proposition 4 also X "-invariant. 0O

The following example, adapted from [6], shows that the conditions (a)—(c) are essential
in Theorem 6.



Example 7 Let

Then one easily calculates

Moo | 1 1 By | & 0 Ly x| O
X [—z’ —i}’ A 2(X—i—X) {O =i b S 2(X X i 0
and H(XMX — XXM) = 4.1 Hence X is H-hyponormal but not normal. Moreover,
the spectrum of A is not real, and neither is the spectrum of S purely imaginary. Clearly,

the zero space {0} is H-neutral, invariant both under X and X and coincides with its
isotropic subspace. Now the only nontrivial invariant subspace for X is

s (1]

which is easily seen to be maximal H-nonnegative, but it is not invariant under X,
because otherwise it would also be invariant for A and S which is obviously not the case.
Thus, {0} cannot be extended neither to a maximal H-nonnegative nor to a maximal
H-nonpositive subspace that is invariant for both X and X",

On the other hand, Example 5 shows that also the hypothesis in Theorem 6 that the
isotropic subspace M, of M is X-invariant is essential. Thus, the question arises under
which conditions the isotropic subspace M of an X-invariant H-nonpositive subspace M
(where X is an H-hyponormal matrix) is X Finvariant. One immediate answer is given
in the following remark that can be verified in a straightforward manner.

Remark 8 If X is H-hyponormal and M is a maximal H-nonpositive subspace that is
invariant under both X and X, then its isotropic part My = M N MH is also invariant
under both X and X[,

Remark 9 Theorem 6 contains Theorem 3 as a special case, because clearly, the isotropic
part of an H-negative subspace is the zero space which is always invariant under X

We conclude the note with an observation that Proposition 4 and Theorem 6 are valid
also for Pontryagin space operators, where H is an invertible selfadjoint operator on a
Hilbert space with only finite dimensional invariant subspace corresponding to the positive
part of the spectrum of H. In the case of Theorem 6 an additional hypothesis that the
codimension of M is finite has to be imposed; this hypothesis would guarantee that M,
is finite dimensional. The proofs remain essentially the same.
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