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Abstract

Simple forms are obtained for matrices that are symmetric with respect to de-

generate sesquilinear forms on finite dimensional complex linear spaces of column

vectors. Symmetric matrices and the sesquilinear forms are then representable as

block diagonals having simple forms as the diagonal blocks. The notion of indecom-

posability for symmetric matrices is studied. An example shows that, in contrast

with the non-degenerate sesquilinear forms, an indecomposable symmetric matrix

with respect to a degenerate sesquilinear form may have arbitrarily many Jordan

blocks. All indecomposable symmetric matrices are characterized in two situations:

when the sesquilinear form has only one degree of degeneracy, and when the form is

semidefinite.
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1 Introduction

Let V be a finite dimensional complex vector space, and let [x, y], x, y ∈ V , be a sesquilinear
(linear in the first argument x, conjugate linear in the second argument y) form on V . A
linear transformation A : V → V will be called symmetric with respect to [·, ·] if the
equality [Ax, y] = [x,Ay] holds for every x, y ∈ V . In this paper we study simple and
indecomposable forms of such linear transformations.

It will be convenient to work with matrices. Thus, we identify V with Cn, the complex
linear space of column vectors having n components. Every sesquilinear form on V is given
by the formula

[x, y] = 〈Hx, y〉, x, y ∈ C, (1)

where H is a uniquely determined Hermitian n × n matrix, and 〈·, ·〉 is the standard
Euclidean inner product in C. Represent a linear transformation A on C as an n × n

matrix, also denoted A, with respect to the standard orthonormal basis (made up of the

†Fakultät II; Institut für Mathematik, TU Berlin, D-10623 Berlin, Germany.
‡College of William and Mary, Department of Mathematics, P.O.Box 8795, Williamsburg, VA 23187-

8795. The research of this author is partially supported by NSF Grant DMS-9988579.

1



columns of the n×n identity matrix). We then obtain that A is symmetric with respect to
(1) if and only if the equality HA = A∗H holds; in this case we say that A is H-selfadjoint.

Canonical forms of H-selfadjoint matrices are well known for the case when H is in-
vertible, can be found in many sources (see, for example, [4]), and are widely used in
applications. In contrast, the case when H is singular is not well studied (some works here,
primarily concerning infinite dimensional degenerate Pontryagin spaces, include [11], [6]
(and references there), [1], [8], and parts of the book [2]), although it does appear in appli-
cations [9]. Some results obtained in the theory of nondegenerate indefinite inner products
can be extended to the singular case (no restriction on H = H∗) without difficulties, for
example:

Theorem 1 Let A be H-selfadjoint, and letM⊆ Cn be a subspace that is simultaneously
A-invariant and H-nonnegative (or H-nonpositive). Then there exists a subspace N ⊆ Cn

that is simultaneously A-invariant and H-nonnegative (or H-nonpositive), and such that
N ⊇M and dimN = ν+(H) + ν0(H) (or dimN = ν−(H) + ν0(H)).

Here ν+(H), ν0(H), and ν−(H) are the numbers of positive, zero, and negative eigen-
values of H, respectively, counted with multiplicities. A subspace M ⊆ Cn is called
H-nonnegative (resp., H-nonpositive) if 〈Hx, x〉 ≥ 0 (resp., 〈Hx, x〉 ≤ 0) holds for ev-
ery x ∈M. It is well known that the dimension of a maximal (in the sense of set-theoretic
containment) H-nonnegative (resp., H-nonpositive) subspace is equal to ν+(H) + ν0(H)
(resp. ν−(H) + ν0(H)).

The proof of Theorem 1 is easily obtained from the case when H is nonsingular (in this
case the result is known as Pontryagin’s theorem), using the fact that KerH is A-invariant,
for an H-selfadjoint matrix A.

Notwithstanding Theorem 1, and some other results that are known for the case of
nonsingular H and can be extended without difficulty for singular H, it is of interest
to develop an independent theory of simple, canonical, and indecomposable forms of H-
selfadjoint matrices. In this paper we present some results in this direction.

Besides the introduction, the paper consists of five sections. The main result of Section
2 gives simple forms of H-selfadjoint matrices, so that every H-selfadjoint matrix can
be reduced, together with the sesquilinear form defined by H, to a direct sum of these
forms. Sections 3 to 5 are devoted to the notion of indecomposability. An example in
Section 3 shows that, generally speaking, an H-selfadjoint H-indecomposable matrix can
have arbitrarily many Jordan blocks in its Jordan canonical form. Indecomposable H-
selfadjoint matrices are fully described in the case that the kernel of H is one-dimensional
(Section 4) and in the case that H is semidefinite (Section 5). Finally, H-unitary matrices
and their connections to H-skewadjoints and the indecomposability properties are briefly
described in Section 6.

Throughout the paper, H denotes a (possibly singular) Hermitian n×n complex matrix.
Furthermore, we use the following notation: N = {1, 2, · · ·}; Z+ = N ∪ {0}; R is the field
of real numbers; Ip is the p× p identity matrix; Jp(λ) is the p× p upper triangular Jordan
block with eigenvalue λ; Zp is the p × p matrix with ones on the southwest-northeast
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diagonal and zeros elsewhere, i.e.,

Zp =




0 1
...

1 0




p×p

.

X1 ⊕ · · · ⊕ Xk stands for the block diagonal matrix with the diagonal blocks X1, . . . , Xk

(in that order).

2 Simple form

We first recall the canonical form for H-selfadjoint matrices in the case that H is invertible.

Proposition 2 Let A ∈ Cn×n be H-selfadjoint. Then there exists a nonsingular matrix
P ∈ Cn×n, such that

P−1AP = A1 ⊕ · · · ⊕ Ak and P ∗HP = H1 ⊕ · · · ⊕Hk, (2)

where Aj, Hj are of the same size and each pair (Aj, Hj) has one and only one of the
following forms:

1. blocks associated with real eigenvalues:

Aj = Jp(λ) and Hj = εZp, (3)

where λ ∈ R, p ∈ N, and ε ∈ {1,−1};

2. blocks associated with a pair of nonreal conjugate eigenvalues:

Aj =

[ Jp(λ) 0

0 Jp(λ)

]
and Hj =

[
0 Zp

Zp 0

]
, (4)

where λ ∈ C\R and p ∈ N.

Moreover, the form (P−1AP, P ∗HP ) of (A,H) is uniquely determined up to the permuta-
tion of blocks and called the canonical form of (A,H).

Proof. See [4], for example.

We also use a slightly different form of the blocks of type (4). Namely, multiplying the
matrices in (4) from both sides by Ip ⊕ Zp, one finds that (4) takes the form

Aj =

[
Jp(λ) 0
0 Jp(λ)

∗

]
and Hj =

[
0 Ip
Ip 0

]
, (5)

To state the main result, it is convenient to use the following notion. A matrixX ∈ Cq×p

will be called special if only the left-most column (if q ≤ p) or only the bottom row (if
q > p) of X may have nonzero entries.
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Theorem 3 Let A ∈ Cn×n be H-selfadjoint. Then there exists a nonsingular matrix
P ∈ Cn×n such that

P−1AP = A11 ⊕ · · · ⊕ Akk and P ∗HP = H11 ⊕ · · · ⊕Hkk, (6)

where, for each j, the blocks Ajj and Hjj have the same sizes and are of one of the following
three types:

type 1:

Ajj =

[
A1 0
A2 A3

]
and Hj =

[
H1 0
0 0

]
, (7)

where A1, H1 ∈ Cp×p, A2 ∈ Cq×p, A3 ∈ Cq×q for some p ∈ N, q ∈ Z+. Moreover, σ(Ajj) =
{λ} ⊂ R, the matrix H1 is nonsingular, (A1, H1) is in canonical form (2), A3 is in Jordan
canonical form. Furthermore, upon partitioning

A1 = Jp1
(λ)⊕ · · · ⊕ Jpr(λ), A3 = Jq1(λ)⊕ · · · ⊕ Jqs(λ), A2 = [A2,α,β]

s,r
α=1,β=1, (8)

where A2,α,β is of size qα × pβ, the matrices A2,α,β are special;
type 2:

Ajj =

[
A1 0
A2 A3

]
and Hj =

[
H1 0
0 0

]
, (9)

where A1, H1 ∈ Cp×p, A2 ∈ Cq×p, A3 ∈ Cq×q for some p ∈ N, q ∈ Z+. Moreover,
σ(Ajj) = {λ, λ̄} ⊂ C \R, the matrix H1 is nonsingular, (A1, H1) is in canonical form (2),
and A3 is in Jordan canonical form. Furthermore, upon partitioning

A1 = Jp1
(λ)⊕ Jp2

(λ̄) · · · ⊕ Jp2r−1
(λ)⊕ Jp2r

(λ̄), ( p2j−1 = p2j ),

A3 = Jq1(µ1)⊕ · · · ⊕ Jqs(µs), ( µj ∈ {λ, λ̄} ), A2 = [A2,α,β]
s,2r
α=1,β=1,

where A2,α,β is of size qα × pβ, the matrix A2,α,β is zero if µα 6= λ (in case β is odd) or if
µα 6= λ̄ (in case β is even); otherwise, A2,α,β is special;

type 3:
Ajj = Jp(λ) and Hjj = 0 ∈ Cp×p, (10)

for some p ∈ N and λ ∈ C.

The following two propositions will be used in the proof of Theorem 3. Their proofs
are straightforward, and are therefore omitted.

Proposition 4 Let A ∈ Cn×n be H-selfadjoint, such that

A =

[
A11 0
0 A22

]
and H =

[
H11 H12

H∗
12 H22

]
,

where H is partitioned corresponding to A. If A∗
11 and A22 have no common eigenvalues,

then H12 = 0.
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Proposition 5 Let be given two Jordan blocks Jp(λ) and Jq(λ) having the same eigen-
value. Then for every A ∈ Cq×p there exist X ∈ Cq×p such that the matrix XJp(λ) −
Jq(λ)X + A is special.

We now proceed with the proof of Theorem 3.
Proof. By Sylvester’s Law of Inertia, we may assume that H = H̃ ⊕ 0, where H̃ is a
nonsingular diagonal matrix. Partitioning A correspondingly

A =

[
Ã1 Ã2

Ã3 Ã4

]
,

we obtain from the identity A∗H = HA that Ã2 = 0 and Ã∗
1H̃ = H̃Ã1, i.e., Ã1 is H̃1-

selfadjoint. Thus, applying a similarity transformation with a block diagonal matrix, we
may furthermore assume that (Ã1, H̃) is in canonical form (2) and that Ã4 is in Jordan
canonical form. Next, let us moreover assume that Ã1 and Ã4 have the block diagonal
forms

Ã1 =

[
Ã11 0

0 Ã22

]
and Ã4 =

[
Ã33 0

0 Ã44

]
,

where either σ(Ã11) = {λ} for some λ ∈ R or σ(Ã11) = {λ, λ̄} for some λ ∈ C \ R, and,
furthermore, σ(Ã11) ∩ σ(Ã22) = ∅, σ(Ã11) ∩ σ(Ã44) = ∅, and σ(Ã33) ⊆ σ(Ã11). Since Ã1 is
H̃-selfadjoint, it follows from Proposition 4 that A and H take the form

A =




Ã11 0 0 0

0 Ã22 0 0

Ã31 Ã32 Ã33 0

Ã41 Ã42 0 Ã44


 and H =




H̃11 0 0 0

0 H̃22 0 0
0 0 0 0
0 0 0 0


 ,

where Ãjj and H̃jj have the same size. Since the spectra of Ã11 and Ã44 are disjoint, there
exists a unique solution X of the equation Ã44X − XÃ11 = −Ã41, see, e.g., §3.4.1 in [3].
Setting

T =




I 0 0 0
0 I 0 0
0 0 I 0
X 0 0 I


 ,

we obtain that

T−1AT =




Ã11 0 0 0

0 Ã22 0 0

Ã31 Ã32 Ã33 0

0 Ã42 0 Ã44


 and T ∗HT = H =




H̃11 0 0 0

0 H̃22 0 0
0 0 0 0
0 0 0 0


 .

In an analogous way, we can zero out Ã32. Since the spectrum of Ã11 is either {λ} for some
λ ∈ R, or {λ, λ̄} for some λ ∈ C \ R, we can split off blocks of the forms (7) and (9) by
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applying a row and column permutation. We then repeat the procedure for Ã22 and Ã44.
If the size of Ã22 and H̃22 is zero, then we are left with the block Ã44 and a corresponding
zero block in H. Decomposing Ã44 according to its Jordan structure, we obtain blocks of
the form (10).

It remains to show that the matrices A2 in (7) and in (9) can be made to satisfy the
required properties. We show this for A2 as in (7); the proof for A2 as in (9) is analogous.
Using Proposition 5, for every α (α = 1, . . . , s) and every β (β = 1, . . . , r) find Xα,β such
that the matrix

−Xα,βJpβ(λ) + Jqα(λ)Xα,β − A2,α,β

is special. Then let X = [Xα,β]
s,r
α=1,β=1 and T =

[
I 0
X I

]
. One checks that

T ∗
[
H1 0
0 0

]
T =

[
H1 0
0 0

]
, T−1

[
A1 0
A2 A3

]
T =

[
A1 0

Ã2 A3

]
,

where upon partitioning Ã2 = [Ã2,α,β]
s,r
α=1,β=1 conformably with (8), we have that each

Ã2,α,β is special.

3 Indecomposability

Theorem 3 is a first step towards a canonical form of H-selfadjoint matrices for the case
that H is possibly singular. However, the simple form in Theorem 3 does not display the
Jordan structure of the H-selfadjoint matrix A. In this section, we discuss the classification
of H-selfadjoint matrices. A key term in this discussion is H-decomposability.

A matrix X ∈ Cn×n is called H-decomposable if there exists a nonsingular matrix
P ∈ Cn×n such that

P−1XP =

[
X1 0
0 X2

]
and P ∗HP =

[
H1 0
0 H2

]
,

where Xj and Hj have the same nonzero size. If X is not H-decomposable, then it is
called H-indecomposable. (We will sometimes use the term “(in)decomposable” instead of
“H-(in)decomposable” when it is clear which H we are talking about.)

Clearly, any matrix X can be decomposed into a direct sum of indecomposables, i.e.,
there exists a nonsingular matrix P , such that P−1XP = X1 ⊕ · · · ⊕ Xk and P ∗HP =
H1⊕ · · · ⊕Hk, where each Xj is Hj-indecomposable. Note that, in contrast to the decom-
position (2) in the case H invertible, the blocks of the decomposition (6) in Theorem 3
need not be indecomposable.

The following lemma is well known.

Lemma 6 Let

A =



A1 0

. . .

0 Ak


 , Aj = Jpj(λ)⊕ · · · ⊕ Jpj(λ)︸ ︷︷ ︸

mj blocks
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j = 1, . . . , k, where λ ∈ C, mj ∈ N, and p1 > . . . > pk, i.e., A is a matrix in Jordan
canonical form such that all Jordan blocks of same size pj are collected in a larger block
Aj. Furthermore, let

P =



P11 . . . P1k
...

. . .
...

Pk1 . . . Pkk




be partitioned conformably with A and let A and P commute. If P is nonsingular, then so
are the diagonal blocks P11, . . . , Pkk.

Proof. See, e.g., [10], Lemma 10.

By [3], a matrix P that commutes with a matrix A = Jp1
⊕ · · · ⊕ Jpk , p1 ≥ · · · ≥ pk,

has the form

P =



P11 . . . P1k
...

. . .
...

Pk1 . . . Pkk


 ,

where

Pjl =

[
Tjl

0

]
for j ≥ l, Pjl =

[
0 Tjl

]
for j < l,

and the Tjl are upper triangular pl × pl or, respectively, pj × pj Toeplitz matrices. We will
call matrices of the form Pjl rectangular upper triangular Toeplitz matrices. The following
lemmas yield information about the rank of the sum and the product of two rectangular
upper triangular Toeplitz matrices.

Lemma 7 Let M,N ∈ Cp×l be rectangular upper triangular Toeplitz matrices. Then M +
N is a rectangular upper triangular Toeplitz matrix and if rank(M) > rank(N), then
rank(M +N) = rank(M).

The proof is straightforward.

Lemma 8 Let M ∈ Cp×l and N ∈ Cl×k be rectangular upper triangular Toeplitz matrices.
Then MN is a rectangular upper triangular Toeplitz matrix and

rank(MN) = max
(
0, rank(M) + rank(N)− l

)
.

Proof. Let rank(M) = rm and rank(N) = rn. Clearly, MN is again a rectangular upper
triangular Toeplitz matrix. If rn + rm ≤ l, then it is easily verified that MN = 0. Thus,
assume that rn + rm > l. Since M and N are rectangular upper triangular Toeplitz
matrices, we can write them in the form

M =




l − rm rn + rm − l l − rn

rn + rm − l 0 M1 M3

l − rn 0 0 M2

p− rm 0 0 0


,
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N =




k − rn l − rm rn + rm − l

l − rm 0 N1 N2

rn + rm − l 0 0 N3

l − rn 0 0 0




for some matrices Mj, Nj of appropriate dimensions. In particular, M1 and N3 are non-
singular. This implies

MN =




k − rn l − rm rn + rm − l

rn + rm − l 0 0 M1N3

l − rn 0 0 0
p− rm 0 0 0


.

Thus, rank(MN) = rank(M) + rank(N)− l.

It seems that the problem of finding a complete classification of indecomposable H-
selfadjoint matrices for the general case of singular H is intractable. For example, the
number of Jordan blocks of an indecomposable H-selfadjoint matrix associated with the
same eigenvalue may be greater than one, in contrast to the nondegenerate case. In fact,
this number may be arbitrarily large, as the following example shows.

Example 9 Let λ be a real number and

Ap =



J2p−1(λ) 0

. . .

0 J1(λ)


 , Hp =




Hpp Hp,p−1 . . . Hp1

H∗
p,p−1 0 . . . 0
...

...
. . .

...
H∗

p1 0 . . . 0


 ,

where

Hpk =

[ 2k − 1

2(p− k) 0
2k − 1 Z2k−1J2k−1(0)k−1

]

for k = p, . . . , 1, with the understanding that J1(0)0 = 1. For example, we have

A2 =




λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ


 , H2 =




0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0




A3 =




λ 1 0 0 0 0 0 0 0
0 λ 1 0 0 0 0 0 0
0 0 λ 1 0 0 0 0 0
0 0 0 λ 1 0 0 0 0
0 0 0 0 λ 0 0 0 0
0 0 0 0 0 λ 1 0 0
0 0 0 0 0 0 λ 1 0
0 0 0 0 0 0 0 λ 0
0 0 0 0 0 0 0 0 λ




, H3 =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0



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One verifies easily that Ap is Hp-selfadjoint. Next, we show that, in general, Ap is Hp-
indecomposable. To see this, let us assume that Ap is Hp-decomposable. Then there exists
a nonsingular matrix P with P−1ApP = Ap such that if

P ∗HpP =



H̃pp . . . H̃p1
...

. . .
...

H̃∗
p1 . . . H̃11


 , (11)

is partitioned conformably with Ap, then some blocks among H̃pj, j = p − 1, . . . , 1, are
zero. (This can be seen as follows: the decomposability of Ap implies the existence of a
nonsingular matrix Q such that

Q−1ApQ =

[
Ã1 0

0 Ã2

]
and Q∗HpQ =

[
H̃1 0

0 H̃2

]
.

Without loss of generality, we may assume that Ã1 and Ã2 are in Jordan canonical form.
Then a block row and column permutation yields the desired result.)

We now show that for any nonsingular P with ApP = PAp all blocks H̃pj, j = p −
1, . . . , 1, in (11) are nonzero in contradiction to theHp-decomposability of Ap. By Lemma 6,
a matrix P that commutes with Ap has the form

P =



Ppp . . . Pp1
...

. . .
...

P1p . . . P11


 ,

where each Pjl is an rectangular upper triangular Toeplitz matrix. Since P is nonsingular,
so are P11, . . . , Ppp by Lemma 6. Thus, we have rank(Pjj) = 2j − 1 for j = 1, . . . , p.
Moreover, we have

rank(Pjl) ≤ min(2j − 1, 2l − 1) and rank(Hpj) = j, j = 1, . . . , p.

In particular, rank(Ppk) ≤ 2k − 1. The block H̃pk in (11) is given by

P ∗
ppHppPpk +P ∗

p−1,pH
∗
p,p−1Ppk + · · ·+P ∗

1pH
∗
p1Ppk +P ∗

ppHp,p−1Pp−1,k + · · ·+P ∗
ppHp1P1k. (12)

Note that Z2p−1Hpj and Z2j−1H
∗
pj are rectangular upper triangular Toeplitz matrices. Thus,

applying Lemma 8 to Z2j−1H
∗
pjPpk, we obtain for k < p that

rank(H∗
pjPpk) = rank(Z2j−1H

∗
pjPpk) ≤ max

(
0, j+2k−1−(2p−1)

)
≤ max(0, 2k−p) < k,

since j ≤ p. Furthermore applying Lemma 8 to Z2p−1HpjPjk and recalling the nonsingu-
larity of Ppp, we obtain for j 6= k that

rank(P ∗
ppHpjPjk) = rank(Z2p−1HpjPjk) ≤ max

(
0, j +min(2j − 1, 2k − 1)− (2j − 1)

)

= max
(
0, min(2j, 2k)− j

)
=

{
j for j < k

max(0, 2k − j) for j > k

}
< k
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On the other hand, we have rank(P ∗
ppHpkPkk) = k, i.e., only one summand in the sum (12)

has rank k, all the others have smaller ranks. Thus, applying Lemma 7 to Z2p−1H̃pk,
it follows that rank(H̃pk) = k, i.e., Hpk is nonzero for k = 1, . . . , p − 1. Hence, Ap is
Hp-indecomposable.

4 Indecomposable H-selfadjoints: rank(H) = n− 1

Example 9 shows that, in contrast to the nondegenerate case, the Jordan structure of an
indecomposable block may be very complicated, i.e., we may have more than one Jordan
block (in fact: arbitrarily many ones) associated with the same eigenvalue. From this point
of view, it seems that the problem of finding a complete classification of indecomposable H-
selfadjoint matrices is intractable. Therefore, we restrict ourselves to special cases in which
the matrixH that induces the degenerate inner product has some additional properties, and
classify indecomposable H-selfadjoint matrices in these cases. In this section we assume
that the n × n Hermitian matrix H has rank n − 1, and in the next section it will be
assumed that H is semidefinite.

Theorem 10 Let H have rank n − 1 and let A ∈ Cn×n be H-selfadjoint and indecom-
posable. Then there exists a nonsingular matrix P ∈ Cn×n such that Ã = P−1AP and
H̃ = P ∗HP are of one of the following types:

type (1):

Ã = Jn(λ) and H̃ = εZnJn(0) = ε

[
0 0
0 Zn−1

]
,

where λ ∈ R, n > 1, and ε ∈ {−1,+1};
type (2):

Ã =

[
Jp+1(λ) 0

0 Jp(λ̄)

]
and H̃ =




0 0 0
0 0 Zp

0 Zp 0




where λ ∈ C and n = 2p+ 1 > 1;
type (3):

Ã =
[
λ
]

and H̃ =
[
0
]
,

where λ ∈ C and n = 1.

Proof. By Theorem 3, we may assume that A and H are of one of the forms (7), (9),
or (10). If A and H are of the form (10), i.e., H = 0, then H can have rank n − 1 only
if n = 1 which gives us the blocks of type (3) that are clearly indecomposable. For the
remainder of the proof, it is sufficient to consider the following two cases:

Case (1): A and H are in the form (7). Since H has rank n− 1, we find that according
to Theorem 3, A and H have the forms

A =

[
A1 0
a∗ λ

]
and H =

[
H1 0
0 0

]
,

10



where A1 = Jp1
(λ)⊕· · ·⊕Jpk(λ), H1 = ε1Zp1

⊕· · ·⊕εkZpk for some ε1, . . . , εk ∈ {+1,−1},
λ ∈ R, and p1 + · · ·+ pk = n− 1. Moreover, a∗ consists of k blocks that are special, i.e.,

a∗ = [a1 0 . . . 0︸ ︷︷ ︸
p1 entries

. . . ak 0 . . . 0︸ ︷︷ ︸
pk entries

]

Note that we must have a1, . . . , ak 6= 0. Otherwise, one can easily see that A is decompos-
able.

Next, we will show that k = 1 or (k = 2 and p1 = p2, ε1 = −ε2, |a1| = |a2|).
Thus, assume that k > 1. We may furthermore assume without loss of generality that

p1 ≤ · · · ≤ pk. Setting

U =

[
U1 0
0 1

]
, U1 =




Ip1

[
0 αIp1

]
[
βIp1

0

]
Ip2


⊕ Ip3

⊕ · · · ⊕ Ipk ,

where β = −a1

a2
and α = −ε1ε2β∗, we find that A1 and U1 commute. Moreover, U is easily

seen to be invertible if p1 < p2. In the case p1 = p2, we have

U1 =

[
Ip1

αIp1

βIp1
Ip1

]
⊕ Ip3

⊕ · · · ⊕ Ipk ,

which implies

detU1 = (1− αβ)p1 =

(
1 + ε1ε2

|a1|2
|a2|2

)p1

.

Thus, U is invertible unless ε1ε2 = −1 and |a1| = |a2|. This implies

U−1AU =

[
A1 0
a∗U1 λ

]
, a∗U1 = [a1 + βa2 0 . . . 0︸ ︷︷ ︸

p1 entries

a2 0 . . . 0︸ ︷︷ ︸
p2 entries

. . . ak 0 . . . 0︸ ︷︷ ︸
pk entries

].

The first entry of a∗U1 is zero. On the other hand, U ∗HU is still block diagonal. To see
this, it is sufficient to consider the uppermost (p1 + p2)× (p1 + p2) principal submatrix of
H: if

[
H̃11 H̃12

H̃∗
12 H̃22

]

:=




Ip1

[
β∗Ip1

0
]

[
0

α∗Ip1

]
Ip2



[
ε1Zp1

0
0 ε2Zp2

]


Ip1

[
0 αIp1

]
[
βIp1

0

]
Ip2


 ,

then

H̃12 = ε1Zp1

[
0 αIp1

]
+ ε2

[
β∗Ip1

0
] [ 0 Zp1

Zp2−p1
0

]

=
[
0 ε1αZp1

]
+
[
0 ε2β

∗Zp1

]
= 0,

11



because of ε2β
∗ = −ε1α. But then, since the (1, 1)-element of a∗ is zero, it follows that A

is decomposable. Thus k = 1 or (p1 = p2, ε2 = −ε1, and |a2| = |a1|). It remains to show
k = 2 for the latter case. But if k > 2 and p3 > p1 = p2, we can use a similar argument as
above to zero out a1. And if p3 = p1, then ε3 = ε1 or ε3 = ε2, and we can zero out a1 or a2,
respectively, by the procedure described above. Again, it follows that A is decomposable
and thus, we must have k = 2.

We now consider the cases k = 1 and k = 2 separately.
Case (1a): k = 1. Then we may assume that A and H have the forms

A =

[
Jn−1(λ) 0
a1e

∗
1 λ

]
, H =

[
εZn−1 0

0 0

]
,

where a1 6= 0, ε = ±1, and e1 denotes the first (n−1)-dimensional unit vector. Clearly, we
may also assume that a1 = 1. Otherwise, we apply an H-unitary similarity transformation
on A with the matrix S = In1

⊕
[
a1
]
. So, assuming that a1 = 1 and setting

P =

[
0 In−1
1 0

]
,

we obtain that

P−1AP =

[
λ e∗1
0 Jn−1(λ)

]
= Jn(λ) and P ∗HP =

[
0 0
0 εZn−1

]
= εZnJn(0),

which gives us the blocks of type (1) of the theorem. Since A has only one Jordan block,
it is clearly indecomposable.

Case (1b): k = 2. In this case, we may assume that A and H have the forms

A =



Jp(λ) 0 0
0 Jp(λ) 0

a1e
∗
1 a2e

∗
1 λ


 and H =



−Zp 0 0
0 Zp 0
0 0 0


 ,

where |a1| = |a2| 6= 0, 2p + 1 = n, and e1 denotes the first p-dimensional unit vector.
Analogously to Case (1a), we can apply an H-unitary similarity transformation with

S = Ip ⊕
(
a−12 a1

)
Ip ⊕

[ √
2a1

]

on A to set a1 and a2 equal to 1√
2
. Then setting

P =
1√
2




0 Ip −Ip
0 Ip Ip√
2 0 0


 ,

we obtain that

P−1AP =



λ e∗1 0
0 Jp(λ) 0
0 0 Jp(λ)


 =

[
Jp+1(λ) 0

0 Jp(λ)

]
, P ∗HP =




0 0 0
0 0 Zp

0 Zp 0


 ,

12



which gives us the blocks of type (2) of the theorem for the case λ ∈ R. It remains to
show that a block of type (2) is indecomposable. Indeed, let Ã = P−1AP and H̃ = P ∗HP .
Analogously to the argument used in Example 9, it suffices to show that for any nonsingular
matrix Q satisfying QÃ = ÃQ and

Q∗H̃Q =

[
H̃1 H̃2

H̃∗
2 H̃3

]

we have that H̃2 6= 0. By Lemma 6, such Q has the form

Q =

[
Q1 Q2

Q3 Q4

]
,

where Q1 and Q4 are nonsingular (p + 1) × (p + 1) and p × p upper triangular Toeplitz
matrices, respectively, and Q2 and Q3 are rectangular upper triangular Toeplitz matrices
with rank smaller than or equal to p. We obtain that H̃2 has the form

H̃2 = Q∗
3

[
0 Zp

]
Q2 +Q∗

1

[
0
Zp

]
Q4.

Applying Lemma 8 to the rectangular upper triangular Toeplitz matrix Zp

[
0 Zp

]
Q2,

we obtain that

rank
(
Q∗
3

[
0 Zp

]
Q2

)
≤ rank

([
0 Zp

]
Q2

)
≤ p+ p− (p+ 1) = p− 1 < p.

On the other hand, we have that

rank

(
Q∗
1

[
0
Zp

]
Q4

)
= p.

Thus, rank(H̃2) = p, by Lemma 7 applied to Zp+1H̃2. This implies the indecomposability
of blocks of type (2).

Case (2): A and H are in the form (9). Using formulas (5), after reordering some
blocks, we may assume that

A =




A1 0 0 0
0 A∗

1 0 0
A2 0 A4 0
0 A3 0 A5


 and H =




0 Ip 0 0
Ip 0 0 0
0 0 0 0
0 0 0 0


 ,

where A1 ∈ Cp×p, σ(A1) = {λ}, σ(A4) ⊆ {λ}, σ(A5) ⊆ {λ̄} for some λ ∈ C \ R. Since H
has rank n− 1, one of the matrices A4 and A5 must have size one and the other one must
have size zero. Without loss of generality, we may assume that A5 has size zero. We are
then left with the situation when

A =



A1 0 0
0 A∗

1 0
a∗ 0 λ


 and H =




0 Ip 0
Ip 0 0
0 0 0


 ,
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where λ ∈ C \ R, A1 = Jp1
(λ) ⊕ · · · ⊕ Jpk(λ) for p1 ≤ · · · ≤ pk, p = p1 + · · · + pk, and

a ∈ Cp. Moreover, a∗ consists of k special blocks, i.e.,

a∗ = [a1 0 . . . 0︸ ︷︷ ︸
p1 entries

. . . ak 0 . . . 0︸ ︷︷ ︸
pk entries

],

where a1, . . . , ak 6= 0. (Otherwise, A would be decomposable). Assume k > 1. Then

U1 =




Ip1
0[

βIp1

0

]
Ip2


⊕ Ip3

⊕ · · · ⊕ Ipk , β = −a1
a2
,

is invertible, even in the case p1 = p2, and commutes with A1. Moreover, for U :=
U1 ⊕ (U ∗

1 )
−1 ⊕

[
1
]
we have

U−1AU =




A1 0 0
0 A∗

1 0
a∗U1 0 λ


 , U∗HU =




0 Ip 0
Ip 0 0
0 0 0


 ,

where
a∗U1 = [a1 + βa2 0 . . . 0︸ ︷︷ ︸

p1 entries

a2 0 . . . 0︸ ︷︷ ︸
p2 entries

. . . ak 0 . . . 0︸ ︷︷ ︸
pk entries

].

Once again, the first entry of a∗U1 is zero which implies the decomposability of A. Thus,
k = 1 and after having applied a scaling transformation as in Case (1), we may assume
that A and H have the forms

A =



Jp(λ) 0 0
0 Jp(λ)

∗ 0
e∗1 0 λ


 and H =




0 Ip 0
Ip 0 0
0 0 0


 ,

where 2p+1 = n and e1 denotes the first p-dimensional unit column vector. It is now easy
to check that these blocks can be transformed into the blocks of type (2) of the theorem
for the case λ ∈ C \ R:




0 0 1
Ip 0 0
0 Zp 0





Jp(λ) 0 0
0 Jp(λ)

∗ 0
e∗1 0 λ






0 Ip 0
0 0 Zp

1 0 0


 =

[
Jp+1(λ) 0

0 Jp(λ̄)

]
,




0 0 1
Ip 0 0
0 Zp 0






0 Ip 0
Ip 0 0
0 0 0






0 Ip 0
0 0 Zp

1 0 0


 =




0 0 0
0 0 Zp

0 Zp 0


 .

The indecomposability of these blocks is clear for λ̄ 6= λ.

We emphasize that the case λ ∈ R is possible in type (2) of Theorem 10. Thus, we see
that if rank(H) = n− 1, then an indecomposable H-selfadjoint matrix may have two, but
not more than two, Jordan blocks associated with the same eigenvalue. As we know from
Example 9, this number may be arbitrarily large in the general case. This gives rise to the
following problem.
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Problem 11 Find the maximal possible number of Jordan blocks associated with the same
eigenvalue of an indecomposable H-selfadjoint matrix, depending on the rank of H.

Theorem 10 also shows that if rank(H) = n − 1 and if A is an indecomposable H-
selfadjoint matrix having more than one Jordan block associated with the same eigenvalue,
then the difference of their sizes is at most one. This difference, however, may be arbitrarily
large even in the case that rank(H) = n− 2 as the following example shows.

Example 12 Let p ≥ 2, let ep denote the pth p-dimensional unit column vector, and let

A =

[
Jp(λ) 0
0 λ

]
and H =

[
ZpJp(0) ep

e∗p 0

]
.

Then the H-selfadjoint matrix A is H-indecomposable. Indeed, let P be nonsingular such
that P−1AP = A and

P ∗HP =

[
H11 H12

H∗
12 H22

]
. (13)

A is only H-decomposable if there exists a matrix P as above such that H12 = 0 in (13).
However, the nonsingularity and the identity P−1AP = A imply that P has the form

P =

[
P1 P2
P3 P4

]
,

where P1 and P4 are nonsingular and P2 = p2e1, P3 = p3e
∗
p for some p2, p3 ∈ C. Here, e1

denotes the first p-dimensional unit vector. But then we obtain

H12 = P ∗
1ZpJp(0)P2 + P ∗

3 e
∗
pP2 + P ∗

1 epP4 = P ∗
1 epP4,

because of Jp(0)e1 = 0 and e∗pe1 = 0. Thus, H12 in (13) is nonzero for all possible choices of
P . This implies that A is indecomposable. Clearly, we have rank(H) = p−1 = (sizeH)−2
and the difference of sizes of Jordan blocks of A is p− 1.

5 Indecomposable H-selfadjoints: Semidefinite H

In this section, we classify indecomposable H-selfadjoint matrices for the case that H is
semidefinite. Of course, it is sufficient to consider the case that H is positive semidefinite.
Otherwise, we can replace H by −H.

Theorem 13 Let H be positive semidefinite and let A ∈ Cn×n be H-selfadjoint and inde-
composable. Then there exists a nonsingular matrix P ∈ Cn×n such that Ã = P−1AP and
H̃ = P ∗HP are of one of the following forms:

type (1): Ã = Jp(λ), H̃ = ZpJp(0)
p−1, where p ∈ N, λ ∈ R, and it is understood that

J1(0)
0 = 1;

type (2): Ã = Jp(λ), H̃ = 0, where p ∈ N and λ ∈ C.
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Proof. Again, we may assume that A and H are of one of the types listed in Theorem 3.
Since H is positive semidefinite, only blocks of the form (7) or (10) may occur. Since an
indecomposable block of the form (10) is necessarily of the form of type (2), it is sufficient
to consider the following situation:

A =

[
λIk 0
A2 A3

]
, H =

[
Ik 0
0 0

]
, A3 =



Jp1

(λ) 0
. . .

0 Jpm(λ)


 ,

where λ ∈ R, and p1 ≥ p2 ≥ · · · ≥ pm. Moreover, A2 consists of mk subblocks that are
special, i.e.,

A2 =




ã11 . . . ã1k
...

. . .
...

ãm1 . . . ãmk


 , where ãij =




0
...
0
aij


 ∈ Cpi .

Choosing a unitary T1 ∈ Ck×k and setting T = T1 ⊕ In−k, we obtain furthermore that

T−1AT =

[
λIk 0
A2T1 A3

]
and T ∗HT = H.

Hence, choosing T1 appropriately otherwise, we may moreover assume that ã12 = · · · =
ã1k = 0. If a11 is zero, then it is easy to see that A is decomposable. (This follows by
applying an appropriate permutation of rows and columns.) Thus, a11 is nonzero. Then
setting

Q−1 = Ik ⊕Q, where Q =




1
a11

Ip1
0[

0 −a21

a11
Ip2

]
Ip2

...
. . .[

0 −am1

a11
Ipm

]
Ipm


 ,

we obtain that Q commutes with A3 and that

Q−1AQ =

[
A1 0
QA2 A3

]
, Q∗HQ = H.

Thus, we can zero out a21, . . . , am1. But this means that A is decomposable, unless k =
m = 1. Hence, we finally may assume that A and H have the forms

A =

[
λ 0
ep Jp(λ)

]
and H =

[
1 0
0 0

]
∈ C(p+1)×(p+1),

where p = p1 and ep denotes the pth p-dimensional unit vector. Up to a row and column
permutation, these blocks are of type (1).
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6 H-skewadjoint and H-unitary matrices

Clearly, the results of Sections 2 and 3 can be applied to H-skewadjoint matrices S, i.e.,
such that HS = −S∗H, as well, noting that a matrix S is H-skewadjoint if and only if iS
is H-selfadjoint. Thus, solving the problem of classifying all indecomposable H-selfadjoint
matrices also solves the same problem for the class of indecomposable H-skewadjoint ma-
trices.

A matrix U is called H-unitary if U ∗HU = H. It is easy to see that the set of all
H-unitary matrices forms a semigroup, and the set of all nonsingular H-unitary matrices
is a group (with respect to the standard matrix multiplication).

In this section, we show that also the problem of classifying indecomposable H-unitary
matrices can be traced back to the analogous problem forH-selfadjoints (or, more precisely,
for H-skewadjoints). If H is singular, then there exist also singular H-unitary matrices.
The following proposition shows that it is sufficient to consider nonsingular H-unitary
matrices only.

Proposition 14 Let U ∈ Cn×n be H-unitary. Then there exists a nonsingular matrix
P ∈ Cn×n such that

P−1UP =

[
U1 0
0 U2

]
and P ∗HP =

[
H1 0
0 0

]
,

where U1 is nonsingular, U2 is nilpotent, and H1 (possibly singular) has the same size as
U1.

Proof. Let P ∈ Cn×n be nonsingular and such that

P−1UP =

[
U1 0
0 U2

]
and P ∗HP =

[
H1 H2

H∗
2 H3

]
,

where U1 is nonsingular and U2 is nilpotent. Then the fact that (U ∗)mHUm = H implies
that

H2 = (U ∗
1 )

mH2U
m
2 and H3 = (U ∗

2 )
mH3U

m
2

for all m ∈ N. Since U2 is nilpotent, it follows that H2 = 0 and H3 = 0.

Thus, a singular H-unitary matrix decomposes into a nonsingular and a singular part,
the classification of singular H-unitary matrices being trivial. Hence, it is sufficient to
consider the Lie group of nonsingular H-unitary matrices only. It is easily seen that the
exponential map expmaps the Lie algebra ofH-skewadjoints into the Lie group of invertible
H-unitary matrices. We show next that this map is onto, i.e., any nonsingular H-unitary
matrix has an H-skewadjoint logarithm.

Proposition 15 The group of nonsingular H-unitary matrices coincides with the set of
exponentials of H-skewadjoint matrices.
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Proof. Let U be a nonsingular H-unitary matrix, and let Γ be a suitable simple closed
rectifiable contour in the complex plane such that the eigenvalues of U are inside Γ, for
example,

Γ = {reiθ : θ1 ≤ θ ≤ θ2} ∪ {
1

r
eiθ : θ1 ≤ θ ≤ θ2} ∪ {xeiθ1 : r ≤ x ≤ 1

r
} ∪ {xeiθ2 : r ≤ x ≤ 1

r
}

for suitable r < 1 and θ1, θ2 (θ1 < θ2 < θ1 + 2π). Define

S := log(U) :=
1

2πi

∫

Γ

log(z)(zI − U)−1dz, (14)

where log is the branch of the logarithmic function such that log(z) is real for z > 0.
Then −S∗ = log((U ∗)−1), see Theorem 6.4.20 in [5]. Approximating the integral in (14)
by Riemann sums

N−1∑

j=0

(zj+1 − zj) log(zj)(zjI − U)−1,

where z0, . . . , zN−1 are consecutive partition points on Γ in the counterclockwise direction
and zN = z0, and using the easily verified property

(zI − (U ∗)−1)−1H = H(zI − U)−1,

we find that −S∗H = log((U ∗)−1)H = H log(U) = HS. Thus, S is H-skewadjoint.
Clearly, U is indecomposable if and only if log(U) is indecomposable. This follows

from the fact that both maps log and exp preserve block diagonal structures of matrices.
Thus, we have reduced the problem of classifying indecomposable H-unitary matrices to
the corresponding problem for H-skewadjoint matrices.
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