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Abstract

The paper concerns several classes of matrices in possibly degenerate indefinite
inner products, such as expansive, dissipative, normal and plus matrices. The
main results concern existence of invariant maximal semidefinite subspaces for
matrices in these classes.
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1 Introduction

The theory and applications of semidefinite invariant subspaces for certain classes of
operators in indefinite inner product spaces, both finite and infinite dimensional, is well-
developed by now (see, e.g., the monographs [1], [2], [4], [8], [14], [17]). However, most
results in this area are available under the additional hypothesis that the indefinite inner
product is regular, i.e., the only vector orthogonal to the whole space is the zero vector.
At the same time, nonregular, or degenerate, indefinite inner products do appear in
various applications (see [3], [16], [21]). Because of this, and of general mathematical
interest, it is worthwhile to develop a more general theory of classes of operators and
semidefinite invariant subspaces in indefinite inner products that does not presuppose
regularity. Some work in this direction already exists (see [22]). In the present paper,
we continue work in this direction, with emphasis on semidefinite invariant subspaces.

We confine ourselves to finite dimensional spaces, as proofs of several of our main
results depend on finite dimensionality, although many statements in Section 2 can be
extended to some infinite dimensional indefinite inner product spaces.
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Throughout the paper, we consider the vector space F
n , where F is the real field

or the complex field. We fix the indefinite inner product [ · , · ] determined by a not
necessarily invertible Hermitian (or symmetric in the real case) n×n matrix H via the
formula

[x, y] = 〈Hx, y〉, x, y ∈ F
n.

(Here, 〈·, ·〉 denotes the standard inner product.) By i+(H) (respectively, i−(H), i0(H))
we denote the number of positive (respectively, negative, zero) eigenvalues (counted
with multiplicities) of H.

The rest of the paper is organized as follows. Section 2 is preliminary and reviews
the theory of semidefinite subspaces. Many results there may be well known but not
easily found in the literature. In Sections 3 to 6, we then discuss the existence of
maximal semidefinite subspaces that are invariant for matrices from various classes
with respect to the indefinite inner product, namely:

a) expansive matrices A: [Ax,Ax] ≥ [x, x], x ∈ F
n;

b) plus-matrices A: [Ax,Ax] ≥ 0 for all x ∈ F
n such that [x, x] ≥ 0;

c) dissipative matrices A: Im[Ax, x] ≥ 0, x ∈ F
n (in the complex case);

d) normal matrices A: A∗HA = HAH†A∗H, where H† denotes the Moore-Penrose
generalized inverse of H.

We note that in each case it is easy to check that if A is from one of the classes of
matrices in a)–d) with respect to the inner product induced by H, then P−1AP is from
the corresponding class with respect to the inner product induced by P ∗HP , provided
that P is nonsingular.

We start investigating expansive matrices in Section 3. The key result is that for
an H-expansive matrix A ∈ F

n×n and an A-invariant H-nonnegative subspace M0

there exists an A-invariant H-nonnegative subspace M ⊇ M0 such that dim M =
i+(H)+i0(H). This result is the basis for analogous results for plus-matrices, described
in Section 4, and for dissipative matrices, described in Section 5. In Section 6 we discuss
H-normal matrices. We first prove that in a nondegenerate indefinite inner product
space any H-normal matrix has an invariant maximal H-nonnegative subspace. Our
proof is constructive, and in that way it differs from the one given in [2]. The second
main result of the section concerns spaces with a degenerate indefinite inner product.
We show that if N is H-normal, then there is an H-nonnegative N -invariant subspace
M with dim M = i+(H) + i0(H).

We shall use the following notations in the sequel: N is the set of positive numbers;

ek =
[

0 · · · 0 1 0 · · · 0
]T

∈ F
n denotes the kth standard unit vector (with 1

in the kth position) - the dimension n is understood from context; Span{x1, . . . , xk} is
the subspace spanned by the vectors x1, . . . , xk; Im X is the column space of a matrix
X; for a complex number z, Im z is the imaginary part of z; Zn is the n × n matrix
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with ones on the upper right - lower left diagonal and zeros elsewhere; Jn(λ) denotes
a Jordan block of size n associated with the eigenvalue λ; Ip and 0p stand for the p× p
identity and the p× p zero matrix (if p is clear from context, it will often be omitted);
A1⊕· · ·⊕Ak is a block diagonal matrix with diagonal blocks A1, . . . , Ak (in that order);
AT is the transpose of a matrix A; A ≥ 0 stands for positive semidefiniteness of matrix
a A; and ‖X‖ denotes the operator norm (largest singular value) of a matrix X.

2 Semidefinite subspaces

In this section we develop a general framework to handle various types of semidefinite
subspaces. The class of H-nonnegative subspaces is defined by

S≥0(H) =
{

V : V ⊆ F
n subspace such that [x, x] ≥ 0 for all x ∈ V \ {0}

}
. (2.1)

Analogously, we define the classes S>0(H), S≤0(H), S<0(H), S=0(H), of H-positive,
H-nonpositive, H-negative, H-neutral subspaces, respectively, by replacing the symbol
≥ in (2.1) with >,≤, <, =, respectively.

Clearly, if a subspace V ⊆ F
n belongs to one of these classes, then so does every

subspace of V . Observe that by default (non-existence of nonzero vectors) the zero
subspace is simultaneously H-positive, H-negative, and H-neutral.

A subspace M ∈ S≥0(H) is called maximal H-nonnegative if there is no larger
subspace in the set S≥0(H). Analogously, maximal H-positive, H-nonpositive, H-
negative, and H-neutral subspaces are defined.

We note that the classes Sη(H), where η ∈ {≥ 0, > 0,≤ 0, < 0, = 0}, are naturally
transformed under congruence H 7→ S∗HS, where S ∈ F

n×n is invertible. Namely,

M ∈ Sη(H) if and only if S−1M
def
= {S−1x|x ∈ M} ∈ Sη(S

∗HS). (2.2)

As a consequence, we obtain the following useful lemma (whose elementary proof is
omitted).

Lemma 2.1 Let M be H-positive, respectively, H-negative, with dimension d. Then
there exists a nonsingular matrix S ∈ F

n×n such that S−1M = Span{e1, . . . , ed} and
S∗HS = H11⊕H22, where H11 ∈ F

d×d is positive definite, respectively, negative definite.

Proposition 2.2 Let F = C or F = R. Then
(a) M ∈ S≥0(H) is maximal H-nonnegative if and only if dim M = i+(H) + i0(H);
(b) M ∈ S>0(H) is maximal H-positive if and only if dim M = i+(H);
(c) M ∈ S≤0(H) is maximal H-nonpositive if and only if dim M = i−(H) + i0(H);
(d) M ∈ S<0(H) is maximal H-negative if and only if dim M = i−(H);
(e) M ∈ S=0(H) is maximal H-neutral if and only if dim M = min(i+(H), i−(H)) +
i0(H).
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The “if” parts of Proposition 2.2 follow from the interlacing inequalities for eigenval-
ues of compressions of Hermitian matrices to a subspace (see, e.g., [13, Theorem 4.3.8]
or [18, Chapter 8]). We omit the proofs of “only if” parts, noting only that Lemma 2.1
may be used for the proof of “only if” in (b), and the “only if” of (a) can be obtained
from (b) by considering H + εI, where ε > 0, and letting ε −→ 0.

In the following, we will discuss the existence of maximal nonnegative subspaces
that contain a given nonnegative subspace. Therefore, a description of nonnegative
and maximal nonnegative subspaces in terms of the range of certain matrices is needed.
Note that, setting i+(H) = p, i−(H) = q, and i0(H) = ν, we can assume that H has
the form

H = Ip ⊕−Iq ⊕ 0ν . (2.3)

Indeed, by applying a congruence H 7→ S∗HS for a suitable invertible matrix S, and
simultaneously transforming M0 7→ S−1M0, the form (2.3) can always be achieved.
Then, H-nonnegative subspaces can be conveniently described (see, e.g., [4] for the case
of invertible H):

Lemma 2.3 Let H be given by (2.3). Then a subspace M ⊆ F
n of dimension d > 0 is

H-nonnegative if and only if M has the form

M = Im




P 0
K 0
Y X


 , (2.4)

where P ∈ F
d×r, K ∈ F

q×r, and
[

Y X
]
∈ F

ν×d satisfy P ∗P = Ir, ‖K‖ ≤ 1,
X∗X = Id−r, and X∗Y = 0 for some r with 0 ≤ r ≤ d.

Proof. It is easy to see that every subspace of the form (2.4) is H-nonnegative.
Conversely, let M ∈ S≥0(H), dim M = d. Let f1, . . . , fd be a basis of M, and

partition

fj =




f1j

f2j

f3j


 , f1j ∈ F

p, f2j ∈ F
q, f3j ∈ F

ν .

We note that the vectors [f1j, f3j ]
T , j = 1, . . . , d, are linearly independent; otherwise,

M would contain a nonzero vector of the form
[
0, fT , 0

]T
, f ∈ F

q, a contradiction with
M being H-nonnegative.

Let r be the dimension of the span of the vectors f1j, j = 1, . . . , d. Without loss of
generality, we may assume that f11, . . . , f1r are linearly independent. By subtracting
from some of the fj, j > r, linear combinations of f1, . . . , fr, we may moreover assume
without loss of generality that f1j = 0 for j > r. It then follows that also f2j = 0 for
j > r, as otherwise M contains H-negative vectors.

Put F = [f11 · · · f1r]. Let P = FT , where T ∈ F
r×r is chosen so that P ∗P = Ie. As

F ∗F is invertible such a choice of T is possible. Now we take K = [f21 · · · f2r] T .
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Define X1 = [f3,r+1 · · · f3d] and Y = [f31 · · · f3r] T . Then

M = Im [f1 · · · fd] = Im




P 0
K 0
Y X1


 .

It follows that rank X1 = d − r. Then there is a matrix S such that X1 = XS with
X∗X = Id−r. So

M = Im




P 0
K 0
Y X


 .

Next, we show that we can take Y in such a way that X∗Y = 0. Indeed, the latter
condition simply means that Im X and Im Y are orthogonal. This can be achieved by
observing that adding to Y a matrix of the form XW , where W is arbitrary, does not
change M. Then X∗Y + X∗XW = X∗Y + W = 0 if we take W = −X∗Y . Finally, a
straightforward calculation shows that ‖K‖ ≤ 1. 2

Note that the representation (2.4) for a given M is not unique. We have the
following result.

Lemma 2.4 If

Im




P1 0
K1 0
Y1 X1


 = Im




P2 0
K2 0
Y2 X2


 , (2.5)

where P1 and P2 are p× r1 and p× r2 matrices such that P ∗
1 P1 = I and P ∗

2 P2 = I, and
X∗

1X1 = I, X∗
2X2 = I, X∗

i Yi = 0 for i = 1, 2, then r1 = r2 and P1 = P2W , Y1 = Y2W ,
K1 = K2W for some unitary d × d matrix W , and X1 = X2V for some unitary V .
Such unitary matrices W and V are unique.

Proof. We have



P1 0
K1 0
Y1 X1


 =




P2 0
K2 0
Y2 X2


Q, Q =

[
Q1 Q2

Q3 Q4

]
, Q1 ∈ F

r2×r1 , (2.6)

for some invertible matrix Q which is easily seen to be unique. Conditions P ∗
1 P1 = I

and P ∗
2 P2 = I imply Q∗

1Q1 = I; in particular, r2 ≥ r1. Reversing the roles of the
matrices in the left and the right hand sides of (2.6), we obtain also r1 ≥ r2. Thus,
r1 = r2, and Q1 is unitary. Next, we obtain from (2.6):

Q∗(Z2 ⊕ I)Q = Z1 ⊕ I,

where Zj = I + K∗
j Kj + Y ∗

j Yj, j = 1, 2. In particular,

Q∗
1Z2Q1 = Z1 − Q∗

3Q3, (2.7)
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and since upon subtracting a positive semidefinite matrix from a positive definite matrix
the eigenvalues can only decrease, we obtain that λk(Z2) ≤ λk(Z1), k = 1, 2 . . . , r1,
where λk(X) stand for the eigenvalues of a positive definite matrix X, in the non-
increasing order. Reversing the roles of Z1 and Z2 we obtain also λk(Z1) ≤ λk(Z2), and
hence Z1 and Z2 have the same eigenvalues. Now (2.7) implies Q3 = 0. Analogously
Q2 = 0. Now from (2.6) we have X1 = X2Q4, and (as for Q1) we show that Q4 is
unitary. 2

In particular Lemma 2.4 applies to an H-nonnegative subspace of the form (2.5).
However, for the validity of the lemma, it is not necessary that ‖K1‖ ≤ 1, ‖K2‖ ≤ 1.

Corollary 2.5 Every maximal H-nonnegative subspace M can be uniquely written in
the form

M = Im




Ip 0
K 0
0 Iν


 , (2.8)

where K ∈ F
q×p satisfies ‖K‖ ≤ 1. Conversely, every subspace of the form (2.8) is

maximal H-nonnegative.

Indeed, the uniqueness of (2.8) follows from Lemma 2.4. Existence of (2.8) follows
from Lemma 2.3 in which P is unitary, because in view of Proposition 2.2(a) the
dimension of M is equal to p + ν.

Next, we express containment of an H-nonnegative subspace in a maximal such
subspace, in terms of the representation (2.4).

Lemma 2.6 Let

M0 = Im




P0 0
K0 0
Y0 X0


 ∈ S≥0(H), M = Im




Ip 0
K 0
0 Iν


 ∈ S≥0(H),

where P0 ∈ F
p×r, K0 ∈ F

q×r, K ∈ F
q×p are such that P ∗

0 P0 = I and ‖K0‖ ≤ 1,
‖K‖ ≤ 1, and X∗

0X0 = I, X∗
0Y0 = 0. (In particular, M is maximal H-nonnegative).

Then M0 ⊆ M if and only if K0 = KP0.

Proof. If K0 = KP0, then obviously

[
P0

K0

]
=

[
I
K

]
P0, and therefore M0 ⊆ M.

Conversely, if M0 ⊆ M, then there exist matrices B11, B12, B21, B22 such that



P0 0
K0 0
Y0 X0


 =




I 0
K 0
0 I



[

B11 B12

B21 B22

]
.

It is immediate from this equality that in fact B12 = 0, B22 = X0, B21 = Y0 and
B11 = P0. It then follows that K0 = KB11 = KP0. 2

We will need also the following description of H-neutral subspaces:
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Lemma 2.7 Let H be invertible and let M be H-neutral with dimension d. Then
2d ≤ n and there exists a nonsingular P ∈ F

n×n such that P−1M = Span{e1, . . . , ed}
and

P ∗HP =




0 Id 0
Id 0 0
0 0 H33


 .

Proof. The result follows from the properties of skewly-linked neutral subspaces (see,
for example, [14, Lemma 3.1], or [7]). For completeness, we offer an independent proof.
By equation (2.2), we may assume that M = Span{e1, . . . , ed}. Since H is nonsingular,
we obtain from Proposition 2.2 that 2d ≤ n. Partition

H =




H11 H12 H13

H∗
12 H22 H23

H∗
13 H∗

23 H33


 .

Then H11 = 0 and hence,
[

H12 H13

]
is of full row rank. But then, there exists

matrices Q1 ∈ F
d×d and Q2 ∈ F

(n−2d)×(n−2d) such that Q1

[
H12 H13

]
Q2 =

[
Id 0

]
.

Setting P1 = Q1 ⊕ Q2, we obtain

P ∗
1 HP1 =




0 Id 0

Id Ĥ22 Ĥ23

0 Ĥ∗
23 Ĥ∗

33


 , P−1

1 M = M.

Setting furthermore

P = P1




I −1
2
Ĥ22 −Ĥ23

0 I 0
0 0 I


 ,

we obtain that P−1M = M and P ∗HP has the desired form. 2

3 Expansive matrices

In this section we focus on H-expansive matrices. Recall that a matrix A ∈ F
n×n is

called H-expansive if [Ax,Ax] ≥ [x, x] for all x ∈ F
n, or, equivalently, if A∗HA−H ≥ 0.

It turns out that the kernel Ker A := {x ∈ F
n : Ax = 0} of an H-expansive matrix A

is H-negative (as long as H is invertible). To prove this, we need the following auxiliary
result.

Lemma 3.1 Let A ∈ F
n×n be H-expansive. Then there exists a nonsingular matrix

S ∈ F
n×n such that

S∗HS = H1 ⊕ (−Ip2
) ⊕ 0p3

, S∗A∗HAS = M1 ⊕ 0p2
⊕ 0p3

, (3.1)

where M1, H1 ∈ F
p1×p1 are nonsingular and p1, p2, p3 ∈ N ∪ {0}.
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Proof. By the well-known canonical forms under congruence for pairs of Hermitian
matrices or pairs of symmetric matrices in the real case (see, e.g., [24], [25]), we may
assume that H and A∗HA have the forms

H = H1 ⊕ H2 ⊕ · · · ⊕ Hm, A∗HA = M1 ⊕ M2 ⊕ · · · ⊕ Mm,

where Mj and Hj have the same size, H1 and M1 are nonsingular, and Mj and Hj,
j > 1, are blocks of one of the following types:

type 1: Hj = εZp and Mj = εZpJp(0) for some p ∈ N, ε = ±1;
type 2: p ∈ N ∪ {0},

Hj =




0 0 Ip

0 0 0
Ip 0 0


 ∈ F

(2p+1)×(2p+1), Mj =




0 0 0
0 0 Ip

0 Ip 0


 ∈ F

(2p+1)×(2p+1),

type 3: Hj = εZpJp(0) and Mj = εZp for some p ∈ N, ε = ±1.
Clearly, since A is H-expansive, each block Mj − Hj is positive semidefinite. It is

easy to check that this is possible if and only if p = 1 and ε = −1 if Hj and Mj are
of type 1, p = 1 and ε = 1 if Hj and Mj are of type 3, and p = 0 if Hj and Mj are
of type 2. But then, after eventually permuting some blocks, H and A∗HA have the
forms

H = H1 ⊕ 0p2
⊕ (−Ip3

) ⊕ 0p4
, A∗HA = M1 ⊕ 0p2

⊕ 0p3
⊕ Ip4

.

Note that M1 −H1 is still positive semidefinite, i.e., the number of positive eigenvalues
of M1 is larger or equal to the number of positive eigenvalues of H1 (see, e.g., 7.7.4
in [13]). From the well-known fact that the number of positive (negative) eigenvalues
of A∗HA is always less or equal to the number of positive (negative, respectively)
eigenvalues of H (see, e.g., 4.5.11 in [13]), it follows that blocks of type 3 cannot occur
and hence, A∗HA and H have forms as in (3.1). 2

Corollary 3.2 Let H be invertible and let A ∈ F
n×n be H-expansive. Then Ker A is

H-negative.

Proof. If A is nonsingular, Ker A is H-negative by definition. Otherwise, let y ∈ Ker A.
Then y ∈ Ker A∗HA. Since H is invertible, it follows immediately from Lemma 3.1
and equation (2.2) that y∗Hy < 0. 2

Proposition 3.3 Let A ∈ F
n×n be H-expansive. Then Ker H is A-invariant.

Proof. Applying a transformation of the form (A,H) 7→ (S−1AS, S∗HS), we may
assume that H and A∗HA have the forms as in (3.1). Applying one more transformation
on M1 and H1, we may furthermore assume that

H = Ip1
⊕−Ip2

⊕−Ip3
⊕ 0, A∗HA =

[
M11 M12

M∗
12 M22

]
⊕ 0,
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where p1, p2, p3 ∈ N ∪ {0}, M11 ∈ F
p1×p1 , M12 ∈ F

p1×p2 , M22 ∈ F
p2×p2 . Let A be

partitioned conformably:

A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 .

With A∗HA − H also M11 − Ip1
= A∗

11A11 − A∗
21A21 − A∗

31A31 − Ip1
must be positive

semidefinite. This is possible only if A∗
11A11 is positive definite, i.e., only if A11 is

nonsingular. Next, we show A14 = 0. To see this, assume that A14 is not zero. Then
there exists a matrix P ∈ F

p4×p1 , p4 = n−p1−p2−p3, such that A11−PA14 is singular.
(For example, if v ∈ F

p4 is such that A14v 6= 0 choose P such that PA14v = A11v.)
Applying the transformation (A,H) 7→ (P−1AP ,P∗HP) with

P =




Ip1
0 0 0

0 Ip2
0 0

0 0 Ip3
0

P 0 0 Ip4


 ,

we find that the (1, 1)-block of P−1AP is A11 − PA14, whereas P∗HP = H and
P∗A∗HAP = A∗HA. This contradicts the fact just mentioned that the (1, 1)-block
of P−1AP must be nonsingular. But A14 = 0 implies that the (4, 4)-block of A∗HA has
the form −A∗

24A24 − A∗
34A34 = 0. This is possible only if A24 = 0 and A34 = 0. Hence,

Ker H is A-invariant. 2

The key result in this section is the following theorem.

Theorem 3.4 Let A ∈ F
n×n be H-expansive and let M0 ⊆ F

n be an A-invariant
subspace which is H-nonnegative. Then there exists an H-nonnegative A-invariant
subspace M ⊇ M0 such that dimM = i+(H) + i0(H).

Proof. For the case when H is invertible, the proof follows by a well-known argument
that originated with M. G. Krĕın [15] using the Schauder’s fixed point theorem [11,
Section 106] and the representation of M0 according to Lemma 2.3:

M0 = Im

[
P0

K0

]
,

where P ∗
0 P0 = I, ‖K0‖ ≤ 1; and see [2, Section 3.3] for an application of a fixed point

theorem in a more general Krein space context.
Thus, consider the case that H is singular. Without loss of generality, we may

assume that H has the form (2.3), i.e., H = H1 ⊕ 0, where H1 = Ip ⊕ (−Iq). Then
Proposition 3.3 implies that A takes the form

A =

[
A11 0
A21 A22

]
,
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where A11 ∈ F
(p+q)×(p+q) is easily seen to be H1-expansive. Represent M0 according to

Lemma 2.3:

M0 = Im

[
Q0 0
Y0 X0

]
, Q0 =

[
P0

K0

]
,

where P ∗
0 P0 = Ip, ‖K0‖ ≤ 1, X∗

0X0 = I, and X∗
0Y0 = 0. Then M̃0 = Im Q0 is

H1-nonnegative and A11-invariant. By the part already proved, there exists an i+(H)-

dimensional, H1-nonnegative, and A11-invariant subspace M̃ that contains M0. Let
M̃ = Im Q for some matrix Q of appropriately chosen dimension, i.e., Q0 = QW0 for
some matrix W0. Then M := Im(Q ⊕ Iν) is H-nonnegative and A-invariant. Further-
more, it contains M0, and has dimension i+(H) + i0(H). 2

Obviously, every H-isometric matrix is H-expansive (recall that a matrix A is called
H-isometric if [Ax,Ax] = [x, x] for every x ∈ F

n), Thus, as an important corollary of
Theorem 3.4, we obtain:

Theorem 3.5 Let A ∈ F
n×n be an H-isometric, and let M0 ⊆ F

n be an A-invariant
H-nonnegative, respectively, H-nonpositive, subspace. Then there exists an A-invariant
H-nonnegative, respectively, H-nonpositive, subspace M such that M ⊇ M0 and
dimM = i+(H), respectively, dimM = i−(H).

The part of Theorem 3.5 concerning H-nonpositive subspaces follows by noticing
that A is also expansive with respect to −H, and applying Theorem 3.4 with H replaced
by −H.

4 Plus-matrices

Recall that a matrix A ∈ F
n×n is called a plus-matrix if [Ax,Ax] ≥ 0 for every x ∈ F

n

such that [x, x] ≥ 0. The following lemma is well known in the complex case (and can
be proved by using the Toeplitz-Hausdorff theorem on convexity of the numerical range
[1], and see [6] for a proof in the real case).

Lemma 4.1 If A is a plus-matrix, then there exists a nonnegative number k such that
[Ax,Ax] ≥ k[x, x] for all x ∈ F

n.

Denote by k(A) the smallest value of k ≥ 0 for which Lemma 4.1 holds.

Theorem 4.2 Let A be a plus matrix such that Im A is not H-nonnegative, and let
M0 ⊆ F

n be an A-invariant subspace which is H-nonnegative. Then there exists H-
nonnegative A-invariant subspace M ⊇ M0 such that dim M = i+(H) + i0(H).

Proof. By Lemma 4.1, we have [Ax,Ax] ≥ k(A)[x, x] for all x ∈ F
n. Since Im A is not

H-nonnegative, it follows that k(A) > 0. Scaling A, if necessary, we can assume that
k(A) = 1. Then A is H-expansive, and the result follows from Theorem 3.4. 2

The hypothesis that Im A is not H-nonnegative is essential in Theorem 3.4. The
following example illustrates this.
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Example 4.3 Let p and q are real numbers such that 4p + q2 > 0. Furthermore, let

A =




0 1 0 p
−1 0 1 q

0 0 0 0
0 0 0 0


 , H =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , M0 = Span








1
0
1
0








.

Then, A is a plus matrix; in fact, [Ax,Ax] = 0 for every x ∈ F
4. Moreover, AM0 =

{0} which implies, in particular, that M0 is A-invariant. The subspace M0 is H-
positive. On the other hand, Ker A = Span{[1, 0, 1, 0]T , [0,−p,−q, 1]T} is not H-
nonnegative. If F = R, then the only two-dimensional A-invariant subspaces are Ker
A and Im A, and the latter does not contain M0. If F = C, then, besides Ker
A, there are two two-dimensional A-invariant subspaces that contain M0, namely,
Span

{
[1 0 1 0]T , [1 ± i 0 0]T

}
. But

[
1 ∓i 0 0
1 0 1 0

]
H




1 1
±i 0
0 1
0 0


 =

[
0 1
1 2

]
,

so neither of these two subspaces is H-nonnegative. 2

Theorem 4.4 Let A ∈ F
n×n be a plus-matrix. Then there exists an H-nonnegative

A-invariant subspace M such that dim M = i+(H) + i0(H).

Proof. By Lemma 4.1 we have [Ax,Ax] ≥ k(A)[x, x] for all x ∈ F
n and k(A) ≥ 0. If

k(A) = 0, then the range of A is an H-nonnegative subspace, and we are done. Indeed,
any maximal H-nonnegative subspace M containing the range of A is A-invariant.
Otherwise, apply the previous theorem with M0 = {0}. 2

5 Dissipative matrices

Let us consider the case F = C first. A matrix B ∈ C
n×n is called H-dissipative if

Im[Bx, x] ≥ 0 for every x ∈ C
n. The dissipativity condition can be easily interpreted

in terms of positive definiteness: A matrix B is H-dissipative if and only if

i(HB − B∗H) ≤ 0. (5.1)

Lemma 5.1 (a) Let A be H-expansive, and let w, η ∈ C be such that w has positive
imaginary part, |η| = 1, and η is not an eigenvalue of A. Then the matrix

B = (wA − wηI)(A − ηI)−1 (5.2)

is H-dissipative.
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(b) Let B be H-dissipative, and let w, η ∈ C be such that |η| = 1, w has positive
imaginary part, and is not an eigenvalue of B. Then the matrix

A = η(B − wI)(B − wI)−1 (5.3)

is H-expansive.

The proof is obtained by elementary algebraic manipulations and therefore is omit-
ted.

Theorem 5.2 (F = C) Let B ∈ C
n×n be H-dissipative, and let M0 ⊆ C

n be a B-
invariant H-nonnegative, respectively, H-nonpositive subspace. Then there exists a
B-invariant maximal H-nonnegative, respectively, maximal H-nonpositive subspace M
such that M ⊇ M0.

Proof. Assume M0 is H-nonnegative. Let A be given by (5.3). Then A is H-expansive.
Note also that M0 is A-invariant, because A is a function of B. By Theorem 3.4, there
exists an A-invariant subspace M which is maximal H-nonnegative and contains M0.
Since B is a function of A (given by formula (5.2)) M is also B-invariant. This proves
the part of Theorem 5.2 for H-nonnegative subspaces. If M0 is H-nonpositive, apply
the already proved part of Theorem 5.2 to the (−H)-dissipative matrix −B. 2

Recall that a matrix A is called H-skewadjoint if HA = −A∗H. Since every H-
selfadjoint matrix is obviously H-dissipative and since every H-skewadjoint matrix is
just an H-selfadjoint matrix multiplied with the imaginary unit, we immediately obtain
the following corollary:

Corollary 5.3 (F = C) Let B ∈ C
n×n be H-selfadjoint or H-skewadjoint, and let

M0 ⊆ C
n be a B-invariant H-nonnegative, respectively, H-nonpositive subspace. Then

there exists a B-invariant maximal H-nonnegative, respectively, maximal H-nonpositive
subspace M such that M ⊇ M0.

Theorem 5.2 can also be extended to the real case. But first, we have to modify the
definition for H-dissipative matrices, since (5.1) for real matrices B and H implies that
B is H-selfadjoint, and not every real H-selfadjoint matrix has an invariant subspace
that is maximal H-nonnegative, as easy examples show. Thus, for the case F = R, let us
call C ∈ R

n×n real H-dissipative if HC + CT H ≤ 0, i.e., if −iC is H-dissipative. (Note
that this corresponds exactly to the definition of dissipative matrices (or operators) in
the sense of [23].) Clearly, in the complex case the theory of real H-dissipative matrices
is essentially the same as the theory of H-dissipative matrices, but in the real case, the
two definitions lead to fundamentally different classes of matrices.

Theorem 5.4 (F = R) Let C ∈ R
n×n be real H-dissipative, and let M0 ⊆ R

n be a
C-invariant H-nonnegative, respectively, H-nonpositive subspace. Then there exists a
C-invariant maximal H-nonnegative, respectively, maximal H-nonpositive subspace M
such that M ⊇ M0.
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Proof. Let % < 0 such that % is neither an eigenvalue of C, nor of −C. Then the real
matrix A = (C + %I)(C − %I)−1 is H-expansive by a simple computation. The rest of
the proof proceeds analogously to the proof of Theorem 5.2. 2

Since any H-skewadjoint matrix is real H-dissipative, we immediately obtain the
following corollary:

Corollary 5.5 (F = R) Let C ∈ R
n×n be H-skewadjoint, and let M0 ⊆ R

n be a
C-invariant H-nonnegative (respectively, H-nonpositive) subspace. Then there exists
a C-invariant maximal H-nonnegative (respectively, maximal H-nonpositive) subspace
M such that M ⊇ M0.

6 Normal matrices

First, let H be invertible. Then for M ∈ F
n×n, the matrix M [∗]H := H−1M∗H, or M [∗]

if there is no risk of confusion, is called the H-adjoint of M . This is the unique matrix
satisfying

[Mx, y] = [x,M [∗]y] for all x, y ∈ F
n. (6.1)

A matrix N ∈ F
n×n is called H-normal if and only if N and N [∗] commute, i.e., if and

only if H−1N∗HN = NH−1N∗H. If H is singular, then for M ∈ F
n×n an “H-adjoint”,

i.e., a matrix M [∗] satisfying (6.1) need not exist, and if it exists, it need not be unique.
Therefore, we have to modify the definition of H-normal matrices in this case. Noting
that H-normality is equivalent to the identity N ∗HN = HNH−1N∗H, we say that a
matrix N ∈ F

n×n is H-normal if and only if

N∗HN = HNH†N∗H,

where H† denotes the Moore-Penrose generalized inverse of H. (This definition has
been introduced in [19] and used subsequnetly also in [5].) In the case F = C and H
invertible, it is well known that there exists a nonsingular matrix P ∈ C

n×n such that

P−1NP = N1 ⊕ · · · ⊕ Nm, P ∗HP = H1 ⊕ · · · ⊕ Hm, (6.2)

where, for each j, Nj and Hj have the same size and Nj has at most two distinct
eigenvalues, see [10], and [12] for a corresponding result in the real case. This is no
longer true in the case that H is singular as the following example illustrates:

Example 6.1 Let

N =




−1 0 0
0 0 0
0 0 3


 , H =




0 1 0
1 −1 1
0 1 0


 , H† =

1

16




3 4 5
4 0 12
5 12 3


 .

Then it is easy to check that A is H-normal, in fact, N ∗HN = HNH†N∗H = 0.
Suppose, a decomposition as in (6.2) with m > 1 exists. Note that the eigenvectors
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of N associated with the eigenvalues −1 and 3 are H-neutral and that the eigenvector
associated with the eigenvalue 0 is H-negative. Then the fact that Ker H is not
N -invariant and that i+(H) = i−(H) = i0(H) = 1 implies that the only possible
decomposition as in (6.2) with m > 1 is

P−1NP = N1 ⊕
[

0
]
, P ∗HP =

[
1 0
0 0

]
⊕
[
−1

]

for some nonsingular matrix P ∈ F
3×3 (up to congruent forms for the blocks of P ∗HP ).

This contradicts the fact that the subspace spanned by the eigenvectors of N associated
with the eigenvalues −1 and 3 is H-neutral.

The question whether every H-normal matrix has an invariant subspace that is
maximal H-nonnegative has a negative answer in the case F = R as can be seen from
the example

A =

[
α β
−β α

]
, H =

[
0 1
1 0

]
,

where α, β are real and β 6= 0. The answer, however, is affirmative in the case F = C

(and invertible H), see [2, Corollary 3.4.12]. For the sake of completeness, we present
an independent proof for this result.

Theorem 6.2 Let H be invertible and let N ∈ C
n×n be H-normal. Then there exists

an H-nonnegative N-invariant subspace M such that dimM = i+(H).

Proof. Let N = A + S be the decomposition of N into its H-selfadjoint part A and
its H-skewadjoint part S, i.e., A = 1/2(N + N [∗]) and S = 1/2(N − N [∗]). Then it is
easy to check that N is H-normal if and only if A and S commute. We will now show
by induction on n that A and S have a common invariant subspace that is maximal
H-nonnegative. Clearly, this subspace is also N -invariant. The case n = 1 is clear,
since either the zero space {0} or the full space C is maximal H-nonnegative. Next, let
n > 1. Since A and S commute, they have a common eigenvector v ∈ C

n.
Case (1): Span{v} is not H-neutral, i.e., Span{v} is H-positive of H-negative. By

Lemma 2.1, we may assume that

A =

[
A11 A12

0 A22

]
, S =

[
S11 S12

0 S22

]
, H =

[
H11 0
0 H22

]
,

where A11, S11, H11 ∈ C, H11 6= 0. Since A is H-selfadjoint and S is H-skewadjoint,
i.e., A∗H = HA and −S∗H = HS, we obtain that A12 = S12 = 0. Then the result
follows by using the induction hypothesis on A11, S11 and A22, S22.

Case (2): Span{v} is H-neutral. By Lemma 2.7, we may assume that

A =




A11 A12 A13

0 A22 A23

0 A32 A33


S =




S11 S12 S13

0 S22 S23

0 S32 S33


H =




0 Id 0
Id 0 0
0 0 H33


 .

14



Then the fact that A is H-selfadjoint and S is H-skewadjoint implies A23 = S23 = 0
as it can easily be seen from the identities A∗H = HA and −S∗H = HS. Also A33

is H33-selfadjoint, and S33 is H33-skewadjoint. From A23 = S23 = 0 one easily sees by
considering the 3, 3-block entry in SA = AS, that also A33S33 = S33A33. Then, by the
induction hypothesis, A33 and S33 have a common H-nonnegative invariant subspace
M̃ of dimension d̃ = i+(H33). Writing M̃ = Im X for some matrix X ∈ C

n×d̃ of full
column rank, we find that

M = Im




Id 0
0 0
0 X




is both A- and S-invariant, H-nonnegative, and has dimension i+(H) = d + i+(H33).
2

Next, we consider the question if every H-normal matrix N ∈ C
n×n has an invariant

subspace that is maximal H-nonnegative and that contains a given H-nonnegative N -
invariant subspace M0. (Note that, in general, M0 is invariant neither for the H-
selfadjoint part A, nor for the H-skewadjoint part S of N .) In its full generality, this
question is an open problem, but for the special case that M0 is neutral, we can give
an affirmative answer, even for a larger class than the class of normal matrices. For
this, let us introduce the following notation. If M ⊆ C

n is a subspace, then

M[⊥] := {v ∈ C
n : [v, w] = 0 for all w ∈ M}.

Theorem 6.3 Let H be invertible, let X ∈ C
n×n, and let M0 be an H-neutral X-

invariant subspace. If M0 is (XX [∗] − X [∗]X)-invariant and if M
[⊥]
0 ∩ (H−1M0)

[⊥] is
(XX [∗] −X [∗]X)-neutral, then there exists an H-nonnegative X-invariant subspace M

of dimension i+(H) such that M0 ⊆ M ⊆ M
[⊥]
0 .

Proof. If d := dimM0 = 0, then M
[⊥]
0 ∩ (H−1M0)

[⊥] = C
n. Since this space is

(XX [∗] −X [∗]X)-neutral by assumption, it follows that (XX [∗] −X [∗]X) = 0, i.e., X is
H-normal. Then the result follows from Theorem 6.2. If n = 2d, then M0 is already
maximal H-nonnegative. The remainder of the proof now proceeds by induction on
n. The case n = 1 is clear, since necessarily M0 = {0}. Thus, let n > 1. By the
above, we may assume 0 < d < n/2. By Lemma 2.7, we may moreover assume that
M0 = Span{e1, . . . , ed} and

P ∗HP =




0 Id 0
Id 0 0
0 0 H33


 .

Partitioning X conformably, we obtain that

X =




X11 X12 X13

0 X22 X23

0 X32 X33


 , X [∗] =




X∗
22 X∗

12 X∗
32H33

0 X∗
11 0

H−1
33 X∗

23 H−1
33 X∗

13 X
[∗]
33


 , (6.3)
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Note that

M
[⊥]
0 = Im




Id 0
0 0
0 In−2d


 , H−1M

[⊥]
0 = Im




0 0
Id 0
0 In−2d


 .

Thus, the fact that M0 is (XX [∗] − X [∗]X)-invariant and that M
[⊥]
0 ∩ (H−1M0)

[⊥] is
(XX [∗] − X [∗]X)-neutral implies that XX [∗] − X [∗]X has the pattern

XX [∗] − X [∗]X =




∗ ∗ ∗
0 ∗ ∗
0 ∗ 0




if it is partitioned conformably with X. Computing the (2, 1)-, (3, 1)-, and (3, 3)-block
of XX [∗] − X [∗]X, we obtain the identities

X23H
−1
33 X∗

23 = 0, (6.4)

X33H
−1
33 X∗

23 = H−1
33 X∗

23X11, (6.5)

X33X
[∗]
33 − X

[∗]
33 X33 = H−1

33 X∗
23X13 + H−1

33 X∗
13X23. (6.6)

Let us consider the subspace M̃0 = Im H−1
33 X∗

23. Then M̃0 is H33-neutral (because

of (6.4)), X33-invariant (because of (6.5)), and (X33X
[∗]
33 − X

[∗]
33 X33)-invariant, because

by (6.6) we have that

(X33X
[∗]
33 − X

[∗]
33 X33)H

−1
33 X∗

23 = H−1
33 X∗

23X13H
−1
33 X∗

23 + H−1
33 X∗

13X23H
−1
33 X∗

23︸ ︷︷ ︸
= 0 by (6.4)

Next, we show that M̃
[⊥]
0 ∩ (H−1

33 M̃0)
[⊥] is (X33X

[∗]
33 −X

[∗]
33 X33)-neutral. For this, let B

be a matrix such that M̃
[⊥]
0 ∩ (H−1

33 M̃0)
[⊥] = Im B. Then

B∗H−1
33 X∗

23 = B∗H33(H
−1
33 H−1

33 X∗
23) = 0, because Im B ⊆ (H−1

33 M̃0)
[⊥], (6.7)

and X23B = (H−1
33 X∗

23)
∗H33B = 0, because Im B ⊆ M̃

[⊥]
0 . (6.8)

Using (6.6), we obtain

B∗
(
X33X

[∗]
33 − X

[∗]
33 X33

)
B = B∗H−1

33 X∗
23X13B + B∗H−1

33 X∗
13X23B = 0,

by (6.7) and (6.8), and thus, Im B is (X33X
[∗]
33 − X

[∗]
33 X33)-neutral. By the induction

hypothesis, there exists an H33-nonnegative X33-invariant subspace M̃ of dimension
i+(H33) such that M̃0 ⊆ M̃ ⊆ M̃

[⊥]
0 . Let C be a matrix such that M̃ = Im C. Since

M̃ ⊆ M̃
[⊥]
0 , we obtain in particular that X23C = (H−1

33 X∗
23)

∗H33C = 0, and since M̃
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is X33-invariant, there exists a matrix Y ∈ C
(n−2d)×(n−2d) such that X33C = CY . Now

choose

M = Im




Id 0
0 0
0 C


 .

Clearly, M is nonnegative with dimension i+(H) = d+ i+(H33) and M0 ⊆ M ⊆ M
[⊥]
0 .

Moreover, we obtain



X11 X12 X13

0 X22 X23

0 X32 X33






Id 0
0 0
0 C


 =




Id 0
0 0
0 C



[

X11 X13C
0 Y

]
,

i.e., M is X-invariant. This concludes the proof. 2

If XX [∗] − X [∗]X = 0, then clearly any subspace is (XX [∗] − X [∗]X)-invariant and
(XX [∗] − X [∗]X)-neutral. Hence, we immediately obtain the following corollary.

Corollary 6.4 Let H be invertible, let N ∈ C
n×n be H-normal, and let M0 be an

H-neutral N-invariant subspace. Then there exists an H-nonnegative N-invariant sub-
space M of dimension i+(H) such that M0 ⊆ M ⊆ M

[⊥]
0 .

Note that a direct proof of Corollary 6.4 cannot proceed completely analogously to
the proof of Theorem 6.3, because X33 in (6.3) need not be H33-normal.

Let us now consider the case that H is not necessarily invertible. As we can see
from Example 6.1, the kernel of H need not be invariant for an H-normal matrix
N ∈ C

n×n. Therefore, to generalize Theorem 6.2 to the case of singular H, we need
some preparations. Let us start with a simple form for H-normal matrices.

Theorem 6.5 Let N ∈ C
n×n be H-normal. Then there exists a nonsingular matrix

P ∈ C
n×n such that

P−1NP =




A1 0 0 0 0
0 A2 0 0 B2

0 0 A3 0 B3

0 0 0 A4 0
C1 C2 C3 C4 D




, P ∗HP =




H1 0 0 0 0
0 H2 0 0 0
0 0 0 Im 0
0 0 Im 0 0
0 0 0 0 0




, (6.9)

where A1, H1 ∈ C
n1×n1, A2, H2 ∈ C

n2×n2, A3, A4 ∈ C
m×m, and the other blocks have

corresponding sizes. Moreover, A1, H1, H2, A3 are nonsingular, A2, A4 are nilpotent, A1

is H1-normal, A2 is H2-normal, A3 and A∗
4 commute, and A∗

2H2B2 = 0, B∗
2H2B2 = 0,

A∗
4B3 = 0.

Proof. Without loss of generality, we may assume that

H =

[
H̃ 0
0 0

]
, N =

[
A B
C D

]
,
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where H̃ is nonsingular and N is partitioned conformably with H. Since N is H-normal,
we obtain that

[
A∗H̃A A∗H̃B

B∗H̃A B∗H̃B

]
= N∗HN = HNH†N∗H =

[
H̃AH̃−1A∗H̃ 0

0 0

]
. (6.10)

In particular, A is H̃-normal. Thus, since H̃ is invertible, there exists a nonsingular
matrix Q such that

Q−1AQ = A11 ⊕ · · · ⊕ Akk, Q∗H̃Q = H11 ⊕ · · · ⊕ Hkk,

where, for each j, Ajj and Hjj have the same sizes, and either Ajj has only one eigen-
value, or Ajj has two distinct eigenvalues and

Ajj =

[
Ajj1 0
0 Ajj2

]
, Hjj =

[
0 Ipj

Ipj
0

]
,

where both Ajj1 ∈ C
pj×pj and Ajj2 ∈ C

pj×pj have only one eigenvalue. (For a proof,
see [20], for example.) If Ajj is singular and has two distinct eigenvalues, then one
of the blocks Ajj1, Ajj2 must be nilpotent. Clearly, we may assume that in this case
always Ajj2 is nilpotent, applying a permutation otherwise. Let us group together all
nonsingular blocks, all singular blocks that have only one eigenvalue, and all singular
blocks that have two distinct eigenvalues. Thus, after applying an appropriate block
permutation, we may assume that N and H have the forms

N =




A1 0 0 0 B1

0 A2 0 0 B2

0 0 A3 0 B3

0 0 0 A4 B4

C1 C2 C3 C4 D




, P ∗HP =




H1 0 0 0 0
0 H2 0 0 0
0 0 0 Im 0
0 0 Im 0 0
0 0 0 0 0




,

where A1, H1 ∈ C
n1×n1 are nonsingular, A2, H2 ∈ C

n2×n2 , H2 is nonsingular, A2 is
nilpotent, A3 ∈ C

m×m is nonsingular, and A4 ∈ C
m×m is nilpotent. The fact that A

is H̃-normal implies furthermore that A1 is H1-normal, A2 is H2-normal, and A3A
∗
4 =

A∗
4A3. Finally, equation (6.10) implies B1 = 0, B4 = 0, A∗

2H2B2 = 0, B∗
2H2B2 = 0, and

A∗
4B3 = 0. 2

We are now able to generalize Theorem 6.2 to the case that H is singular.

Theorem 6.6 Let N ∈ C
n×n be H-normal. Then there exists an H-nonnegative N-

invariant subspace M such that dimM = i+(H) + i0(H).

Proof. Without loss of generality, we may assume that N and H are in the simple
form (6.9). Using the same notation as in Theorem 6.5, let

M0 = Im
[

B2 A2B2 . . . An−1
2 B2

]
,
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i.e., M0 is the controllable subspace of the pair (A,B) (for basic properties of control-
lable subspaces see, e.g., [9, Section 2.8] or [17, Chapter 4]). Then M0 is A2-invariant
and contains Im B2, see, for example, [17, Proposition 4.1.2]. Next, we show that M0

is H2-neutral. Therefore, it is sufficient to prove that

B∗
2(A

∗
2)

iH2A
j
2B2 = 0 for all i, j = 0, . . . , n − 1. (6.11)

Since by Theorem 6.5 we have B∗
2H2B2 = 0 (which covers the case i = j = 0), equation

(6.11) is guaranteed if A∗
2H2A

j
2B2 = 0 for j = 0, . . . , n − 1 which we will prove by

induction on j. For j = 0, this follows directly from Theorem 6.5. If j > 0, then we
have

A∗
2H2A

j
2B2 = (A∗

2H2A2)A
j−1
2 B2 = H2A2H

−1
2 A∗

2H2A
j−1
2 B2 = 0,

because A2 is H2-normal and because of the induction hypothesis. Then, applying
Corollary 6.4 on A2 and M0, there exists an H2-nonnegative A2-invariant subspace
M2 ⊇ M0 of dimension i+(H2). Furthermore, there exists an H1-nonnegative A1-
invariant subspace M1 of dimension i+(H1) by Theorem 6.2. Let M1 = Im X1 and
M2 = Im X2 for some matrices X1, X2 of appropriate dimensions and set1

M = Im




X1 0 0 0
0 X2 0 0
0 0 Im 0
0 0 0 0
0 0 0 Iν



⊆ C

n,

where ν = n − n1 − n2 − 2m. Then M is H-nonnegative and dimM = i+(H).
Moreover, the fact that Im B2 ⊆ M0 ⊆ M2 = Im X2 implies that M is N -invariant.
This concludes the proof. 2
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