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PARAMETER-DEPENDENT RANK-ONE PERTURBATIONS OF
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Abstract. Structure-preserving generic low-rank perturbations are studied for classes of struc-
tured matrix pencils, including real symmetric, complex symmetric, and complex Hermitian pencils.
For singular pencils it is analyzed which characteristic quantities stay invariant in the perturbed
canonical form, and it is shown that the regular part of a structured matrix pencil is not affected
by generic perturbations of rank one. When the rank-one perturbations involve a scaling parameter,
the behavior of the canonical forms dependent on this parameter is analyzed as well.
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1. Introduction. In this paper we study low-rank perturbations in the coeffi-
cients of linear differential-algebraic equations (DAEs) of the form

(1.1) Eẋ+Ax = f,

which typically arise as linearizations around stationary solutions of general nonlinear
DAEs of the form F (t, x, ẋ) = 0; see, e.g., [3]. The analysis of the solution behavior
of (1.1) can be characterized via the Kronecker canonical form of the matrix pencil
λE+A; see [2, 9, 14]. It is well known that small perturbations can drastically change
the canonical form and hence also the solution behavior of (1.1). This is particularly
unfortunate if perturbations make the pencil λE +A singular, because then the per-
turbed system may not be (uniquely) solvable any more. A major motivation for our
work comes from structured pencils arising in stability analysis of DAEs.

Example 1.1. In the finite element analysis of disc brake squeal [10, 20], large
scale second order differential equations arise that have the form

Mq̈ + (D +G)q̇ + (K +N)q = f,

where M = M> > 0 is the mass matrix, D = D> ≥ 0 models material and friction
induced damping, G = −G> models gyroscopic effects, K = K> > 0 models the
stiffness, and N = −N> is a nonsymmetric matrix modeling circulatory effects. (Here
> (≥) denotes positive (semi)definiteness of a matrix). An appropriate first order
formulation is associated with the linear pencil
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λE +A+ L := λ

[
M 0
0 K

]
+

[
D 1

2N
1
2N 0

]
+

[
G K + 1

2N
−(K + 1

2N) 0

]
,

where E is real symmetric, L is skew-symmetric, and A is symmetric.
The classical modal truncation approach [4] used in commercial finite element

packages computes the eigenvalues closest to 0 and the associated eigenvectors of the
symmetric eigenvalue problem λE+A, and projects the full problem into the subspace
spanned by these eigenvectors. In the analysis presented in [10], it was noticed that
the matrix pencil λE+A was close to a singular pencil, and this effect was traced back
to the introduction of a small number of stiff springs instead of rigid connections. A
similar behavior was observed in [13]. These low-rank perturbations in the modeling
process lead to pencils that are close to being singular. This creates large difficulties
in the numerical methods, because these pencils numerically behave as if they were
singular pencils. Our analysis is motivated by the desire to understand the effect of
low-rank perturbations in these situations.

The smallest perturbation (in some norm) that makes a pencil singular is called
the distance to singularity and it is a long time open problem [1] to determine this dis-
tance. Some progress in the solution of this problem has been made recently in [18] for
structured pencils and the case that the perturbations are restricted to be of rank one,
and for general pencils using the integration of ordinary differential equations in [11].

In numerical analysis, e.g., in the solution of ill-conditioned linear systems, it is
often better to consider a problem as being singular and to treat it as such, e.g., in the
case of linear systems, as a least squares problem. With such a strategy in mind, to
understand the behavior of the system and its associated pencil in the neighborhood
of a singularity, we start from a singular pencil λE+A with exactly one singular block
in its canonical form, so that generically a rank-one perturbation will make that pencil
regular. In that situation, we investigate the dependence on the scalar parameter τ
of the canonical form for the perturbations

(1.2) λE +A+ τ(λe+ a)Z,

where Z is a rank-one matrix and a, e are fixed scalars. We consider the following
classes of structured pencils and their structure-preserving rank-one perturbations:

• Hermitian pencils: A,E ∈ Cn×n and A∗ = A, E∗ = E, Z = uu∗, u ∈ Cn,
a, e ∈ R;

• real symmetric pencils: A,E ∈ Rn×n and A = A>, E = E>, Z = uu>,
u ∈ Rn, a, e ∈ R;

• complex symmetric pencils: A,E ∈ Cn×n and A = A>, E = E>, Z = uu>,
u ∈ Cn, a, e ∈ C,

where > denotes the transpose and ∗ the conjugate transpose. Other important
structures include real or complex >-alternating pencils λE + A, where A = A>

and E = −E>, or where A = −A> and E = E>. We will not consider >-alternating
pencils in the main part of this paper, but for the sake of future reference, some
preliminary results are formulated in a very general fashion so that they also cover
>-alternating pencils.

As particular rank-one perturbations may have very specialized effects, we will
mainly consider structure-preserving generic rank-one perturbations, which is under-
stood in the following sense. For F ∈ {C,R}, a set A ⊆ Fn is called algebraic, if it
is a set of common zeros of finitely many polynomials p1, . . . , pk in n variables. An
algebraic set A is called proper if A 6= Fn. A set Ω ⊆ Fn is called generic if its
complement Fn \Ω is contained in a proper algebraic set. Throughout the paper, we
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will be interested in statements “for generic u ∈ Fn property X is satisfied,” which by
definition means “there exists a generic set Ω ⊆ Fn such that for all u ∈ Ω property
X is satisfied.”

For pencils without additional symmetry structure, the effect of generic low-rank
perturbations has been studied in great detail in [5, 6, 7, 8]. We mention that this
problem is essentially different from the one studied here, because generic rank-one
perturbations that do not preserve one of the structures mentioned above do not have
the form (λe+a)Z with Z being a rank-one matrix, but they consist of a pencil having
precisely two singular blocks of size 1×2 and 1×0, or 2×1 and 0×1 in its Kronecker
canonical form; see [6, Theorem 3.2] and also the discussion in the introduction of
[7]. However, it follows from the results on canonical forms mentioned in section 2
that these types of rank-one perturbations can never be structure preserving for the
structures considered in this paper.

It is known that for a perturbed singular pencil as in (1.2), the eigenvalues and
their algebraic multiplicities are generically constant in the parameter τ 6= 0; see [18].
Surprisingly, this need not be the case for the corresponding partial multiplicities
which may depend on τ , as the following example shows.

Example 1.2. Consider the real symmetric singular pencil

P (λ) = λ


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

+


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

 .

Letting u = e1 + e4 =
[

1 0 0 1 0
]>

we obtain that

Pτ (λ) := P (λ) + τuu∗ =


τ 0 0 1 + τ 0
0 0 0 λ 1
0 0 0 0 λ

1 + τ λ 0 τ 0
0 1 λ 0 0

 .
For τ 6= 0 and

S>τ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
− 1+τ

τ 0 0 1 0
0 0 0 0 1

 ,
we then obtain

S>τ Pτ (λ)Sτ =


τ 0 0 0 0
0 0 0 0 λ
0 0 0 λ 1
0 0 λ − 1

τ (1 + 2τ) 0
0 λ 1 0 0

 .
Thus, for all τ 6= 0, the pencil Pτ (λ) is regular and has the eigenvalue infinity with
algebraic multiplicity one and the eigenvalue zero with algebraic multiplicity four.
Note that for τ 6= −1/2 the pencil has a block of size four corresponding to the
eigenvalue zero in the structured Kronecker canonical form (see (2.1) below), while
for τ = −1/2 there are two blocks of size two.
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Although having an eigenvalue of multiplicity four is a nongeneric property, we
will show that such change in the canonical form for a specific value of the parameter
τ is generic in the classes of real or complex symmetric pencils. More precisely, we
will show that if a singular pencil becomes regular after a rank-one perturbation, then
its regular part generically is not affected by the perturbation. Furthermore, there
appear new eigenvalues whose location is independent of the norm of the perturbation
as their algebraic multiplicities are constant in τ , but their partial multiplicities will
only be constant in τ except for a specific value τ0. In the case of real symmetric
pencils, this discontinuity of the canonical form is accompanied by a switch of one
sign from the so-called sign characteristic of the pencil.

For the sake of simplification of proofs in the remainder of this paper, we will
use Möbius transformations to reduce the case of perturbations of the form (1.2) to
the special case e = 0 which has the effect that just one of the coefficient matrices
of the pencil is perturbed. Although the effect of Möbius transformations on most
invariants of matrix pencils or matrix polynomials is well understood (see, e.g., [16]),
it seems that the change of the sign characteristic of real eigenvalues of Hermitian
or real symmetric pencils has not yet been considered in the literature. Therefore,
we will fill this gap and investigate how the sign characteristic of a Hermitian or real
symmetric pencil is related to the one that is obtained under a Möbius transformation
that keeps the Hermitian or real symmetric structure of the pencil invariant.

The remainder of the paper is organized as follows. In section 2 we present struc-
tured canonical forms for Hermitian, real symmetric, and complex symmetric pencils.
Section 3 discusses Möbius transformations of structured matrix pencils with special
emphasis on their effect on the sign characteristic. Section 4 contains some general
perturbation results that are applicable to several kinds of structured matrix pencils
and the important result that the regular part of a structured matrix pencil is not
affected by structure-preserving generic perturbations of rank one. In section 5, we
investigate Hermitian and real or complex symmetric singular pencils that become
regular after a structure-preserving rank-one perturbation. In particular, the behav-
ior of their canonical forms in dependence of a scaling parameter in the rank-one
perturbation is analyzed.

2. Canonical forms of pencils. In this section, we recall basic decompositions
for all three classes of structured pencils considered in this paper. We start with the
canonical form for Hermitian pencils; see, e.g., [15, Theorem 4.1], [21, Theorem 1].

Theorem 2.1 (Hermitian canonical form). Let A,E ∈ Cn×n be Hermitian
matrices. Then there exists an invertible matrix S ∈ Cn×n such that the pencil
S∗(λE +A)S is block-diagonal with diagonal blocks of one of the following forms:

(i) blocks corresponding to a pair of conjugate complex eigenvalues γ, γ, where
γ ∈ C+ := {z ∈ C | Im z > 0}:

(2.1) Jk,k,γ(λ) :=

[
0 J 1

k,γ(λ)

J 1
k,γ̄(λ) 0

]
∈ C2k×2k,

where J 1
k,γ(λ) and J 1

k,γ̄(λ) are defined as in (2.2);
(ii) blocks corresponding to a real eigenvalue γ ∈ R:

(2.2) J sk,γ(λ) := s


λ− γ

. .
.

1

. .
.

. .
.

λ− γ 1

 ∈ Rk×k, s ∈ {−1, 1} ;
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(iii) blocks corresponding to the eigenvalue infinity:

(2.3) J sk,∞(λ) := s


1

. .
.
λ

. .
.

. .
.

1 λ

 ∈ Rk×k, s ∈ {−1, 1} ;

(iv) singular blocks:

(2.4) L2k+1(λ) :=

[
0 Gk(λ)

G>k (λ) 0

]
∈ R(2k+1)×(2k+1),

where

(2.5) Gk(λ) =


1

λ
. . .

. . . 1
λ

 ∈ R(k+1)×k.

The parameters γ ∈ C, s ∈ {−1, 1}, and k ∈ N (for blocks of types (i)–(iii) we have
k ≥ 1) depend on the particular block and hence may be different in different blocks.
Moreover, the canonical form is unique up to permutation of diagonal blocks.

A Hermitian pencil is singular if and only if it contains blocks of the form (2.4)
and infinity is an eigenvalue if and only if it contains a block of the form (2.3).
The collection of the signs s appearing in the blocks associated with a fixed real
eigenvalue or the eigenvalue infinity, respectively, is called the sign characteristic of
the corresponding eigenvalue.

Note that the canonical form as we have presented it here is consistent with
interpreting a Hermitian pencil as a degree one matrix polynomial λE + A. In the
literature, Hermitian pencils are also written in the form λE − A and then, instead
of J sk,∞(λ), a block of the form

J̃ s̃k,∞(λ) := s̃


−1

. .
.

λ

. .
.

. .
.

−1 λ

 ∈ Rk×k, s̃ ∈ {−1, 1} ,

is occurring in the canonical form. This has an effect on the definition of the sign
characteristic at infinity via the canonical form, because J sk,∞(λ) and J̃ s̃k,∞(λ) are

congruent if k is odd, but if k is even, then J sk,∞(λ) and J̃−s̃k,∞(λ) are congruent; see
also [19] for a detailed discussion of this issue.

Next, we recall a corresponding theorem for the case of real symmetric pencils; see
[22, Theorem 2]. Note that most of the blocks in the canonical form in Theorem 2.1
are already real. Only for blocks of the form (2.1) is a different representation needed.

Theorem 2.2 (real symmetric canonical form). Let A,E ∈ Rn×n be symmet-
ric matrices. Then there exists an invertible matrix S ∈ Rn×n such that the pencil
S>(λE +A)S is block-diagonal with diagonal blocks of one of the following forms:
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(i) blocks corresponding to a pair of conjugate complex eigenvalues α± iβ, where
α, β ∈ R and β > 0:

(2.6) Jk,k,α,β(λ) :=


λR2 − Zα,β

. .
.

R2

. .
.

. .
.

λR2 − Zα,β R2

 ∈ R2k×2k,

where

(2.7) Zα,β :=

[
−β α
α β

]
∈ R2,2 and R2 :=

[
0 1
1 0

]
;

(ii) blocks corresponding to a real eigenvalue γ ∈ R: J sk,γ(λ), where J sk,γ(λ) is as
in (2.2) and s ∈ {−1, 1};

(iii) blocks corresponding to the eigenvalue infinity: J sk,∞(λ), where J sk,∞(λ) is as
in (2.3) and s ∈ {−1, 1};

(iv) singular blocks: L2k+1(λ), where L2k+1(λ) is as in (2.4).
The parameters α, β, γ ∈ R, s ∈ {−1, 1}, and k ≥ 0 depend on the particular block
and, hence, may be different in different blocks. Moreover, the canonical form is
unique up to permutation of diagonal blocks.

The third class considered in the paper are complex symmetric matrices. Here,
we have the following canonical form; see [22, Theorem 1].

Theorem 2.3 (complex symmetric canonical form). Let A,E ∈ Cn×n be sym-
metric matrices. Then there exists an invertible matrix S ∈ Cn×n such that the pencil
S>(λE +A)S is block-diagonal with diagonal blocks of one of the following forms:

(i) blocks corresponding to a complex or real eigenvalue γ ∈ C:

(2.8) Jk,γ(λ) :=


λ− γ

. .
.

1

. .
.

. .
.

λ− γ 1

 ∈ Ck×k;

(ii) blocks corresponding to the eigenvalue infinity: Jk,∞(λ) := J 1
k,∞(λ), where

J 1
k,∞(λ) is as in (2.3);

(iii) singular blocks: L2k+1(λ), where L2k+1(λ) is as in (2.4).
The parameters γ ∈ C and k ≥ 0 depend on the particular block and hence may be
different in different blocks. Moreover, the canonical form is unique up to permutation
of diagonal blocks.

If we want to determine the sign characteristic of Hermitian or real symmetric
matrices in the following, we will do that by computing the inertia index of particular
Hermitian matrices. Recall that the inertia index ind(H) = (n+, n−, n0) of a Hermi-
tian or real symmetric matrix H consists of the numbers n+ of positive eigenvalues,
n− of negative eigenvalues, and n0 of zero eigenvalues. We will then frequently make
use of the following lemma which is straightforward to prove.

Lemma 2.4. Let the n× n Hermitian matrix

H =

[
0 0
0 A

]
with A =

 0 a1m

. .
. ...

am1 . . . amm

 ∈ Cm×m
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be such that A is nonsingular, where m = 2k+ 1 is odd. Then the inertia index of H
is given by

ind(H) =

{
(k + 1, k, n−m) if ak+1,k+1 > 0,
(k, k + 1, n−m) if ak+1,k+1 < 0.

Having presented the structured canonical forms, in the next section we will
discuss how these structures change under Möbius transformations and then in the
remainder of the paper under structure-preserving generic low-rank perturbations.

3. Möbius transformations. For b, c ∈ C \ {(0, 0)}, we define the Möbius
transformation of a complex number γ (including ∞) as Mb,c(γ) = bγ+c

−cγ+b . (Here and

throughout the remainder of the paper, we interpret a fraction d
0 with d ∈ C \ {0} as

∞.) Following [16], we extend this definition onto linear pencils as

Mb,c(λE +A) = λ(cA+ bE) + (bA− cE).

Note that if P (λ) is a Hermitian (real symmetric) pencil, then for b, c ∈ R, Mb,cP (λ)
is Hermitian (resp., symmetric) as well. If P (λ) is complex symmetric, then Mb,cP (λ)
is complex symmetric for b, c ∈ C. By [16, Propositions 3.23 and 3.16] Möbius trans-
formations preserve congruence and the block-diagonal structure of matrix pencils.
Thus, we may assume without loss of generality that the pencil under consideration is
already in one of the canonical forms from section 2, and it is sufficient to investigate
the effect of the Möbius transformation on each diagonal block independently. It was
shown in [16] that the eigenvalues of Mb,cP (λ) are the Möbius transforms of the eigen-
values of P (λ) and the Kronecker structure is preserved. In particular, Theorem 5.3 of
[16] implies the following two lemmas displaying the effect of Möbius transformations
on the blocks in the structured canonical forms.

Lemma 3.1. For (b, c) ∈ R2 \ {(0, 0)},
(
b, c ∈ C2 \ {(0, 0)}

)
, and k ≥ 1 the

Hermitian canonical form and the real symmetric canonical form (resp; the complex
symmetric canonical form) of Mb,cL2k+1(λ) is equal to L2k+1(λ).

Lemma 3.2. For b, c, γ ∈ C, (b, c) 6= (0, 0), and k ≥ 1 the complex symmetric
canonical form of Mb,cJk,γ(λ) is equal to Jk,Mb,c(γ)(λ).

These two lemmas completely determine the action of Mb,c(γ) on canonical forms
of complex symmetric pencils. The corresponding result for Hermitian and real sym-
metric pencils, however, is not as immediate, because the sign characteristic of real
eigenvalues is involved.

Theorem 3.3. Let P (λ) be a Hermitian pencil having the canonical form(
m⊕
i=1

Jki,ki,γi(λ)

)
⊕

(
l⊕

i=m+1

J siki,γi(λ)

)
⊕ S(λ)

from Theorem 2.1, with ki ∈ N \ {0} for i = 1, . . . , l, γi ∈ C+ for i = 1, . . . ,m,
γi ∈ R ∪ {∞}, and si ∈ {−1, 1} for i = m + 1, . . . , l, and where S(λ) contains
all the singular blocks from the canonical form of P (λ). Furthermore, let b, c ∈ R
with b2 + c2 > 0. Then the canonical form (as a Hermitian pencil) of the Möbius
transformation Mb,c

(
P (λ)

)
is given by(

m⊕
i=1

Jki,ki,Mb,c(γi)(λ)

)
⊕

(
l⊕

i=m+1

J s̃iki,Mb,c(γi)
(λ)

)
⊕ S(λ),
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where Mb,c(γi) ∈ C+ for i = 1, . . . ,m, and for i = m + 1, . . . , l we have Mb,c(γi) ∈
R ∪ {∞} as well as

s̃i = si ·


(−1)nsgn(c) for Mb,c(γi) =∞,

(−1)n+1sgn(c) for γi =∞,
sgn(cMb,c(γi) + b) for γi,Mb,c(γi) ∈ R, n even,

sgn(cγi + b) for γi,Mb,c(γi) ∈ R, n odd,

if c 6= 0, and s̃i = sgn(b) · si if c = 0.

Proof. By the discussion at the beginning of this section it is sufficient to consider
the case that P (λ) is already in canonical form and consists of exactly one block as
in (i)–(iv) of Theorem 2.1. The case that P (λ) is a singular block is covered by
Lemma 3.1. Next, let P (λ) be a block as in (i) of Theorem 2.1. As b2 + c2 > 0 it
follows that the scalar Möbius transformation maps the upper, respectively, lower,
complex half-plane onto itself. The assertion now follows directly from Lemma 3.2.

Thus, it remains to investigate the case that P (λ) is a block of type (ii) or (iii)
as in Theorem 2.1, i.e., P (λ) = J sk,γ(λ), where k ∈ N, γ ∈ R ∪ {∞}, and s ∈ {−1, 1}.
Without loss of generality we may assume that s = 1. Note that for γ ∈ R, by
definition, we have

Mb,cJ 1
k,γ(λ) =


λ(b− cγ)− bγ − c

. .
.
λc+ b

. .
.

. .
.

λ(b− cγ)− bγ − c λc+ b

 .
If c = 0, then Mb,c = b · Id and the statement is obvious, so we assume c 6= 0 in the
following and distinguish three cases.

Case (1): If γ ∈ R and b− cγ = 0, i.e., Mb,c(γ) =∞, then

Mb,cJ 1
k,γ(λ) = λc


0

. .
.

1

. .
.

. .
.

0 1

+ c


−1− γ2

. .
.
γ

. .
.

. .
.

−1− γ2 γ

 .
If n is even, then by Lemma 2.4 the inertia index of the leading coefficient Mb,cJ 1

k,γ(∞)

of the pencil Mb,cJ 1
k,γ(λ) equals

(3.1) ind
(
Mb,cJ 1

k,γ(∞)
)

=

{ (
n
2 ,

n
2 − 1, 1

)
for c > 0,(

n
2 − 1, n2 , 1

)
for c < 0,

while in general

(3.2) ind
(
J tk,∞(∞)

)
=

{ (
n
2 ,

n
2 − 1, 1

)
for t = 1,(

n
2 − 1, n2 , 1

)
for t = −1.

Comparing (3.1) and (3.2), and using the fact that a congruence transformation keeps
the inertia indices invariant, we see that s̃ = sgn(c)s. Similarly for n odd, we compare
the inertia indices of the trailing coefficient matrices

ind
(
Mb,cJ 1

k,γ(0)
)

=

{ (
n−1

2 , n+1
2 , 0

)
for c > 0,(

n+1
2 , n−1

2 , 0
)

for c < 0,
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and

ind
(
J 1
k,∞(0)

)
=

{ (
n+1

2 , n−1
2 , 0

)
for t = 1,(

n−1
2 , n+1

2 , 0
)

for t = −1,

and obtain s̃ = −sgn(c)s.
Case (2): The case γ = ∞ follows from Case (1) by considering the inverse

transformation Mb̃,c̃ = M−1
b,c with sgn(c̃) = −sgn(c).

Case (3): In the case γ ∈ R and b−cγ 6= 0, assume first that n is even. Evaluating
Mb,cJ 1

k,γ(λ) at γ̃ = Mb,c(γ) = bγ+c
b−cγ we get

Mb,cJ 1
k,γ(γ̃) =


0

. .
.
γ̃c+ b

. .
.

. .
.

0 γ̃c+ b

 and γ̃c+ b =
b2 + c2

b− cγ
6= 0

and, hence, again applying Lemma 2.4, that

ind
(
Mb,cJ 1

k,γ(γ̃)
)

=

{ (
n
2 ,

n
2 − 1, 1

)
for γ̃c+ b > 0,(

n
2 − 1, n2 , 1

)
for γ̃c+ b < 0.

Comparing this with

ind
(
J 1
k,γ̃(γ̃)

)
=

{ (
n
2 ,

n
2 − 1, 1

)
for t = 1,(

n
2 − 1, n2 , 1

)
for t = −1,

the assertion follows. If n is odd, then evaluating the pencils at ζ = − bc we get

Mb,cJ 1
k,γ(ζ) =

 − b
2+c2

c

. .
.

− b
2+c2

c

 ,

J tk,γ̃(ζ) = t


− bc − γ

. .
.

1

. .
.

. .
.

− bc − γ 1

 .
Hence, the inertia indices to compare are

ind
(
Mb,cJ 1

k,γ(ζ)
)

=

{ (
n−1

2 , n+1
2 , 0

)
for c > 0,(

n+1
2 , n−1

2 , 0
)

for c < 0,

and

ind
(
J tk,γ̃(ζ)

)
=

{ (
n−1

2 , n+1
2 , 0

)
for t( bc + γ) > 0,(

n+1
2 , n−1

2 , 1
)

for t( bc + γ) < 0,

and thus, s̃ = s · sgn(b+ cγ).

Remark 3.4. There is a corresponding result for real symmetric pencils that fol-
lows directly from the relation between the Hermitian canonical form and the real
symmetric canonical form of a real symmetric pencil. Since this is straightforward,
we do not state this result here, but only mention that for α, β, b, c ∈ R with b2+c2 > 0,
β > 0, and k ≥ 1, the real symmetric canonical form of Mb,cJk,k,α,β(λ) is given by

Jk,k,α̃,β̃(λ), where α̃+ iβ̃ = Mb,c(α+ iβ).
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The presented results on the transformation of the canonical forms under Möbius
transformations will be used in the following sections to simplify the proofs of the
perturbation results.

4. Invariance of the regular part under structure-preserving rank-one
perturbations. In this section we show that the regular part of a pencil of one of
the structures mentioned in the introduction stays intact under generic structure-
preserving rank-one perturbations. We present Theorems 4.1 and 4.2 below in a very
general setting. Note that they both cover not only the three main classes considered
in the paper, i.e., Hermitian pencils, real symmetric pencils, and complex symmetric
pencils, but also other structures such as real or complex >-alternating pencils.

Theorem 4.1. Let F ∈ {C,R}, let ? ∈ {∗,>}, and let A,E ∈ Fn×n be such that
A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}. Then there exists a nonsingular
matrix U ∈ Fn×n such that

λU?EU + U?AU =

 S(λ) 0 0
0 Rf (λ) 0
0 0 Ri(λ)

 ,
where Rf (λ) = λEf+Af with Ef nonsingular (this part contains the finite eigenvalues
of the pencil λE +A), Ri(λ) = λEi +Ai with Ai nonsingular, and Ei being nilpotent
(this part contains the infinite eigenvalues of λE +A), and

S(λ) = diag
(
LδA,δE2k1+1(λ), . . . ,LδA,δE2kl+1(λ)

)
with k1, . . . , kl ∈ N and

LδA,δE2kj+1(λ) : =

[
0 Gkj (λ)

δAG>kj (δAδEλ) 0

]
=

[
0 Gu

kj
+ λGd

kj

δA(Gu
kj

)> + λδE(Gd
kj

)> 0

]
,

where Gkj (λ) is as in (2.5) and

(4.1) Gu
kj =:

[
Ikj
0

]
, Gd

kj :=

[
0
Ikj

]
for j = 1, . . . , l. In particular, S(λ) is uniquely determined up to a permutation of the
l singular blocks on its block-diagonal.

Proof. The proof follows immediately, by inspection, from the canonical form of
pairs of Hermitian matrices in [21] or of real or complex pairs of matrices that are
either symmetric or skew symmetric given in [22].

We call R(λ) = diag
(
Rf (λ), Ri(λ)

)
the regular part and S(λ) the singular part of

the pencil λE + A, respectively. (Note, however, that both parts are only unique up
to appropriate congruence transformations.)

In the following, we will present a general result about the effect of generic
structure-preserving rank-one perturbations on the regular part of a structured pencil
λE + A. Again, we present this theorem in a very general setting by simultaneously
considering the real and complex case and, in the complex case, symmetry structures
with respect to both the transpose and the conjugate transpose. Instead of expressing
the next theorem in terms of rank-one perturbations in the form

(4.2) λ(E + euu?) + (A+ auu?),



82 C. MEHL, V. MEHRMANN, AND M. WOJTYLAK

we rather consider the unperturbed pencil and the vector u separately, thus inter-
preting (4.2) as a pair

(
P (λ), u

)
, consisting of a structured pencil P (λ) = λE + A

with A,E ∈ Fn×n and a “perturbation vector” u ∈ Fn. A congruence transforma-
tion on the pencil (4.2) will then take the form

(
P (λ), u

)
7→
(
U?P (λ)U,U?u

)
, where

U ∈ Fn×n is nonsingular.

Theorem 4.2. Let F ∈ {C,R}, let ? ∈ {∗,>}, and let P (λ) = λE+A with A,E ∈
Fn×n be such that A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}. Furthermore,

let P (λ) have at least one singular block LδA,δE2m+1(λ), m ≥ 0, in its canonical form.
Then for a generic u ∈ Fn, there exists a nonsingular matrix U ∈ Fn×n (depending
on u) such that

(4.3) U?P (λ)U =

[ ns nr

ns S(λ) 0
nr 0 R(λ)

]
, U?u =

[
ns us
nr 0

]
,

where R(λ) and S(λ) are the regular and singular parts of the pencil, respectively.

Proof. Without loss of generality we may assume that P (λ) has the form discussed

in Theorem 4.1. Furthermore, we may assume that it has one singular block LδA,δE2m+1(λ)
only. Similarly, we can consider Rf (λ) and Ri(λ) from Theorem 4.1 separately, so we
may assume without loss of generality that R(λ) = λRE +RA, where RA, RE ∈ Fk×k
and where either RA or RE is invertible. By interchanging the roles of A and E,
if necessary, we may further assume that it is RE which is invertible. Note that
interchanging A and E may change the actual structure of the pencil, e.g., in the
case of an alternating pencil from even to odd, but this is not of importance. Indeed,
if (4.3) is shown to hold for the pencil λA + E, then it obviously also holds for the
pencil λE +A.

Let u = [u>1 , u
>
2 , u

>
3 ]> ∈ Fn, where u1 ∈ Fm+1, u2 ∈ Fm, u3 ∈ Fk, and let

D ∈ Fk×(m+1) be a matrix satisfying

(4.4) u3 = −Du1

with entries still to be determined. Then with

D :=

 Im+1 0 0
0 Im 0
D 0 Ik

? ,
we obtain that D?u = [u>1 , u

>
2 , 0]>, and we have that Ã := D?AD and Ẽ := D?ED

take the forms

Ã =

 0 Gu 0
δA(Gu)> 0 δA(Gu)>D?

0 DGu RA

 , Ẽ =

 0 Gd 0
δE(Gd)> 0 δE(Gd)>D?

0 DGd RE

 ,
respectively, where Gu := Gu

m and Gd := Gd
m are as in (4.1). Thus, the transformed

vector D?u has the desired form, but we have introduced unwanted nonzero entries
in the (2, 3) and (3, 2) blocks of Ã and Ẽ. We eliminate these blocks with the help of
a transformation of the form

X :=

 Im 0 0
0 Im−1 X
0 0 Ik

? ,
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where X ∈ F(m−1)×k still has to be determined. Note that X ?D?u = D?u and

Â := X ?ÃX

=

 0 Gu 0
δA(Gu)> XDGu + δA(Gu)>D∗X? +XRAX

? δA(Gu)>D? +XRA
0 DGu +RAX

? RA

 ,
as well as

Ê := X ?ẼX

=

 0 Gd 0
δE(Gd)> XDGd + δE(Gd)>D?X? +XREX

? δE(Gd)>D? +XRE
0 DGd +REX

? RE

 .
Suppose that X and D can be chosen such that

(4.5) DGu +RAX
? = 0 and DGd +REX

? = 0

(we will show below that this is indeed possible). Then the (3, 2) block-entries of Â

and Ê are zero and by (skew) symmetry this also holds for the (2, 3) block-entry. In
that case, we can define the transformation

Y = Y ⊕ Ik,

where Y is chosen in such a way that the block upper 2×2 block of Y?(λÊ+Â)Y is in
the reduced form of Theorem 4.1. Then, due to (4.5), the pencil Y?X ?D?P (λ)DXY
is in the corresponding form of Theorem 4.1 as well. Hence,

Y ?
([

0 Gu

(Gu)> ∗

]
+λ

[
0 Gd

(Gd)> ∗

])
Y =

[
0 Gu

(Gu)> 0

]
+λ

[
0 Gd

(Gd)> 0

]
,

because Y?(λÊ + Â)Y and P (λ) are congruent and thus Y?(λÊ + Â)Y must contain

exactly one singular block LδA,δE2m+1(λ). Thus, choosing U = DXY finishes the proof
under the assumptions (4.4) and (4.5).

It remains to show that X and D can be chosen such that both (4.4) and (4.5) are
satisfied. Since we have assumed that RE is invertible, the second equation in (4.5)
can be solved for X? which gives X? = −R−1

E DGd. Inserting this into the first
equation in (4.5), we obtain

DGu = −RAX? = RAR
−1
E DGd

or, equivalently,

(4.6) R−1
E DGu = R−1

E RAR
−1
E DGd.

Note that the matrix on the left-hand side of (4.6) consists of the first m− 1 columns
of R−1

E D, while the matrix on the right-hand side of (4.6) consists of the last m − 1
columns of R−1

E RAR
−1
E D. Setting R−1

E D = [d1, . . . , dm], we thus obtain

(4.7) R−1
E D =

[
(R−1

E RA)m−1dm . . . R−1
E RAdm dm

]
,

i.e., the matrix is uniquely determined by its last column dm. Conversely, for every
choice of dm the matrix D defined by (4.7) satisfies (4.5). Thus, we aim to choose dm
in such a way that (4.4) is satisfied, which translates into the condition

R−1
E u3 = −R−1

E Du1.
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Note that
−R−1

E Du1 = −Mdm,

where

M =

m−1∑
j=0

u1j(R
−1
E RA)j ,

and the u1j , j = 0, . . . ,m− 1, denote the components of u1. Thus, if M is invertible
then the choices dm = −M−1R−1

E u3,

D = RE
[

(R−1
E RA)m−1dm . . . R−1

E RAdm dm
]
,

and
X? = −R−1

E DGd

satisfy both equations (4.4) and (4.5). Note that detM is a polynomial in the entries
of u1. Furthermore, for u10 = 1 and u1j = 0, j > 0, we have M = (R−1

E R1)0 = I
and, hence, detM is a nonzero polynomial in the entries of u1. This shows that for a
generic vector u the matrix M is invertible, which finishes the proof.

As a direct corollary we obtain an invariance result for the regular part under structure-
preserving generic rank-one perturbations.

Corollary 4.3. Let F ∈ {C,R}, let ? ∈ {∗,>}, and let P (λ) = λE + A with
A,E ∈ Fn×n be such that A? = δAA and E? = δEE with δA, δE ∈ {+1,−1}. Fur-

thermore, let P (λ) have at least one singular block LδA,δE2m+1(λ), m ≥ 0, in its canonical
form. Then for generic u ∈ Fn and for all (e, a) ∈ F2, the regular part of λE + A is
contained in the regular part of the pencil λ(E + euu?) + (A+ auu?) in the following
sense: There exist nonsingular matrices U1, U2 ∈ Fn×n such that

U?1 (λE +A)U1 =

[
R1(λ) 0

0 S1(λ)

]
,

U?2 (λE +A+ (λe+ a)uu?)U2 =

[
R2(λ) 0

0 S2(λ)

]
,

and

R2(λ) =

[
R1(λ) 0

0 R̃(λ)

]
for some R̃(λ), where R1(λ) and R2(λ) are, respectively, the regular parts of λE +A
and λ(E + euu?) + (A+ auu?).

Note that for the sake of structure preservation, we may have to restrict the sets
of possible values for a and e in Corollary 4.3 depending on the considered field and
the corresponding involution ?, in order to guarantee that the perturbed matrix pencil
is from the same set of structured pencils as the unperturbed one. For example, if
F = C, A∗ = A, and E∗ = E, i.e., the pencil λE+A is Hermitian, then we must have
a, e ∈ R to ensure that also λ(E + euu∗) + (A+ auu∗) is Hermitian. If, on the other
hand, we have, e.g., F = R, A> = −A, and E> = E, i.e., the pencil λE + A is real
>-odd, then we must require that a = 0 and e ∈ R. However, note that the statement
of Corollary 4.3 remains true even in the case that a and e have been chosen such
that the perturbed pencil does no longer have the same structure as the unperturbed
pencil.
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5. Perturbation of a single singular block. For the remainder of the paper,
we will focus on Hermitian, complex symmetric, and real symmetric pencils. We
will investigate what happens to a matrix pencil under a generic structure-preserving
rank-one perturbation when the given pencil has exactly one singular block in the
structured canonical form. As we have seen in the previous section that generically the
regular part of the given singular pencil will not be affected by a structure-preserving
rank-one perturbation, we can focus our attention on the singular part of the pencil
only.

We start the analysis with the following lemma on the roots of a certain poly-
nomial. Here and in the following, we use the notation q̄ for the polynomial whose
coefficients are the complex conjugates of the coefficients of the polynomial q, i.e., if
q(λ) = akλ

k + · · ·+ a1λ+ a0, then

q̄(λ) := ākλ
k + · · ·+ ā1λ+ ā0.

Lemma 5.1. Let F ∈ {C,R}. Then, for a generic vector u ∈ Fk+1 the polynomial

(5.1) q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0

has simple complex roots only. Furthermore, if F = C and if C is interpreted as R2

then for generic (Reu, Imu) ∈ R2(k+1) and for each nonreal root λ0, the conjugate λ̄0

is not a root of q(λ). If F = R, then for all u ∈ Rk and for each nonreal root λ0, the
conjugate λ̄0 is a root of q(λ).

Proof. For the proof let us recall that two polynomials p1, p2 have a common
root if and only if their Sylvester resultant matrix S(p1, p2) is singular; see, e.g., [12,
Theorem 5.7].

Under the generic assumption that u1 6= 0, the roots of q(λ) coincide with the
roots of u1q1(λ) = u1λ

k − u2λ
k−1 + · · ·+ (−1)kuk+1λ

0. To prove the first assertion,
note that detS

(
u1q1(λ), u1q

′
1(λ)

)
is a nonzero polynomial in u1, . . . , uk.

To see the “furthermore” part, note that
∣∣detS

(
u1q1(λ), ū1q̄1(λ)

)∣∣2 is a real
nonzero polynomial in the entries of (Reu, Imu) in the case F = C. The proof
for the case F = R is elementary.

Remark 5.2. Observe that, with respect to q, the set Rk can be divided into two
disjoint subsets. The first set contains all vectors u ∈ Rk defined by the property that
the polynomial q made of the components of u as in (5.1) has a real root, while the
second subset consists of all u ∈ Rk such that q has only complex roots. Note that if
k is even, then both sets have a nonempty interior while if k is odd, then the latter
set is empty.

5.1. Hermitian case. In this section, we will assume that the given singular
pencil is Hermitian.

Proposition 5.3. Let u ∈ C2k+1 with u1 6= 0. If k ≥ 1, then for τ ∈ R we have

det
(
L2k+1(λ) + τuu∗

)
= τ · (qq̄)(λ),

where
q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, for τ ∈ R \ {0}, infinity is an eigenvalue of L2k+1(λ) + τuu∗ with the
corresponding single block J s1,∞(λ), where s = sgn τ . Also, if k = 0 then

det
(
L2k+1(λ) + τuu∗

)
= τ |u1|2.
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Proof. Consider the matrix

S :=


1
u1

−u2

u1
1

...
. . .

−u2k+1

u1
1


∗

such that S∗u = e1. Then

S∗
(
L2k+1(λ) + τuu∗

)
S =

τ 1
u1

λ− u2

u1
1

−u3

u1
λ

. . .

...
. . . 1

−uk+1

u1
λ

1
ū1

λ− ū2

ū1
− ū3

ū1
· · · − ūk+1

ū1
−2Re uk+2

u1
− ūk+3

ū1
. . . − ū2k+1

ū1

1 λ −uk+3

u1

. . .
. . .

...
1 λ −u2k+1

u1


with the nonindicated entries being zeros. Eliminating the entries in the positions
(1, k+ 2) and (k+ 2, 1) by adding a multiple of the first row and column, respectively,
we obtain a congruent pencil

(5.2) [τ ]⊕



λ− u2

u1
1

−u3

u1
λ

. . .

...
. . . 1

−uk+1

u1
λ

λ− ū2

ū1
− ū3

ū1
· · · − ūkū1

f(u) − ūk+3

ū1
. . . − ū2k+1

ū1

1 λ −uk+3

u1

. . .
. . .

...
1 λ −u2k+1

u1


,

where

f(u) = −2Re
uk+2

u1
− 1

τ |u1|2
.

As the determinants of the upper-right and lower-left block are equal to q(λ) and
q̄(λ), respectively, the proof is finished.

Corollary 5.4. For every monic complex polynomial q of degree k ≥ 1 there
exists a vector u ∈ C2k+1 with u1 6= 0 such that the characteristic polynomial of the
pencil L2k+1(λ) + uu∗ equals (qq̄)(λ).
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We now present the main theorem for generic Hermitian rank-one perturbations
of Hermitian pencils having exactly one singular block.

Theorem 5.5. Let A,E ∈ Cn×n be Hermitian and such that the pencil λE+A has
precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0. Furthermore,
let (a, e) ∈ R2 \ {(0, 0)}. Then for u ∈ Cn, with (Reu, Imu) ∈ R2n being generic, the
canonical form of λE +A+ τ(λe+ a)uu∗ is constant for τ ∈ R \ {0} and equals

(5.3) J s1,− ae (λ)⊕

 k⊕
j=1

J1,1,λj (λ)

⊕Rf (λ)⊕Ri(λ),

where λ1, . . . λk ∈ C+ are mutually distinct eigenvalues, and Rf (λ) ⊕ Ri(λ) is the
(canonical form of the) regular part of λE +A, and where

s =

{
sgn τ · sgn e if e 6= 0,
sgn τ · sgn a if e = 0.

In the case k = 0, the form (5.3) reduces to J s1,− ae (λ)⊕Rf (λ)⊕Ri(λ).

Proof. First we consider the case a = 1, e = 0. By Theorem 4.2 we may assume
without loss of generality that we have λE + A = L2k+1(λ). By Proposition 5.3,
the statement is trivial for the case k = 0 and for k > 0 the finite eigenvalues of
λE+A+τuu∗ are the roots of q(λ) and q̄(λ). By Lemma 5.1 all roots of the polynomial
q are generically simple and different from their conjugates, which determines the
canonical form to be as in (5.3).

To prove the general case we use Möbius transformations. Let b, c ∈ R be such
that

Mb,c(a+ λe)uu∗ = uu∗,

i.e., Mb,c = M−1
a,e . Then we obtain

Mb,c

(
λE +A+ τ(λe+ a)uu∗

)
= Mb,c(λE +A) + τuu∗.

By Theorem 3.3 the pencil Mb,c(λE + A) has precisely one singular block L2k+1(λ)
in its canonical form. Hence, by the first part of the proof, the canonical form of
Mb,c(λE +A) + τuu∗ equals

J s̃1,∞(λ)⊕
k⊕
j=1

J1,1,µj (λ)⊕Mb,c

(
Rf (λ)⊕Ri(λ)

)
with s̃ = sgn τ and some µ1, . . . , µk ∈ C+. Applying the transformation Ma,e we get
by Theorem 3.3 that the canonical form of λE +A+ τ(a+ λe)uu∗ equals

J s1,λ0
(λ)⊕

k⊕
j=1

J1,1,λj (λ)⊕Rf (λ)⊕Ri(λ)

with λ0 = Ma,e(∞) = −ae , λj = Ma,e(µj) ∈ C+ for j = 1, . . . , k, and s = sgn τ · sgn e
if e 6= 0, and s = sgn τ · sgn a if e = 0.
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5.2. Real symmetric case. In this section, we assume that the given pencil
λE+A is real symmetric. By taking the vector u in the statement of Proposition 5.3
to be real, we get the following result.

Proposition 5.6. Let u ∈ R2k+1 with u1 6= 0. If k ≥ 1, then for τ ∈ R we have

det
(
L2k+1(λ) + τuu>

)
= τq2(λ),

where
q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, for τ ∈ R \ {0}, we have that ∞ is an eigenvalue of L2k+1(λ) + τuu>

with the corresponding single block J s1,∞(λ), where s = sgnτ .
Moreover, if k = 0 then

det
(
L2k+1(λ) + τuu>

)
= τu2

1.

Note that by Proposition 5.6 every root of q is precisely a double eigenvalue of
L2k+1(λ) + uu> and, in addition for each nonreal root of q there is a correspond-
ing complex conjugate root; see Lemma 5.1 and Remark 5.2.

We will study now the generic canonical structure corresponding to these real and
nonreal double eigenvalues. For this we introduce the following lemma.

Lemma 5.7. Let λ0 ∈ R be an eigenvalue of algebraic multiplicity two of the real
regular symmetric matrix pencil

P (λ) :=

[
0 λC +B

λC> +B> λF +D

]
,

where B,C,D, F ∈ Rn×n and D = D>, F = F>. Then exactly one of the following
statements holds:

(i) The geometric multiplicity of λ0 is equal to one and the sign s of λ0 in the
sign characteristic of P (λ) is given by

s =

{
+1 if ind

(
P (λ0)

)
= (n, n− 1, 1),

−1 if ind
(
P (λ0)

)
= (n− 1, n, 1).

(ii) The geometric multiplicity of λ0 is equal to two and the signs in the sign
characteristic of λ0 are +1 and −1.

Proof. For the first part of the proof, we will ignore that the pencil P (λ) is real
and consider it as a particular complex Hermitian pencil. Clearly, there exist unitary
matrices U, V ∈ Cn×n such that U∗(λC+B)V is in antitriangular form. (This follows
by computing the generalized Schur decomposition of λC + B and then applying a
row permutation.) Thus, diag(U∗, V ∗)P (λ)diag(U, V ) is in antitriangular form as well.
Then it follows from [17, Theorem 15 and Remark 16] that for each real eigenvalue
γ of P (λ) in the (complex) canonical form, the number of blocks associated with γ
and having odd size is even, say 2m, and exactly m of them have sign +1 in the sign
characteristic (and the other m have the sign −1 in the sign characteristic). To be
more precise, if

J s1k1,γ(λ), . . . ,J s2mk2m,γ
(λ),J s2m+1

k2m+1,γ
(λ), . . . ,J s2m+l

k2m+l,γ
(λ)

are the blocks associated with γ in the canonical form in Theorem 2.1, where the
indices k1, . . . , k2m are odd and k2m+1, . . . , k2m+l are even, then exactly m of the
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signs s1, . . . , s2m are equal to +1 and exactly m of them are equal to −1. In the
following we will call this condition the “sign restriction for γ.”

If we evaluate the pencil J sjkj ,γ(λ) at λ = µ ∈ R \ {γ}, then by Lemma 2.4 the

resulting matrix J sjkj ,γ(µ) will have the inertia index
(kj

2 ,
kj
2 , 0

)
if kj is even,(kj+1

2 ,
kj−1

2 , 0
)

if kj is odd and sj(γ − µ) > 0,(kj−1
2 ,

kj+1
2 , 0

)
if kj is odd and sj(γ − µ) < 0.

Thus, it follows that the sign restriction for γ has the effect that the inertia index of
the matrix

(5.4) Jγ(µ) :=

2m+l⊕
j=1

J sjkj ,γ(µ)

is equal to
(aγ

2 ,
aγ
2 , 0

)
for all µ ∈ C \ {γ}, where aγ denotes the algebraic multiplicity

of the eigenvalue γ. A similar observation shows that we also have

ind
(
J∞(µ)

)
=
(
a∞
2 , a∞2 , 0

)
,

where a∞ is the algebraic multiplicity of infinity as the eigenvalue of P (λ), and where
J∞(µ) is defined analogously to (5.4). Thus, if J∞(λ) is the matrix pencil consisting
of all blocks associated with the eigenvalue infinity of the pencil P (λ), then J∞(µ) is
the matrix obtained by evaluating J∞(λ) at λ = µ.

For the remainder of the proof, let us consider the real canonical form S>P (λ)S
of P (λ) as in Theorem 2.2. Although we have been arguing via the complex canonical
form so far, note that the blocks associated with real eigenvalues or with the eigenvalue
infinity coincide in the real and complex canonical form. Thus, by our considerations
above and observing that each block of the form Jk,k,α,β(λ) as in (2.6) has inertia
index (k, k, 0) for all λ ∈ R, we see that the matrix P (λ0) obtained by evaluating the
pencil P (λ) at λ = λ0 has the inertia index

ind
(
P (λ0)

)
= (n− 1, n− 1, 0) + ind

(
Jλ0(λ0)

)
.

Here the sum of inertia indices is taken componentwise. By assumption, the algebraic
multiplicity of λ0 as an eigenvalue of P (λ) is equal to two and thus its geometric
multiplicity is either one or two. If it is one, then

Jλ0
(λ) = J s2,λ0

(λ) = s

[
0 λ− λ0

λ− λ0 1

]
for some sign s ∈ {+1,−1} and evaluating this at λ = λ0 it immediately follows that

ind
(
Jλ0

(λ0)
)

=
(

1+s
2 , 1−s

2 , 1
)

=

{
(1, 0, 1) if s = 1,
(0, 1, 1) if s = −1

which proves (i).
If, on the other hand, the geometric multiplicity of λ0 is two, then we have

Jλ0
(λ) = J s11,λ0

(λ) ⊕ J s21,λ0
(λ) for some signs s1, s2 ∈ {+1,−1}. Since we have two

blocks of odd size one in this case, the sign restriction for λ0 requires that the signs
s1, s2 are opposite which proves (ii).
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Using these lemmas we obtain the following theorem.

Theorem 5.8. Let A,E ∈ Rn×n be symmetric and such that the pencil λE+A has
precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0. Furthermore,
let (a, e) ∈ R2 \ {(0, 0}. Then, for generic u ∈ Rn, the canonical form of the pencil
λE +A+ τ(λe+ a)uu> is

J s1,− ae (λ)⊕
k′⊕
j=1

J2,2,αj ,βj (λ)⊕
k′′⊕
j=1

S2,λj (τ, λ)⊕Rf (λ)⊕Ri(λ),

where
(1) s = sgn τ · sgn e;
(2) 4k′ + 2k′′ = 2k;
(3) αj + iβj, j = 1, . . . , k′ are mutually distinct nonreal eigenvalues with αj , βj ∈

R and βj > 0;
(4) λj, j = 1, . . . , k′′ are mutually distinct real eigenvalues different from −ae and

of algebraic multiplicity two. The corresponding blocks S2,λj (τ, λ) have the
form

S2,λj (τ, λ) =


J sj2,λj

(λ) if τ−1 < τj ,

J 1
1,λj

(λ)⊕ J−1
1,λj

(λ) if τ−1 = τj ,

J−sj2,λj
(λ) if τ−1 > τj ,

where τ1, . . . , τk′′ ∈ R depend on a, e, u and where

sj =

{
sgn
(
e
eλj+a
e−aλj + a

)
if n is even,

sgn(eλj + a) if n is odd

for j = 1, . . . , k′′ when e 6= 0, and s1 = · · · = sk′′ = sgn a when e = 0;
(5) Rf (λ)⊕Ri(λ) is (the canonical form of ) the regular part of λE +A.
In the case k = 0, the canonical form reduces to J s1,− ae (λ)⊕Rf (λ)⊕Ri(λ).

Proof. Consider first the case a = 1, e = 0. By Theorem 4.2 we may assume
without loss of generality that

λE +A = L2k+1(λ).

The case k = 0 is trivial, so we may assume k > 0 and we will continue the congruence
transformations from the proof of Proposition 5.3 starting from (5.2). Note that all
transformations appearing therein were real for u ∈ R2k+1. We may simply assume
first that u1 = 1, which gives that the second diagonal block of the pencil in (5.2) has
the form

R(λ, τ) :=

[
0 λI −A1

λI −A>1 B(τ)

]

:=



λ− u2 1

−u3 λ
. . .

...
. . . 1

−uk+1 λ
λ− u2 −u3 · · · −uk+1 f(τ, u) −uk+3 . . . −u2k+1

1 λ −uk+3

. . .
. . .

...
1 λ −u2k+1


,
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where

f(τ, u) = −2uk+2 −
1

τ

is the only entry depending on τ .
For the case k = 1, we make the genericity assumption that u3 6= 0 and then[

0 λI −A1

λI −A>1 B(τ)

]
=

[
0 λ− u2

λ− u2 −2u3 − τ−1

]
,

which has the canonical form
J 1

2,u2
(λ) for τ−1 < −2u3,

J 1
1,u2

(λ)⊕ J−1
1,u2

(λ) for τ−1 = −2u3,

J−1
2,u2

(λ) for τ−1 > −2u3

by Lemma 5.7. Now let us deal with the case k ≥ 2. Let λ0 be an eigenvalue of
A1. (For the moment, we do not fix this eigenvalue to be real or nonreal, but if it is
nonreal, then we may assume that Imλ0 > 0 by otherwise switching to its conjugate
which must also be an eigenvalue of P (λ).) Clearly, λ0 is then also an eigenvalue of
A>1 . Furthermore, we make the genericity assumption that q has simple roots only
(see Lemma 5.1) and we add the genericity assumption that uk+1 6= 0. Hence, λ0 is a
simple, nonzero eigenvalue of both A1 and A>1 . Let us further transform the matrix

(5.5) R(λ0, τ) =

[
0 λ0I −A1

λ0I −A>1 B(τ)

]
.

As λ0 is an eigenvalue of A1, there exists a nonsingular matrix T1 ∈ Ck×k such that

(λ0I −A1)T1 =


0 1

0 λ0
. . .

...
. . . 1

0 λ0

 =: A2.

Indeed, let

T1 =


1
x3 1
...

. . .

xk+1 1


with

xk+1 =
uk+1

λ0
,

xj−1 =
uj−1

λ0
− xj
λ0
, j = k + 1, . . . , 4,

so that the entries 2, . . . , k of the first column of (λ0I − A1)T1 are eliminated. Fur-
thermore,

x3 =
u3

λ0
− u4

λ2
0

+ · · ·+ (−1)k
uk+1

λk−1
0

,

and hence, with q(λ) being the characteristic polynomial of the matrix A1, we have

λ0 − u2 + x3 = λ−k+1
0 q(λ0) = 0,
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which gives a zero in the (1, 1)-entry of (λ0I −A1)T .
Furthermore, we have

T2A2 =


0 1

0
. . .

...
. . . 1

0 0

 =: A3, where T2 =


1

−λ0
. . .

...
. . .

. . .

(−1)kλk0 . . . −λ0 1

 .
Setting T := diag(T>2 , T1), we obtain

T >
[

0 λ0I −A1

λ0I −A>1 B(τ)

]
T =

[
0 T2(λ0I −A1)T1

T>1 (λ0I −A>1 )T>2 T>1 B(τ)T1

]
=

[
0 A3

A>3 T>1 B(τ)T1

]
.

Observe that

T>1 B(τ)T1 =


g(τ, u) −uk+3 . . . −u2k+1

−uk+3

...
−u2k+1


with

(5.6) g(τ, u) = −2uk+2 −
1

τ
− 2uk+3x3 − · · · − 2u2k+1xk+1.

Let

S> :=



1
. . .

. . .

1
0 · · · · · · 0 1

uk+3

...
. . .

. . .
...

. . .

u2k+1 0 1


,

then

(5.7) S>T >
[

0 λ0I −A1

λ0I −A>1 B(τ)

]
T S =


Ik−1

0 0
0 g(τ, u)

Ik−1

 ,
where the indicated zeros in the matrix on the right-hand side are scalar entries.

Consider first the case that λ0 is nonreal. Recall that we work under the gener-
icity assumption u1, uk+1 6= 0. Observe that x3, . . . , xk+1 depend polynomially on
u1, . . . , un+1 and that xk+1 is nonreal. Hence, for generic u the expression g(1, u) is
nonreal which implies that the expression g(τ, u) is nonzero for all τ ∈ R \ {0}. Thus,
for generic u we have

dim kerR(λ0, τ) = 1, τ ∈ R \ {0} ,
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i.e., λ0 is an eigenvalue of L(λ0)+τuu∗ of geometric multiplicity one for all τ ∈ R\{0}.
Hence, if we set λ0 = α + iβ, then there is a block J2,2,α,β(λ) in the real canonical
form of the pencil L(λ0) + τuu∗ for all τ ∈ R \ {0}.

Next, consider the case that λ0 is real. Then for generic u we have that

(5.8) τ0 := −2uk+2 − 2uk+3x3 − · · · − 2u2k+1xk+1 6= 0.

Indeed, τ0 depends polynomially on the entries of u and is nonzero as a polynomial,
because for uk+2 6= 0 and uj = 0, j = k + 3, . . . , 2k + 1, we have τ0 6= 0. From (5.7)
we see that for τ−1 6= τ0 there exists a Jordan chain of length two corresponding to

the zero eigenvalue of the matrix R(λ0, τ) and, thus, one block of size two J s(τ)
2,λ0

(λ)
corresponding to λ0 occurs in the canonical form of R(λ, τ). By Lemma 5.7 applied
to the pencil R(λ, τ), in view of (5.7), we have that the sign s(τ) is equal to the sign
of g(τ, u) which clearly is

s(τ) =

{
+1 if g(τ, u) > 0, i.e., τ−1 < τ0,
−1 if g(τ, u) < 0, i.e., τ−1 > τ0.

Finally, dim kerR(λ0, τ
−1
0 ) = 2 and therefore, taking into account Lemma 5.7 again,

there are two blocks J 1
1,λ0

(λ) and J−1
1,λ0

(λ) in the canonical form of P (λ). This finishes
the case a = 1 and e = 0.

The case of general a, e ∈ R with e 6= 0 then follows from the case a = 1, e = 0
as in the corresponding part of the proof of Theorem 5.5, with an additional remark

that by Theorem 3.3 we have Ma,eJ
sj
2,λj

(λ) = J s̃j2,Ma,e(λj)
(λ), where for j = 1, . . . , k′′

we have

s̃j = sj ·

{
sgn
(
eMa,e(λj) + a

)
if n is even,

sgn(eλj + a) if n is odd

if e 6= 0, and s̃j = sj · sgn(a) if e = 0.

5.3. Complex symmetric case. Finally, we consider a complex symmetric
rank-one perturbation of a complex symmetric pencil, λE+A+ τ(λe+ a)uu>, where
u ∈ Cn is a generic vector and the parameter τ is complex. Similarly to Proposition 5.3
we obtain the following result.

Proposition 5.9. Let u ∈ C2k+1 with u1 6= 0. If k ≥ 1, then for τ ∈ C we have

det
(
L2k+1(λ) + τuu>

)
= τq2(λ),

where

q(λ) = λk − u2

u1
λk−1 + · · ·+ (−1)k

uk+1

u1
λ0.

Furthermore, for τ ∈ C\{0} we have that∞ is a simple eigenvalue of L2k+1(λ)+τuu>.
Moreover, if k = 0 then

det(L2k+1(λ) + τuu>) = τu2
1.

Proposition 5.9 states that each finite eigenvalue of L2k+1(λ) + τuu> is a double
eigenvalue. Now let us investigate the block structure for these double eigenvalues.

Theorem 5.10. Let A,E ∈ Cn be symmetric and such that the pencil λE+A has
precisely one singular block in its canonical form, say L2k+1(λ), k ≥ 0. Furthermore,
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let (a, e) ∈ C2 \
{

(0, 0
}

. Then for generic u ∈ Cn the canonical form of the pencil
λE +A+ τ(λe+ a)uu> (τ ∈ C) is

J1,− ae (λ)⊕
k⊕
j=1

S2,λj (τ, λ)⊕Rf (λ)⊕Ri(λ),

where
(1) λj ∈ C ∪ {∞}, j = 1, . . . , k′, are mutually distinct complex eigenvalues of

algebraic multiplicity two and the corresponding blocks have the form

S2,λj (τ, λ) =

{
J2,λj (λ) if τ−1 6= τj ,
J1,λj (λ)⊕ J1,λj (λ) if τ−1 = τj ,

where τ1, . . . , τk are some complex numbers depending on u;
(2) Rf (λ)⊕Ri(λ) is (the canonical form of) the regular part of λE +A.
In the case k = 0, the canonical form reduces to J1,− ae (λ)⊕Rf (λ)⊕Ri(λ).

Proof. First let us consider the case a = 1, e = 0. We repeat the congruence
transformations from the proof of Theorem 5.8 to get (5.7) and (5.6), having in mind
that now they are complex congruences. Note that the same argument as in the real
case applies to prove that τ0 6= 0, where τ0 is defined as in (5.8). The remainder
of the proof, together with the general case, follows the same lines as the proof of
Theorem 5.8 with the simplification that now no sign characteristic is involved.

Conclusions. We have analyzed the behavior of the structured Kronecker canon-
ical form of singular structured matrix pencils under generic structure-preserving
rank-one perturbations. In this case the regular Kronecker structure of the pencil
is not affected by the perturbation and the behavior of the canonical form of the
newly generated regular blocks can be characterized when the perturbations involve
a scalar parameter.
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helped to improve the presentation and lead to the detailed investigation of the effect
of Möbius transformaions on the sign characteristic of Hermitian or real symmetric
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