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Abstract

In this paper, canonical forms under structure-preserving equivalence transforma-
tions are presented for matrices and matrix pencils that have a multiple structure,
which is either an H-self-adjoint or H-skew-adjoint structure, where the matrix H is
a complex nonsingular Hermitian or skew-Hermitian matrix. Matrices and pencils of
such multiple structures arise, for example, in quantum chemistry in Hartree—Fock
models or random phase approximation.

Keywords Indefinite inner product, Self-adjoint matrix, Skew-adjoint matrix, Matrix
pencil, Canonical form

AMS 15A21, 15A22, 15A57

1 Introduction

Canonical forms for matrices and matrix pencils have been studied for more than a hun-
dred years since the work of Jordan, Kronecker and Weierstraf}, see [5]. In recent years,
motivated by applications in control theory as well as quantum physics and quantum chem-
istry, there has been a revived interest in such canonical forms for matrices and pencils
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that have algebraic structures, such as Lie groups or Lie algebras. While the possible in-
variants were characterized already some time ago [2], the emphasis in the new results lies
on structure-preserving equivalence transformations, see, e.g., [1, 13, 14, 15, 16].

In this paper, we derive canonical forms under structure-preserving equivalence trans-
formations for matrices and matrix pencils with multiple structure.

Definition 1.1 Let H € C™" be a nonsingular Hermitian or skew-Hermitian matriz, and
let X € C™*™.

1. X is called H-self-adjoint if X*H = HX.
2. X s called H-skew-adjoint if X*H = —HX.

Canonical forms for pairs (A, H), where H is Hermitian or skew-Hermitian nonsingular
and A is H-self-adjoint or H-skew-adjoint are well known in literature; see, e.g., [7, 11].
These forms are obtained under transformations of the form

(A,H) — (P'AP, P*HP),

where P is nonsingular. Here, we are interested in canonical forms for matrix triples
(A, H,G), where G and H are Hermitian or skew-Hermitian nonsingular and A is doubly
structured with respect to G and H, i.e., A is H-self-adjoint or H-skew-adjoint and at
the same time G-self-adjoint or G-skew-adjoint. We are also interested in the pencil case,
i.e., we will also consider pencils oA — B, where both A and B are doubly structured with
respect to H and G.

The main motivation for our interest in these types of matrices and pencils arises
from quantum chemistry. Response function models lead to the problem of solving the
generalized eigenvalue problem with a matrix pencil of the form

Aé’o—Ao::)\{_CZ _%]—[? H (1)

where E,F,C,Z € C" E = E*\F = F*,C = C*,Z = —Z*, see [8, 17|. Furthermore,
there are important special cases in which the pencil has even further structure. For
example, the simplest response function model is the time-dependent Hartree—Fock model,
also called the random phase approximation (RPA). In this case, C' is the identity and Z
is the zero matrix; see [8, 17]. Thus, the generalized eigenvalue problem (1) reduces to the
problem of finding the eigenvalues of the matrix

. { £ F } | @

where E,F are as in (1). For stable Hartree—Fock ground state wave-functions, it is
furthermore known that £ — F and E + F are positive definite; see [8].
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In other applications, however, like in multiconfigurational RPA [8], it is not even
guaranteed that the matrix & in (1) is nonsingular.

It is easy to see that the matrices &, Ay in (1) and Lo in (2) are doubly structured.

With
I, 0 (o 1, [ o 1,
A P A

we have that & is I-self-adjoint and H-skew-adjoint, Ay is I-self-adjoint and H-self-adjoint,
while Ly is G-self-adjoint and J-skew-adjoint.

When designing structure-preserving numerical methods for large-scale structure eigen-
value problems, difficulties in the convergence of the methods were sometimes observed in
3, 4] that have to do with the invariants of these pencils under structure-preserving equiva-
lence transformations; see also [1]. It is another motivation for our work to derive canonical
forms that allow a better understanding of those properties of the pencils that lead to these
difficulties.

We will derive the canonical form for matrix triples (A, H, G) under structure-preserving
transformations of the form

(A,H,G) — (P"'AP, P*HP, P*GP),

where P is nonsingular. This preserves the (skew-) Hermitian structure of H and G and
also the structure of A with respect to H and G. Based on the classical results (see
Section 2), we clearly have canonical forms for (A, H), (A, G) or the pencil pH — G, and
hence the invariants of the pairs (A, H) and (A, G) as well as the invariants of the pencil
oH — G under congruence are invariants of the triple (A, H, G).

It is our goal to obtain a canonical form that displays simultaneously the Jordan struc-
ture of A and the invariants of the canonical forms of (A, H) and (A, G). In general this is
a very difficult problem; such a form may not even exist. Consider the following example.

Example 1.2 Consider matrices

1 01 0 01 0 01
A=|0 1 0|, G=]1010 and H=|0 11
001 1 00 1 10

Then A is G-self-adjoint and H-self-adjoint. But it is impossible to simultaneously decom-
pose A, H, and G further into smaller block diagonal forms. This follows from the obvious
fact that the pencil oG — H cannot be decomposed further. On the other hand, A has the
Jordan canonical form

1 10

010

0 01

Hence, both (A,G) and (A, H) are decomposable into smaller blocks (see Theorems 3.1
and 3.3 below).



Due to this difficulty, we restrict ourselves to an important special case. In most
applications, the matrices H and G that induce the structure are contained in the set

o [ 5 5) [5 2. [2 o)
If this is the case, then the pencil oH — G is nondefective.

Definition 1.3 Let pA— B € C™*" be a matriz pencil. We say that oA— B is nondefective
if there exist nonsingular matrices P, Q) € C"*" such that both PAQ) and PBQ are diagonal.

We will show that if G, H are Hermitian nonsingular such that the pencil oH — G
is nondefective, then a canonical form for the triple (A, H, G) exists, which is also unique
except for the permutation of blocks. In particular, this canonical form includes the Jordan
structure of A, and also the canonical forms of the pairs (A, H) and (A, G) and the pencil
oH — G can be easily read off.

The paper is organized as follows. After providing some preliminary results in Sec-
tion 2, we review canonical forms for matrices that are structured with respect to only one
Hermitian matrix in Section 3. In Section 4, we then discuss doubly structured matrices,
and in Section 5, we discuss canonical forms for structured pencils of the form AA — B,
where both A and B are singly or doubly structured matrices.

2 Preliminaries

Throughout the paper, we use the following notation.

By o(A) we denote the spectrum of the matrix A. J,(\) denotes the p x p upper
triangular Jordan block with eigenvalue . By sign(t) we mean the sign of a real number
t e R\{0}. A=A,®...®A,, stands for the block diagonal matrix A with diagonal blocks
Ay, ..., A,,. Moreover, we use the abbreviation A~* for (A*)~!.

Furthermore, we introduce the following p X p matrices:

0 1 (—1)2 0

and Fj, =
(0

Note that F,, € RP*? is symmetric if p is odd and skew-symmetric if p is even, whereas
Z, and D, are symmetric for all p. We list some properties of these matrices and the
matrix J,(0), which can be easily verified, and will be used in what follows.
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Lemma 2.1 Let p € N.

1. Zg = I, Di =1I,, Fp2 = (—=1)P*'L,.
FyZ, = Dy = (-1)"'Z,F,,  D,F, = Z, = (~1)"*'F,D,.
DpZ, = Fp = (_1>p+1Zprv Iy ZpFy = Zp.

72,1 7,(0)Z, = J,(0)".

D, Jp(0)Dy = =J(0).

F Tp(0)F, = =3,(0)".

S v Lo e

Another important and well-known result that will frequently be used throughout the
paper is the following ([5]).

Lemma 2.2 Let A, B, X be square matrices such that the spectra of A and B are disjoint.
If AX = XB, then X =0.

Finally, we review the canonical forms for regular Hermitian pencils, i.e., regular pencils
oH — G, where both H and G are Hermitian. An arbitrary matrix pencil AA — B is called
regular if det(pA — B) # 0. In this case, it makes sense to speak of eigenvalues of a pencil.
Introducing homogeneous parameters aA — B [6], the eigenvalues of €A — BB can be
defined as pairs («, 3) € C*\{0} such that

aAz — fBr =0 for an z € C"\{0}.

Obviously, (ta,t3) represents the same eigenvalue for all £ € C\{0}; thus, we denote them
by A =g if § # 0. Pairs (a,0),a # 0 represent the eigenvalue infinity of A — B that
we will denote by oc.

The following result goes back to results from Weierstrafl [19] and Kronecker [10].

Theorem 2.3 Let oH — G be a regular Hermitian pencil. Then there exists a nonsingular
matriz P € C"™ such that

P*(oH — G)P = (oH, — G1) @ --- @ (0H, — G)), (4)

where the blocks oH; — G; have one and only one of the following forms:

1. blocks associated with paired nonreal eigenvalues A, X, where Im()\) > 0:

QHj—G]:Q“]T ﬂ‘{m&)* ‘7"(@}; (5)
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2. blocks associated with real eigenvalues A and sign ¢ € {1, —1}:

0 A
01 Aol

oH; — G; = peZ, —Z,J(N\) = p¢ —€ L ;o (6)
1 0 A1 0

3. blocks associated with the eigenvalue oo and sign € € {1, —1}:

I T
oH; —Gj = 0¢Z,7J,(0) —eZ, = pe L —€ . (7
0 1 0 L 0

Moreover, the decomposition (4) is unique up to a block permutation that exchanges blocks

Proof. For a full proof, see [18], Lemmas 1.-4. There, the result is shown without
the additional condition Im(A) > 0 for the blocks associated with nonreal eigenvalues,
but applying a permutation, we may always place the block that is associated with the
eigenvalue A in the (1,2)-block position of the form in (5). 0O

If pH — G is nondefective, then we immediately have the following corollary.

Corollary 2.4 Let pH — G be a nondefective Hermitian pencil, where both H and G are
nonsingular. Then there exists a nonsingular matriz P € C™™ such that

P*(oH —G)P = (oH, — G1) @ --- @ (oH, — G)),

where the spectra of oH; — G and oH; — G are disjoint for j # l, and where each block
oH; — G; has either only one pair of complex conjugate eigenvalues or only one single real
etgenvalue. Moreover, the block oH; — G has one and only one of the following forms:

1. blocks with nonreal eigenvalues X, X, where ImA > 0 and ¢ € N:

0 I 0 Al
wean[L 8[54
J J I, 0 A, 0 (®)
2. blocks with real eigenvalue A\, where q,p € N,p < q:
I 0 I 0
QH~—G-:{” }—)\[1’ } 0
~G=| 0 . (9)

Moreover the decomposition is unique up to a block permutation.
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Proof. By Theorem 2.3, there exists a nonsingular matrix P € C"*" such that the
pencil P*(pH — G)P is in canonical form (4). Since the pencil is nondefective and H is
nonsingular, only blocks of the forms (5) and (6) can appear and the parameters r in these
blocks all have to be equal to one. A number of ¢ blocks of the form (5) with the same
eigenvalue A € C\R produce one block of the form (8) after an appropriate permutation
that combines the ¢ blocks in a single block is applied. On the other hand, ¢ blocks of the
form (6) with the same eigenvalue A € R (p blocks with sign € = +1 and ¢ — p blocks with
sign ¢ = —1) produce a block of the form (9), again after an appropriate permutation is
applied. 0O

Remark 2.5 Following Theorem 2.3 and Corollary 2.4, it is obvious that if A € C\R is an
eigenvalue of pH — GG, then so is A, and both eigenvalues have the same Jordan structure.

3 Singly structured matrices

In this section, we review the well-known canonical forms for H-self-adjoint matrices and
H-skew-adjoint matrices, where H always denotes a complex nonsingular Hermitian n x n
matrix.

Theorem 3.1 Let A € C™"™ be H-self-adjoint. Then there exists a nonsingular matrix
P e C™™, such that

Pl'AP=A ¢ ---® A, and P*HP=H, & ---& H,, (10)

where A; and Hj are of the same size and the pair (A;, H;) has one and only one of the
following forms:

1. blocks associated with real eigenvalues:
A =7, and H;=¢Z, (11)
where \ € R, p € N, and e € {1,—1};
2. blocks associated with a pair of nonreal eigenvalues:

bo[ o] weone[27]

where A € C\R with Im(X) > 0 and p € N.

Moreover, the form (P~'*AP, P*HP) of (A, H) is uniquely determined up to the permuta-
tion of blocks.



Proof. See, e.g., [7]. O

Even though (10) is unique only up to a permutation of blocks, we call it a canonical
form of the pair (A, H).

Remark 3.2 In some instances, it will turn out be useful to use a slightly different form
for the blocks of type (12) in (10). Multiplying the matrices from both sides by I, & Z,,
one finds that (12) takes the form

4= [ " g0 ]

Using the same transformation, we can also get back from the form (13) to the form (12).
This transformation will frequently be used in the following and its application will be
called the Z-trick.

and Hj:{j(.) ]6’} (13)
P

Apart from the eigenvalues of an H-self-adjoint matrix A, the parameters € that are asso-
ciated with blocks to real eigenvalues are invariants of the pair (A, H). The collection of
these parameters is sometimes referred to as the sign characteristic; see, e.g., [7] and [11].
To highlight that these parameters are related to the matrix H (we will soon have to deal
with two structures), we will use the term H -structure indices in what follows.

Theorem 3.3 Let S € C™*" be H-skew-adjoint. Then there exists a nonsingular matrix
P e C™" such that

PlSP=S® - ®S and PHP=H® - ®H, (14)

where S; and H; are of the same size and each pair (S;, H;) has one and only one of the
following forms:

1. blocks associated with purely imaginary eigenvalues:
Sj = ij<)\> and Hj = €Zp, (15)
where A € R, pe N, and e € {1,—1};

2. blocks associated with a pair of non purely imaginary eigenvalues:

N IR T

where A € C\R with Im(\) > 0 and p € N.

Moreover, the form (P~'SP, P*HP) of (S, H) is uniquely determined up to a permutation
of blocks.



Proof. This follows directly from Theorem 3.1, considering the H-self-adjoint matrix 5.
U

Again, we will call the parameter ¢ in (15) the H-structure index of the block S; in (15).
Moreover, the form (14) will be called the canonical form of the pair (S, H).

Remark 3.4 From Theorems 3.1 and 3.3, it is easy to find the following symmetries in
the spectra of H-self-adjoint and H-skew-adjoint matrices. If A ¢ R is an eigenvalue of
the H-self-adjoint matrix A, then so is A, and both eigenvalues have the same Jordan
structure. If A ¢ iR is an eigenvalue of the H-skew-adjoint matrix A, then so is —\, and
both eigenvalues have the same Jordan structure.

4 Doubly structured matrices

In this section, we give canonical forms for matrices that are doubly structured with respect
to Hermitian or skew-Hermitian nonsingular matrices G and H. First, we note that by
Theorem 3.1, Jordan blocks associated with real eigenvalues in the self-adjoint case (or
purely imaginary eigenvalues in the skew-adjoint case) have structure indices with respect
to G and/or H. We will call these indices the G- and H-structure indices of A, respectively.

Moreover, we may always assume that G and H are Hermitian. Otherwise, we may
consider ¢GG or 1H, respectively, keeping in mind the following remark.

Remark 4.1 Let H € C™*" be nonsingular and Hermitian or skew-Hermitian and let
A € C™ ™. Then the following conditions hold.

1. A is H-self-adjoint if and only if A is ¢ H-self-adjoint.

2. Ais H-skew-adjoint if and only if A is ¢ H-skew-adjoint.

3. Ais H-self-adjoint if and only if ¢A is H-skew-adjoint.

Remark 4.1 implies in particular that we may assume that the structure on A induced
by one of the matrices G and H, say H, is the structure of a self-adjoint matrix. In other

words, we may assume that A is H-self-adjoint. Otherwise, we may consider iA. Hence, it
remains to discuss the following cases:

e matrices that are H-self-adjoint and G-self-adjoint (Section 4.1), and

e matrices that are H-self-adjoint and G-skew-adjoint (Section 4.2).

Finally, we always assume that the pencil oH — G is nondefective.
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Remark 4.2 Instead of requiring oH — G to be nondefective, we may as well consider the
generalization of this case, that for the matrices A, G, H at least one of the three pencils
oH—G, oH — HA and oG — G A is nondefective. For example, if A is nonsingular and both
H- and G-self-adjoint then we can consider the matrix triple (H 'G, H, HA) for which H,
HA are Hermitian and H'G is H- and H A-self-adjoint, since (H'G)* = GH~'. Thus,
if oH — HA is nondefective, then we can get the canonical form of this new triple. But
once we have this, we can easily get the canonical form of the original triple (A, H, G). So
our results will cover more general cases.

4.1 Matrices that are H-self-adjoint and G-self-adjoint

In this section, we will derive a canonical form for matrices that are self-adjoint with respect
to nonsingular Hermitian matrices H and G such that the pencil pH — G is nondefective.
For the proof of our main result, the following lemma will be needed. Note that the lemma
is also true for the case that the pencil pH — G is not nondefective.

Lemma 4.3 Let G, H € C"™" be Hermitian and nonsingular. Let A € C™*™ be H -self-
adjoint and G-self-adjoint. Then there exists a nonsingular matrix P € C™*" such that

PlAP = A1 ®--- 8 Ay,
P'HP = H, &-- & H,
PGP = G ®-- &Gy,

where A;, H;, and G; have corresponding sizes. Moreover, each pencil oH; — G; has as
spectrum either {v;,7;} for some v; € C\R or {v;} for some v; € R, and the spectra of
two subpencils pH; — G; and oH; — Gy, j # 1, are disjoint.

Proof. By Theorem 2.3 and by applying an appropriate permutation that combines blocks
that display the same eigenvalues {v1,7,} in one large block oH; — G, there exists a
nonsingular matrix ) € C™*" such that

« - G1 0 " - H1 0 1 - AH A12
QGQ—[O GJ,QHQ—[O HJ,andQ AQ—[Am A]

where the pencil oH; — (1 has as spectrum either {7;,7,} for some v, € C\R or {~} for
some 7v; € R and such that the spectra of the pencils pH; — G and pHs — G5 are disjoint.
Since A is H-self-adjoint and G-self-adjoint, we obtain that

[A;Hl A;llegl l{llAu [:[1A12:|
A Hy A5 Hy HyAy  HyAg
A7 Gy A;lG:-'z ] _ l GiAn GiAn }

d z z
an {ATQGI A5Gl GoAyr Gy
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Since with G also G is nonsingular, this implies
Ay HyGyt = HiApGy' = HiGT G ARGy = HiGT' Ay,

Since the pencils oH; — G4 a~nd Qﬁg — ég have disjoint spectra, we obtain that A3, = 0
and therefore A,y = H;'A3 Hy = 0. The remainder of the proof follows by induction. 0

Theorem 4.4 Let G, H € C™*" be Hermitian and nonsingular such that the pencil oH —G
is nondefective. Let A € C™" be H-self-adjoint and G-self-adjoint. Then there ezists a
nonsingular matriz P € C™" such that

P'AP = A®---@ A
PGP = Gi@ - @Gy (17)
P*HP = H\®--- & Hy,

where the blocks A;, G;, H; have corresponding sizes and are of one and only one of the
following forms.

Type (1):
A =7\, Hj=¢Z, and G;=cvZ,

where A € R, p e N, ¢ € {1, -1}, and v € R\{0}. The H-structure index of A; is ¢ and
the G-structure index of A; is sign(evy).

Type (2):

b= 5 .

0 Z, o 0 17,
Z, 0}’ and GJ_[WZP 0 ]

where A € R, p € N, and v € C, Im(y) > 0. The H-structure indices of A; are 1,—1 and
the G-structure indices of A; are 1, —1.

Type (3):

— Tp(A) 0 |10 Z o 0 ~Z
S A B P B EP

where A € C\R, p € N, and v € C\{0}, where Im(~y) > 0.

Moreover, the canonical form (17) is unique up to permutation of blocks.
Proof. By Lemma 4.3, we may assume that the pencil pH — G has as eigenvalues either

7,7 for some v € C\R or ~ for some v € R.
Case 1. v € R.
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Since the pencil pH — G is nondefective, by Corollary 2.4, there exists a nonsingular
matrix P € C™*" such that
_ I, 0
Y 0 _Infm 9

i.e., in particular that G is a scalar multiple of H. Applying Theorem 3.1, we find that
there exists a nonsingular matrix @ € C™" such that (Q7'AQ,Q*HQ) is in canonical
form (10). Since G = vH, we obtain that A, H, and G can be reduced simultaneously to
block diagonal form with diagonal blocks of Types 1 and 3.

Case 2: v,7 € C\R.

* I, 0

In this case, we obtain from Corollary 2.4 that there exists a nonsingular matrix P €
C™*™ such that
. - 0 I, 0 ~ly
where 2m = n and Im(y) > 0. Let

A Ag
A=
{ Ag1 Ap ]

be partitioned conformably. Then we obtain from A*H = HA and A*G = G A that
AT2 = A12 and ’}/A){Q = 71412.

Since v # 7, this implies that A, = 0. In an analogous way we show that As; = 0, and
moreover, we have Ay = A%, by symmetry. Let Q; be such that Q;'A4,,Q; is in Jordan
canonical form and set

Q 0 }

@:P[O o

Then we obtain 14
" 0
~1 4 :{Ql 1G1 o _*]7
@ AQ 0 QAL
sy | 0 In R I U7 A

QHQ—{[m O}’ and QGQ_[WIm 0 ]
After an appropriate block permutation, we obtain that A, H, and G can be reduced
simultaneously to block diagonal form with diagonal blocks of the forms

i | Jp(A) 0 ~ [0 I - [0 I
A_[ﬂ) %ny H_[I 5},am G_[Wbopy

p

respectively, where p € N and A € C. The result then follows by applying the Z-trick; see
Remark 3.2.
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Uniqueness: Suppose that

A0 | H O 1 Gy 0
A—{O AQ}’ H—{ }, G_{O G2} and

~ A 0 ~ H, 0 = Gy 0

A_{ 0 1212}’ H_{ 0 gz}’ G_{ 0 Gz}’
are in canonical form, where H, G, H, G are Hermitian nonsingular, A is H-self-adjoint and
G-self-adjoint, A is H-self-adjoint and G-self-adjoint and all matrices have corresponding
block structures. If P~YAP = A, 0(A;) = 0(A;) and 0(A,) = o(A,) such that the spectra
of A; and A, are disjoint, then it follows immediately that P has a corresponding block
diagonal structure. Analogously, assuming that the spectra of oH, — Gy and pH, — G
(and of pHy — G5 and ofH, — Gy, respectively) are disjoint and that P*HP = H and
P*GP = G, where P is nonsingular, we obtain again that P has a corresponding block
diagonal structure. Indeed, partitioning

Pll P12 —% Qll QIQ
{ Py Po } o [ Q21 Qo

conformably with H, we obtain that
GunPi2 = leézz and Hy P = Q12ﬁ22-

This implies that o
Hl_llGHPlz == P12H2_21G227

and from that, we obtain P, = 0, since the spectra of HﬁlGH and ﬁz_;égg are disjoint.
Analogously, we show Py = 0.

Hence, it is sufficient to prove the uniqueness for the case that A has only one pair
of eigenvalues A\, A and that oG — H has only a pair of eigenvalues v,%. But then the
uniqueness is clear, since we obtain from Theorem 3.1 the uniqueness of the canonical form
for the pair (A, H). Note that the structure of G is then uniquely defined by the invariant
v with I'm(vy) > 0.

In both cases, it is easy to verify that the H and G-structure indices of each block are
as claimed in the theorem. O

An important special case is the case H = I, i.e., A is Hermitian and G-self-adjoint.
This leads to the well-known fact that two commuting Hermitian matrices are simultane-
ously diagonalizable.

Corollary 4.5 Let G € C™*" be Hermitian nonsingular and let A € C"*™ be Hermitian
and G-self-adjoint. Then there exists a unitary matric U € C™™™ such that both U*GU
and U*AU are diagonal.
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Proof. Every Hermitian, G-self-adjoint matrix A satisfies AG = A*G = GA. Then, it is
well known that A and G are simultaneously unitarily diagonalizable. But the result is
also a special case of Theorem 4.4. To see this, we first note that it follows from Sylvester’s
law of inertia (see, e.g., [5]) applied to H = I that only blocks of Theorem 4.4 may appear
in which the matrix H; has only positive eigenvalues. Thus, the only possible blocks are
those of Type (1), where the parameters p, € satisfy ¢ = +1 and p = 1. Then Theorem 4.4
implies that there exists a nonsingular matrix U € C™ " such that U AU and U*GU are
diagonal and that U*HU = H = I. The latter condition says that U is unitary. 0

Remark 4.6 The result can be generalized to the case that H is positive definite. In
this case, there exists a nonsingular matrix P such that P*HP = I. Then we can apply
Corollary 4.5 to P"*AP and P*GP.

4.2 Matrices that are H-self-adjoint and G-skew-adjoint

In this section, we present a canonical form for a matrix A that is H-self-adjoint and
G-skew-adjoint, where H and G are Hermitian nonsingular matrices such that the pencil
oH — G is nondefective. By Remark 3.4, the eigenvalues of A satisfy more symmetry
properties. If A € C is an eigenvalue of A, then, because A is G-skew-adjoint, so is —\,
having the same Jordan structure as A. On the other hand, A is H-self-adjoint and thus,
with A and —X also A and —\ are eigenvalues of A, having the same Jordan structures as .
Thus, the eigenvalues of A occur in quadruples {\, X, =X, —A}, where all these eigenvalues
have the same Jordan structure. If A is real or purely imaginary, this set is equal to {\, —=A},
and if A = 0, this set is just {0}.

The following lemmas will be needed for constructing the canonical form.

Lemma 4.7 Let G, H € C™*" be Hermitian and nonsingular. Furthermore, let A € C™*"
be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular matriz P € C™"*"
such that

PlAP = A& Ay,
P*HP = H{®---® Hy,
PGP = G & &Gy,
where Aj, H; and G; have corresponding sizes. Moreover, each matriz A; has the spectrum
{\i, Aj, =X, — A} and the spectra of two matrices A; and A;, where j # 1, are disjoint.
Proof. By using the eigenvalue properties of A mentioned above, one can find a matrix
@ € C™" such that
« G Gz * Hy Hi -1 A 0
G == 9 H = * 9 d A = A )
@l {G’;Q Gm} CHC [HU HQQ} and @QUAQ=1 4,
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Wherq Aj has the spectrum {/\l,xl, — A1, —Xl} for some Ay € C such that the spectra of A;
and A, are disjoint. Then we obtain from A*H = HA and —A*G = G A that

AIng = H121212 and — ATGlQ = G12A2

By construction, the spectra of A} and A, are disjoint. This implies H15 = 0 and G135 = 0.
The proof then follows by induction. 0O

Lemma 4.8 Let G, H € C"" be Hermitian and nonsingular. Furthermore, let A € C"*"
be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular matriz P € C"*"
such that

P7lAP = A& Ay,
P*HP = H, & ---® H,,
PGP = G & DGy,

where A;, H; and G; have corresponding sizes. The spectrum of each pencil oH; — G; is
contained in {7;, —;,7;, =7, for some v; € C and the spectrum of oH, — G, is disjoint
from the set {~;, —v;,7;, —7;} if j # L.

Proof. The proof proceeds analogously to the proof of Lemma 4.3 using the equations
A*H=HA and —A*G =GA. [

Note that, in contrast to the eigenvalues of A, the eigenvalues of the pencil pH — G
need not occur in quadruples {v;, —v;,7;, —7;}- If 7; is an eigenvalue of oH — G, then
from Theorem 2.3, we only know that 7; is also an eigenvalue, but —v; and —7; need not
be. However, to get corresponding block diagonal forms of A, G, H, we have to group 7;
and 7, together with —v; and —7; if they are also eigenvalues of oH — G.

In view of Lemma 4.8, it is sufficient to consider pencils oH — G whose spectrum is

contained in {7, —7,7, —7}. Therefore, a discussion of the properties of such pencils will
be helpful.

Lemma 4.9 Let G, H € C™™ be nonsingular and Hermitian such that the pencil oH — G
1s nondefective.

(1) If the spectrum of oH — G is contained in {v, —~}, where v* € R\{0}, then

H'GH™'G = +21,.

(ii) If the spectrum of oH — G is contained in {vy,—~,7, =7}, where v* € C\R, then
there exists a matriz P such that for H = P*HP, G = P*GP and A = P~'AP,

=2
rr—1 A Tr—1/5 ¥l 0
H "GH G—[ 0 'YQIm:|‘ (18)
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Moreover,

- [A 0
i[a o]

Proof. (i) We consider the problem in two cases.

Case (1): Tm() = 0.

Since the pencil pH — G is nondefective and its spectrum is contained in {v, —y} C R,
by Corollary 2.4 there exists a nonsingular matrix P € C"*"™ and numbers p,q,r, s € N
such that

L, 0 0 0 N, 0 0 0
10—, 0 o0 o =, 0 0
H=P | " [ o |P ad G=P| o "0 0 |P

0 0 0 —I 0 0 0 Al

This implies H 'GH'G = P71 (7*I,)P = +*I,.
Case (2): Re(y) =0.

Since the pencil pH — G is nondefective and has only the eigenvalues v, —y € iR, by
Corollary 2.4, there exists a nonsingular matrix P € C™*" such that

0 I,

H=P [Im 0

o 0 I,
1]3 and G’—P{_%]m 0 1P,

where m = 2 € N. This implies H 'GH'G = P~'(7°L,) P = v*1,.

(ii) By Corollary 2.4, there exists a nonsingular matrix P such that

gﬁ—G:gP*HP—P*GP:g[[O 16”]— [702 'VOE]

where m = § € Nand ¥ = I, & (—I;n—p), 0 < p < m. We then obtain that

s [7E 0
-7 5 (19)

and hence we have (18). Note that A is H-self-adjoint and G-skew-adjoint. This implies
that o o o
A(H'G)= H'A*G = —(H'G)A.

Since in this case v £7% # 0, from the block form (19) we get A=A & A, Since 4 is
H-self-adjoint, we obtain that Ay, = Aj]. O
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Theorem 4.10 Let G, H € C™*" be Hermitian nonsingular such that the pencil pH — G
1s nondefective. Furthermore, let A € C"*" be H-self-adjoint and G-skew-adjoint. Then
there exists a nonsingular matric P € C" ™ such that

P'AP = A @@ Ay,
PGP = G & - &G, (20)
P*HP = H,&--- @ H,,

where, for each j, the blocks A;, G;, H; have corresponding sizes and are of one and only
one of the following forms.

Type (1a):
T0) 0 0 0
PR G RE ACV R
i=| o o N o |
0 0 0~
0 0 Z, 0 0 0 0 ~Z
I o0 4z, 0
Hi=1z o o ol @@ G 0 %2, 0 0 |’
0 Z, 0 0 ~Z, 0 0 0
where A\ € C with Re(\)Im(A\) > 0, p € N and v* € R\{0}, Re(y),Im(y) > 0.
Type (1b):
Tp(N) 0 Z, 0 0 ~Z
A= | I H = Gi=|_ |
’ [ 0 —%(A)}’ ’ 5[0 (W% |7 77 94, 0

where A > 0, p € N and v* € R\{0}, Re(v),Im(y) > 0. The H;-structure index of X is e
and the Hj-structure index of —X is (—=1)P*e(L)*.

Type (1c):

. Tp(N) 0 |1 0 Z o Zy 0
AJ =1 |: O _jp()\) ) H] - Zp O ) G] - 6"‘)/’ 0 (|:Yy_|)2Zp )
where A > 0, p € N and v* € R\{0}, Re(y),Im(y) > 0. The G;-structure index of X is €
and the Gj-structure index of —\ is (—1)?’*15(‘3—‘)2.

Type (1d1):
A =7,0), H;=¢Z, and G;=¢EvEF,

where v? € R\{0}, Re(y),Im(y) > 0, and p € N is odd if v € R and even if v € iR.
Moreover, the eigenvalue A = 0 has the Hj-structure index ¢ and the Gj-structure index
gLqpt,

]
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Type (1d2):

| J(0) 0 o z [ 0o 4R
o R R P B (g

where v* € R\{0}, Re(y),Im(y) > 0, and p € N is even if v € R and odd if v € iR.
Moreover, the eigenvalue N = 0 has the Hj-structure indices +1,—1 and the G;-structure
indices +1, —1.

Type (2a):
J(A) 0 0 0

L] 0 =% o 0

7 0 0 T\ 0o |’

0 0 Z, 0 0 0 0 ~Z
o 0 0 z o 0 vz, 0
Hi=lz o o0 ol ™ G=| 09 52 0o o |

0 Z, 0 0 ¥Z, 0 0 0

Type (2b):

J,(A) 0 0 0

N 0 -7 0 0

A 0 0 0 ’

0 0 2 0 0 0 0 ~Z
o o0 0 gz 0o 0 4z 0
Hi=lz o 0o ol ™ G=| 9 52 0o o |

0 Z, 0 0 NZ, 0 0 0

where A > 0, p € N, and v* € C with Re(y)Im(y) > 0. The H,-structure indices of X are
+1,—1 and the H;-structure indices of —\ are +1, —1.

Type (2c):
J,(A) 0 0 0
Y U APV 0
J 0 0 () 0 ’
0 0 0 —J,0\
0 0 0 Z 0 0 ~Z, 0
1o 0 2z o0 o 0 0 4z
Hi=lo 2z 0 of @ G=|52 0o 0o o |
Z, 0 0 0 0 5%, 0 0
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where A > 0, p € N, and * € C with Re(y)Im(y) > 0. The G,-structure indices of X are
+1,—1 and the G;-structure indices of —\ are +1, —1.

Type (2d):

[0 o0 [0 z o 0 +vF,
Aj—|: pO jp(O)}’HJ_|:Zp Op}’G]_€|:(—1)p+17Fp Op )

where p € N, € € {+1,—1}, and v* € C with Re(y)Im(y) > 0. Moreover, the eigenvalue
A =0 has the Hj;-structure indices +1, —1 and the G;-structure indices +1, —1.

In the blocks of Types (1a)-(1d), the subpencil oH;—G; has only real or purely imaginary
eigenvalues. Those eigenvalues are vy and —, except for blocks of Type (1d1) when p = 1.
Then the pencil oH; — G; has the eigenvalue €&vy.

In the blocks of Types (2a)-(2d), the subpencil oH; — G; has only eigenvalues that are
neither real nor purely imaginary. Those eigenvalues are v, —vy, 5, and —7, except for
blocks of Type (2d) when p =1. Then the pencil pH; — G, has the eigenvalues ey and 7.

Moreover, the canonical form (20) is unique up to permutation of blocks.

Proof. In view of Lemma 4.8, we may assume that the spectrum of the pencil oH — G is
contained in {7, —v,7, —7} for some v € C\{0}, Re(y),Im(y) > 0, and it is sufficient to
distinguish the following two cases.

Case (1): Re(y)Im(y) = 0.
In view of Lemma 4.7, we may distinguish the following four subcases.
Subcase (1a): The spectrum of A is {\, =\, X\, —=A}, where Re(\)Im(\) > 0.

Since A is H-self-adjoint and G-skew-adjoint, it follows from Remark 3.4 that A X, —\,
and —\ have the same Jordan structure. Applying Theorem 3.1, the Z-trick, and a block
permutation, we may assume that A and H have the following forms:

TN 0 0 0 0 0 I, 0
I 5 Y 0 o o 0 I,
A=l 0 0 g0 o |PH=|5n oo o o | @Y
0o 0 0 —T0) 0 I, 0 0

where m = 2 € N and J(A) is an (m X m) matrix in Jordan canonical form only having
the eigenvalue X. Then, the equation —A*G = GA and the fact that A, —\, A, and —\ are
pairwise distinct imply that G necessarily has the form

0 0 0 Gy
0o 0 G 0
=10 @ o o | (22)
G; 0 0 0
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where Gy, Gz € C™ ™. By Lemma 4.9, we obtain that H 'GH'G = ~2I,. This implies

in particular that
GGy =4I, (23)

Note that the equation —A*G = GA also implies that J(A\)*Gs = G2J ()", ie., Gy
commutes with 7 (A)*. Hence, setting

Gy 0 0 0
Q= 0 ~7%l, O 0
0 0 v 2Gy O
0 0 0 ~2l,
we obtain that Q™ 1AQ = A, Q*HQ = H, and
0 0 0 Vm
% . 0 0 ’7_1G3G2 0
@GQ = 0 ~IG3Gs 0 0 (24)
5l 0 0 0

Then it follows from (23) and (24) that the triple (A, H,G) can be reduced to blocks of
Type (1a), by applying an appropriate block permutation and the Z-trick.

Subcase (1b): The spectrum of A is {\, —A}, where A > 0.

Theorem 3.3 implies that A and —\ have the same Jordan structure. Moreover, applying
Theorem 3.1, we may assume that A, H, and G have the following forms:

A0 | Hy O | Gi Gs
A_[O —A1:|7 H_{O Hz}’ and G—{G; Gs]’

where

A = jp1()‘) DD jpk()‘>’
H1 = €1Zp1 @"'®€k2pk7
Hy = 62, & @2,

and G; € C™™ for m = 5. Observing that —A*G = GA, we obtain that G; = G5 = 0,
since A # 0, and AiGy = Gy A;. Moreover, H 'GH'G = ~*I,, implies that

H'GoHy Gy = 721, = Hy 'GyH Gy, (25)
Setting

I, 0
Q - 0 ”)/_IH;lG; )
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then from (25), A1Gy = Gy Ay, 2, J,(0)*Z, = J,(0) (Lemma 2.1), and the block forms of
H, and A;, we obtain that

A 0 A0
—1 _ 1 o 1
@AQ = | 0 -Gy H,AHy'G; } n { 0 -4 ]
[ H, 0 Hy 0
*H == _ _ * —
QHQ 0 |W—12|G2H21H2H21G2} { 0 (%)2H1:| and
. ] 0 Yy 1GoHy'Gs ]l [ 0 ~H,
VO ey 0 [T lam 0 |

Thus, it follows by applying an appropriate block permutation that we may assume that

_ *7100‘) 0 _ €Zp 0 _ 0 YEZp
e A e B R B B il |

Hence, setting

we find that Q'AQ, Q*HQ, and Q*GQ have the desired forms.
Subcase (1c): The spectrum of A is {\, —A}, where A € iR, Im(\) > 0.

The matrix —iA is G-self-adjoint, H-skew-adjoint and has only a pair of real eigenvalues.
Noting that the spectrum of oG — H is contained in {7~ —y~'}, we can reduce the problem
to Case (1b), i.e., it is sufficient consider the case that —iA, G, and H are as listed in Type
(1b):

Tp(A) 0

o [ EZm 0 [ 0 Az,
A= —%@J’G‘{ yH‘[

N 1Z, 0 ’

where ¢ € {+1, —1}. Setting

we obtain that Q7!(—iA)Q = —iA,
e [0 Zn o [ 2w 0
Q"HQ = [Zm 0 1, and QGQ—EWW 0 (|7|>2Zm}.

Subcase (1d): The spectrum of A is {0}.

It follows from Lemma 7.5 in the Appendix that the triple (A, H,G) can be reduced to
blocks of Type (1d1) or of Type (1d2).

Case (2): Re(y)Im(y) # 0.
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By Corollary 2.4, we may assume that the pencil pH — G is already in the form
- 0 I, 0 ~X
QH_G_Q{M/O] {72 o]’
where m = § € N and ¥ = diag(l,,In—p), 1 < p < m and, furthermore, we have (18).
Then Lemma 4.9 implies that A has the form
A O
=0 4]
Note that by Lemma 4.9, a similarity transformation on A with a corresponding block
diagonal matrix and simultaneous congruence transformations on H, G does not change
the block structure of A and the identity (18), but it does change the block forms in H

and G. Hence we can apply similarity transformations on A; and at the same time keep
the relation (18). Again, we will consider the following four subcases.

Subcase (2a): The spectrum of A is {\, =\, X\, —=A}, where Re(\)Im()\) > 0.

Again, the eigenvalues \, =\, X, and —\ have the same Jordan structure. Moreover,
there exists a nonsingular matrix

Q_{ 0 QI*]GC

such that
A 0O 0 0
1 B 0 Ay O 0 . -
Q TAQ = 0 0 A5 0 and Q"HQ = H,
0 0 0 Al

V_vhere A1_1 € CF*¥ has the eigenvalues A and —\ and Ay, € CE=R*(5-k) has the eigenvalues
A and —\. Partitioning Q*GQ conformably, i.e.,

0 0 G Gy
o 00 G oG
PER=1¢a o o |
Gy Gi 0 0

we obtain from the equation —A*G = G A and the fact that A;; and — Ay have no common
eigenvalues that Go = G3 = 0. Thus, after an appropriate block permutation, we may
consider two smaller subproblems. The first one is
~ [ Ay 0 =~ | 0 I = | 0 Gy ||
A—[O Aikl}’ H_[IkO , and G= oo |
and (18) implies that

=2
=1 A Tr—15 ¥ 1 0
i [T 0]
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Hence, after applying a similarity transformation on A;; , we may assume that A, G, and
H are in the forms (21) and (22), where (G1)?> = 42I. The remainder of the proof then
proceeds analogously to Subcase (1a). The second subproblem with respect to Asy can be
transformed in the same way.

Subcase (2b): The spectrum of A is {\, —A}, where A > 0.

We obtain from Theorem 3.3 that the Jordan structures associated with A and —\ are
the same. Hence, both A; and A} must have the eigenvalues A and —\ with the same
Jordan structure. Thus, there exists a nonsingular matrix

0
o= [T o
such that
J(N) 0 0 0
Q'AQ = 8 _%M)j%) 8 and Q*HQ=H,
0 0 0 —JN)
where k = % and J(A) is an k x k matrix in Jordan canonical form associated with only

one eigenvalue \. Partitioning QQ*G() conformably, i.e.,

0 0 Gy Gy
o 00 G oG
PER=1¢ a o o |
Gy Gi 0 0

we obtain from —A*G = GA and the fact that J(\) and —7(\) have no common eigen-
values that G; = G4 = 0, and that J(A\)*Gy = G2 J(N), T (A\)*Gs = G3J(A\). Moreover,
we still have (18), which implies that G3G5 = *I. Thus we may assume that A, G, and
H are in the forms (21) and (22), where G3G5 = v*I. The remainder of the proof then
proceeds analogously to Subcase (1a).

Subcase (2c¢): The spectrum of A is {\, —A}, where A € iR.

The proof proceeds analogously to the proof of Subcase (1c).

Subcase (2d): The spectrum of A is {0}.

This case follows from Lemma 7.8 in the Appendix and by applying the Z-trick.

Uniqueness: Analogously to the proof of Theorem 4.4, it is sufficient to prove uniqueness
for the case that the spectrum of A is {\, =\, X\, =} for some A € C and that the spectrum
of pH — G is contained in {v, —v,7, =7} for some 7 € C. Again, the canonical form for the
pair (A4, H) is unique. In any case except for the case that A = 0 and 4* ¢ R, the matrix
G is then uniquely determined by the invariants v with Re(y), Im(v) > 0 (and signs € or
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€ in some cases that are uniquely determined by the canonical form for the pair (A, G)).
Only in the case A = 0 and 7* ¢ R do we have an additional invariant ¢ that is not an
invariant of the canonical form for the pair (A, G). In this case, the uniqueness follows
from Lemma 7.8 in the Appendix.

In all Cases (la)—(2d), it is easy to verify that the H and G-structure indices of each
block are as claimed in the theorem. O

Again, we obtain as an immediate consequence the result for the special case H = I,
i.e., A is Hermitian and G-skew-adjoint.

Corollary 4.11 Let G be nonsingular and Hermitian and let A be Hermitian and G-skew-
adjoint. Then there exists a unitary matrizc U € C™™™ such that

N P Y A 0
U*AU = [0 _M}@...@{ . _Am}@[()],

¥ _ | 0m 0 m

where Ay . .., A €ER, Y1, oo m > 0, and Gy € C2mX(=2m) s diggonal.

Proof. It follows from Sylvester’s law of inertia (see, e.g., [5]) applied to H = I that in
the canonical form for the triple (A, I, G), only blocks may appear in which the matrix H;
has only positive eigenvalues. These are blocks of Type (1b) with parameters ¢ = +1 and
p = 1 and blocks of Type (1d1) with parameters ¢ = +1 and p = 1. Noting, furthermore,
that G is Hermitian and thus has only real eigenvalues, it follows also that the parameter
~v must be real. It now follows from Theorem 4.10 that there exists a nonsingular matrix
U € C™" such that U ' AU and U*GU have the forms claimed in the corollary and such
that U*HU = H = I. The latter identity implies that U is unitary. 0O

Remark 4.12 The result can be generalized to the case that H is positive definite. In
this case, there exists a nonsingular matrix P such that P*HP = I. Then we can apply
Corollary 4.11 to P~*AP and P*GP.

5 Singly and doubly structured pencils

In this section, we discuss canonical forms for matrix pencils pA — B, where both A and
B are matrices that are singly or doubly structured with respect to some indefinite inner
product. It turns out that the case of structured pencils can be reduced to the matrix case.
This is done in the following theorem.
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Theorem 5.1 Let the matrices G, H € C"*" be nonsingular and Hermitian or skew-
Hermatian, 1.e.,
G*=ngG and H*=nyH,

where ng,ng € {1, —1}. Furthermore, let oA — B € C™*" be a regular pencil such that

A*H = e HA, A*G = 64GA,
B*H = e3HB, B*G = §5GB, (26)

where €4,6p5,04,0p € {1,—1}. Then there exist nonsingular matrices P,Q € C™™ such
that

I, M
P eA=B)Q = g{ ; H—{ 0 IO}

* o Hll 0
Q'HP — [ : H}

* _ Gll 0
Q'GP = [ A Gm],

where M, Hi1, G € C"*™ and N, Hoo, G € C™*"2, Moreover, M and N are in Jordan
canonical form, N 1is nilpotent, and the following conditions are satisfied.

Hikl - anAHlla Gil - T]G(;AGll,
M*Hyy =eaepHM, M*Gy = 5A53G11M;
Hj3y = nuepHay, G5y = 1gopGaa,

N*HQQ :5A€BH22N, N*GQQ = 5A(SBG22N.
Proof. Let P, € C™*™ be nonsingular matrices such that the pencil
1 _ _ Ly 0 | M 0
Prea-mo=o| V-1 [ (27)

is in Kronecker canonical form (see [6]), where M, N are in Jordan canonical form and N
is nilpotent. Then (26) and (27) imply, in particular, that

Q'H(oeaA —epB) = Q"(0A" — B*)H = (g { b 0, ] - { M D PH.

From this and (27), we obtain that

* ‘[Tbl 0 _ * _ Inl O *
@HP{ : N} ~ QHAQ - eA{ . N*]PH@,
) M o0 B M0
QHP[O Im} —QHBQ—EB[O IM]PHQ.
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Hyy Hi
H21 H22

Hy o HigN — Hy, H3,
Hy  HypN N*Hj, N*Hj

Setting Q*HP = [ } and noting that P*HQ = ny(Q*HP)*, we find that

and {HHM H12]: anB{M*Hﬁ M*H&]‘

H21M H22 Hik2 HS?

This implies, in particular, that
H12 = T]HEBM*H;I = €AEBM*H12N = (€A€B)k(M*)kH12Nk for every k € N.

Since N is nilpotent, it follows that Hy, = 0 and thus, also Hyy = npgeaN*Hj, = 0.
Moreover, Hyy = nueaHj, and Hyy = npyepHy,, and HyoN = ngeaN*Hj, = €4epN*Hoo,
Hi1M = ngegM*H}, = e aegM* Hy;. Analogously, we show that Q*G P has the structure
claimed in the theorem. This concludes the proof. O

We note that M is a doubly structured matrix with structures induced by H;; and
G11 and that N is a nilpotent doubly structured matrix with structured induced by Hao
and Gag, where Hyy, G11, Hae, and Goy are all Hermitian or skew-Hermitian. Therefore,
Theorem 5.1 gives a general description of how to obtain the canonical forms for the pencil
case from the canonical forms in the matrix case that are given in the previous sections.
We only have to further reduce M and N by applying the results from Section 4. Note that
Theorem 5.1 does not require the pencil pH — G to be nondefective. However, canonical
forms for the matrix case are known for this case only.

Theorem 5.1 also describes the case of singly structured pencils. In this case one may
choose H = G, €4 = 64, and eg = dg. Thus, Theorem 5.1 gives a general description
how to obtain canonical forms for singly and doubly structured pencils from the canonical
forms in the matrix case. For obvious reasons, we do not give a list of the canonical forms
for all possible cases, but only one example to illustrate the effect of Theorem 5.1.

Theorem 5.2 Let H € C™*" be Hermitian and nonsingular and let pA — B € C™*" be a
reqular pencil such that A and B are H-self-adjoint. Then there exists nonsingular matrices
P, Q) € C™™™ such that

Ay 0 B 0
P oA—B)Q = o _ :
0 Ay 0 By,
H, 0
Q*HP = ;
0 H,

where the blocks Aj, B;, and H; have corresponding sizes and are of one and only one of
the following forms:

26



1. blocks associated with real eigenvalues:
A =1, B;j=J,\), and H;=¢Z,
where p € N, A € R, and e € {1,—1};
2. blocks associated with a pair of nonreal eigenvalues:

Tp(A) 0

b=t 5= [ ol

}, and H; = Zyp,

where p € N and A € C\R;

3. blocks associated with the eigenvalue oo:
Aj = *7P(0)7 Bj = [p> and Hj = EZpa

where p € N and € € {1, —1}.

Moreover, this form is uniquely determined up to permutation of blocks.

Proof. This follows directly from Theorem 5.1 and Theorem 3.1. O

Note that with the assumptions and notation of Theorem 5.2, the pencil H(pA — B) =
oHA — HB is a Hermitian pencil. It turns out that Theorem 5.2 is a generalization of
Theorem 2.3. Indeed, the pencil Q* HPP~!(pA — B)Q is a Hermitian pencil in canonical
form.

6 Conclusions

We have derived canonical forms for matrices and matrix pencils that are doubly structured
in the sense that they are H-self-adjoint (or H-skew-adjoint) and at the same time G-self-
adjoint (or G-skew-adjoint), where we have assumed that G, H are nonsingular Hermitian
(or skew Hermitian) and oG — H is a nondefective pencil. The general case that G or H
are singular, or that the pencil oG — H is defective, is still an open problem. Also, the
associated real canonical forms, which appear to be much more difficult, are open.

In view of the applications in eigenvalue computations, it is also important to restrict
the transformation matrices to be unitary (or orthogonal in the real case). This case
will be covered in a forthcoming paper, which will also address numerical methods, in
particular for the classes of pencils arising in quantum chemistry that we have discussed
in the introduction.
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Appendix

In the Appendix we derive some technical Lemmas. Recall the Kronecker product; see,
e.g., [9, 12].

Definition 7.1 Let A = [a;;] € C™*™ and B € CP*. Then

CL11B . alnB
A® B := : : e Cmrrna,

amB ... am.B
This product has the following basic properties; see, e.g., [9, 12].

Proposition 7.2 Let A,C € CP»*P2 . B D € C1"*% F € CP2*P3 gnd F € C2*%. Then
the following identities hold.

1. A(B+D)=A®B+A®D, (A+C)®B=A®B+(C® B.
2. (A® B)(E®F) = (AF) ® (BF).

3. A® B is invertible if and only if A and B are invertible. In this case we have that
(A By '=A"1®@ B~

4. (A BT = AT @ BT, (A® B)*=A*® B*.
5 A® B =0 if and only if A=0 or B=0.

We will frequently need the permutation matrix

Qm,n = [617 €nt1s- -5 €(m—1)n+15 €2, €n42, - - -, E(m—1)n+2; Eny €2ny - - -, Emn |-

If A, B are m x n and p X g, respectively, then

2, (A® B)Q,, = B® A,

In the following we derive the canonical forms for doubly structured matrices that are
nilpotent. This case is the most complicated case, since we have least symmetry in the
spectrum. Therefore, we have to use a very technical reduction procedure.

For the sake of briefness of notation, let 7, denote the nilpotent Jordan block 7,(0) of
size p. O, is the p X ¢ zero matrix.
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Lemma 7.3 Let Z,, D,, and F, be defined as in Section 2 and let k,l,p,q € N, (p > q).

Then
ZpTy = () Zp,  DpTyDy = (-1)'T,, BTy = (=1)'(T;)"Fp. (28)
o ][]

Definition 7.4 Let A = (ajx)nn € C™". Then the lth lower antidiagonal of A or, in
short, the lth antidiagonal of A is defined by the elements aj,, where j +k =n+ 1+ L.
Here, we allow ! = 0. The Oth antidiagonal is also called the main antidiagonal. If

B=[0 B] and (J:{g],

where B and C are square matrices, then the lth antidiagonal of B and C is called the lth
antidiagonal of B and C, respectively. Analogously, we define the lth block antidiagonal
for square and non-square block matrices.

Lemma 7.5 Let G, H € C™" be Hermitian nonsingular such that the pencil oH — G is
nondefective and such that its spectrum is contained in {7y, —v}, where v* € R\{0} and
Re(v),Im(y) > 0. Furthermore, let A € C"*" be nilpotent, H-self-adjoint and G-skew-
adjoint. Then there exists a nonsingular matrix P € C™*™ such that

P'AP = A& A,
PGP = G @ @Gy, (32)
P*HP = H,®---® Hy,

where the blocks A;, G, H; have corresponding sizes and, for each j, are of one and only
one of the following forms:

Type (1d1):
A;=7,00), Hj=c¢Z, and G;=EyF, (33)
where e, € {—1,1} and p € N is odd if v € R and even if v € iR;
Type (1d2):
| Fp(0) 0 10 Z o 0 ~F,
AJ - |: 0 jp(o) ) H] - Zp 0 ’ G] - _,YFp 0 ) (34)

where p € N is even if v € R and odd if v € iR.

Moreover, the form (32) is unique up to permutation of blocks.
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Proof. Applying Theorem 3.1, we may assume that (A, H) is in canonical form, i.e.,
collecting blocks of the same size and representing them by means of the Kronecker product,
we may assume that

Ly @ Ty 0 Yoy ® Zp, 0
A — ‘. . 5 H — . . 9
0 I, @ Ty, 0 Yimy, @ Zp,
where p; > ... > p, are the sizes of Jordan blocks and Em]. are signature matrices for
Jj=1,..., k. Setting
I, ® Fp, 0
F —= c . . s
0 ‘[mk ® Fpk

we obtain from —A*G = GA and (28) that A and FG commute. Thus, the structure of
G is implicitly given by the well-known form for matrices that commute with matrices in
Jordan canonical form; see [5]. For the sake of clarity, we will not work directly on A, H,
and G, but first apply a permutation. Setting 2 = Q,,, ,, ® ... ® Q,,, ,, and updating A,
H, G by Q7 TAQ, Q*HQ, Q*GS), we are led to consider the following situation:

N/ 0 Hyy 0
A= and H = : (35)
0 T @ L, 0 Hy

where Hj; = Z, ® X, . Partitioning

Gll Ce le
G=1| . (36)
GT’C © .. Gkk-
conformably and using the structures of matrices that commute with matrices in Jordan
canonical form [5], we obtain that

qul

qu = Z (qujzfq> ® Gt(zl,zl

=0

0
0 . ... 0 G\
: ~Giy  —Giy
= G G ' (37)
0 . . :
| (-LpGE L (mpeG Y
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forg=1,...,k, where G,(Jl,)q € Cma*™a and

pr—1
a . — Z Opq—pnpr ® GW (38)
qr — Fpr*ﬁr q,r

for 1 < g <r <k, with G((Il} € Cmaxmr,
We will stepwise reduce the matrix G, while keeping the forms of A and H.
Step (1): Show that G;‘?j) is nonsingular for j =1,... k.

Since the pencil pH — G is nondefective and has only the eigenvalues v, —v, where
v? € R\{0}, we obtain from Lemma 4.9 that

GH™'G =~*H.
Comparing the jth diagonal blocks on both sides, this implies in particular that
’}/QHjj = GL‘HHGU 4+ ...+ ijHijjj 4+ ...+ G]kakG;k (39)

Because of the structure of the blocks G, it follows that all the block antidiagonals
of G, Hy Gy and G, H,. .G}, are zero for ¢ < r, and hence, comparing the main block
antidiagonals on both sides of (39), we obtain that

'YQZ;DJ- ® Emj = (ij ® ij))(zpj ® Emj)(ij ® Gﬁ))
0 0
= (Fp,Zp, ) © (Gg',j)zmj G;J))

Since Fy, Z, F,, = Z,, this implies that

(0) © _ 1
G%0, G = =%, (40)

~2
and thus, Gg?j) is nonsingular.

Step (2): Eliminate Gia, ..., G-

Assume that we already have Ggsj) =0forall j=2,...;kand all s=0,...,l — 1, and

Ggl)] =0forj=2,...,r—1, where [ > 0 and r > 2. We then show how to eliminate Ggll
while keeping the forms of A and H. Let
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have a block form analogous to GG, where zero blocks of the matrix are indicated by blanks
and, moreover,

0 =*x 0
J! 1 _ B .
X = | oo e (GEonrrieden) =] o '
Opl—pr,pr 2
0 .0 |

1
X = [ Opr 1 jzfr } ® <_

S DG TG,

Substep (2a): Note that X, and X,; are chosen such that X commutes with A.
Substep (2b): In the updated matrix G := X*GX we have é@r = 0.

Indeed, it is easy to see that G is again a matrix of the form (36), (37), and (38). The
(1,7)-block of G satisfies

From the structure of G and X, we immediately find that the first [ — 1 block antidiagonals
of all the summands of the right-hand side of (41) are zero. Furthermore, the Ith block
antidiagonal of Gy, has the form

! 1
(Fpl ® Gg(,)i) (|: O ‘7pr :| X <_(_1)Pl—pr-+1(G§?z)—1G§l’l>)

P1—Pr,Pr 2

+ |: Opl_pmpr :| ® Ggl’)r

Fprjlfr
O 1—Pr 1 —
(| T | o Grometie) ) i, o 6
p’r‘
1 _ VA ! O, _ I
— Z(—1\rprtl (R Dr G() P1—Pr,Dr G()
2( ) ( P1 |: Op1—pr,pr :|) ® 1,r + Fpr*jplr ® 1,r

1 Oy —p. !

- _1 +1 Pr,P1—Pr F G( )
+2( ) ({ (jzfr)* } pr> @Gy
1 Om —pr,pr 0 Om —pr,pr 0]
2 [ Fprjffr @ Gl’r * Fpmj;fr ® Gl’r
1 O 1—Pr,Pr :
-3 [ (—1)lp(ﬁ ’)p*Fp 1 ® Ggll (usmg (30))

Dr r

=0 (using (28)).

Substep (2¢): In the updated matrix G := X*GX, we still have égsj) = 0 for all
7=2,...,kandall s=0,...,l—1, and égnj =0forj=2,...,r—1.
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Indeed, the elements of the first block row of G have the form

G + X5 Gy, for1<g<r and
Ghg + X,1Grg for r < q.

From the block structure of Gy,, G, G4, and X1, we obtain that the first p, — p, + 2{
block antidiagonals in X G and the first p, — p, + 20 — 1 block antidiagonals in X, G,,
are zero.

Substep (2d): We show that the matrix H := X*HX is block diagonal.

The only changes outside the block diagonal can have happened to the (1,r)-block H,
and the (r, 1)-block H,; = H;,.. The (1,r)-block has the form

Hy, = (Zp @ Sm) X1 + X1(Zy, ® S, (42)
1 Op —Pr,p
— = 1 ryPr 4
2 |: Zp'fjlf'r ( 3)

® (<—1>M“zml<eﬁ‘?£>16511 ; <—1>l“G§{1<G,€?2>1zmT),

using (28) and (29). On the other hand, we have GH'G = *H. Noting that H~! = H
and comparing the (1, r)-blocks of both sides, we obtain that

r—1 k
0= G H Gy + (Z quququ> + G Hp G + ( > ququG;tq) o (44)

q=2 q=r+1

Clearly, the first [ — 1 antidiagonals of all the summands in (44) are zero. We now consider
the lth block antidiagonal. We note that G, H11G1, and G4, H,..G,, are the only summands
that have a nonzero [th block antidiagonal. For the terms G1,H,Gqr, 1 < ¢ < 7, this
follows from the fact that the /th block antidiagonal of Gy, is already zero. For G1,H,,G7,,
q > r, this can be seen as follows. If we write the jth block antidiagonal of G1,H,,G;, in
the form S; ® T}, then we obtain

Pq

D D 0 Dr — pq pq
- PP 4 0 Yo ]
% Dq {qu b, ] Pru | P [ "
Pr — pq pq
P1— Pr 0 0
= pr—Dy 0 0
Pq 0 Fp, ~7qu quFl:q

Having in mind that the first [ — 1 block antidiagonals of G, are zero, we find that the
first p, — p, + 1 — 1 block antidiagonals of G1,H,,G7, are zero.

33



Finally, comparing the [th block antidiagonals in (44), we obtain

O, _
0 — <Fp1®Gl,1,o><Zpl®zml>([ b ”“”T}@Gﬁl)

Fp'rjplr
O,
(| G [octh) @ o s, 06
Pr<pr
O,, -
= | T e ((C0r G G+ (160 S, 69,
Zp/r‘\7pr b b b b

using (28), (29), and (30). Using (40) and (43), this implies Hy, = 0.

Substep (2e): Retrieve H.

Although H is block diagonal, the (1,1)- and (r,7)-blocks may differ from those of H.
We now show how to retrieve H from H while keeping the zero block antidiagonals of G.
It follows from Theorem 3.1 that there exists a nonsingular matrix 7' € CP"™1*P1™1 gych

that
T YTy @I )T =Ty, @I, and T H\LT = Z,, @ S,

Since T' commutes with J,, ® I,,,,, it has the block structure

T, ... Ty,
0 T
with T; € CPv*P1 | j = 1,...,my. Analogously, we find a matrix 7" € CPr"=*Prr of similar

structure such that
T YT @ Ly )T =Jp @1, and TYH,T' = Z, @ S,

Setting

T =Tao Ip2m2 S...0 Iprflmrfl D T/ D Ipr+1mr+1 S...0 kamk7
we obtain 3 3 o
T'AT=A and T*HT =H.
Moreover, let us look at the (1,g)-block of T*GT. Note that because of the block-
triangularity of 7', the multiplication of G from the left by 7™ neither changes the first
[ — 1 zero block antidiagonals of Gy, for ¢ = 2,..., k nor the Ith zero block antidiagonals

of élq for ¢ = 2,...,r. The same argument holds for the multiplication from the right by
T, because of the block-triangularity of 7”.

Substep (2f): By consecutively repeating Substeps (2a)—(2e) several times, we can
eliminate Gg?])- for all 7 = 2,...,k, then G?j for all j = 2,...,k, and so on. After having
eliminated Gg’j ;71), we finally obtain that there exists a nonsingular matrix S, such that

k7171 ® Iml 0
0 Ay

Zpl ® Zml 0

1 .
S AS—[ 0 i, |

| sms=|
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and S*GS:[Gl 0 }

0 Go

where Gy € CPr™mxpimi - Hence, it is sufficient to assume that we are in the following
situation:

A=F,®1I, H=2Z,% and (45)
0 Go
p! -Gy -Gy
G=) (FJ) @Gy = L : . (46)
£ R ;
(—1)PGy ... ... (=1)PHG,

where k,m,p € N, ¥ is a signature matrix, and G; € C™*™ for j =0,...,p — 1.
Step (3): Reduce G to block antidiagonal form.

Assume that we already have G; = ... = G;_; = 0 for some [ < p — 1. We then
eliminate GG} while keeping the structure of A and H.

Substep (3a): Eliminate G;.

Since G is Hermitian and F}, is Hermitian for odd p and skew-Hermitian for even p, we
obtain that
Gr = (=P G, (47)

This implies, in particular, that
(GF' G = (~1)GiG7 ™. (48)
Setting
Xi=1,@ I, — %jg ® (Gy'Gu),

it follows that X commutes with A. Moreover, we obtain that the first [ — 1 block an-
tidiagonals in G := X*GX are still zero. Then, using (28), it follows that the ith block
antidiagonal has the form

(1, 1) () © 1) (U, @ 1) — 5(-1)' ()" © (G5 ) (B © Co) (1, © L)

0@ 1) (R @ Go) (T} @ (G5 = 0.

Substep (3b): Retrieve H.

Comparing the Ith block antidiagonals on both sides of GH G = 4?H and using that
G1=...=G;_1 =0, by applying (28) and Lemma 2.1, we obtain that

0 = (F8G)(Z%e%)((FF)eG)+ ((BI) @ G)(Z,@)(F,@ G)

= (FZ,FJ) e (GOZGl + (—1)lGlEG0>.
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This implies, in particular, that for [ > p —1
GGy + (-1)'2G G = 0.

Here we have used the identity GoXGy = 2%, which follows from comparing the diagonal
blocks in GH'G = v?H. Therefore, with this relation and (48) we obtain that

X*HX
| 1
= Z,0%-27 e (GiGy"s +3G5'Gy) + 7 (7)) 2,7}) @ (G1Gy =Gy Gy)

1
= 2,03 -1(%J")® (E(Gglc;l)?).

The (2/)th block antidiagonal of X*H X can then be eliminated by a congruence transfor-
mation with

1
Y=1,®I,+ gjp?l ® (Gy'G))*.

This transformation does not change the first { block antidiagonals of G' but may change
the jth block antidiagonal of X*H X for some j > 2l. However, repeating the procedure
described above a finite number of times, we can finally retrieve H while keeping the
property that the first [ block antidiagonals in G are zero.

Substep (3c): By consecutively applying Substeps (3a) and (3b), we finally obtain that
there exists a nonsingular matrix S such that

0 )y
STAS =T, @1, SHS=27,0%= :
) 0
0 Go
and S*GS =F,® Gy =
(—1)P*1Gy 0

Step (4): Complete the final reduction of G.

Since the pencil pH — G is nondefective and its spectrum is contained in {v, —v}, this
also holds for each subpencil pX — (£Gy). We will distinguish four cases.

Case (a): v € R and p is even.

Identity (47) implies that Gy is skew-Hermitian. Since the pencil p¥ — (£G)) has only
real eigenvalues v and/or —v, it follows that > — (£Gg) has both eigenvalues with equal
algebraic multiplicity. This implies, in particular, that m is even and that there exists a
nonsingular matrix R € C"™*™ such that

s | 01 . - 0 I
RZR—[I O} and RGOR_[—VI O]'
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Set R = I, ® R. Then

0 I

RTAR = A, R*HR:ZP@){[ 0

« B 0 I
}, and RGR—F,,@[_W. 0}.

Applying a transformation with 2, ,, the form stated in (34), for the case that p is even
follows from an appropriate block permutation.

Case (b): v € R and p is odd.

In this case, (47) implies that Gy is Hermitian. Considering the Hermitian pencil
0¥ — (£G)), there exists a nonsingular matrix R € C™*™ such that

R'YSR=Y% and R‘GyR =3,

where Y is another signature matrix. Setting R := I, ® R and applying transformations
with R and €,,,, the form stated in (33) for the case that p is odd follows from an
appropriate block permutation.

Case (c¢): v € iR and p is even.
In this case, (47) implies that Gy is Hermitian. The rest follows as in Case (b).
Case (d): v € iR and p is odd.

This case follows analogously to Case (a). This concludes the reduction to the canonical
form.

Uniqueness: The canonical form for the pair (A, H) is unique. The matrix G is then
uniquely determined by the invariants € and v. 0O

Definition 7.6 Let A = (aji)nn € C™*™. Then the lth upper diagonal of A or, in short,
the lth diagonal of A is defined by the elements aj, where k = j+1. Here, we allow l = 0.

If

B=[0 B]| and (J:{g],

where B and C are square matrices, then the lth diagonal of B and C is called the lth
diagonal of B and C', respectively. Analogously, we define the lth block diagonal for square
and non-square block matrices.

Lemma 7.7 Suppose that Ag, Go € C™™™ anticommute, i.e., AgGq = —GoAg. Further-
more, let Ay be nilpotent and Gy be diagonalizable and nonsingular. Then there ezists a
nonsingular matriz P € C™" such that

P'AP = A @ @A,
PGP = Gi@---® Gy, (49)

37



where the blocks Aj, G have corresponding sizes and, for each j, are of the following form:
Aj=Tp(0) and  G; =¢e;vD,, (50)

where p € N, v € C with Re(y) > 0 and Im(y) > 0 if Re(y) = 0, and ¢; € {+1,—1}.
Moreover, the form (49) is unique up to the permutation of blocks.

Proof. Let Q € C™*™ be nonsingular such that

Ay A G 0
—1 . 11 12 -1 _ 11
Q AOQ - |: A21 A22 :| and Q GOQ - |i 0 G22 :| )

where the spectrum of G, is contained in {, —y} and the spectrum of Gy is disjoint from
{v,—7}. Then —AyGy = GoAp implies Aj5 = Az = 0. Hence, we may assume without loss
of generality that Gy has at most the eigenvalues 7, —y, where v € C\R with Re(v) > 0
and Im(vy) > 0 if Re(y) = 0. Since Gy is diagonalizable, this implies in particular that
G? = 4?I,. Furthermore, we may assume that Ay is in Jordan canonical form. Thus, we
obtain that

g7p1 ® Iml 0 GH Ce le
Ay = and Gy = e (51)
0 Tpe @ I, Gri ... G
for integers p; > ... > pg, my,...,my and G, € C™eX™r . Setting
D, & L, 0
D = t. . ,
0 D,, ® I,

and using (28), the fact that Ay and Gy anticommute is equivalent to Ay(DGg) = (DGg)Ap.
Therefore, we obtain the following structures for the blocks of Gj.

pg—1 pr—1 .
4 4 D, TI .
Gog= > (D, TL)RGY) Gp=> { b T, } ®GY) forg<r,  (52)

=0 =0 Oquphpr
and
pg—1 .
G(IT = [ Opq,pr—pq qujigq } ® GEIJJ)" for q=>T, (53)
j=0

where G((f,g and fo} are matrices of suitable dimensions. We will now reduce G stepwise
to canonical form.

Step (1): Since G2 = 421, as in Step (1) in the proof of Lemma 7.5, it follows that Gy
is nonsingular.
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Step (2): Eliminate of Gy, ..., G and Gay, ..., G-

Assume that we already have Ggsj) =0forall j=2,...,kand all s=0,...,l—1, and
Ggll =0forj=2,...,r—1, where [ > 0, r > 1. We then eliminate Ggl}. Note that
G? = I implies that

GG+ ...+ GG =0
for r > 1. From this and using an argument similar to the argument in Step (1) in the

proof of Lemma 7.5, we obtain that only the blocks GG, and G4, G, contribute to the
Ith diagonal of the left-hand side. Using (28), this implies that

D l
0 = e[ o7 |ect)

Opl_pmpr
D l
+ ([ o ] ® GY}) (Dy, ®G)
P1—Pr,Pr
1
= [ 0% Je(cticth+ -rvelicl) (54
Op1—prpr ' ’ o
Setting
r
I Xlr
XQ = - . s
I
where . l
J, ] ONEPT
X, =—= Pr ® (G Gy,
! 2 [ (O — ( 1’1) b
we obtain that X, commutes with Ay. Furthermore, partitioning éo = X, Gy X con-

formably to G, for the (1,7)-block Gy, we obtain that

Gy = Gy — X0,Grr + G Xy — X0,Gr X,

From this and using (28) and (54), we obtain that the Ith diagonal of Gy, has the form

l 1 ¢
{ Dy J,. } ®G§’1+ 1 ({ T, ] Dpr) ® ((G&O})*lGi’lG,@)
Op1—prpr ’ 2 Opi—pr.pr , o

1 J! }) )
—= | Dy, pr ® G, = 0.
2 < P [ 0p1—pmpr L

Analogously to the proof of Lemma 7.5, we can show that we still have éﬁ;” = 0 for all
Jj=2,...,kand C?gl,)j:Oforj:Z...,r—l.
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By consecutively repeating Step 2, we can first eliminate G §°j for j =2,...,k, then GSJ)»,

and so on. Finally, we can eliminate G, ..., G1x. Moreover, we can eliminate Go1, ..., Gg
using transformations of the form

I
X = h
0 r Xrl . )
1
where 1
X =3[ Onpn T, ] @ (CLGINT.
Note that these transformations do not change Gys, ..., Gy.
To complete Step (2), we may finally assume that
p*l GOO PR G()’pfl
A=J,@In, Go=> (D,J}) @ Gox = : , (55)
Jj=k 0 (_1)p+1G00
where p,m € N.
Step (3): Reduce Gy to block diagonal form.
Assume that we have Goy = ... = Gp;—1 = 0 for some 0 < [ < p — 1. We then show

how to eliminate Gg;. The [th block diagonal of GZ has the form
0 = ((Dpj;) ® G01> (D, ® Goo) + (D, ® Goo) ((D,,jé) ® GO,)
= J;f ® <(—1)1G01G00 + G00G01>-
Hence

GauGoo = (=1)" ' GooGor. (56)
The matrix X := I, ® I, — 3. @ (Gyy Go) commutes with Ag. Moreover, X' has the
structure
1 oo
Xot =1, @ In+ 5.7, @ (Gog Go) + D Ty @ Xow
k=2

for some matrices Xy,. Hence, setting @0 = XO_IGOXO, we obtain that the first [ — 1 block
diagonals are still zero and that the [th block diagonal has the form

1
(57 © (il G (D, © Goo)(Iy © L) + (D) © G

1
+(Iy ® 1n)(D, ® Goo) ( = 574 © (Gl G))
= 0,
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using (28) and (56).

By consecutively repeating this procedure and then applying €2,,,, we may finally

assume that
A= Im (%9 Jp and GO = GOO X Dp.

Since GGy is diagonalizable, this also holds for the matrix Ggg. Moreover, Gy has at most
the eigenvalues v and —+. Hence, there exists a nonsingular matrix R such that

~1 . ”}/Iq 0

for some g € N. Setting R := R ® I,, we obtain that R AyR = Ay and

_1 | v 0
R GR—[ 0 —In.,

| oD,

The assertion then follows by an appropriate block permutation.

Uniqueness: Analogously to the argument in the proofs of Theorem 4.4 and 4.10, it is
sufficient to consider uniqueness for the case that Gy has at most the eigenvalues v, —v
with Re(y) > 0 and Im(v) > 0 if Re(y) = 0. Assume that

L, @ J, S, @ D,
AO = - ) GO =7 e )
I, @ Ym, @ Dy
imp & DP
and é() =7 - )
iml ® Dl
where we allow m; = 0 for some j = 1,...,p and where %, and f]mj are signature

matrices. To prove the uniqueness of the form (49), we have to show that it S € C"" is
nonsingular such that S~ A4S = Ay and S™'G(S = Gy, then X, and 3,,, are similar for

7=1,...,p.

Note that for each Jordan block there exists a Jordan chain {acsﬁ), . ,xffg}, where
a=p,...,1and B =1,...,m, Let P be the permutation matrix that reorders these
chains in the following way. First, we collect :L'Sﬁ) fora=p,...,1, 3=1,...,m,, then :L’gﬁ)
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fora=p,...,2, 8=1,...,m,, and so on. Setting ¢, = Z;Zl m;, we have

_Qp Qp—l Qp—2 cee q1 _
[ 1
o |0 [f5] o
. dp, 0 { Iq62 }
AO = P_IA()P = )
Gp—2 0 T 0
: IQ1
0
q1 | 0 i
Moreover,
Go:=P'GyP =
0 Gpp
) G 0
and C:YO = P_léfoP =7 ,
0 Gpp
where
S 0 Sy 0
Gy = (=1 and Gy = (~1)"" -
0 S, 0 i,

Assume that there exists a nonsingular matrix 7' such that 7-'A,T = Ay and TG, T =

Go. Then the structure of A, implies that 7" is block upper triangular with a block structure
corresponding to Ag. But then we obtain, in particular, that G;; and Gj; are similar for
each j. This implies that X,,; and ¥,,; are similar for each j. [

Lemma 7.8 Let G, H € C™" be Hermitian nonsingular such that the pencil oH — G is
nondefective and such that its spectrum is contained in {v,—v,7, =7}, where v* € C\R
and Re(y)Im(y) > 0. Furthermore, let A € C™*™ be nilpotent, H-self-adjoint and G-skew-
adjoint. Then there exists a nonsingular matriz P € C"*" such that

PTAP = Aj@-- @ A
PGP = G @--- @Gy, (57)
P*HP = H &---® H,

where, for each j, the blocks A;, G;, H; have corresponding sizes and are of the following
form:
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Type (2d):

A=Y g |- =]

and G; = [ y evky ] : (58)
p

where p € N, and ¢ € {+1,—1}.

Moreover, the form (57) is unique up to the permutation of blocks.

Proof. Using the same argument as in Case (2) of the proof of Theorem 4.10, we may
assume that A, H, and G have the following forms:

[ 4 0 fo 1 [0 G
A—[O AS}, H—{] 0}, and G—{GO 0}, (59)

where

=2

-1 a4 |70
H'GH G_l . 72]] (60)
This implies, in particular, that G3 = 72I. From —A*G = G A, we obtain that Ay and Gy

anticommute. We will now reduce G by congruence transformations with matrices of the

form
| Xo O
X‘[ 0 X 1

Then 1y

X7 A X, 0

-1 _ 0 00 * _
X AX_[ 0 (Xo_leXo)*}’ X*HX = H, and
v 0 (Xo ' GoXo)*
X°GX = [ Xo’lGOXO 0 '

Thus, the problem of reducing G, while keeping the forms of A and H, reduces to the
problem of finding a canonical form for Ay and G under simultaneous similarity. This
is done in Lemma 7.7. Hence, the result follows from noting that the spectrum of Gy is
contained in {7, —7}, and applying the Z-trick.

Uniqueness: Assume that

| J 0 10T _ 0 GY _ 0 G35
A—|:0 j:|7H—|:I O:|;G1_|:G11 O:|,G2—|:G22 O s

where J is a nilpotent matrix in Jordan canonical form, G, G, are Hermitian, and
0(G11) = 0(Ga) C {7, —7}. Furthermore, assume that T-*AT = A, T*HT = H, and
T*G,T = G, for some nonsingular matrix 7T'. Partitioning

T11 T12 —x Sll Sl2
|: T21 T22 :| o |: 521 S22 :|

43



conformably with A, H, and GG, we obtain that

T12 = 521 and G11T12 = 521G32 = T12G;2.

This implies T75 = 0. Analogously, we show that T5; = 0 and hence, we obtain by symmetry
Ty, = Ty;". Hence, the uniqueness of the form (57) follows from the uniqueness property
in Lemma 7.7. O
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