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Abstract

It is proved that under certain essential additional hypotheses, a nonpositive in-

variant subspace of a hyponormal matrix admits an extension to a maximal nonposi-

tive subspace which is invariant for both the matrix and its adjoint. Nonpositivity of

subspaces and the hyponormal property of the matrix are understood in the sense of

a nondegenerate inner product in a finite dimensional complex vector space. The ob-

tained theorem combines and extends several previously known results. A Pontryagin

space formulation, with essentially the same proof, is offered as well.
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1 Introduction

On the vector space C
n, equipped with the standard inner product, we fix an indefinite

inner product [·, ·] determined by an invertible Hermitian n× n matrix H via the formula

[x, y] = 〈Hx, y〉, x, y ∈ C
n.

Here, 〈·, ·〉 denotes the standard inner product.
A subspace M ⊆ C

n is said to be H-nonnegative if [x, x] ≥ 0 for every x ∈ M, H-
positive if [x, x] > 0 for every nonzero x ∈ M, H-nonpositive if [x, x] ≤ 0 for every x ∈ M,
H-negative if [x, x] < 0 for every nonzero x ∈ M, and H-neutral if [x, x] = 0 for every
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x ∈ M. Note that by default the zero subspace is H-positive as well as H-negative. An
H-nonnegative subspace is said to be maximal H-nonnegative if it is not properly contained
in any larger H-nonnegative subspace. It is easy to see that an H-nonnegative subspace is
maximal if and only if its dimension is equal to the number i+(H) of positive eigenvalues
of H (counted with multiplicities). Analogously, an H-nonpositive subspace is maximal if
and only its dimension is equal to the number of negative eigenvalues of H.

Let X [∗] denote the adjoint of a matrix X ∈ C
n×n with respect to the indefinite inner

product, i.e., X [∗] is the unique matrix satisfying [x,Xy] = [X [∗]x, y] for all x, y ∈ C
n. One

easily sees that X [∗] = H−1X∗H. We recall that a matrix X ∈ C
n×n is called H-normal if

X [∗]X = XX [∗], and H-hyponormal if H(X [∗]X − XX [∗]) ≥ 0 (positive semidefinite). We
note that it is easy to check that if X is H-normal, resp., H-hyponormal, then P −1XP is
P ∗HP -normal, resp., P ∗HP -hyponormal, provided that P ∈ C

n×n is nonsingular.
It is well known that several classes of matrices in indefinite inner product spaces

allow extensions of invariant H-nonnegative subspaces to invariant maximal H-nonnegative
subspaces. Those classes are for example the ones of H-expansive matrices (including H-
unitary matrices), H-dissipative matrices (including H-selfadjoints), and H-skew-adjoint
matrices, see, e.g. [5] for a proof. The natural question arises if this extension problem
still has a solution for arbitrary H-normal matrices. A partial answer to this question is
contained in the following result.

Theorem 1 Let X ∈ C
n×n be H-normal, and let M0 be an H-neutral X-invariant sub-

space. Then there exists an X-invariant subspace M which is also maximal H-nonnegative,
i.e., H-nonnegative of dimension i+(H), and such that M0 ⊆ M. Also, there exists an
X-invariant maximal H-nonpositive subspace containing M0.

Theorem 1 can be obtained from results of [2], [3], and it holds also for Pontryagin
spaces; see [6] for details. A more general theorem is proved in [5]. The proof of Theorem 1
given in [5] depends essentially on the H-neutrality of the given invariant subspace M0.

Moreover, it was proven in [6] that if M is a maximal H-nonnegative subspace invariant
under an H-normal X, then it is also invariant under X [∗]. Also, the authors proved an
extension result in the framework of H-hyponormal matrices. For sake of convenience, we
recall the two main results from that paper.

Theorem 2 Let X ∈ C
n×n be H-hyponormal. If the spectrum of X + X [∗] is real or if the

spectrum of X−X [∗] is purely imaginary (including zero), then there exists an X-invariant
maximal H-nonnegative subspace that is also invariant for X [∗]. Also, there exists an X-
invariant maximal H-nonpositive subspace that is also invariant for X [∗].

The assumption that either the spectrum of X +X [∗] is real or the spectrum of X−X [∗]

is purely imaginary in Theorem 2 was shown in [6] to be essential even for the case of H-
normal matrices.

For a subspace M0 ⊆ C
n, we denote by

M[⊥]
0 = {x ∈ C

n | [x, y] = 0 for every y ∈ M0}

the H-orthogonal companion of M0.

2



Theorem 3 Let X ∈ C
n×n be H-hyponormal and let M0 be an X-invariant H-negative

subspace. Define X22 = X [∗]|
M

[⊥]
0

: M[⊥]
0 → M[⊥]

0 . Equip M[⊥]
0 with the indefinite inner

product induced by H. Assume that at least one of the two inclusions σ(X
[∗]
22 +X22) ⊂ R and

σ(X
[∗]
22 − X22) ⊂ iR holds true. Then there exists an X-invariant maximal H-nonpositive

subspace that contains M0.

The aim of this note is to unify and complete the theory of extensions of semidef-
inite subspaces for H-normal and H-hyponormal subspaces. In particular, we prove a
generalization of Theorem 3, where we start with an H-nonpositive X-invariant subspace
M0 instead of an H-negative one. The extension result is then not true without further
conditions, as it was already shown in [6].

2 Extension of nonpositive invariant subspaces.

We start by generalizing the fact that, for H-normal matrices X, invariant maximal H-
semidefinite subspaces are also invariant under the adjoint X [∗]. Indeed, it turns out that
this results holds true even for H-hyponormal matrices if the subspace under consideration
is assumed to be H-nonpositive.

Proposition 4 Let X ∈ C
n×n be H-hyponormal and let M be an X-invariant maximal

H-nonpositive subspace. Then M is invariant also for X [∗].

Proof. The proof is essentially the same as the corresponding proof for the case that
X is H-normal (see [6]). Nevertheless we provide the proof here to keep the paper self-
contained. Applying otherwise a suitable transformation X 7→ P−1XP , H 7→ P ∗HP ,
where P is invertible, we may assume that M is spanned by the first (say) m unit vectors
and that X and H have the forms

X =




X11 X12 X13 X14

X21 X22 X23 X24

0 0 X33 X34

0 0 X43 X44


 , H =




−I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I


 . (1)

Indeed, this follows easily by decomposing M = Mp ⊕ M0 into an H-neutral subspace
M0 and its orthogonal complement Mp (in M), and choosing an H-neutral subspace
Msl that is skewly linked to M0 (see [1], [4] for the definition and properties of skewly
linked subspaces). Note that the H-orthogonal complement to M+̇Msl is necessarily an
H-positive subspace due to the maximality of M. Then, selecting appropriate bases in all
subspaces constructed above, and putting the bases as the consecutive columns of a matrix
P , we get a transformation that yields the desired result. From (1), we then obtain that

X [∗] =




X∗
11 0 −X∗

21 0
−X∗

13 X∗
33 X∗

23 X∗
43

−X∗
12 0 X∗

22 0
−X∗

14 X∗
34 X∗

24 X∗
44


 (2)
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and

H(X [∗]X − XX [∗])

=




∗ ∗ ∗ ∗
∗ −X∗

12X12 − X34X
∗
34 ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ X∗

44X44 − X∗
14X14 + X∗

24X34 + X∗
34X24 − X44X

∗
44


 .(3)

Since X is H-hyponormal, i.e., H(X [∗]X − XX [∗]) ≥ 0, we obtain from the block (2, 2)-
entry in (3) that X12 = 0 and X34 = 0. But then the inequality for the block (4, 4)-entry
of (3) becomes

X∗

44X44 − X44X
∗

44 ≥ X∗

14X14 ≥ 0, (4)

which is easily seen to imply (by taking traces of both sides in (4)) that X44 is normal and
that X14 = 0. Thus, we obtain from (2) that M is also invariant for X [∗].

The following example illustrates Proposition 4 and shows that we cannot replace H-
nonpositivity in the hypothesis of the proposition by H-nonnegativity.

Example 5 Let

X =




1 0 0
0 1 1
0 0 1


 , H =




0 1 0
1 0 0
0 0 −1


 . (5)

Then one easily computes

X [∗] =




1 0 0
0 1 0
−1 0 1


 , H(X [∗]X − XX [∗]) =




1 0 0
0 0 0
0 0 0


 , X + X [∗] =




2 0 0
0 2 1
−1 0 2




that is, X is H-hyponormal and the spectrum of σ(X + X [∗]) = {2} is real. Then the
only X-invariant subspace that is maximal H-nonpositive is given by M− = Span(e2, e3).
Obviously, M− is also invariant under X [∗]. On the other hand, M+ = Span(e1) is a
maximal H-nonnegative subspace that is invariant under X, but M+ is not invariant
under X [∗]. However, Theorem 2 implies that X has a maximal H-nonnegative subspace
that is also invariant under X [∗]. Such a subspace is given by M̃+ = Span(e2).

The main results of this note is the following. It combines elements of Theorems 1, 2,
and 3.

Theorem 6 Let X be H-hyponormal, and let M be an H-nonpositive subspace that is
invariant under X. Let M0 be the isotropic part of M and decompose M[⊥] as

M[⊥] = M0+̇Mnd, (6)

for an H-nondegenerate subspace Mnd. Denote by X44 and H4 the compressions of X and
H to Mnd, respectively. Assume that M0 is invariant under X [∗] and that, in addition,
one of the three following conditions holds:
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(a) σ(X44 + X
[∗]
44 ) ⊂ R,

(b) σ(X44 − X
[∗]
44 ) ⊂ iR,

(c) X44 is H4-normal.

Then M can be extended to a maximal H-nonpositive subspace M− that is invariant under
both X and X [∗].

The conditions (a)– (c) are independent of the particular choice of a nondegenerate
subspace Mnd subject to (6).

Proof. A decomposition similar to (1) will be used. Since M0 is the isotropic part of M
we have that M0 = M∩M[⊥]. Let Msl be a subspace skewly linked to M0, let M2 be
a nondegenerate subspace of M which is H-orthogonal to both M0 and Msl, and finally,
let M4 be the H-orthogonal complement of M0+̇M2+̇Msl. Observe that M2 is an H-
negative subspace in M while M4 is a nondegenerate subspace in M[⊥]. With respect to
the decomposition

C
n =

(
M0+̇M2+̇Msl

)
[+̇]M4, (7)

where [+̇] stands for an H-orthogonal sum, and with respect to an appropriate choice of
basis in each of the components we write

H =




0 0 I 0
0 −I 0 0
I 0 0 0
0 0 0 H4


 , X =




X11 X12 X13 X14

X21 X22 X23 X24

0 0 X33 X34

0 0 X43 X44


 .

Using this we easily see that X [∗] is given by

X [∗] =




X∗
33 −X∗

23 X∗
13 X∗

43H4

0 X∗
22 −X∗

12 0
0 −X∗

21 X∗
11 0

H−1
4 X∗

34 −H−1
4 X∗

24 H−1
4 X∗

14 H−1
4 X∗

44H4




Partitioning Y := H(X [∗]X − XX [∗]) conformably with respect to the decomposition (7),
we obtain that the (4, 4)-block Y44 takes the form

Y44 = X∗

34X14 − X∗

24X24 + X∗

14X34 + H4(X
[∗]
44 X44 − X44X

[∗]
44 ), (8)

where X
[∗]
44 denotes the H44-adjoint H−1

44 X∗
44H44 of X44. By assumption, the isotropic part

M0 of M is invariant under X [∗] which implies X34 = 0. But then, we obtain that X44 is
H4-hyponormal, because we get from (8) that

H4(X
[∗]
44 X44 − X44X

[∗]
44 ) = Y44 + X∗

24X24 ≥ Y44 ≥ 0,

since X is H-hyponormal and, therefore, Y and Y44 are positive semidefinite.
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Next, we show that the conditions (a)– (c) are independent of the particular choice of a
nondegenerate subspace Mnd subject to (6), i.e., we may assume without loss of generality
that Mnd = M4. Indeed, choosing another nondegenerate subspace Mnd in M[⊥] in place
of M4 amounts to a change of basis in M[⊥] given by a matrix of the form

S =




I 0 0 S14

0 I 0 S24

0 0 I S34

0 0 0 S44


 ,

with S44 invertible. Thus, we obtain that with respect to the new decomposition

C
n =

(
M0+̇M2+̇Msl

)
+̇Mnd,

and the new basis, X and H take the forms

X̃ = S−1XS =




X11 X12 ∗ ∗
X21 X22 ∗ ∗
0 0 ∗ ∗
0 0 ∗ S−1

44 X44S44 + S−1
44 X43S34




H̃ = S∗HS =




0 0 I S34

0 −I 0 −S24

I 0 0 S14

S∗
34 −S∗

24 S∗
14 S44H4S44 + S∗

34S14 + S∗
14S34 − S∗

24S24




Since Mnd is assumed to be a subspace in M[⊥], we must have

0 =

[
I 0 0 0
0 I 0 0

]
(S∗)−1(S∗HS)




0
0
0
I


 =

[
I 0 0 0
0 I 0 0

]
H




S14

S24

S34

S44


 =

[
S34

−S24

]

which implies S24 = 0 and S34 = 0. Thus, the compressions X̃44 and H̃44 of X̃ resp. H̃ to
Mnd are

X̃44 = S−1
44 X44S44, H̃4 = S∗

44H4S44.

Clearly it follows from this that if each of the three conditions (a)– (c) holds for X̃44 and

H̃4, then it holds also for X44 and H4. In particular, the conditions (a)– (c) are independent
of the choice of Mnd.

Consequently, assuming Mnd = M4 and that we have either σ(X44 + X
[∗]
44 ) ⊂ R or

σ(X44 − X
[∗]
44 ) ⊂ iR or that X44 is H4-normal, we obtain from Theorems 1 and 2 and

Proposition 4 that there exists an X44-invariant maximal H4-nonpositive subspace N4 that
is also invariant under X

[∗]
44 . In that case M− := M+̇N4 is maximal H-nonpositive, X-

invariant, and thus, by Proposition 4 also X [∗]-invariant.

The following example, adapted from [6], shows that the conditions (a)–(c) are essential
in Theorem 6.

6



Example 7 Let

H =

[
0 1
1 0

]
, X =

[
i −i

i −i

]
.

Then one easily calculates

X [∗] =

[
i i

−i −i

]
, A :=

1

2
(X + X [∗]) =

[
i 0
0 −i

]
, S :=

1

2
(X − X [∗]) =

[
0 −i

i 0

]

and H(X [∗]X − XX [∗]) = 4 · I. Hence X is H-hyponormal but not normal. Moreover,
the spectrum of A is not real, and neither is the spectrum of S purely imaginary. Clearly,
the zero space {0} is H-neutral, invariant both under X and X [∗], and coincides with its
isotropic subspace. Now the only nontrivial invariant subspace for X is

M+ = Span

([
1
1

])

which is easily seen to be maximal H-nonnegative, but it is not invariant under X [∗],
because otherwise it would also be invariant for A and S which is obviously not the case.
Thus, {0} cannot be extended neither to a maximal H-nonnegative nor to a maximal
H-nonpositive subspace that is invariant for both X and X [∗].

On the other hand, Example 5 shows that also the hypothesis in Theorem 6 that the
isotropic subspace M0 of M is X [∗]-invariant is essential. Thus, the question arises under
which conditions the isotropic subspace M0 of an X-invariant H-nonpositive subspace M
(where X is an H-hyponormal matrix) is X [∗]-invariant. One immediate answer is given
in the following remark that can be verified in a straightforward manner.

Remark 8 If X is H-hyponormal and M is a maximal H-nonpositive subspace that is
invariant under both X and X [∗], then its isotropic part M0 = M∩M[⊥] is also invariant
under both X and X [∗].

Remark 9 Theorem 6 contains Theorem 3 as a special case, because clearly, the isotropic
part of an H-negative subspace is the zero space which is always invariant under X [∗].

We conclude the note with an observation that Proposition 4 and Theorem 6 are valid
also for Pontryagin space operators, where H is an invertible selfadjoint operator on a
Hilbert space with only finite dimensional invariant subspace corresponding to the positive
part of the spectrum of H. In the case of Theorem 6 an additional hypothesis that the
codimension of M is finite has to be imposed; this hypothesis would guarantee that Mnd

is finite dimensional. The proofs remain essentially the same.
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