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Abstract

It is proved that invertible operators on a Krein space which have an invariant

maximal uniformly positive subspace and map its orthogonal complement into a

nonnegative subspace allow polar decompositions with additional spectral properties.

As a corollary, several classes of Krein space operators are shown to allow polar

decompositions. An example in a finite dimensional Krein space shows that there

exist dissipative operators that do not allow polar decompositions.
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1 Introduction and main result

Let H be a (complex) Hilbert space with the inner product 〈· , ·〉, and let J be an invertible
(bounded) selfadjoint operator on H. The operator J induces a Krein space structure on
H in a standard way: The generally indefinite inner product on H is defined by [x, y] =
〈Jx, y〉, x, y ∈ H. A closed (in the topology induced by 〈· , ·〉) subspace M of H is called
uniformly J-positive if [x, x] ≥ ε〈x, x〉 for every x ∈ M, where ε > 0 is independent of
x. A uniformly J-positive subspace is called maximal uniformly J-positive if no strictly
larger subspace of H is uniformly J-positive. For example, the spectral subspace of J

corresponding to the positive part of the spectrum of J is maximal uniformly J-positive.
The reader is referred to the books [1], [3], [2], [10] (finite dimensional Krein spaces only),
[11] for information on geometry and classes of linear operators in Krein spaces.
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All operators on H are assumed to be linear and bounded (with respect to the Hilbert
norm ‖x‖ =

√

〈x, x〉). The adjoint operator Y [∗] of an operator Y with respect to J is
defined by [Y x, y] = [x, Y [∗]y], x, y ∈ H; the Hilbert space adjoint will be denoted Y ∗. An
operator Y on H is called J-selfadjoint if Y = Y [∗], and J-unitary if Y is invertible and
Y −1 = Y [∗]. If M ⊆ H is a subspace (all subspaces are assumed to be closed), then we
denote by M[⊥] the orthogonal companion of M, i.e., the subspace formed by the vectors
J-orthogonal to M.

A J-polar decomposition of an operator X is a decomposition of the form X = UA,
where U is J-unitary and A is J-selfadjoint. A particular kind of J-polar decompositions,
involving the notion of J-modulus, was introduced in [14], [15]. Recently, polar decompo-
sitions in finite dimensional Krein spaces were studied in [7], [4], [5], [6], [12], and in Πκ

spaces in [13]. In contrast with the Hilbert space case, there exist operators already on a
2-dimensional Krein space that do not admit a J-polar decomposition.

Of particular interest are J-polar decompositions in which the operator A has additional
spectral properties. For example, the spectrum of J-modulus is assumed to be positive. In
the finite dimensional case, if a J-polar decomposition exists, one can always choose A to
have its spectrum in the closed right halfplane (this follows easily from the results in [5]).

In this paper we prove the following result. It asserts existence and uniqueness of a
J-polar decomposition of X with the spectrum of A located in a quarterplane centered
about the positive half-axis, provided X has an invariant subspace that satisfies certain
geometric conditions.

Theorem 1.1 Let X be an invertible operator on H, and suppose that X has an invariant

maximal uniformly J-positive subspace M such that X(M[⊥]) is J-nonpositive. Then X

allows a J-polar decomposition X = UA such that

σ(A) ⊆ {z ∈ C : Re (z) ≥ |Im (z)|} \ {0}. (1.1)

Moreover, the J-polar decomposition X = UA with the property (1.1) is unique.

If in addition, the restriction of X to M is invertible, and the subspace X(M[⊥]) is

uniformly J-negative, then for the unique J-polar decomposition with (1.1) we actually have

σ(A) ⊆ {z ∈ C : Re (z) > |Im (z)|} . (1.2)

Note that invertibility of X|M follows automatically from that of X if at least one of
the two spectral subspaces of J corresponding to the positive part and to the negative part
of σ(J) is finite dimensional.

The proof is based on a lemma which is independently interesting.

Lemma 1.2 If an invertible operator X is such that X [∗]X has no spectrum in the open,

resp. closed, left halfplane, then X allows a J-polar decomposition X = UA such that (1.1),
resp., (1.2), holds true. Moreover, the J-polar decomposition X = UA with the property

(1.1), resp., (1.2), is unique.
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Proof Using the functional calculus, define

A =
1

2πi

∫

Γ

z1/2(zI − X [∗]X)−1dz,

where Γ is a closed simple rectifiable contour that does not intersect the negative semiaxis,
contains the spectrum of X [∗]X in its interior, and is symmetric with respect to the real
axis (z ∈ Γ implies z ∈ Γ), and where z1/2 is the analytic branch of the square root function
defined on Γ and its interior and such that z1/2 > 0 if z > 0. Then A2 = X [∗]X, and one
easily checks that A is J-selfadjoint. Moreover, by the spectral mapping theorem (1.1) or
(1.2), as the case may be, holds true. Next, we show that U := XA−1 is J-unitary. Clearly,
U is invertible, and UU [∗] = XA−2X [∗] = X(X [∗]X)−1X [∗] = I.

It remains to prove the uniqueness. Let X = UA be a polar decomposition, where
A satisfies (1.1). (In particular, this case contains polar decompositions, where A satis-
fies (1.2).) Then A2 = X [∗]X. Again, let Γ be a closed simple rectifiable contour that does
not intersect the negative semiaxis, contains the spectrum of X [∗]X in its interior, and is
symmetric with respect to the real axis and let z1/2 be the analytic branch of the square
root function defined on Γ and its interior and such that z1/2 > 0 if z > 0. Define

A1 =
1

2πi

∫

Γ

z1/2(zI − X [∗]X)−1dz =
1

2πi

∫

Γ

z1/2(zI − A2)−1dz.

Now

(z − A2)−1 =
1

2
A−1

(

(z1/2 − A)−1 − (z1/2 + A)−1
)

.

So,

AA1 =
1

4πi

(
∫

Γ

z1/2(z1/2 − A)−1dz −
∫

Γ

z1/2(z1/2 + A)−1dz

)

.

We substitute z
1

2 = t, and define Γ′ = {z 1

2 | z ∈ Γ}. Then z = t2 on Γ with t ∈ Γ′, and
substitution gives

AA1 =
1

2πi

(
∫

Γ′

t2(t − A)−1dt −
∫

Γ′

t2(t + A)−1dt

)

.

Since the real part of t is nonnegative on Γ′, we have that σ(−A) is in the exterior of Γ′.
So the second integral above is zero, as the integrand is analytic inside Γ′. Hence

AA1 =
1

2πi

∫

Γ′

t2(t − A)−1dt.

Now since σ(A2) is contained in the interior of Γ and since A satisfies (1.1), we have that
σ(A) is contained in the interior of Γ′. Therefore, by the functional calculus of A, we have
that

AA1 = A2,

and as A is invertible, it follows that A = A1. Thus A is unique, and hence also U = XA−1.
2
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We mention in passing that the uniqueness of A follows also from the following general
result concerning a monic operator polynomial L(λ) and its monic operator polynomial
right divisor L1(λ) of degree k (we apply the result with L(λ) = z2I −X [∗]X and L1(λ) =
zI −A): If γ is a closed rectifiable contour such that the spectrum of L1(λ) is inside γ and
the spectrum of the operator polynomial L(λ)(L1(λ))−1 is outside γ, then there exists only
one operator polynomial right divisor of L(λ) with spectrum inside γ and the same degree
k, namely L1(λ). This follows easily from the spectral theory of operator polynomials [9],
also [17]. For further details we refer the reader to these sources.

Proof (of the theorem). By the lemma we need to show that

σ(X [∗]X) ∩ {z ∈ C : Re (z) < 0} = ∅. (1.3)

Write X and J as 2 × 2 block operator matrices with respect to the orthogonal decompo-
sition H = M⊕ (M)⊥:

X =

(

X11 X12

0 X22

)

, J =

(

J11 J12

J∗
12 J22

)

.

Here, J11 is positive definite and invertible. Applying a transformation

X 7→ P−1XP, J 7→ P ∗JP, where P =

(

J
−1/2
11 −J−1

11 J12

0 I

)

,

we can (and will) assume without loss of generality that J11 = I and J12 = 0. Since M is
maximal uniformly J-positive, the (2, 2)-block J22 is necessarily congruent to −I. Thus,
we may assume that X and J have the forms

X =

(

X11 X12

0 X22

)

, J =

(

I 0
0 −I

)

. (1.4)

Then one easily computes that

X [∗]X =

(

X∗
11X11 X∗

11X12

−X∗
12X11 X∗

22X22 − X∗
12X12

)

. (1.5)

As X is invertible, so is X [∗]X.
Arguing by contradiction, suppose that X [∗]X has spectrum in the open left half plane,

and let λ ∈ C, Re (λ) < 0 be a boundary point of σ(X [∗]X). Then λ belongs to the
approximate point spectrum (see, e.g., [8]), i.e., there is a sequence {zn = (xn, yn)}∞n=1,
xn ∈ M, yn ∈ (M)⊥ such that ‖zn‖ = 1 and (X [∗]X − λI)zn −→ 0 as n −→ ∞:

X∗

11X11xn + X∗

11X12yn − λxn −→ 0, (1.6)

−X∗

12X11xn + (X∗

22X22 − X∗

12X12)yn − λyn −→ 0. (1.7)

From the fact that Re (λ) is negative, we obtain that λI − X∗
11X11 is invertible and the

inverse (λI −X∗
11X11)

−1 has a negative definite and invertible selfadjoint part. Recall that
for any operator X on H, the operator 1

2
(X + X∗) is called the selfadjoint part of X.
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We get from (1.6):

xn − (λI − X∗

11X11)
−1X∗

11X12yn −→ 0. (1.8)

Inserting this in (1.7) we obtain

(

λI − (X∗

22X22 − X∗

12X12) + X∗

12X11(λI − X∗

11X11)
−1X∗

11X12

)

yn −→ 0. (1.9)

We set

F (λ) = λI − (X∗

22X22 − X∗

12X12) + X∗

12X11(λI − X∗

11X11)
−1X∗

11X12. (1.10)

The condition that X(M[⊥]) is J-nonpositive translates into X∗
22X22 −X12X

∗
12 being posi-

tive semidefinite. It then follows from (1.10) that F (λ) has a negative definite and invertible
selfadjoint part. In particular, F (λ) is invertible.

Hence from (1.9) we see that yn −→ 0. Then (1.8) implies that also xn −→ 0, a
contradiction with ‖zn‖ = 1.

The proof of the additional part of Theorem 1.1 follows the same lines. We now
have Re (λ) ≤ 0. The invertibility of X|M implies that X∗

11X11 is invertible, hence again
λI − X∗

11X11 is invertible and the inverse (λI − X∗
11X11)

−1 has a negative definite and
invertible selfadjoint part. The condition that X(M[⊥]) is uniformly J-negative means
that X∗

22X22−X12X
∗
12 is positive definite invertible. So we conclude again from (1.10) that

F (λ) is invertible, and obtain a contradiction. 2

Remark 1.3 The theorem obviously remains true if M is assumed to be an invariant
maximal uniformly J-negative subspace of X such that X(M[⊥] is J-nonnegative. (Replace
J with −J in the theorem.)

2 Polar decompositions for various classes of opera-

tors and examples

Several consequences of Theorem 1.1 and illustrative examples are presented in this section.

Corollary 2.1 Let X be an invertible operator such that the spectrum of X does not

intersect the unit circle, and assume that one of the following two conditions holds:

(a.) the spectrum of X does not intersect the unit circle, and X is strictly monotone; that

is, either [Xx,Xx] > [x, x] for every nonzero x ∈ H, or [Xx,Xx] < [x, x] for every

nonzero x ∈ H.

(b.) the spectral subspace of J corresponding to the positive part of σ(J) is finite dimen-

sional, and [Xx,Xx] > [x, x] for every nonzero x ∈ H with [x, x] ≥ 0.

Then X admits a J-polar decomposition with the property (1.1).
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Proof First consider case (a.) Assume that [Xx,Xx] > [x, x] for every nonzero x ∈ H,
and that the spectrum of X does not intersect the unit circle. The proof of the case
[Xx,Xx] < [x, x] is similar.

According to [11, Theorem 11.1] there exist two subspaces H− and H+ which are X-
invariant and maximal J-negative, respectively, maximal J-positive, and for which we have
the direct sum decomposition H = H++̇H−. Observe that this direct sum decomposition
is not necessarily J-orthogonal. Note that the statements cited from [11] are made for the
case of Πκ spaces, that is, for spaces for which the spectral subspace of J corresponding to
the positive part of σ(J) is finite dimensional. However, the proof given there carries over
directly to the general case, as is already remarked in [11] (Note 2 on page 80).

According to [1, Theorem 5.2] the spaces H− and H+ are uniformly J-negative, respec-
tively, uniformly J-positive. In order to be able to apply Theorem 1.1, we will establish
that X(H[⊥]

− ) is J-nonnegative. Then in view of Remark 1.3, we can apply Theorem 1.1

with “positive” replaced by “negative” everywhere in the statement. So, let x ∈ H[⊥]
− \{0}.

According to [3, Lemma I.6.3] the space H[⊥]
− is J-nonnegative. So, [x, x] ≥ 0. Since

[Xx,Xx] > [x, x] it follows that Xx is a J-positive vector. Hence X(H[⊥]
− ) is J-nonnegative.

In case (b.), the result follows in the same way, but using [11, Theorem 11.4] instead
of [11, Theorem 11.1]. 2

It is known that in finite dimensional Krein spaces strictly monotone operators always
allow J-polar decompositions, see [14], [4, Theorem 2.4].

Example 2.2 Let λ > 0, ε = ±1 and consider

J = ε

(

0 1
1 0

)

, X = ε

(

−iλ i
2λ

0 iλ

)

.

Then

i(X∗J − JX) =

(

0 0
0 1

λ

)

,

so that X is J-dissipative. Recall that X is J-dissipative if 1
2i

(JX − X∗J) is a positive
semidefinite matrix. If X were to admit a J-polar decomposition, then X [∗]X would be
the square of the J-selfadjoint factor. However,

X [∗]X =

(

−λ2 1
0 −λ2

)

and this does not have a J-selfadjoint square root (see also [5, Theorem 4.4]). We conclude
that not every J-dissipative operator admits a J-polar decomposition.

Recall that a J-dissipative operator in a finite dimensional Krein space always has an
invariant maximal J-nonnegative subspace (see, e.g., [16]). In Example 2.2, the X-invariant
maximal J-nonnegative subspaces are

M1 := Span

(

1
0

)

, ε = ±1
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and

M2 := Span

(

1
4λ2

)

, ε = 1.

Clearly, M[⊥]
1 = M1, hence X(M[⊥]

1 ) = M1 is J-nonpositive.

Thus, we cannot replace the condition that X has an invariant maximal uniformly
J-positive subspace in Theorem 1.1 by the condition that X has an invariant maximal
J-nonnegative subspace, not even in the finite dimensional case.

Example 2.3 Let

J =

(

1 0
0 −1

)

, B = i

(

1 α

0 −1

)

, α ∈ C, |α| ≤ 2.

Then B is strictly J-dissipative, i.e., i(B∗J − JB) is positive definite, for |α| < 2 and
J-dissipative, i.e., i(B∗J − JB) is positive semidefinite, for |α| ≤ 2. Moreover,

B[∗]B =

(

1 α

−α 1 − |α|2
)

.

One easily checks that this matrix has the eigenvalues

1 − 1

2
|α|2 ± 1

2

√

|α|4 − 4|α|2.

Thus, B[∗]B has no eigenvalues on the negative half axis for |α| < 2 and hence, B does
admit J-polar decomposition by the results in [5].

Take M1 = Span

(

1
0

)

. Then M1 is a B-invariant maximal uniformly J-positive

subspace. Then

B(M[⊥]
1 ) = B

(

Span

(

0
1

))

= Span

(

α

−1

)

.

Clearly this is J-nonpositive only if |α| ≤ 1. So, for the case |α| ≤ 1 Theorem 1.1 applies
and asserts unique existence of a J-polar decomposition B = UA, where A satisfies (1.1)
or (1.2).

However, for 1 < |α| < 2 Theorem 1.1 does not apply, not even in the version with
“positive” replaced by “negative” everywhere in the statement. Indeed, consider M2 =

Span

(

α

−2

)

. Then M2 is a B-invariant maximal uniformly J-negative subspace, and

B(M[⊥]
2 ) = B

(

Span

(

2
−α

))

= Span

(

|α|2 − 2
−α

)

.

This space is J-negative for 1 < |α| < 2, because

(

|α|2 − 2 , −α
)

(

1 0
0 −1

)(

|α|2 − 2
−α

)

= |α|4 − 5|α|2 + 4,
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which is negative for the indicated values of α. Observe that for
√

2 ≤ |α| < 2 the
eigenvalues of B[∗]B are located in the open left half plane, so B cannot have a J-polar
decomposition B = UA such that A satisfies (1.1) or (1.2). However, B still admits a J-
polar decomposition. When |α| = 2, B is only J-dissipative, but not strictly J-dissipative.
In this case B[∗]B is similar to a Jordan block of size 2 associated with the eigenvalue
−1. Hence B does not allow a J-polar decomposition because B [∗]B does not have a
J-selfadjoint square root. Again see also [5, Theorem 4.4].

The last observation in Example 2.3 gives rise to the following open question.

Problem 1 Does any strictly J-dissipative operator allow a J-polar decomposition?

The following result can be seen quite quickly as a corollary from our main theorem
(although a more direct approach is possible as well, which in the finite dimensional case
is probably more straightforward).

Corollary 2.4 Assume that X is invertible and commutes with a uniformly positive op-

erator, that is XY = Y X for some J-selfadjoint Y satisfying JY ≥ εI > 0, where ε > 0.
Then X admits a J-polar decomposition with the property (1.1).

Proof From [3, Theorem VIII.1.2] it follows that X is fundamentally reducible. Let M+

and M− be a fundamentally reducing pair of subspaces, i.e., they are both X-invariant,
they are uniformly J-positive and uniformly J-negative respectively, and H = M+[+̇]M−,
where this is a J-orthogonal direct sum decomposition. Hence, we can apply Theorem 1.1
to get the desired result. 2
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