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Abstract

In this paper, canonical forms under structure-preserving equivalence transforma-
tions are presented for matrices and matrix pencils that have a multiple structure,
which is either an H-self-adjoint or H-skew-adjoint structure, where the matrix H is
a complex nonsingular Hermitian or skew-Hermitian matrix. Matrices and pencils of
such multiple structures arise, for example, in quantum chemistry in Hartree–Fock
models or random phase approximation.
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1 Introduction

Canonical forms for matrices and matrix pencils have been studied for more than a hun-
dred years since the work of Jordan, Kronecker and Weierstraß, see [5]. In recent years,
motivated by applications in control theory as well as quantum physics and quantum chem-
istry, there has been a revived interest in such canonical forms for matrices and pencils
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that have algebraic structures, such as Lie groups or Lie algebras. While the possible in-
variants were characterized already some time ago [2], the emphasis in the new results lies
on structure-preserving equivalence transformations, see, e.g., [1, 13, 14, 15, 16].

In this paper, we derive canonical forms under structure-preserving equivalence trans-
formations for matrices and matrix pencils with multiple structure.

Definition 1.1 Let H ∈ Cn×n be a nonsingular Hermitian or skew-Hermitian matrix, and
let X ∈ Cn×n.

1. X is called H-self-adjoint if X∗H = HX.

2. X is called H-skew-adjoint if X∗H = −HX.

Canonical forms for pairs (A,H), where H is Hermitian or skew-Hermitian nonsingular
and A is H-self-adjoint or H-skew-adjoint are well known in literature; see, e.g., [7, 11].
These forms are obtained under transformations of the form

(A,H) 7→ (P−1AP, P ∗HP ),

where P is nonsingular. Here, we are interested in canonical forms for matrix triples
(A,H,G), where G and H are Hermitian or skew-Hermitian nonsingular and A is doubly
structured with respect to G and H, i.e., A is H-self-adjoint or H-skew-adjoint and at
the same time G-self-adjoint or G-skew-adjoint. We are also interested in the pencil case,
i.e., we will also consider pencils %A−B, where both A and B are doubly structured with
respect to H and G.

The main motivation for our interest in these types of matrices and pencils arises
from quantum chemistry. Response function models lead to the problem of solving the
generalized eigenvalue problem with a matrix pencil of the form

λE0 −A0 := λ

[

C Z
−Z −C

]

−

[

E F
F E

]

, (1)

where E,F,C, Z ∈ Cn×n, E = E∗, F = F ∗, C = C∗, Z = −Z∗, see [8, 17]. Furthermore,
there are important special cases in which the pencil has even further structure. For
example, the simplest response function model is the time-dependent Hartree–Fock model,
also called the random phase approximation (RPA). In this case, C is the identity and Z
is the zero matrix; see [8, 17]. Thus, the generalized eigenvalue problem (1) reduces to the
problem of finding the eigenvalues of the matrix

L0 =

[

E F
−F −E

]

, (2)

where E,F are as in (1). For stable Hartree–Fock ground state wave-functions, it is
furthermore known that E − F and E + F are positive definite; see [8].
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In other applications, however, like in multiconfigurational RPA [8], it is not even
guaranteed that the matrix E0 in (1) is nonsingular.

It is easy to see that the matrices E0, A0 in (1) and L0 in (2) are doubly structured.
With

G =

[

In 0
0 −In

]

, H =

[

0 In
In 0

]

, J =

[

0 In
−In 0

]

,

we have that E0 is I-self-adjoint andH-skew-adjoint, A0 is I-self-adjoint andH-self-adjoint,
while L0 is G-self-adjoint and J-skew-adjoint.

When designing structure-preserving numerical methods for large-scale structure eigen-
value problems, difficulties in the convergence of the methods were sometimes observed in
[3, 4] that have to do with the invariants of these pencils under structure-preserving equiva-
lence transformations; see also [1]. It is another motivation for our work to derive canonical
forms that allow a better understanding of those properties of the pencils that lead to these
difficulties.

We will derive the canonical form for matrix triples (A,H,G) under structure-preserving
transformations of the form

(A,H,G) 7→ (P−1AP, P ∗HP, P ∗GP ),

where P is nonsingular. This preserves the (skew-) Hermitian structure of H and G and
also the structure of A with respect to H and G. Based on the classical results (see
Section 2), we clearly have canonical forms for (A,H), (A,G) or the pencil %H − G, and
hence the invariants of the pairs (A,H) and (A,G) as well as the invariants of the pencil
%H −G under congruence are invariants of the triple (A,H,G).

It is our goal to obtain a canonical form that displays simultaneously the Jordan struc-
ture of A and the invariants of the canonical forms of (A,H) and (A,G). In general this is
a very difficult problem; such a form may not even exist. Consider the following example.

Example 1.2 Consider matrices

A =





1 0 1
0 1 0
0 0 1



 , G =





0 0 1
0 1 0
1 0 0



 and H =





0 0 1
0 1 1
1 1 0



 .

Then A is G-self-adjoint and H-self-adjoint. But it is impossible to simultaneously decom-
pose A, H, and G further into smaller block diagonal forms. This follows from the obvious
fact that the pencil %G−H cannot be decomposed further. On the other hand, A has the
Jordan canonical form





1 1 0
0 1 0
0 0 1



 .

Hence, both (A,G) and (A,H) are decomposable into smaller blocks (see Theorems 3.1
and 3.3 below).
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Due to this difficulty, we restrict ourselves to an important special case. In most
applications, the matrices H and G that induce the structure are contained in the set

S =

{

In,

[

0 Im
−Im 0

]

,

[

Im 0
0 −In−m

]

,

[

0 Im
Im 0

]

,m, n ∈ N
}

. (3)

If this is the case, then the pencil %H −G is nondefective.

Definition 1.3 Let %A−B ∈ Cn×n be a matrix pencil. We say that %A−B is nondefective
if there exist nonsingular matrices P,Q ∈ Cn×n such that both PAQ and PBQ are diagonal.

We will show that if G,H are Hermitian nonsingular such that the pencil %H − G
is nondefective, then a canonical form for the triple (A,H,G) exists, which is also unique
except for the permutation of blocks. In particular, this canonical form includes the Jordan
structure of A, and also the canonical forms of the pairs (A,H) and (A,G) and the pencil
%H −G can be easily read off.

The paper is organized as follows. After providing some preliminary results in Sec-
tion 2, we review canonical forms for matrices that are structured with respect to only one
Hermitian matrix in Section 3. In Section 4, we then discuss doubly structured matrices,
and in Section 5, we discuss canonical forms for structured pencils of the form λA − B,
where both A and B are singly or doubly structured matrices.

2 Preliminaries

Throughout the paper, we use the following notation.

By σ(A) we denote the spectrum of the matrix A. Jp(λ) denotes the p × p upper
triangular Jordan block with eigenvalue λ. By sign(t) we mean the sign of a real number
t ∈ R\{0}. A = A1⊕ . . .⊕Am stands for the block diagonal matrix A with diagonal blocks
A1, . . . , Am. Moreover, we use the abbreviation A−∗ for (A∗)−1.

Furthermore, we introduce the following p× p matrices:

Zp :=





0 1
...

1 0



 , Dp :=







(−1)2 0
. . .

0 (−1)p+1






,

and Fp :=





0 (−1)2

...

(−1)p+1 0





Note that Fp ∈ Rp×p is symmetric if p is odd and skew-symmetric if p is even, whereas
Zp and Dp are symmetric for all p. We list some properties of these matrices and the
matrix Jp(0), which can be easily verified, and will be used in what follows.
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Lemma 2.1 Let p ∈ N.

1. Z2
p = Ip, D2

p = Ip, F 2
p = (−1)p+1Ip.

2. FpZp = Dp = (−1)p+1ZpFp, DpFp = Zp = (−1)p+1FpDp.

3. DpZp = Fp = (−1)p+1ZpDp, FpZpFp = Zp.

4. Z−1
p Jp(0)Zp = Jp(0)

∗.

5. D−1
p Jp(0)Dp = −Jp(0).

6. F−1
p Jp(0)Fp = −Jp(0)

∗.

Another important and well-known result that will frequently be used throughout the
paper is the following ([5]).

Lemma 2.2 Let A,B,X be square matrices such that the spectra of A and B are disjoint.
If AX = XB, then X = 0.

Finally, we review the canonical forms for regular Hermitian pencils, i.e., regular pencils
%H −G, where both H and G are Hermitian. An arbitrary matrix pencil λA−B is called
regular if det(%A−B) 6≡ 0. In this case, it makes sense to speak of eigenvalues of a pencil.
Introducing homogeneous parameters αA − βB [6], the eigenvalues of αA − βB can be
defined as pairs (α, β) ∈ C2\{0} such that

αAx− βBx = 0 for an x ∈ Cn\{0}.

Obviously, (tα, tβ) represents the same eigenvalue for all t ∈ C\{0}; thus, we denote them
by λ = α

β
if β 6= 0. Pairs (α, 0), α 6= 0 represent the eigenvalue infinity of αA − βB that

we will denote by ∞.

The following result goes back to results from Weierstraß [19] and Kronecker [10].

Theorem 2.3 Let %H−G be a regular Hermitian pencil. Then there exists a nonsingular
matrix P ∈ Cn×n such that

P ∗(%H −G)P = (%H1 −G1)⊕ · · · ⊕ (%Hl −Gl), (4)

where the blocks %Hj −Gj have one and only one of the following forms:

1. blocks associated with paired nonreal eigenvalues λ, λ, where Im(λ) > 0:

%Hj −Gj = %

[

0 Ir
Ir 0

]

−

[

0 Jr(λ)
Jr(λ)

∗ 0

]

; (5)
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2. blocks associated with real eigenvalues λ and sign ε ∈ {1,−1}:

%Hj −Gj = %εZr − εZrJr(λ) = %ε





0 1
...

1 0



− ε









0 λ
λ 1

... ...

λ 1 0









; (6)

3. blocks associated with the eigenvalue ∞ and sign ε ∈ {1,−1}:

%Hj −Gj = %εZrJr(0)− εZr = %ε









0 0
0 1

... ...

0 1 0









− ε





0 1
...

1 0



 . (7)

Moreover, the decomposition (4) is unique up to a block permutation that exchanges blocks
ρHi −Gi.

Proof. For a full proof, see [18], Lemmas 1.–4. There, the result is shown without
the additional condition Im(λ) > 0 for the blocks associated with nonreal eigenvalues,
but applying a permutation, we may always place the block that is associated with the
eigenvalue λ in the (1, 2)-block position of the form in (5).

If %H −G is nondefective, then we immediately have the following corollary.

Corollary 2.4 Let %H − G be a nondefective Hermitian pencil, where both H and G are
nonsingular. Then there exists a nonsingular matrix P ∈ Cn×n such that

P ∗(%H −G)P = (%H1 −G1)⊕ · · · ⊕ (%Hl −Gl),

where the spectra of %Hj − Gj and %Hl − Gl are disjoint for j 6= l, and where each block
%Hj −Gj has either only one pair of complex conjugate eigenvalues or only one single real
eigenvalue. Moreover, the block %Hj −Gj has one and only one of the following forms:

1. blocks with nonreal eigenvalues λ, λ, where Imλ > 0 and q ∈ N:

%Hj −Gj = %

[

0 Iq
Iq 0

]

−

[

0 λIq
λIq 0

]

; (8)

2. blocks with real eigenvalue λ, where q, p ∈ N, p ≤ q:

%Hj −Gj =

[

Ip 0
0 −Iq−p

]

− λ

[

Ip 0
0 −Iq−p

]

. (9)

Moreover the decomposition is unique up to a block permutation.
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Proof. By Theorem 2.3, there exists a nonsingular matrix P ∈ Cn×n such that the
pencil P ∗(%H − G)P is in canonical form (4). Since the pencil is nondefective and H is
nonsingular, only blocks of the forms (5) and (6) can appear and the parameters r in these
blocks all have to be equal to one. A number of q blocks of the form (5) with the same
eigenvalue λ ∈ C\R produce one block of the form (8) after an appropriate permutation
that combines the q blocks in a single block is applied. On the other hand, q blocks of the
form (6) with the same eigenvalue λ ∈ R (p blocks with sign ε = +1 and q− p blocks with
sign ε = −1) produce a block of the form (9), again after an appropriate permutation is
applied.

Remark 2.5 Following Theorem 2.3 and Corollary 2.4, it is obvious that if λ ∈ C\R is an
eigenvalue of %H −G, then so is λ, and both eigenvalues have the same Jordan structure.

3 Singly structured matrices

In this section, we review the well-known canonical forms for H-self-adjoint matrices and
H-skew-adjoint matrices, where H always denotes a complex nonsingular Hermitian n×n
matrix.

Theorem 3.1 Let A ∈ Cn×n be H-self-adjoint. Then there exists a nonsingular matrix
P ∈ Cn×n, such that

P−1AP = A1 ⊕ · · · ⊕ Ak and P ∗HP = H1 ⊕ · · · ⊕Hk, (10)

where Aj and Hj are of the same size and the pair (Aj, Hj) has one and only one of the
following forms:

1. blocks associated with real eigenvalues:

Aj = Jp(λ) and Hj = εZp, (11)

where λ ∈ R, p ∈ N, and ε ∈ {1,−1};

2. blocks associated with a pair of nonreal eigenvalues:

Aj =

[

Jp(λ) 0

0 Jp(λ)

]

and Hj =

[

0 Zp

Zp 0

]

, (12)

where λ ∈ C\R with Im(λ) > 0 and p ∈ N.

Moreover, the form (P−1AP, P ∗HP ) of (A,H) is uniquely determined up to the permuta-
tion of blocks.
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Proof. See, e.g., [7].

Even though (10) is unique only up to a permutation of blocks, we call it a canonical
form of the pair (A,H).

Remark 3.2 In some instances, it will turn out be useful to use a slightly different form
for the blocks of type (12) in (10). Multiplying the matrices from both sides by Ip ⊕ Zp,
one finds that (12) takes the form

Aj =

[

Jp(λ) 0
0 Jp(λ)

∗

]

and Hj =

[

0 Ip
Ip 0

]

. (13)

Using the same transformation, we can also get back from the form (13) to the form (12).
This transformation will frequently be used in the following and its application will be
called the Z-trick.

Apart from the eigenvalues of an H-self-adjoint matrix A, the parameters ε that are asso-
ciated with blocks to real eigenvalues are invariants of the pair (A,H). The collection of
these parameters is sometimes referred to as the sign characteristic; see, e.g., [7] and [11].
To highlight that these parameters are related to the matrix H (we will soon have to deal
with two structures), we will use the term H-structure indices in what follows.

Theorem 3.3 Let S ∈ Cn×n be H-skew-adjoint. Then there exists a nonsingular matrix
P ∈ Cn×n such that

P−1SP = S1 ⊕ · · · ⊕ Sk and P ∗HP = H1 ⊕ · · · ⊕Hk, (14)

where Sj and Hj are of the same size and each pair (Sj, Hj) has one and only one of the
following forms:

1. blocks associated with purely imaginary eigenvalues:

Sj = iJp(λ) and Hj = εZp, (15)

where λ ∈ R, p ∈ N, and ε ∈ {1,−1};

2. blocks associated with a pair of non purely imaginary eigenvalues:

Sj =

[

iJp(λ) 0

0 iJp(λ)

]

and H =

[

0 Zp

Zp 0

]

, (16)

where λ ∈ C\R with Im(λ) > 0 and p ∈ N.

Moreover, the form (P−1SP, P ∗HP ) of (S,H) is uniquely determined up to a permutation
of blocks.
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Proof. This follows directly from Theorem 3.1, considering the H-self-adjoint matrix iS.

Again, we will call the parameter ε in (15) the H-structure index of the block Sj in (15).
Moreover, the form (14) will be called the canonical form of the pair (S,H).

Remark 3.4 From Theorems 3.1 and 3.3, it is easy to find the following symmetries in
the spectra of H-self-adjoint and H-skew-adjoint matrices. If λ /∈ R is an eigenvalue of
the H-self-adjoint matrix A, then so is λ, and both eigenvalues have the same Jordan
structure. If λ /∈ iR is an eigenvalue of the H-skew-adjoint matrix A, then so is −λ, and
both eigenvalues have the same Jordan structure.

4 Doubly structured matrices

In this section, we give canonical forms for matrices that are doubly structured with respect
to Hermitian or skew-Hermitian nonsingular matrices G and H. First, we note that by
Theorem 3.1, Jordan blocks associated with real eigenvalues in the self-adjoint case (or
purely imaginary eigenvalues in the skew-adjoint case) have structure indices with respect
to G and/or H. We will call these indices the G- and H-structure indices of A, respectively.

Moreover, we may always assume that G and H are Hermitian. Otherwise, we may
consider iG or iH, respectively, keeping in mind the following remark.

Remark 4.1 Let H ∈ Cn×n be nonsingular and Hermitian or skew-Hermitian and let
A ∈ Cn×n. Then the following conditions hold.

1. A is H-self-adjoint if and only if A is iH-self-adjoint.

2. A is H-skew-adjoint if and only if A is iH-skew-adjoint.

3. A is H-self-adjoint if and only if iA is H-skew-adjoint.

Remark 4.1 implies in particular that we may assume that the structure on A induced
by one of the matrices G and H, say H, is the structure of a self-adjoint matrix. In other
words, we may assume that A is H-self-adjoint. Otherwise, we may consider iA. Hence, it
remains to discuss the following cases:

• matrices that are H-self-adjoint and G-self-adjoint (Section 4.1), and

• matrices that are H-self-adjoint and G-skew-adjoint (Section 4.2).

Finally, we always assume that the pencil %H −G is nondefective.
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Remark 4.2 Instead of requiring %H−G to be nondefective, we may as well consider the
generalization of this case, that for the matrices A,G,H at least one of the three pencils
%H−G, %H−HA and %G−GA is nondefective. For example, if A is nonsingular and both
H- and G-self-adjoint then we can consider the matrix triple (H−1G,H,HA) for which H,
HA are Hermitian and H−1G is H- and HA-self-adjoint, since (H−1G)∗ = GH−1. Thus,
if %H − HA is nondefective, then we can get the canonical form of this new triple. But
once we have this, we can easily get the canonical form of the original triple (A,H,G). So
our results will cover more general cases.

4.1 Matrices that are H-self-adjoint and G-self-adjoint

In this section, we will derive a canonical form for matrices that are self-adjoint with respect
to nonsingular Hermitian matrices H and G such that the pencil %H −G is nondefective.
For the proof of our main result, the following lemma will be needed. Note that the lemma
is also true for the case that the pencil %H −G is not nondefective.

Lemma 4.3 Let G,H ∈ Cn×n be Hermitian and nonsingular. Let A ∈ Cn×n be H-self-
adjoint and G-self-adjoint. Then there exists a nonsingular matrix P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗HP = H1 ⊕ · · · ⊕Hk,

P ∗GP = G1 ⊕ · · · ⊕Gk,

where Aj, Hj, and Gj have corresponding sizes. Moreover, each pencil %Hj − Gj has as
spectrum either {γj, γj} for some γj ∈ C\R or {γj} for some γj ∈ R, and the spectra of
two subpencils %Hj −Gj and %Hl −Gl, j 6= l, are disjoint.

Proof. By Theorem 2.3 and by applying an appropriate permutation that combines blocks
that display the same eigenvalues {γ1, γ1} in one large block %H1 − G1, there exists a
nonsingular matrix Q ∈ Cn×n such that

Q∗GQ =

[

G1 0

0 G̃2

]

, Q∗HQ =

[

H1 0

0 H̃2

]

, and Q−1AQ =

[

A11 A12

A21 A22

]

,

where the pencil %H1 −G1 has as spectrum either {γ1, γ1} for some γ1 ∈ C\R or {γ1} for
some γ1 ∈ R and such that the spectra of the pencils %H1−G1 and %H̃2− G̃2 are disjoint.
Since A is H-self-adjoint and G-self-adjoint, we obtain that

[

A∗
11H1 A∗

21H̃2

A∗
12H1 A∗

22H̃2

]

=

[

H1A11 H1A12

H̃2A21 H̃2A22

]

and

[

A∗
11G1 A∗

21G̃2

A∗
12G1 A∗

22G̃2

]

=

[

G1A11 G1A12

G̃2A21 G̃2A22

]

.
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Since with G also G̃2 is nonsingular, this implies

A∗
21H̃2G̃

−1
2 = H1A12G̃

−1
2 = H1G

−1
1 G1A12G̃

−1
2 = H1G

−1
1 A∗

21.

Since the pencils %H1 − G1 and %H̃2 − G̃2 have disjoint spectra, we obtain that A∗
21 = 0

and therefore A12 = H−1
1 A∗

21H̃2 = 0. The remainder of the proof follows by induction.

Theorem 4.4 Let G,H ∈ Cn×n be Hermitian and nonsingular such that the pencil %H−G
is nondefective. Let A ∈ Cn×n be H-self-adjoint and G-self-adjoint. Then there exists a
nonsingular matrix P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak

P ∗GP = G1 ⊕ · · · ⊕Gk (17)

P ∗HP = H1 ⊕ · · · ⊕Hk,

where the blocks Aj, Gj, Hj have corresponding sizes and are of one and only one of the
following forms.

Type (1):
Aj = Jp(λ), Hj = εZp, and Gj = εγZp,

where λ ∈ R, p ∈ N, ε ∈ {1,−1}, and γ ∈ R\{0}. The H-structure index of Aj is ε and
the G-structure index of Aj is sign(εγ).

Type (2):

Aj =

[

Jp(λ) 0
0 Jp(λ)

]

, Hj =

[

0 Zp

Zp 0

]

, and Gj =

[

0 γZp

γZp 0

]

,

where λ ∈ R, p ∈ N, and γ ∈ C, Im(γ) > 0. The H-structure indices of Aj are 1,−1 and
the G-structure indices of Aj are 1,−1.

Type (3):

Aj =

[

Jp(λ) 0

0 Jp(λ)

]

, Hj =

[

0 Zp

Zp 0

]

, and Gj =

[

0 γZp

γZp 0

]

,

where λ ∈ C\R, p ∈ N, and γ ∈ C\{0}, where Im(γ) ≥ 0.

Moreover, the canonical form (17) is unique up to permutation of blocks.

Proof. By Lemma 4.3, we may assume that the pencil %H − G has as eigenvalues either
γ, γ for some γ ∈ C\R or γ for some γ ∈ R.

Case 1: γ ∈ R.
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Since the pencil %H − G is nondefective, by Corollary 2.4, there exists a nonsingular
matrix P ∈ Cn×n such that

P ∗(%H −G)P = %

[

Im 0
0 −In−m

]

− γ

[

Im 0
0 −In−m

]

,

i.e., in particular that G is a scalar multiple of H. Applying Theorem 3.1, we find that
there exists a nonsingular matrix Q ∈ Cn×n such that (Q−1AQ,Q∗HQ) is in canonical
form (10). Since G = γH, we obtain that A, H, and G can be reduced simultaneously to
block diagonal form with diagonal blocks of Types 1 and 3.

Case 2: γ, γ ∈ C\R.

In this case, we obtain from Corollary 2.4 that there exists a nonsingular matrix P ∈
Cn×n such that

P ∗(%H −G)P = %

[

0 Im
Im 0

]

−

[

0 γIm
γIm 0

]

,

where 2m = n and Im(γ) > 0. Let

A =

[

A11 A12

A21 A22

]

be partitioned conformably. Then we obtain from A∗H = HA and A∗G = GA that

A∗
12 = A12 and γA∗

12 = γA12.

Since γ 6= γ, this implies that A12 = 0. In an analogous way we show that A21 = 0, and
moreover, we have A22 = A∗

11 by symmetry. Let Q1 be such that Q−1
1 A11Q1 is in Jordan

canonical form and set

Q = P

[

Q1 0
0 Q−∗

1

]

.

Then we obtain

Q−1AQ =

[

Q−1
1 A11Q1 0

0 Q∗
1A

∗
11Q

−∗
1

]

,

Q∗HQ =

[

0 Im
Im 0

]

, and Q∗GQ =

[

0 γIm
γIm 0

]

.

After an appropriate block permutation, we obtain that A, H, and G can be reduced
simultaneously to block diagonal form with diagonal blocks of the forms

Ã =

[

Jp(λ) 0
0 Jp(λ)

∗

]

, H̃ =

[

0 Ip
Ip 0

]

, and G̃ =

[

0 γIp
γIp 0

]

,

respectively, where p ∈ N and λ ∈ C. The result then follows by applying the Z-trick; see
Remark 3.2.

12



Uniqueness: Suppose that

A =

[

A1 0
0 A2

]

, H =

[

H1 0
0 H2

]

, G =

[

G1 0
0 G2

]

and

Ã =

[

Ã1 0

0 Ã2

]

, H̃ =

[

H̃1 0

0 H̃2

]

, G̃ =

[

G̃1 0

0 G̃2

]

,

are in canonical form, whereH, G, H̃, G̃ are Hermitian nonsingular, A isH-self-adjoint and
G-self-adjoint, Ã is H̃-self-adjoint and G̃-self-adjoint and all matrices have corresponding
block structures. If P−1AP = Ã, σ(A1) = σ(Ã1) and σ(A2) = σ(Ã2) such that the spectra
of A1 and A2 are disjoint, then it follows immediately that P has a corresponding block
diagonal structure. Analogously, assuming that the spectra of %H1 − G1 and %H̃2 − G̃2

(and of %H2 − G2 and %H̃1 − G̃1, respectively) are disjoint and that P ∗HP = H̃ and
P ∗GP = G̃, where P is nonsingular, we obtain again that P has a corresponding block
diagonal structure. Indeed, partitioning

P =

[

P11 P12

P21 P22

]

and P−∗ =

[

Q11 Q12

Q21 Q22

]

conformably with H, we obtain that

G11P12 = Q12G̃22 and H11P12 = Q12H̃22.

This implies that
H−1

11 G11P12 = P12H̃
−1
22 G̃22,

and from that, we obtain P12 = 0, since the spectra of H−1
11 G11 and H̃−1

22 G̃22 are disjoint.
Analogously, we show P21 = 0.

Hence, it is sufficient to prove the uniqueness for the case that A has only one pair
of eigenvalues λ, λ and that %G − H has only a pair of eigenvalues γ, γ. But then the
uniqueness is clear, since we obtain from Theorem 3.1 the uniqueness of the canonical form
for the pair (A,H). Note that the structure of G is then uniquely defined by the invariant
γ with Im(γ) ≥ 0.

In both cases, it is easy to verify that the H and G-structure indices of each block are
as claimed in the theorem.

An important special case is the case H = I, i.e., A is Hermitian and G-self-adjoint.
This leads to the well-known fact that two commuting Hermitian matrices are simultane-
ously diagonalizable.

Corollary 4.5 Let G ∈ Cn×n be Hermitian nonsingular and let A ∈ Cn×n be Hermitian
and G-self-adjoint. Then there exists a unitary matrix U ∈ Cn×n such that both U ∗GU
and U ∗AU are diagonal.

13



Proof. Every Hermitian, G-self-adjoint matrix A satisfies AG = A∗G = GA. Then, it is
well known that A and G are simultaneously unitarily diagonalizable. But the result is
also a special case of Theorem 4.4. To see this, we first note that it follows from Sylvester’s
law of inertia (see, e.g., [5]) applied to H = I that only blocks of Theorem 4.4 may appear
in which the matrix Hj has only positive eigenvalues. Thus, the only possible blocks are
those of Type (1), where the parameters p, ε satisfy ε = +1 and p = 1. Then Theorem 4.4
implies that there exists a nonsingular matrix U ∈ Cn×n such that U−1AU and U ∗GU are
diagonal and that U ∗HU = H = I. The latter condition says that U is unitary.

Remark 4.6 The result can be generalized to the case that H is positive definite. In
this case, there exists a nonsingular matrix P such that P ∗HP = I. Then we can apply
Corollary 4.5 to P−1AP and P ∗GP .

4.2 Matrices that are H-self-adjoint and G-skew-adjoint

In this section, we present a canonical form for a matrix A that is H-self-adjoint and
G-skew-adjoint, where H and G are Hermitian nonsingular matrices such that the pencil
%H − G is nondefective. By Remark 3.4, the eigenvalues of A satisfy more symmetry
properties. If λ ∈ C is an eigenvalue of A, then, because A is G-skew-adjoint, so is −λ,
having the same Jordan structure as λ. On the other hand, A is H-self-adjoint and thus,
with λ and −λ also λ and −λ are eigenvalues of A, having the same Jordan structures as λ.
Thus, the eigenvalues of A occur in quadruples {λ, λ,−λ,−λ}, where all these eigenvalues
have the same Jordan structure. If λ is real or purely imaginary, this set is equal to {λ,−λ},
and if λ = 0, this set is just {0}.

The following lemmas will be needed for constructing the canonical form.

Lemma 4.7 Let G,H ∈ Cn×n be Hermitian and nonsingular. Furthermore, let A ∈ Cn×n

be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular matrix P ∈ Cn×n

such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗HP = H1 ⊕ · · · ⊕Hk,

P ∗GP = G1 ⊕ · · · ⊕Gk,

where Aj, Hj and Gj have corresponding sizes. Moreover, each matrix Aj has the spectrum
{λj, λj,−λj,−λj} and the spectra of two matrices Aj and Al, where j 6= l, are disjoint.

Proof. By using the eigenvalue properties of A mentioned above, one can find a matrix
Q ∈ Cn×n such that

Q∗GQ =

[

G11 G12

G∗
12 G22

]

, Q∗HQ =

[

H11 H12

H∗
12 H22

]

, and Q−1AQ =

[

A1 0

0 Ã2

]

,

14



where A1 has the spectrum {λ1, λ1,−λ1,−λ1} for some λ1 ∈ C such that the spectra of A1

and Ã2 are disjoint. Then we obtain from A∗H = HA and −A∗G = GA that

A∗
1H12 = H12Ã2 and − A∗

1G12 = G12Ã2

By construction, the spectra of ±A∗
1 and Ã2 are disjoint. This implies H12 = 0 and G12 = 0.

The proof then follows by induction.

Lemma 4.8 Let G,H ∈ Cn×n be Hermitian and nonsingular. Furthermore, let A ∈ Cn×n

be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular matrix P ∈ Cn×n

such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗HP = H1 ⊕ · · · ⊕Hk,

P ∗GP = G1 ⊕ · · · ⊕Gk,

where Aj, Hj and Gj have corresponding sizes. The spectrum of each pencil %Hj − Gj is
contained in {γj,−γj, γj,−γj} for some γj ∈ C and the spectrum of %Hl − Gl is disjoint
from the set {γj,−γj, γj,−γj} if j 6= l.

Proof. The proof proceeds analogously to the proof of Lemma 4.3 using the equations
A∗H = HA and −A∗G = GA.

Note that, in contrast to the eigenvalues of A, the eigenvalues of the pencil %H − G
need not occur in quadruples {γj,−γj, γj,−γj}. If γj is an eigenvalue of %H − G, then
from Theorem 2.3, we only know that γj is also an eigenvalue, but −γj and −γj need not
be. However, to get corresponding block diagonal forms of A, G, H, we have to group γj
and γj together with −γj and −γj if they are also eigenvalues of %H −G.

In view of Lemma 4.8, it is sufficient to consider pencils %H − G whose spectrum is
contained in {γ,−γ, γ,−γ}. Therefore, a discussion of the properties of such pencils will
be helpful.

Lemma 4.9 Let G, H ∈ Cn×n be nonsingular and Hermitian such that the pencil %H−G
is nondefective.

(i) If the spectrum of %H −G is contained in {γ,−γ}, where γ2 ∈ R\{0}, then

H−1GH−1G = γ2In.

(ii) If the spectrum of %H − G is contained in {γ,−γ, γ,−γ}, where γ2 ∈ C\R, then
there exists a matrix P such that for H̃ = P ∗HP , G̃ = P ∗GP and Ã = P−1AP ,

H̃−1G̃H̃−1G̃ =

[

γ2Im 0
0 γ2Im

]

. (18)
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Moreover,

Ã =

[

A1 0
0 A∗

1

]

.

Proof. (i) We consider the problem in two cases.

Case (1): Im(γ) = 0.

Since the pencil %H −G is nondefective and its spectrum is contained in {γ,−γ} ⊆ R,
by Corollary 2.4 there exists a nonsingular matrix P ∈ Cn×n and numbers p, q, r, s ∈ N
such that

H = P ∗









Ip 0 0 0
0 −Iq 0 0
0 0 Ir 0
0 0 0 −Is









P and G = P ∗









γIp 0 0 0
0 −γIq 0 0
0 0 −γIr 0
0 0 0 γIs









P.

This implies H−1GH−1G = P−1(γ2In)P = γ2In.

Case (2): Re(γ) = 0.

Since the pencil %H − G is nondefective and has only the eigenvalues γ,−γ ∈ iR, by
Corollary 2.4, there exists a nonsingular matrix P ∈ Cn×n such that

H = P ∗

[

0 Im
Im 0

]

P and G = P ∗

[

0 γIm
−γIm 0

]

P,

where m = n
2
∈ N. This implies H−1GH−1G = P−1(γ2In)P = γ2In.

(ii) By Corollary 2.4, there exists a nonsingular matrix P such that

%H̃ − G̃ = %P ∗HP − P ∗GP = %

[

0 Im
Im 0

]

−

[

0 γΣ
γΣ 0

]

,

where m = n
2
∈ N and Σ = Ip ⊕ (−Im−p), 0 ≤ p ≤ m. We then obtain that

H̃−1G̃ =

[

γΣ 0
0 γΣ

]

, (19)

and hence we have (18). Note that Ã is H̃-self-adjoint and G̃-skew-adjoint. This implies
that

Ã(H̃−1G̃) = H̃−1Ã∗G̃ = −(H̃−1G̃)Ã.

Since in this case γ ± γ 6= 0, from the block form (19) we get Ã = A1 ⊕ A2. Since Ã is
H̃-self-adjoint, we obtain that A2 = A∗

1.
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Theorem 4.10 Let G,H ∈ Cn×n be Hermitian nonsingular such that the pencil %H − G
is nondefective. Furthermore, let A ∈ Cn×n be H-self-adjoint and G-skew-adjoint. Then
there exists a nonsingular matrix P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗GP = G1 ⊕ · · · ⊕Gk, (20)

P ∗HP = H1 ⊕ · · · ⊕Hk,

where, for each j, the blocks Aj, Gj, Hj have corresponding sizes and are of one and only
one of the following forms.

Type (1a):

Aj =









Jp(λ) 0 0 0
0 −Jp(λ) 0 0

0 0 Jp(λ) 0

0 0 0 −Jp(λ)









,

Hj =









0 0 Zp 0
0 0 0 Zp

Zp 0 0 0
0 Zp 0 0









, and Gj =









0 0 0 γZp

0 0 γZp 0
0 γZp 0 0

γZp 0 0 0









,

where λ ∈ C with Re(λ)Im(λ) > 0, p ∈ N and γ2 ∈ R\{0}, Re(γ), Im(γ) ≥ 0.

Type (1b):

Aj =

[

Jp(λ) 0
0 −Jp(λ)

]

, Hj = ε

[

Zp 0
0 ( γ

|γ|
)2Zp

]

, Gj =

[

0 γZp

γZp 0

]

,

where λ > 0, p ∈ N and γ2 ∈ R\{0}, Re(γ), Im(γ) ≥ 0. The Hj-structure index of λ is ε
and the Hj-structure index of −λ is (−1)p+1ε( γ

|γ|
)2.

Type (1c):

Aj = i

[

Jp(λ) 0
0 −Jp(λ)

]

, Hj =

[

0 Zp

Zp 0

]

, Gj = ε|γ|

[

Zp 0

0 ( |γ|
γ
)2Zp

]

,

where λ > 0, p ∈ N and γ2 ∈ R\{0}, Re(γ), Im(γ) ≥ 0. The Gj-structure index of λ is ε

and the Gj-structure index of −λ is (−1)p+1ε( |γ|
γ
)2.

Type (1d1):
Aj = Jp(0), Hj = εZp, and Gj = ε̃γFp,

where γ2 ∈ R\{0}, Re(γ), Im(γ) ≥ 0, and p ∈ N is odd if γ ∈ R and even if γ ∈ iR.
Moreover, the eigenvalue λ = 0 has the Hj-structure index ε and the Gj-structure index
ε̃ γ

|γ|
ip−1.
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Type (1d2):

Aj =

[

Jp(0) 0
0 Jp(0)

]

, Hj =

[

0 Zp

Zp 0

]

, and Gj =

[

0 γFp

−γFp 0

]

,

where γ2 ∈ R\{0}, Re(γ), Im(γ) ≥ 0, and p ∈ N is even if γ ∈ R and odd if γ ∈ iR.
Moreover, the eigenvalue λ = 0 has the Hj-structure indices +1,−1 and the Gj-structure
indices +1,−1.

Type (2a):

Aj =









Jp(λ) 0 0 0
0 −Jp(λ) 0 0

0 0 Jp(λ) 0

0 0 0 −Jp(λ)









,

Hj =









0 0 Zp 0
0 0 0 Zp

Zp 0 0 0
0 Zp 0 0









, and Gj =









0 0 0 γZp

0 0 γZp 0
0 γZp 0 0

γZp 0 0 0









,

where λ ∈ C with Re(λ)Im(λ) > 0, p ∈ N, and γ2 ∈ C with Re(γ)Im(γ) > 0.

Type (2b):

Aj =









Jp(λ) 0 0 0
0 −Jp(λ) 0 0
0 0 Jp(λ) 0
0 0 0 −Jp(λ)









,

Hj =









0 0 Zp 0
0 0 0 Zp

Zp 0 0 0
0 Zp 0 0









, and Gj =









0 0 0 γZp

0 0 γZp 0
0 γZp 0 0

γZp 0 0 0









,

where λ > 0, p ∈ N, and γ2 ∈ C with Re(γ)Im(γ) > 0. The Hj-structure indices of λ are
+1,−1 and the Hj-structure indices of −λ are +1,−1.

Type (2c):

Aj = i









Jp(λ) 0 0 0
0 −Jp(λ) 0 0
0 0 Jp(λ) 0
0 0 0 −Jp(λ)









,

Hj =









0 0 0 Zp

0 0 Zp 0
0 Zp 0 0
Zp 0 0 0









, and Gj =









0 0 γZp 0
0 0 0 γZp

γZp 0 0 0
0 γZp 0 0









,
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where λ > 0, p ∈ N, and γ2 ∈ C with Re(γ)Im(γ) > 0. The Gj-structure indices of λ are
+1,−1 and the Gj-structure indices of −λ are +1,−1.

Type (2d):

Aj =

[

Jp(0) 0
0 Jp(0)

]

, Hj =

[

0 Zp

Zp 0

]

, Gj = ε

[

0 γFp

(−1)p+1γFp 0

]

,

where p ∈ N, ε ∈ {+1,−1}, and γ2 ∈ C with Re(γ)Im(γ) > 0. Moreover, the eigenvalue
λ = 0 has the Hj-structure indices +1,−1 and the Gj-structure indices +1,−1.

In the blocks of Types (1a)–(1d), the subpencil %Hj−Gj has only real or purely imaginary
eigenvalues. Those eigenvalues are γ and −γ, except for blocks of Type (1d1) when p = 1.
Then the pencil %Hj −Gj has the eigenvalue εε̃γ.

In the blocks of Types (2a)–(2d), the subpencil %Hj −Gj has only eigenvalues that are
neither real nor purely imaginary. Those eigenvalues are γ, −γ, γ, and −γ, except for
blocks of Type (2d) when p = 1. Then the pencil %Hj −Gj has the eigenvalues εγ and εγ.

Moreover, the canonical form (20) is unique up to permutation of blocks.

Proof. In view of Lemma 4.8, we may assume that the spectrum of the pencil %H −G is
contained in {γ,−γ, γ,−γ} for some γ ∈ C\{0}, Re(γ), Im(γ) ≥ 0, and it is sufficient to
distinguish the following two cases.

Case (1): Re(γ)Im(γ) = 0.

In view of Lemma 4.7, we may distinguish the following four subcases.

Subcase (1a): The spectrum of A is {λ,−λ, λ,−λ}, where Re(λ)Im(λ) > 0.

Since A is H-self-adjoint and G-skew-adjoint, it follows from Remark 3.4 that λ λ, −λ,
and −λ have the same Jordan structure. Applying Theorem 3.1, the Z-trick, and a block
permutation, we may assume that A and H have the following forms:

A =









J (λ) 0 0 0
0 −J (λ) 0 0
0 0 J (λ)∗ 0
0 0 0 −J (λ)∗









, H =









0 0 Im 0
0 0 0 Im
Im 0 0 0
0 Im 0 0









, (21)

where m = n
4
∈ N and J (λ) is an (m ×m) matrix in Jordan canonical form only having

the eigenvalue λ. Then, the equation −A∗G = GA and the fact that λ, −λ, λ, and −λ are
pairwise distinct imply that G necessarily has the form

G =









0 0 0 G2

0 0 G3 0
0 G∗

3 0 0
G∗

2 0 0 0









, (22)
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where G2, G3 ∈ Cm×m. By Lemma 4.9, we obtain that H−1GH−1G = γ2In. This implies
in particular that

G3G2 = γ2Im. (23)

Note that the equation −A∗G = GA also implies that J (λ)∗G2 = G2J (λ)∗, i.e., G2

commutes with J (λ)∗. Hence, setting

Q :=











γ
1

2G−∗
2 0 0 0

0 γ−
1

2 Im 0 0

0 0 γ−
1

2G2 0

0 0 0 γ
1

2 Im











,

we obtain that Q−1AQ = A, Q∗HQ = H, and

Q∗GQ =









0 0 0 γIm
0 0 γ−1G3G2 0

0 γ−1G∗
2G

∗
3 0 0

γIm 0 0 0









. (24)

Then it follows from (23) and (24) that the triple (A,H,G) can be reduced to blocks of
Type (1a), by applying an appropriate block permutation and the Z-trick.

Subcase (1b): The spectrum of A is {λ,−λ}, where λ > 0.

Theorem 3.3 implies that λ and−λ have the same Jordan structure. Moreover, applying
Theorem 3.1, we may assume that A, H, and G have the following forms:

A =

[

A1 0
0 −A1

]

, H =

[

H1 0
0 H2

]

, and G =

[

G1 G2

G∗
2 G3

]

,

where

A1 = Jp1
(λ)⊕ · · · ⊕ Jpk

(λ),

H1 = ε1Zp1
⊕ · · · ⊕ εkZpk

,

H2 = ε̃1Zp1
⊕ · · · ⊕ ε̃kZpk

and Gj ∈ Cm×m for m = n
2
. Observing that −A∗G = GA, we obtain that G1 = G3 = 0,

since λ 6= 0, and A∗
1G2 = G2A1. Moreover, H−1GH−1G = γ2In implies that

H−1
1 G2H

−1
2 G∗

2 = γ2Im = H−1
2 G∗

2H
−1
1 G2. (25)

Setting

Q =

[

Im 0
0 γ−1H−1

2 G∗
2

]

,
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then from (25), A∗
1G2 = G2A1, Z

−1
p Jp(0)

∗Zp = Jp(0) (Lemma 2.1), and the block forms of
H2 and A1, we obtain that

Q−1AQ =

[

A1 0
0 −G−∗

2 H2A1H
−1
2 G∗

2

]

=

[

A1 0
0 −A1

]

,

Q∗HQ =

[

H1 0
0 1

|γ2|
G2H

−1
2 H2H

−1
2 G∗

2

]

=

[

H1 0
0 ( γ

|γ|
)2H1

]

and

Q∗GQ =

[

0 γ−1G2H
−1
2 G∗

2

γ−1G2H
−1
2 G∗

2 0

]

=

[

0 γH1

γH1 0

]

.

Thus, it follows by applying an appropriate block permutation that we may assume that

A =

[

Jp(λ) 0
0 −Jp(λ)

]

, H =

[

εZp 0
0 ε( γ

|γ|
)2Zp

]

, and G =

[

0 γεZp

γεZp 0

]

.

Hence, setting

Q̃ =

[

ε−1Im 0
0 Im

]

,

we find that Q̃−1AQ̃, Q̃∗HQ̃, and Q̃∗GQ̃ have the desired forms.

Subcase (1c): The spectrum of A is {λ,−λ}, where λ ∈ iR, Im(λ) > 0.

The matrix−iA isG-self-adjoint,H-skew-adjoint and has only a pair of real eigenvalues.
Noting that the spectrum of %G−H is contained in {γ−1,−γ−1}, we can reduce the problem
to Case (1b), i.e., it is sufficient consider the case that −iA, G, and H are as listed in Type
(1b):

−iA =

[

Jp(λ) 0
0 −Jp(λ)

]

, G =

[

ε̃Zm 0

0 ε̃( |γ|
γ
)2Zm

]

, H =

[

0 γ−1Zm

γ−1Zm 0

]

,

where ε̃ ∈ {+1,−1}. Setting

Q =

[

γ
1

2 Im 0

0 γ
1

2 Im

]

,

we obtain that Q−1(−iA)Q = −iA,

Q∗HQ =

[

0 Zm

Zm 0

]

, and Q∗GQ = ε̃|γ|

[

Zm 0

0 ( |γ|
γ
)2Zm

]

.

Subcase (1d): The spectrum of A is {0}.

It follows from Lemma 7.5 in the Appendix that the triple (A,H,G) can be reduced to
blocks of Type (1d1) or of Type (1d2).

Case (2): Re(γ)Im(γ) 6= 0.
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By Corollary 2.4, we may assume that the pencil %H −G is already in the form

%H −G = %

[

0 Im
Im 0

]

−

[

0 γΣ
γΣ 0

]

,

where m = n
2
∈ N and Σ = diag(Ip, Im−p), 1 ≤ p ≤ m and, furthermore, we have (18).

Then Lemma 4.9 implies that A has the form

A =

[

A1 0
0 A∗

1

]

.

Note that by Lemma 4.9, a similarity transformation on A with a corresponding block
diagonal matrix and simultaneous congruence transformations on H, G does not change
the block structure of A and the identity (18), but it does change the block forms in H
and G. Hence we can apply similarity transformations on A1 and at the same time keep
the relation (18). Again, we will consider the following four subcases.

Subcase (2a): The spectrum of A is {λ,−λ, λ,−λ}, where Re(λ)Im(λ) > 0.

Again, the eigenvalues λ,−λ, λ, and −λ have the same Jordan structure. Moreover,
there exists a nonsingular matrix

Q =

[

Q1 0
0 Q−∗

1

]

∈ Cn×n

such that

Q−1AQ =









A11 0 0 0
0 A22 0 0
0 0 A∗

11 0
0 0 0 A∗

22









and Q∗HQ = H,

where A11 ∈ Ck×k has the eigenvalues λ and −λ and A22 ∈ C(n
2
−k)×( n

2
−k) has the eigenvalues

λ and −λ. Partitioning Q∗GQ conformably, i.e.,

Q∗GQ =









0 0 G1 G2

0 0 G3 G4

G∗
1 G∗

3 0 0
G∗

2 G∗
4 0 0









,

we obtain from the equation −A∗G = GA and the fact that A11 and −A22 have no common
eigenvalues that G2 = G3 = 0. Thus, after an appropriate block permutation, we may
consider two smaller subproblems. The first one is

Ã =

[

A11 0
0 A∗

11

]

, H̃ =

[

0 Ik
Ik 0

]

, and G̃ =

[

0 G1

G∗
1 0

]

;

and (18) implies that

H̃−1G̃H̃−1G̃ =

[

γ2Ik 0
0 γ2Ik

]

.
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Hence, after applying a similarity transformation on A11 , we may assume that Ã, G̃, and
H̃ are in the forms (21) and (22), where (G1)

2 = γ2I. The remainder of the proof then
proceeds analogously to Subcase (1a). The second subproblem with respect to A22 can be
transformed in the same way.

Subcase (2b): The spectrum of A is {λ,−λ}, where λ > 0.

We obtain from Theorem 3.3 that the Jordan structures associated with λ and −λ are
the same. Hence, both A1 and A∗

1 must have the eigenvalues λ and −λ with the same
Jordan structure. Thus, there exists a nonsingular matrix

Q =

[

Q1 0
0 Q−∗

1

]

such that

Q−1AQ =









J (λ) 0 0 0
0 −J (λ) 0 0
0 0 J (λ) 0
0 0 0 −J (λ)









and Q∗HQ = H,

where k = n
4
and J (λ) is an k × k matrix in Jordan canonical form associated with only

one eigenvalue λ. Partitioning Q∗GQ conformably, i.e.,

Q∗GQ =









0 0 G1 G2

0 0 G3 G4

G∗
1 G∗

3 0 0
G∗

2 G∗
4 0 0









,

we obtain from −A∗G = GA and the fact that J (λ) and −J (λ) have no common eigen-
values that G1 = G4 = 0, and that J (λ)∗G2 = G2J (λ), J (λ)∗G3 = G3J (λ). Moreover,
we still have (18), which implies that G3G2 = γ2I. Thus we may assume that A, G, and
H are in the forms (21) and (22), where G3G2 = γ2I. The remainder of the proof then
proceeds analogously to Subcase (1a).

Subcase (2c): The spectrum of A is {λ,−λ}, where λ ∈ iR.

The proof proceeds analogously to the proof of Subcase (1c).

Subcase (2d): The spectrum of A is {0}.

This case follows from Lemma 7.8 in the Appendix and by applying the Z-trick.

Uniqueness: Analogously to the proof of Theorem 4.4, it is sufficient to prove uniqueness
for the case that the spectrum of A is {λ,−λ, λ,−λ} for some λ ∈ C and that the spectrum
of %H−G is contained in {γ,−γ, γ,−γ} for some γ ∈ C. Again, the canonical form for the
pair (A,H) is unique. In any case except for the case that λ = 0 and γ2 /∈ R, the matrix
G is then uniquely determined by the invariants γ with Re(γ), Im(γ) ≥ 0 (and signs ε or
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ε̃ in some cases that are uniquely determined by the canonical form for the pair (A,G)).
Only in the case λ = 0 and γ2 /∈ R do we have an additional invariant ε that is not an
invariant of the canonical form for the pair (A,G). In this case, the uniqueness follows
from Lemma 7.8 in the Appendix.

In all Cases (1a)–(2d), it is easy to verify that the H and G-structure indices of each
block are as claimed in the theorem.

Again, we obtain as an immediate consequence the result for the special case H = I,
i.e., A is Hermitian and G-skew-adjoint.

Corollary 4.11 Let G be nonsingular and Hermitian and let A be Hermitian and G-skew-
adjoint. Then there exists a unitary matrix U ∈ Cn×n such that

U∗AU =

[

λ1 0
0 −λ1

]

⊕ . . .⊕

[

λm 0
0 −λm

]

⊕ [0],

U∗GU =

[

0 γ1

γ1 0

]

⊕ . . .⊕

[

0 γm
γm 0

]

⊕Gm+1,

where λ1, . . . , λm,∈ R, γ1, . . . , γm > 0, and Gm+1 ∈ C(n−2m)×(n−2m) is diagonal.

Proof. It follows from Sylvester’s law of inertia (see, e.g., [5]) applied to H = I that in
the canonical form for the triple (A, I,G), only blocks may appear in which the matrix Hj

has only positive eigenvalues. These are blocks of Type (1b) with parameters ε = +1 and
p = 1 and blocks of Type (1d1) with parameters ε = +1 and p = 1. Noting, furthermore,
that G is Hermitian and thus has only real eigenvalues, it follows also that the parameter
γ must be real. It now follows from Theorem 4.10 that there exists a nonsingular matrix
U ∈ Cn×n such that U−1AU and U ∗GU have the forms claimed in the corollary and such
that U ∗HU = H = I. The latter identity implies that U is unitary.

Remark 4.12 The result can be generalized to the case that H is positive definite. In
this case, there exists a nonsingular matrix P such that P ∗HP = I. Then we can apply
Corollary 4.11 to P−1AP and P ∗GP .

5 Singly and doubly structured pencils

In this section, we discuss canonical forms for matrix pencils %A − B, where both A and
B are matrices that are singly or doubly structured with respect to some indefinite inner
product. It turns out that the case of structured pencils can be reduced to the matrix case.
This is done in the following theorem.
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Theorem 5.1 Let the matrices G,H ∈ Cn×n be nonsingular and Hermitian or skew-
Hermitian, i.e.,

G∗ = ηGG and H∗ = ηHH,

where ηG, ηH ∈ {1,−1}. Furthermore, let %A−B ∈ Cn×n be a regular pencil such that

A∗H = εAHA, A∗G = δAGA,

B∗H = εBHB, B∗G = δBGB, (26)

where εA, εB, δA, δB ∈ {1,−1}. Then there exist nonsingular matrices P,Q ∈ Cn×n such
that

P−1(%A−B)Q = %

[

In1
0

0 N

]

−

[

M 0
0 In2

]

,

Q∗HP =

[

H11 0
0 H22

]

,

Q∗GP =

[

G11 0
0 G22

]

,

where M,H11, G11 ∈ Cn1×n1 and N,H22, G22 ∈ Cn2×n2. Moreover, M and N are in Jordan
canonical form, N is nilpotent, and the following conditions are satisfied.

H∗
11 = ηHεAH11, G∗

11 = ηGδAG11,
M∗H11 = εAεBH11M, M∗G11 = δAδBG11M,

H∗
22 = ηHεBH22, G∗

22 = ηGδBG22,
N∗H22 = εAεBH22N, N ∗G22 = δAδBG22N.

Proof. Let P,Q ∈ Cn×n be nonsingular matrices such that the pencil

P−1(%A−B)Q = %

[

In1
0

0 N

]

−

[

M 0
0 In2

]

(27)

is in Kronecker canonical form (see [6]), where M , N are in Jordan canonical form and N
is nilpotent. Then (26) and (27) imply, in particular, that

Q∗H(%εAA− εBB) = Q∗(%A∗ −B∗)H =

(

%

[

In1
0

0 N∗

]

−

[

M∗ 0
0 In2

])

P ∗H.

From this and (27), we obtain that

Q∗HP

[

In1
0

0 N

]

= Q∗HAQ = εA

[

In1
0

0 N∗

]

P ∗HQ,

Q∗HP

[

M 0
0 In2

]

= Q∗HBQ = εB

[

M∗ 0
0 In2

]

P ∗HQ.
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Setting Q∗HP =

[

H11 H12

H21 H22

]

and noting that P ∗HQ = ηH(Q
∗HP )∗, we find that

[

H11 H12N
H21 H22N

]

= ηHεA

[

H∗
11 H∗

21

N∗H∗
12 N∗H∗

22

]

and

[

H11M H12

H21M H22

]

= ηHεB

[

M∗H∗
11 M∗H∗

21

H∗
12 H∗

22

]

.

This implies, in particular, that

H12 = ηHεBM
∗H∗

21 = εAεBM
∗H12N = (εAεB)

k(M∗)kH12N
k for every k ∈ N.

Since N is nilpotent, it follows that H12 = 0 and thus, also H21 = ηHεAN
∗H∗

12 = 0.
Moreover, H11 = ηHεAH

∗
11 and H22 = ηHεBH

∗
22, and H22N = ηHεAN

∗H∗
22 = εAεBN

∗H22,
H11M = ηHεBM

∗H∗
11 = εAεBM

∗H11. Analogously, we show that Q∗GP has the structure
claimed in the theorem. This concludes the proof.

We note that M is a doubly structured matrix with structures induced by H11 and
G11 and that N is a nilpotent doubly structured matrix with structured induced by H22

and G22, where H11, G11, H22, and G22 are all Hermitian or skew-Hermitian. Therefore,
Theorem 5.1 gives a general description of how to obtain the canonical forms for the pencil
case from the canonical forms in the matrix case that are given in the previous sections.
We only have to further reduce M and N by applying the results from Section 4. Note that
Theorem 5.1 does not require the pencil %H − G to be nondefective. However, canonical
forms for the matrix case are known for this case only.

Theorem 5.1 also describes the case of singly structured pencils. In this case one may
choose H = G, εA = δA, and εB = δB. Thus, Theorem 5.1 gives a general description
how to obtain canonical forms for singly and doubly structured pencils from the canonical
forms in the matrix case. For obvious reasons, we do not give a list of the canonical forms
for all possible cases, but only one example to illustrate the effect of Theorem 5.1.

Theorem 5.2 Let H ∈ Cn×n be Hermitian and nonsingular and let %A− B ∈ Cn×n be a
regular pencil such that A and B are H-self-adjoint. Then there exists nonsingular matrices
P,Q ∈ Cn×n such that

P−1(%A−B)Q = %







A1 0
. . .

0 Ak






−







B1 0
. . .

0 Bk






,

Q∗HP =







H1 0
. . .

0 Hk






,

where the blocks Aj, Bj, and Hj have corresponding sizes and are of one and only one of
the following forms:
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1. blocks associated with real eigenvalues:

Aj = Ip, Bj = Jp(λ), and Hj = εZp,

where p ∈ N, λ ∈ R, and ε ∈ {1,−1};

2. blocks associated with a pair of nonreal eigenvalues:

Aj = I2p, Bj =

[

Jp(λ) 0

0 Jp(λ)

]

, and Hj = Z2p,

where p ∈ N and λ ∈ C\R;

3. blocks associated with the eigenvalue ∞:

Aj = Jp(0), Bj = Ip, and Hj = εZp,

where p ∈ N and ε ∈ {1,−1}.

Moreover, this form is uniquely determined up to permutation of blocks.

Proof. This follows directly from Theorem 5.1 and Theorem 3.1.

Note that with the assumptions and notation of Theorem 5.2, the pencil H(%A−B) =
%HA − HB is a Hermitian pencil. It turns out that Theorem 5.2 is a generalization of
Theorem 2.3. Indeed, the pencil Q∗HPP−1(%A− B)Q is a Hermitian pencil in canonical
form.

6 Conclusions

We have derived canonical forms for matrices and matrix pencils that are doubly structured
in the sense that they are H-self-adjoint (or H-skew-adjoint) and at the same time G-self-
adjoint (or G-skew-adjoint), where we have assumed that G,H are nonsingular Hermitian
(or skew Hermitian) and %G −H is a nondefective pencil. The general case that G or H
are singular, or that the pencil %G − H is defective, is still an open problem. Also, the
associated real canonical forms, which appear to be much more difficult, are open.

In view of the applications in eigenvalue computations, it is also important to restrict
the transformation matrices to be unitary (or orthogonal in the real case). This case
will be covered in a forthcoming paper, which will also address numerical methods, in
particular for the classes of pencils arising in quantum chemistry that we have discussed
in the introduction.
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Appendix

In the Appendix we derive some technical Lemmas. Recall the Kronecker product; see,
e.g., [9, 12].

Definition 7.1 Let A = [ajk] ∈ Cm×n and B ∈ Cp×q. Then

A⊗B :=







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






∈ Cmp×nq.

This product has the following basic properties; see, e.g., [9, 12].

Proposition 7.2 Let A,C ∈ Cp1×p2, B,D ∈ Cq1×q2, E ∈ Cp2×p3, and F ∈ Cq2×q3. Then
the following identities hold.

1. A⊗ (B +D) = A⊗B + A⊗D, (A+ C)⊗B = A⊗B + C ⊗B.

2. (A⊗B)(E ⊗ F ) = (AE)⊗ (BF ).

3. A ⊗ B is invertible if and only if A and B are invertible. In this case we have that
(A⊗B)−1 = A−1 ⊗B−1.

4. (A⊗B)T = AT ⊗BT , (A⊗B)∗ = A∗ ⊗B∗.

5. A⊗B = 0 if and only if A = 0 or B = 0.

We will frequently need the permutation matrix

Ωm,n = [e1, en+1, . . . , e(m−1)n+1; e2, en+2, . . . , e(m−1)n+2; en, e2n, . . . , emn].

If A, B are m× n and p× q, respectively, then

Ω∗
m,p(A⊗B)Ωn,q = B ⊗ A.

In the following we derive the canonical forms for doubly structured matrices that are
nilpotent. This case is the most complicated case, since we have least symmetry in the
spectrum. Therefore, we have to use a very technical reduction procedure.

For the sake of briefness of notation, let Jp denote the nilpotent Jordan block Jp(0) of
size p. Opq is the p× q zero matrix.
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Lemma 7.3 Let Zp, Dp, and Fp be defined as in Section 2 and let k, l, p, q ∈ N, (p ≥ q).
Then

ZpJ
l
p = (J l

p)
∗Zp, DpJ

l
pDp = (−1)lJ l

p , FpJ
l
p = (−1)l(J l

p)
∗Fp. (28)

ZpJ
k
p

[

J l
q

Op−q,q

]

=

[

Op−q,q

ZqJ
k+l
q

]

. (29)

FpJ
k
p

[

J l
q

Op−q,q

]

= (−1)p−q

[

Op−q,q

FqJ
k+l
q

]

. (30)

Dp

[

Op−q,q

Fq

]

= (−1)p−q

[

Op−q,q

DqFq

]

. (31)

Definition 7.4 Let A = (ajk)nn ∈ Cn×n. Then the lth lower antidiagonal of A or, in
short, the lth antidiagonal of A is defined by the elements ajk, where j + k = n + 1 + l.
Here, we allow l = 0. The 0th antidiagonal is also called the main antidiagonal. If

B =
[

0 B̃
]

and C =

[

0

C̃

]

,

where B̃ and C̃ are square matrices, then the lth antidiagonal of B̃ and C̃ is called the lth
antidiagonal of B and C, respectively. Analogously, we define the lth block antidiagonal
for square and non-square block matrices.

Lemma 7.5 Let G,H ∈ Cn×n be Hermitian nonsingular such that the pencil %H − G is
nondefective and such that its spectrum is contained in {γ,−γ}, where γ2 ∈ R\{0} and
Re(γ), Im(γ) ≥ 0. Furthermore, let A ∈ Cn×n be nilpotent, H-self-adjoint and G-skew-
adjoint. Then there exists a nonsingular matrix P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗GP = G1 ⊕ · · · ⊕Gk, (32)

P ∗HP = H1 ⊕ · · · ⊕Hk,

where the blocks Aj, Gj, Hj have corresponding sizes and, for each j, are of one and only
one of the following forms:

Type (1d1):
Aj = Jp(0), Hj = εZp, and Gj = ε̃γFp, (33)

where ε, ε̃ ∈ {−1, 1} and p ∈ N is odd if γ ∈ R and even if γ ∈ iR;

Type (1d2):

Aj =

[

Jp(0) 0
0 Jp(0)

]

, Hj =

[

0 Zp

Zp 0

]

, Gj =

[

0 γFp

−γFp 0

]

, (34)

where p ∈ N is even if γ ∈ R and odd if γ ∈ iR.

Moreover, the form (32) is unique up to permutation of blocks.
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Proof. Applying Theorem 3.1, we may assume that (A,H) is in canonical form, i.e.,
collecting blocks of the same size and representing them by means of the Kronecker product,
we may assume that

A =







Im1
⊗ Jp1

0
. . .

0 Imk
⊗ Jpk






, H =







Σm1
⊗ Zp1

0
. . .

0 Σmk
⊗ Zpk






,

where p1 > . . . > pk are the sizes of Jordan blocks and Σmj
are signature matrices for

j = 1, . . . , k. Setting

F =







Im1
⊗ Fp1

0
. . .

0 Imk
⊗ Fpk






,

we obtain from −A∗G = GA and (28) that A and FG commute. Thus, the structure of
G is implicitly given by the well-known form for matrices that commute with matrices in
Jordan canonical form; see [5]. For the sake of clarity, we will not work directly on A, H,
and G, but first apply a permutation. Setting Ω = Ωm1,p1

⊕ . . .⊕ Ωmk,pk
and updating A,

H, G by Ω−1AΩ, Ω∗HΩ, Ω∗GΩ, we are led to consider the following situation:

A =







Jp1
⊗ Im1

0
. . .

0 Jpk
⊗ Imk






and H =







H11 0
. . .

0 Hkk






, (35)

where Hjj := Zpj
⊗ Σmj

. Partitioning

G =







G11 . . . G1k
...

. . .
...

G∗
1k . . . Gkk






(36)

conformably and using the structures of matrices that commute with matrices in Jordan
canonical form [5], we obtain that

Gqq =

pq−1
∑

l=0

(Fpq
J l
pq
)⊗G(l)

q,q

=



















0 . . . . . . 0 G
(0)
q,q

... ... −G
(0)
q,q −G

(1)
q,q

... ... G
(0)
q,q G

(1)
q,q

...

0 ... ...
...

(−1)pq+1G
(0)
q,q . . . . . . . . . (−1)pq+1G

(pq−1)
q,q



















(37)
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for q = 1, . . . , k, where G
(l)
q,q ∈ Cmq×mq and

Gqr =

pr−1
∑

l=0

[

Opq−pr,pr

Fpr
J l
pr

]

⊗G(l)
q,r (38)

for 1 ≤ q < r ≤ k, with G
(l)
q,r ∈ Cmq×mr .

We will stepwise reduce the matrix G, while keeping the forms of A and H.

Step (1): Show that G
(0)
j,j is nonsingular for j = 1, . . . , k.

Since the pencil %H − G is nondefective and has only the eigenvalues γ,−γ, where
γ2 ∈ R\{0}, we obtain from Lemma 4.9 that

GH−1G = γ2H.

Comparing the jth diagonal blocks on both sides, this implies in particular that

γ2Hjj = G∗
1jH11G1j + . . .+GjjHjjGjj + . . .+GjkHkkG

∗
jk. (39)

Because of the structure of the blocks Gqr, it follows that all the block antidiagonals
of G∗

qrHqqGqr and GqrHrrG
∗
qr are zero for q < r, and hence, comparing the main block

antidiagonals on both sides of (39), we obtain that

γ2Zpj
⊗ Σmj

= (Fpj
⊗G

(0)
j,j )(Zpj

⊗ Σmj
)(Fpj

⊗G
(0)
j,j )

= (Fpj
Zpj

Fpj
)⊗ (G

(0)
j,jΣmj

G
(0)
j,j ).

Since Fpj
Zpj

Fpj
= Zpj

, this implies that

G
(0)
j,jΣmj

G
(0)
j,j =

1

γ2
Σmj

(40)

and thus, G
(0)
j,j is nonsingular.

Step (2): Eliminate G12, . . . , G1k.

Assume that we already have G
(s)
1,j = 0 for all j = 2, . . . , k and all s = 0, . . . , l − 1, and

G
(l)
1,j = 0 for j = 2, . . . , r − 1, where l ≥ 0 and r ≥ 2. We then show how to eliminate G

(l)
1,r

while keeping the forms of A and H. Let

X =











r

I X1r
. . .

r Xr1
. . .

I










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have a block form analogous to G, where zero blocks of the matrix are indicated by blanks
and, moreover,

X1r =

[

J l
pr

Op1−pr,pr

]

⊗
(1

2
(−1)p1−pr+1(G

(0)
1,1)

−1G
(l)
1,r

)















=̂















0 ∗ 0
. . .

0 ∗

0 . . . 0





























Xr1 =
[

Opr,p1−pr
J l
pr

]

⊗
(1

2
(−1)l+1(G(0)

r,r )
−∗(G

(l)
1,r)

∗
)

.

Substep (2a): Note that X1r and Xr1 are chosen such that X commutes with A.

Substep (2b): In the updated matrix G̃ := X∗GX we have G̃
(l)
1,r = 0.

Indeed, it is easy to see that G̃ is again a matrix of the form (36), (37), and (38). The
(1, r)-block of G̃ satisfies

G̃1r = G11X1r +X∗
r1G

∗
1rX1r +G1r +X∗

r1Grr. (41)

From the structure of G and X, we immediately find that the first l−1 block antidiagonals
of all the summands of the right-hand side of (41) are zero. Furthermore, the lth block
antidiagonal of G̃1r has the form

(Fp1
⊗G

(0)
1,1)

([

J l
pr

Op1−pr,pr

]

⊗
(1

2
(−1)p1−pr+1(G

(0)
1,1)

−1G
(l)
1,r

)

)

+

[

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r

+

([

Opr,p1−pr

(J l
pr
)∗

]

⊗
(1

2
(−1)l+1G

(l)
1,r(G

(0)
r,r )

−1
)

)

(Fpr
⊗G(0)

r,r )

=
1

2
(−1)p1−pr+1

(

Fp1

[

J l
pr

Op1−pr,pr

])

⊗G
(l)
1,r +

[

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r

+
1

2
(−1)l+1

([

Opr,p1−pr

(J l
pr
)∗

]

Fpr

)

⊗G
(l)
1,r

= −
1

2

[

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r +

[

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r

−
1

2

[

Op1−pr,pr

(−1)l(J l
pr
)∗Fpr

]

⊗G
(l)
1,r

(

using (30)
)

= 0
(

using (28)
)

.

Substep (2c): In the updated matrix G̃ := X∗GX, we still have G̃
(s)
1,j = 0 for all

j = 2, . . . , k and all s = 0, . . . , l − 1, and G̃
(l)
1,j = 0 for j = 2, . . . , r − 1.
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Indeed, the elements of the first block row of G̃ have the form

G1q +X∗
r1G

∗
qr for 1 < q < r and

G1q +X∗
r1Grq for r < q.

From the block structure of G1q, Grq, Gqr, and Xr1, we obtain that the first pq − pr + 2l
block antidiagonals in X∗

r1G
∗
qr and the first pr − pq + 2l − 1 block antidiagonals in X∗

r1Grq

are zero.

Substep (2d): We show that the matrix H̃ := X∗HX is block diagonal.

The only changes outside the block diagonal can have happened to the (1, r)-block H̃1r

and the (r, 1)-block H̃r1 = H̃∗
1r. The (1, r)-block has the form

H̃1r = (Zp1
⊗ Σm1

)X1r +X∗
r1(Zpr

⊗ Σmr
) (42)

=
1

2

[

Op1−pr,pr

Zpr
J l
pr

]

(43)

⊗

(

(−1)p1−pr+1Σm1
(G

(0)
1,1)

−1G
(l)
1,r + (−1)l+1G

(l)
1,r(G

(0)
r,r )

−1Σmr

)

,

using (28) and (29). On the other hand, we have GH−1G = γ2H. Noting that H−1 = H
and comparing the (1, r)-blocks of both sides, we obtain that

0 = G11H11G1r +

(

r−1
∑

q=2

G1qHqqGqr

)

+G1rHrrGrr +

(

k
∑

q=r+1

G1qHqqG
∗
rq

)

. (44)

Clearly, the first l−1 antidiagonals of all the summands in (44) are zero. We now consider
the lth block antidiagonal. We note that G11H11G1r and G1rHrrGrr are the only summands
that have a nonzero lth block antidiagonal. For the terms G1qHqqGqr, 1 < q < r, this
follows from the fact that the lth block antidiagonal of G1q is already zero. For G1qHqqG

∗
rq,

q > r, this can be seen as follows. If we write the jth block antidiagonal of G1qHqqG
∗
rq in

the form Sj ⊗ Tj, then we obtain

Sj =

[

pq
p1 − pq 0
pq Fpq

J j
pq

]

Zpq







[

pr − pq pq
pq 0 F ∗

pq

]







=





pr − pq pq
p1 − pr 0 0
pr − pq 0 0
pq 0 Fpq

J j
pq
Zpq

F ∗
pq



.

Having in mind that the first l − 1 block antidiagonals of G1q are zero, we find that the
first pr − pq + l − 1 block antidiagonals of G1qHqqG

∗
rq are zero.
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Finally, comparing the lth block antidiagonals in (44), we obtain

0 = (Fp1
⊗G1,1,0)(Zp1

⊗ Σm1
)

([

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r

)

+

([

Op1−pr,pr

Fpr
J l
pr

]

⊗G
(l)
1,r

)

(Zpr
⊗ Σmr

)(Fpr
⊗G(0)

r,r )

=

[

Op1−pr,pr

Zpr
J l
pr

]

⊗
(

(−1)p1−prG
(0)
1,1Σm1

G
(l)
1,r + (−1)lG

(l)
1,rΣmr

G(0)
r,r

)

,

using (28), (29), and (30). Using (40) and (43), this implies H̃1r = 0.

Substep (2e): Retrieve H.

Although H̃ is block diagonal, the (1, 1)- and (r, r)-blocks may differ from those of H.
We now show how to retrieve H from H̃ while keeping the zero block antidiagonals of G̃.
It follows from Theorem 3.1 that there exists a nonsingular matrix T ∈ Cp1m1×p1m1 such
that

T−1(Jp1
⊗ Im1

)T = Jp1
⊗ Im1

and T ∗H̃11T = Zp1
⊗ Σm1

.

Since T commutes with Jp1
⊗ Im1

, it has the block structure

T =







T1 . . . Tm1

. . .
...

0 T1







with Tj ∈ Cp1×p1 , j = 1, . . . ,m1. Analogously, we find a matrix T ′ ∈ Cprmr×prmr of similar
structure such that

T ′−1(Jpr
⊗ Imr

)T ′ = Jpr
⊗ Imr

and T ′∗H̃rrT
′ = Zpr

⊗ Σmr
.

Setting
T̃ := T ⊕ Ip2m2

⊕ . . .⊕ Ipr−1mr−1
⊕ T ′ ⊕ Ipr+1mr+1

⊕ . . .⊕ Ipkmk
,

we obtain
T̃−1AT̃ = A and T̃ ∗H̃T̃ = H.

Moreover, let us look at the (1, q)-block of T̃ ∗G̃T̃ . Note that because of the block-
triangularity of T , the multiplication of G̃ from the left by T̃ ∗ neither changes the first
l − 1 zero block antidiagonals of G̃1q for q = 2, . . . , k nor the lth zero block antidiagonals
of G̃1q for q = 2, . . . , r. The same argument holds for the multiplication from the right by
T̃ , because of the block-triangularity of T ′.

Substep (2f): By consecutively repeating Substeps (2a)–(2e) several times, we can

eliminate G
(0)
1,j for all j = 2, . . . , k, then G

(1)
1,j for all j = 2, . . . , k, and so on. After having

eliminated G
(p1−1)
1,j , we finally obtain that there exists a nonsingular matrix S, such that

S−1AS =

[

Jp1
⊗ Im1

0
0 A2

]

, S∗HS =

[

Zp1
⊗ Σm1

0
0 H2

]

,
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and S∗GS =

[

G1 0
0 G2

]

,

where G1 ∈ Cp1m1×p1m1 . Hence, it is sufficient to assume that we are in the following
situation:

A = Jp ⊗ Im, H = Zp ⊗ Σ and (45)

G =

p−1
∑

k=0

(FpJ
k
p )⊗Gk =











0 G0

−G0 −G1

... ...
...

(−1)p+1G0 . . . . . . (−1)p+1Gp−1











, (46)

where k,m, p ∈ N, Σ is a signature matrix, and Gj ∈ Cm×m for j = 0, . . . , p− 1.

Step (3): Reduce G to block antidiagonal form.

Assume that we already have G1 = . . . = Gl−1 = 0 for some l ≤ p − 1. We then
eliminate Gl while keeping the structure of A and H.

Substep (3a): Eliminate Gl.

Since G is Hermitian and Fp is Hermitian for odd p and skew-Hermitian for even p, we
obtain that

G∗
k = (−1)p+k+1Gk. (47)

This implies, in particular, that

(G−1
0 Gl)

∗ = (−1)lGlG
−1
0 . (48)

Setting

X := Ip ⊗ Im −
1

2
J l
p ⊗ (G−1

0 Gl),

it follows that X commutes with A. Moreover, we obtain that the first l − 1 block an-
tidiagonals in G̃ := X∗GX are still zero. Then, using (28), it follows that the lth block
antidiagonal has the form

(Ip ⊗ Im)
(

(FpJ
l
p)⊗Gl

)

(Ip ⊗ Im)−
1

2
(−1)l

(

(J l
p)

∗ ⊗ (GlG
−1
0 )
)

(Fp ⊗G0)(Ip ⊗ Im)

−
1

2
(Ip ⊗ Im)(Fp ⊗G0)

(

J l
p ⊗ (G−1

0 Gl)
)

= 0.

Substep (3b): Retrieve H.

Comparing the lth block antidiagonals on both sides of GH−1G = γ2H and using that
G1 = . . . = Gl−1 = 0, by applying (28) and Lemma 2.1, we obtain that

0 = (Fp ⊗G0)(Zp ⊗ Σ)
(

(FpJ
l
p)⊗Gl

)

+
(

(FpJ
l
p)⊗Gl

)

(Zp ⊗ Σ)(Fp ⊗G0)

= (FpZpFpJ
l
p)⊗

(

G0ΣGl + (−1)lGlΣG0

)

.

35



This implies, in particular, that for l ≥ p− 1

GlG
−1
0 Σ + (−1)lΣG−1

0 Gl = 0.

Here we have used the identity G0ΣG0 = γ2Σ, which follows from comparing the diagonal
blocks in GH−1G = γ2H. Therefore, with this relation and (48) we obtain that

X∗HX

= Zp ⊗ Σ−
1

2
ZJ l

p ⊗
(

G∗
lG

−∗
0 Σ + ΣG−1

0 Gl

)

+
1

4

(

(J l
p)

∗ZpJ
l
p

)

⊗ (G∗
lG

−∗
0 ΣG−1

0 Gl)

= Zp ⊗ Σ−
1

4
(ZpJ

2l
p )⊗

(

Σ(G−1
0 Gl)

2
)

.

The (2l)th block antidiagonal of X∗HX can then be eliminated by a congruence transfor-
mation with

Y = Ir ⊗ Im +
1

8
J 2l
p ⊗ (G−1

0 Gl)
2.

This transformation does not change the first l block antidiagonals of G̃ but may change
the jth block antidiagonal of X∗HX for some j > 2l. However, repeating the procedure
described above a finite number of times, we can finally retrieve H while keeping the
property that the first l block antidiagonals in G̃ are zero.

Substep (3c): By consecutively applying Substeps (3a) and (3b), we finally obtain that
there exists a nonsingular matrix S such that

S−1AS = Jp ⊗ Im, S∗HS = Zp ⊗ Σ =





0 Σ
...

Σ 0



 ,

and S∗GS = Fp ⊗G0 =





0 G0

...

(−1)p+1G0 0



 .

Step (4): Complete the final reduction of G.

Since the pencil %H −G is nondefective and its spectrum is contained in {γ,−γ}, this
also holds for each subpencil %Σ− (±G0). We will distinguish four cases.

Case (a): γ ∈ R and p is even.

Identity (47) implies that G0 is skew-Hermitian. Since the pencil %Σ− (±G0) has only
real eigenvalues γ and/or −γ, it follows that %Σ− (±G0) has both eigenvalues with equal
algebraic multiplicity. This implies, in particular, that m is even and that there exists a
nonsingular matrix R ∈ Cm×m such that

R∗ΣR =

[

0 I
I 0

]

and R∗G0R =

[

0 γI
−γI 0

]

.
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Set R = Ip ⊗R. Then

R−1AR = A, R∗HR = Zp ⊗

[

0 I
I 0

]

, and R∗GR = Fp ⊗

[

0 γI
−γI 0

]

.

Applying a transformation with Ωp,m the form stated in (34), for the case that p is even
follows from an appropriate block permutation.

Case (b): γ ∈ R and p is odd.

In this case, (47) implies that G0 is Hermitian. Considering the Hermitian pencil
%Σ− (±G0), there exists a nonsingular matrix R ∈ Cm×m such that

R∗ΣR = Σ and R∗G0R = γΣ̃,

where Σ̃ is another signature matrix. Setting R := Ip ⊗ R and applying transformations
with R and Ωp,m, the form stated in (33) for the case that p is odd follows from an
appropriate block permutation.

Case (c): γ ∈ iR and p is even.

In this case, (47) implies that G0 is Hermitian. The rest follows as in Case (b).

Case (d): γ ∈ iR and p is odd.

This case follows analogously to Case (a). This concludes the reduction to the canonical
form.

Uniqueness: The canonical form for the pair (A,H) is unique. The matrix G is then
uniquely determined by the invariants ε̃ and γ.

Definition 7.6 Let A = (ajk)nn ∈ Cn×n. Then the lth upper diagonal of A or, in short,
the lth diagonal of A is defined by the elements ajk, where k = j+ l. Here, we allow l = 0.
If

B =
[

0 B̃
]

and C =

[

C̃
0

]

,

where B̃ and C̃ are square matrices, then the lth diagonal of B̃ and C̃ is called the lth
diagonal of B and C, respectively. Analogously, we define the lth block diagonal for square
and non-square block matrices.

Lemma 7.7 Suppose that A0, G0 ∈ Cn×n anticommute, i.e., A0G0 = −G0A0. Further-
more, let A0 be nilpotent and G0 be diagonalizable and nonsingular. Then there exists a
nonsingular matrix P ∈ Cn×n such that

P−1A0P = A1 ⊕ · · · ⊕ Ak,

P−1G0P = G1 ⊕ · · · ⊕Gk, (49)
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where the blocks Aj, Gj have corresponding sizes and, for each j, are of the following form:

Aj = Jp(0) and Gj = εjγDp, (50)

where p ∈ N, γ ∈ C with Re(γ) ≥ 0 and Im(γ) > 0 if Re(γ) = 0, and εj ∈ {+1,−1}.
Moreover, the form (49) is unique up to the permutation of blocks.

Proof. Let Q ∈ Cn×n be nonsingular such that

Q−1A0Q =

[

A11 A12

A21 A22

]

and Q−1G0Q =

[

G11 0
0 G22

]

,

where the spectrum of G11 is contained in {γ,−γ} and the spectrum of G22 is disjoint from
{γ,−γ}. Then −A0G0 = G0A0 implies A12 = A21 = 0. Hence, we may assume without loss
of generality that G0 has at most the eigenvalues γ,−γ, where γ ∈ C\R with Re(γ) ≥ 0
and Im(γ) > 0 if Re(γ) = 0. Since G0 is diagonalizable, this implies in particular that
G2

0 = γ2In. Furthermore, we may assume that A0 is in Jordan canonical form. Thus, we
obtain that

A0 =







Jp1
⊗ Im1

0
. . .

0 Jpk
⊗ Imk






and G0 =







G11 . . . G1k
...

. . .
...

Gk1 . . . Gkk






(51)

for integers p1 > . . . > pk, m1, . . . ,mk and Gqr ∈ Cmq×mr . Setting

D :=







Dp1
⊗ Im1

0
. . .

0 Dpk
⊗ Imk






,

and using (28), the fact that A0 and G0 anticommute is equivalent to A0(DG0) = (DG0)A0.
Therefore, we obtain the following structures for the blocks of G0.

Gqq =

pq−1
∑

j=0

(Dpq
J j
pq
)⊗G(j)

q,q, Gqr =

pr−1
∑

j=0

[

Dpr
J j
pr

Opq−pr,pr

]

⊗G(j)
q,r for q < r, (52)

and

Gqr =

pq−1
∑

j=0

[

Opq ,pr−pq
Dpq

J j
pq

]

⊗G(j)
q,r for q > r, (53)

where G
(j)
q,q and G

(j)
q,r are matrices of suitable dimensions. We will now reduce G0 stepwise

to canonical form.

Step (1): Since G2
0 = γ2I, as in Step (1) in the proof of Lemma 7.5, it follows that G

(l)
q,q

is nonsingular.
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Step (2): Eliminate of G12, . . . , G1k and G21, . . . , Gk1.

Assume that we already have G
(s)
1,j = 0 for all j = 2, . . . , k and all s = 0, . . . , l − 1, and

G
(l)
1,j = 0 for j = 2, . . . , r − 1, where l ≥ 0, r > 1. We then eliminate G

(l)
1,r. Note that

G2
0 = γ2I implies that

G11G1r + . . .+G1kGkr = 0

for r > 1. From this and using an argument similar to the argument in Step (1) in the
proof of Lemma 7.5, we obtain that only the blocks G11G1r and G1rGrr contribute to the
lth diagonal of the left-hand side. Using (28), this implies that

0 = (Dp1
⊗G

(0)
1,1)

([

Dpr
J l
pr

Op1−pr,pr

]

⊗G
(l)
1,r

)

+

([

Dpr
J l
pr

Op1−pr,pr

]

⊗G
(l)
1,r

)

(Dpr
⊗G(0)

r,r )

=

[

J l
pr

Op1−pr,pr

]

⊗
(

G
(0)
1,1G

(l)
1,r + (−1)lG

(l)
1,rG

(0)
r,r

)

. (54)

Setting

X0 :=











r

I X1r
. . .

. . .

I











,

where

X1r = −
1

2

[

J l
pr

Op1−pr,pr

]

⊗ (G
(0)
1,1)

−1G
(l)
1,r,

we obtain that X0 commutes with A0. Furthermore, partitioning G̃0 := X−1
0 G0X0 con-

formably to G0, for the (1, r)-block G̃1r we obtain that

G̃1r = G1r −X1rGrr +G11X1r −X1rGr1X1r.

From this and using (28) and (54), we obtain that the lth diagonal of G̃1r has the form

[

Dpr
J l
pr

Op1−pr,pr

]

⊗G
(l)
1,r +

1

2

([

J l
pr

Op1−pr,pr

]

Dpr

)

⊗ ((G
(0)
1,1)

−1G
(l)
1,rG

(0)
r,r )

−
1

2

(

Dp1

[

J l
pr

Op1−pr,pr

])

⊗G
(l)
1,r = 0.

Analogously to the proof of Lemma 7.5, we can show that we still have G̃
(l−1)
1,j = 0 for all

j = 2, . . . , k and G̃
(l)
1,j = 0 for j = 2, . . . , r − 1.
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By consecutively repeating Step 2, we can first eliminate G
(0)
1,j for j = 2, . . . , k, then G

(1)
1,j ,

and so on. Finally, we can eliminate G12, . . . , G1k. Moreover, we can eliminate G21, . . . , Gk1

using transformations of the form

X0 :=









I
. . .

r Xr1
. . .

I









,

where

Xr1 = −
1

2

[

Opr,p1−pr
J l
pr

]

⊗ (G
(l)
1,r(G

(0)
1,1)

−1).

Note that these transformations do not change G12, . . . , G1k.

To complete Step (2), we may finally assume that

A = Jp ⊗ Im, G0 =

p−1
∑

j=k

(DpJ
k
p )⊗G0k =







G00 . . . G0,p−1

. . .
...

0 (−1)p+1G00






, (55)

where p,m ∈ N.

Step (3): Reduce G0 to block diagonal form.

Assume that we have G01 = . . . = G0,l−1 = 0 for some 0 < l ≤ p − 1. We then show
how to eliminate G0l. The lth block diagonal of G2

0 has the form

0 =
(

(DpJ
l
p)⊗G0l

)

(Dp ⊗G00) + (Dp ⊗G00)
(

(DpJ
l
p)⊗G0l

)

= J l
p ⊗

(

(−1)lG0lG00 +G00G0l

)

.

Hence
G0lG00 = (−1)l+1G00G01. (56)

The matrix X0 := Ip ⊗ Im −
1
2
J l
p ⊗ (G−1

00 G0l) commutes with A0. Moreover, X−1
0 has the

structure

X−1
0 = Ip ⊗ Im +

1

2
J l
p ⊗ (G−1

00 G0l) +
∞
∑

k=2

J kl
p ⊗X0k

for some matrices X0k. Hence, setting G̃0 := X−1
0 G0X0, we obtain that the first l−1 block

diagonals are still zero and that the lth block diagonal has the form
(1

2
J l
p ⊗ (G−1

00 G0l)
)

(Dp ⊗G00)(Ip ⊗ Im) + (DpJ
l
p)⊗G0l

+(Ip ⊗ Im)(Dp ⊗G00)
(

−
1

2
J l
p ⊗ (G−1

00 G0l)
)

= 0,
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using (28) and (56).

By consecutively repeating this procedure and then applying Ωm,p, we may finally
assume that

A = Im ⊗ Jp and G0 = G00 ⊗Dp.

Since G0 is diagonalizable, this also holds for the matrix G00. Moreover, G00 has at most
the eigenvalues γ and −γ. Hence, there exists a nonsingular matrix R such that

R−1G00R =

[

γIq 0
0 −γIm−q

]

for some q ∈ N. Setting R := R⊗ Ip, we obtain that R−1A0R = A0 and

R−1GR =

[

γIq 0
0 −γIm−q

]

⊗Dp.

The assertion then follows by an appropriate block permutation.

Uniqueness: Analogously to the argument in the proofs of Theorem 4.4 and 4.10, it is
sufficient to consider uniqueness for the case that G0 has at most the eigenvalues γ,−γ
with Re(γ) ≥ 0 and Im(γ) > 0 if Re(γ) = 0. Assume that

A0 =







Imp
⊗ Jp

. . .

Im1
⊗ J1






, G0 = γ







Σmp
⊗Dp

. . .

Σm1
⊗D1






,

and G̃0 = γ







Σ̃mp
⊗Dp

. . .

Σ̃m1
⊗D1






,

where we allow mj = 0 for some j = 1, . . . , p and where Σmj
and Σ̃mj

are signature
matrices. To prove the uniqueness of the form (49), we have to show that if S ∈ Cn×n is
nonsingular such that S−1A0S = A0 and S−1G0S = G̃0, then Σmj

and Σ̃mj
are similar for

j = 1, . . . , p.

Note that for each Jordan block there exists a Jordan chain {x
(1)
αβ , . . . , x

(α)
αβ }, where

α = p, . . . , 1 and β = 1, . . . ,mp. Let P be the permutation matrix that reorders these

chains in the following way. First, we collect x
(1)
αβ for α = p, . . . , 1, β = 1, . . . ,mp, then x

(2)
αβ
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for α = p, . . . , 2, β = 1, . . . ,mp, and so on. Setting qr =
∑r

j=1 mj, we have

Â0 := P−1A0P =



























qp qp−1 qp−2 . . . q1

qp 0

[

Iqp−1

0

]

0

qp1
0

[

Iqp−2

0

]

. . .

qp−2 0
. . . 0

...
. . .

[

Iq1
0

]

q1 0



























.

Moreover,

Ĝ0 := P−1G0P = γ







G11 0
. . .

0 Gpp







and ˆ̃G0 := P−1G̃0P = γ







G̃11 0
. . .

0 G̃pp






,

where

Gjj = (−1)j+1







Σmp
0

. . .

0 Σmj






and G̃jj = (−1)j+1







Σ̃mp
0

. . .

0 Σ̃mj






.

Assume that there exists a nonsingular matrix T such that T−1Â0T = Â0 and T−1Ĝ0T =
ˆ̃G0. Then the structure of Â0 implies that T is block upper triangular with a block structure
corresponding to Â0. But then we obtain, in particular, that Gjj and G̃jj are similar for
each j. This implies that Σmj

and Σ̃mj
are similar for each j.

Lemma 7.8 Let G,H ∈ Cn×n be Hermitian nonsingular such that the pencil %H − G is
nondefective and such that its spectrum is contained in {γ,−γ, γ,−γ}, where γ2 ∈ C\R
and Re(γ)Im(γ) ≥ 0. Furthermore, let A ∈ Cn×n be nilpotent, H-self-adjoint and G-skew-
adjoint. Then there exists a nonsingular matrix P ∈ Cn×n such that

P−1AP = A1 ⊕ · · · ⊕ Ak,

P ∗GP = G1 ⊕ · · · ⊕Gk, (57)

P ∗HP = H1 ⊕ · · · ⊕Hk,

where, for each j, the blocks Aj, Gj, Hj have corresponding sizes and are of the following
form:
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Type (2d):

Aj =

[

Jp(0) 0
0 Jp(0)

∗

]

, Hj =

[

0 Zp

Zp 0

]

,

and Gj =

[

0 εγFp

ε(−1)p+1γFp 0

]

, (58)

where p ∈ N, and ε ∈ {+1,−1}.

Moreover, the form (57) is unique up to the permutation of blocks.

Proof. Using the same argument as in Case (2) of the proof of Theorem 4.10, we may
assume that A, H, and G have the following forms:

A =

[

A0 0
0 A∗

0

]

, H =

[

0 I
I 0

]

, and G =

[

0 G∗
0

G0 0

]

, (59)

where

H−1GH−1G =

[

γ2I 0
0 γ2I

]

. (60)

This implies, in particular, that G2
0 = γ2I. From −A∗G = GA, we obtain that A0 and G0

anticommute. We will now reduce G by congruence transformations with matrices of the
form

X =

[

X0 0
0 X−∗

0

]

.

Then

X−1AX =

[

X−1
0 A0X0 0

0 (X−1
0 A0X0)

∗

]

, X∗HX = H, and

X∗GX =

[

0 (X−1
0 G0X0)

∗

X−1
0 G0X0 0

]

.

Thus, the problem of reducing G, while keeping the forms of A and H, reduces to the
problem of finding a canonical form for A0 and G0 under simultaneous similarity. This
is done in Lemma 7.7. Hence, the result follows from noting that the spectrum of G0 is
contained in {γ,−γ}, and applying the Z-trick.

Uniqueness: Assume that

A =

[

J 0
0 J

]

, H =

[

0 I
I 0

]

, G1 =

[

0 G∗
11

G11 0

]

, G2 =

[

0 G∗
22

G22 0

]

,

where J is a nilpotent matrix in Jordan canonical form, G1, G2 are Hermitian, and
σ(G11) = σ(G22) ⊆ {γ,−γ}. Furthermore, assume that T−1AT = A, T ∗HT = H, and
T ∗G1T = G2 for some nonsingular matrix T . Partitioning

T =

[

T11 T12

T21 T22

]

and T−∗ =

[

S11 S12

S21 S22

]
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conformably with A, H, and G, we obtain that

T12 = S21 and G11T12 = S21G
∗
22 = T12G

∗
22.

This implies T12 = 0. Analogously, we show that T21 = 0 and hence, we obtain by symmetry
T22 = T−∗

11 . Hence, the uniqueness of the form (57) follows from the uniqueness property
in Lemma 7.7.
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