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1. Introduction. We consider n × n matrix polynomials of the form

P (λ) =
k∑

i=0

λiAi, A1, . . . Ak ∈ F
n×n, Ak 6= 0 (1.1)

where F denotes the field R or C. The numerical solution of the associated polynomial eigenvalue
problem P (λ)x = 0 is one the most important tasks in the vibration analysis of buildings, machines
and vehicles [9], [18], [31], as well as in many other applications.

As illustrated by the examples presented in Section 3, matrix polynomials arising in a variety
of applications have extra structure that results in symmetries in the spectrum. Our focus here
is on matrix polynomials with the property that reversing the order of the coefficient matrices,
followed perhaps by taking their transpose or conjugate transpose, leads back to the original matrix
polynomial. By analogy with linguistic palindromes, of which

Sex at noon taxes
is perhaps a less well-known example∗∗, we refer to the polynomials studied in this paper as palin-
dromic matrix polynomials.

Palindromic matrix polynomials can be thought of as generalizations of symplectic matrices,
because they are strongly related (via the Cayley transformation) to even/odd matrix polynomials,
which represent generalizations of Hamiltonian matrices. Even and odd matrix polynomials, albeit
under different nomenclature, have recently received a lot of attention in [2], [4], [28], [29]. Due to
their intimate relationship odd/even and palindromic matrix polynomials can be studied in a similar
way.

The classical approach to investigate or numerically solve polynomial eigenvalue problems is
linearization, in which the given polynomial (1.1) is transformed into a kn × kn matrix pencil
L(λ) = λX + Y that satisfies

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
, (1.2)
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where E(λ) and F (λ) are unimodular matrix polynomials [9]. (A matrix polynomial is called uni-
modular if it is square and its determinant is a nonzero constant, independent of λ.) Standard
methods for linear eigenvalue problems as in [1], [22], [25] can then be applied.

The block-companion forms [9] provide the standard examples of linearizations for a matrix
polynomial (1.1). Let X1 = X2 = diag(Ak, In, · · · , In),

Y1 =




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
. . .

. . .
...

0 −In 0


 , and Y2 =




Ak−1 −In 0

Ak−2 0
. . .

...
...

. . . −In

A0 0 · · · 0


 .

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are the first and second companion forms for P (λ),
respectively.

Unfortunately, these block-companion linearizations do not reflect the structure present in palin-
dromic, even, or odd matrix polynomials. The corresponding linearized pencil can usually only be
treated with methods for general matrix pencils. But, in a finite precision environment, a numerical
method that ignores the structure may produce physically meaningless results [31] and, for instance,
lose symmetries in the spectrum. Therefore, it is important to construct linearizations that reflect
the structure of the given matrix polynomial, and then develop numerical methods for the corre-
sponding linear eigenvalue problem that properly address these structures as well. The latter topic
has been an important area of research in the last decade, see, e.g., [4], [5], [6], [26], [28] and the
references therein.

In this paper we investigate structure preserving linearizations using the recently introduced
systematic linearization approach of [24]. We construct pencils that have the same structure as the
underlying matrix polynomials, and give necessary and sufficient conditions for these pencils to be
linearizations, thus correctly representing the information on eigenvalues and eigenvectors of the
matrix polynomials.

The subtitle “good vibrations from good linearizations” refers to a palindromic polynomial
eigenvalue problem that initiated this research. Outlined in Example 3.1, this problem arises in the
vibration analysis of rail tracks excited by high speed trains. In order to compute “good vibrations”,
i.e., accurate eigenvalues and eigenvectors, “good linearizations” are necessary, i.e., linearizations of
the underlying palindromic matrix polynomial that reflect the palindromic structure [13], [14], [16].

The palindromic and odd/even polynomials that are the focus of this paper are defined in
Section 2, where we also establish the spectral symmetries corresponding to each structure. A number
of applications that lead to these types of structured polynomial are then described in Section 3.
Extending the notion of Cayley transformation to matrix polynomials, we show in Section 4 how
this transformation connects (anti)-palindromic and odd/even structures. In Section 5 the general
linearization approach of [24] is summarized, and then used in the following section to obtain the
main results of this paper: the identification of structure preserving linearizations for the various
structured matrix polynomials under consideration. A constructive method for generating these
structure preserving linearizations is presented in Section 8, along with tables of such linearizations
for low degree structured polynomials.

2. Basic definitions and properties. In order to concisely define the structures treated in
this paper, we will use the symbol ? as an abbreviation for transpose T in the real case and either
T or conjugate transpose ∗ in the complex case.
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Definition 2.1. Let Q(λ) =
∑k

i=0 λiBi be a (possibly rectangular) matrix polynomial, where
B1, . . . , Bk ∈ F

m×n, Bk 6= 0. Then we define the adjoint Q?(λ) and the reversal revQ(λ) of Q(λ),
respectively, by

Q?(λ) :=
k∑

i=0

λiB?
i and revQ(λ) := λkQ(1/λ) =

k∑

i=0

λk−iBi. (2.1)

In general, deg(revQ(λ)) ≤ deg(Q(λ)) and rev
(
Q1(λ) · Q2(λ)

)
= revQ1(λ) · revQ2(λ), whenever

the product Q1(λ) · Q2(λ) is defined.
We say that a matrix polynomial P (λ) is palindromic if revP (λ) = P (λ), and anti-palindromic

if revP (λ) = −P (λ). Moreover, by analogy with even and odd functions, we say that P (λ) is even
if P (−λ) = P (λ) and odd if P (−λ) = −P (λ). We summarize these properties together with their
? -variants in Table 2.1.

Table 2.1
Basic structures

palindromic revP (λ) = P (λ) anti-palindromic revP (λ) = −P (λ)
? -palindromic revP?(λ) = P (λ) ? -anti-palindromic revP?(λ) = −P (λ)

even P (−λ) = P (λ) odd P (−λ) = −P (λ)
? -even P?(−λ) = P (λ) ? -odd P?(−λ) = −P (λ)

Two matrices that play an important continuing role in our investigation of these structured
polynomials are the reverse identity R in the context of palindromic structures, and the diagonal
matrix Σ of alternating signs in the context of even/odd structures:

R := Rk :=




0 1
. .

.

1 0




k×k

, and Σ := Σk :=




(−1)k−1 0
. . .

0 (−1)0


 . (2.2)

The subscript k will be dropped whenever it is clear from the context.
A distinguishing feature of the structured matrix polynomials in Table 2.1 is the special sym-

metry properties of their spectra, described in the following result.
Theorem 2.2. Let P (λ) be a regular matrix polynomial that has one of the structures listed in

Table 2.1. Then the spectrum of P (λ) has the pairing depicted in Table 2.2. Moreover, the algebraic,
geometric, and partial multiplicities of the two eigenvalues in each such pair are equal. (Here, we
allow λ = 0 and interpret 1/λ as the eigenvalue ∞.)

Table 2.2
Spectral symmetries

Structure of P (λ) eigenvalue pairing

palindromic, anti-palindromic (λ, 1/λ)
T -palindromic, T -anti-palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/ λ)

even, odd (λ,−λ)
T -even, T -odd (λ,−λ)

∗-even, ∗-odd (λ,−λ)
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Proof. We first recall some well-known facts [7], [8], [9] about the companion forms C1(λ) and
C2(λ) of a regular matrix polynomial P (λ):

• P (λ) and C1(λ) have the same eigenvalues (including ∞) with the same algebraic, geometric,
and partial multiplicities.

• C1(λ) and C2(λ) are always strictly equivalent , i.e., there exist nonsingular constant matrices
E and F such that C1(λ) = E · C2(λ) · F .

• Any pair of strictly equivalent pencils have the same eigenvalues (including ∞), with the
same algebraic, geometric, and partial multiplicities.

With these facts in hand, we first consider the case when P (λ) is ? -palindromic or ? -anti-palindromic,
so that revP?(λ) = χ

P
P (λ) for χ

P
= ±1. Our strategy is to show that C1(λ) is strictly equivalent

to revC?
1 (λ), from which the desired eigenvalue pairing and equality of multiplicities then follows.

Using the nonsingular matrix

T :=




χ
P

I 0
I

. . .

0 I


 ·




I Ak−1 · · · A1

0 0 −I
... . .

.

0 −I 0


 ,

we first show that C1(λ) is strictly equivalent to revC?
2 (λ).

T · C1(λ) · (Rk ⊗ In) = T ·


λ




0 Ak

I
. .

.

I 0


 +




A0 A1 · · · Ak−1

0 0 −I
... . .

.

0 −I 0







= λ




χ
P

A1 · · · χ
P

Ak−1 χ
P

Ak

−I 0 0
. . .

...
0 −I 0


 +




χ
P

A0 0
I

. . .

0 I




= λ




Ak−1 −I 0
...

. . .

A1 0 −I
A0 0 · · · 0




?

+




Ak 0
I

. . .

0 I




?

= revC?
2 (λ).

But revC?
2 (λ) is always strictly equivalent to revC?

1 (λ), since C1(λ) and C2(λ) are. This completes
the proof for this case.

For the case of palindromic or anti-palindromic matrix polynomials, i.e., polynomials P (λ)
satisfying revP (λ) = χ

P
P (λ), an analogous computation shows that

T · C1(λ) · (Rk ⊗ In) = revC1(λ),

i.e., C1(λ) is equivalent to revC1(λ), which again implies the desired eigenvalue pairing and equality
of multiplicities.

Next assume that P (λ) is ? -even or ? -odd, so P?(−λ) = ε
P

P (λ) for ε
P

= ±1. We show that
the first companion form C1(λ) of P (λ) is strictly equivalent to C?

1 (−λ), from which the desired
pairing of eigenvalues and equality of multiplicities follows. Starting from C1(λ), we first see that
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C1(λ) is strictly equivalent to C?
2 (−λ).

([
ε

P
0

0 −Σk−1

]
⊗ In

)
· C1(λ) · (Σk ⊗ In)

= λ




ε
P

(−1)k−1Ak 0
−I

. . .

0 −I


 +




ε
P

(−1)k−1Ak−1 · · · ε
P

(−1)1A1 ε
P

A0

−I 0 0
. . .

...
0 −I 0




= −λ




Ak 0
I

. . .

0 I




?

+




Ak−1 −I 0
...

. . .

A1 0 −I
A0 0 · · · 0




?

= C?
2 (−λ).

The strict equivalence of C?
2 (−λ) and C?

1 (−λ) now follows from that of C2(λ) and C1(λ), and the
proof of this case is complete.

For even or odd polynomials P (λ), that is P (−λ) = ε
P

P (λ), an analogous computation

([
ε

P
0

0 −Σk−1

]
⊗ In

)
· C1(λ) · (Σk ⊗ In) = C1(−λ)

shows that C1(λ) is strictly equivalent to C1(−λ), which implies the desired eigenvalue pairing and
equality of multiplicities.

If the coefficient matrices of P are real, then the eigenvalues of a ? -even or ? -odd matrix
polynomial occur in quadruples (λ, λ̄,−λ,−λ̄). This property has sometimes been referred to as
“Hamiltonian spectral symmetry”, since real Hamiltonian matrices have such a spectral symmetry
[26], [29]. However, this is actually a feature common to Lie algebras associated with any real
scalar product, and is not confined to Hamiltonian matrices [23]. Similarly, the eigenvalues of real
? -palindromic and anti-? -palindromic matrix polynomials occur not just in pairs but in quadruples
(λ, λ̄, 1/λ, 1/λ̄), a property sometimes referred to as “symplectic spectral symmetry”, since real
symplectic matrices exhibit this behavior. But once again, this type of eigenvalue symmetry is an
instance of a more general phenomenon associated with matrices in the Lie group of any real scalar
product, such as the real pseudo-orthogonal (Lorentz) groups. See [6], [26] for detailed coverage of
Hamiltonian and symplectic matrices, and [10], [23] for properties of matrices in the Lie algebra or
Lie group of more general scalar products.

Remark 2.3. Note that in Definition 2.1 we could have defined the adjoint of an n× n matrix
polynomial with respect to the adjoint of a general scalar product, rather than restricting ? to just
transpose or conjugate transpose. For example, with any nonsingular matrix M we can define a
bilinear scalar product 〈x, y〉 := xT My, and denote the adjoint of a matrix A ∈ F

n×n with respect to
this scalar product by A? = M−1AT M . (Similarly for a sesquilinear scalar product 〈x, y〉 := x∗My
and its corresponding adjoint A? = M−1A∗M .) Then for an n × n matrix polynomial P (λ) the
definition of the corresponding adjoint P?(λ) is formally identical to Definition 2.1; the structures
in Table 2.1 also make sense as written with ? denoting the adjoint of a general scalar product.
Well-known examples of this are the skew-Hamiltonian/Hamiltonian pencils [28], which are ? -odd
with respect to the symplectic form defined by M = J =

[
0 I
−I 0

]
.

However, not much is gained by this apparent extra generality. Suppose the matrix M defining
a bilinear scalar product satisfies MT = εM for ε = ±1 (or M∗ = εM in the sesquilinear case); this
includes all the standard examples, which are either symmetric or skew-symmetric bilinear forms or
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Hermitian sesquilinear forms. Then

P (λ) is ? -palindromic ⇔ revP?(λ) = rev
(
M−1PT (λ)M

)
= P (λ)

⇔ rev(MP (λ))T = rev
(
PT (λ)MT

)
= εMP (λ)

⇔ MP (λ) is T -palindromic or T -anti-palindromic,

depending on the sign of ε . A similar argument shows that ? -evenness or ? -oddness of P (λ) is
equivalent (in the bilinear case) to the T -evenness or T -oddness of MP (λ). Analogous results also
hold in the sesquilinear case when M ∗ = εM . Thus for any of the standard scalar products with
adjoint ? , the ? -structures in Table 2.1 can be reduced to either the ? = T or ? = ∗ case; in
particular this implies that the eigenvalue pairing results of Theorem 2.2 extend to these more
general ? -structures. Note that this reduction shows the skew-Hamiltonian/Hamiltonian pencils
mentioned above are equivalent to T -even or ∗ -even pencils.

3. Applications. Polynomial eigenvalue problems arise in the analysis and numerical solution
of higher order systems of ordinary and partial differential equations. In this section we discuss a
variety of applications that lead to structured matrix polynomials.

Example 3.1. (Quadratic complex T -palindromic matrix polynomials)
A project of the company SFE GmbH in Berlin investigates rail traffic noise caused by high speed
trains [13], [14]. The vibration of an infinite rail track is simulated and analyzed to obtain information
on the development of noise between wheel and rail. In the model, the rail is assumed to be infinite
and is tied to the ground on sleepers, where neighboring sleepers are spaced s = 0.6 m apart
(including the width of one of the sleepers). This segment of the infinite track is called a sleeper
bay. The part of the rail corresponding to one sleeper bay is then discretized using classical finite
element methods for the model of excited vibration (Figure 3.1).

Fig. 3.1. FE discretization of the rail in one sleeper bay.
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The discretization leads to an infinite dimensional second order system of the form Mẍ + Dẋ +
Sx = F , with infinite block-tridiagonal real symmetric coefficient matrices M,D,S, where

M =




. . .
. . . 0 . . . 0

. . . Mj−1,0 Mj,1 0
...

0 MT
j,1 Mj,0 Mj+1,1 0

...
. . . MT

j+1,1 Mj+1,0
. . .

0 . . . 0
. . .

. . .




, x =




...
xj−1

xj

xj+1

...




, F =




...
Fj−1

Fj

Fj+1

...




,

and where D,S have the same block structure as M with blocks Dj,0, Dj,1 and Sj,0, Sj,1, respectively.
Here, Mj,0 is symmetric positive definite and Dj,0, Sj,0 are symmetric positive semidefinite for all j.

There are several ways to approach the solution of the problem, which presents a mixture
between a differential equation (time derivatives of x) and a difference equation (space differences
in j).

Since one is interested in studying the behavior of the system under excitation, one makes the
ansatz Fj = F̂je

iωt, xj = x̂je
iωt, where ω is the excitation frequency. This leads to a second order

difference equation with variable coefficients for the x̂j given by

AT
j−1,j x̂j−1 + Ajj x̂j + Aj,j+1x̂j+1 = F̂j ,

with the coefficient matrices

Aj,j+1 = −ω2Mj,1 + iωDj,1 + Kj,1, Ajj = −ω2Mj,0 + iωDj,0 + Kj,0.

Observing that the system matrices vary periodically due to the identical form of the rail track in
each sleeper bay, we may combine the (say `) parts belonging to the rail in one sleeper bay into one
vector

yj =




x̂j

x̂j+1

...
x̂j+`


 ,

and thus obtain a constant coefficient second order difference equation

AT
1 yj−1 + A0yj + A1yj+1 = Gj

with coefficient matrices

A0 =




Aj,j Aj,j+1 0

AT
j,j+1 Aj+1,j+1

. . .

. . .
. . . Aj+`−1,j+l

0 AT
j+`−1,j+` Aj+`,j+`




, A1 =




0 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0

Aj+`,j+`+1 0 . . . 0


 ,

that depend on the frequency ω. For this system we then make the ansatz yj+1 = κyj , which leads
to the complex eigenvalue problem

1

κ
(AT

1 + κA0 + κ2A1)y = 0.

7



Clearly, the underlying matrix polynomial AT
1 +κA0+κ2A1 is T -palindromic, because A0 is complex

symmetric, i.e., A0 = AT
0 . It should be noted that in this application A1 is highly rank-deficient.

Example 3.2. (Quadratic real and complex T -palindromic matrix polynomials)
In [33] the mathematical modelling and numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters is discussed. SAW-filters are piezoelectric devices used in telecommu-
nications, e.g., TV-sets and cell phones, for frequency filtering; other kinds of SAW-devices find
application in radar and sensor technology as well as in the field of non-destructive evaluation. In
modelling these devices, Floquet-Bloch theory is used in [33] to replace the underlying periodic
structure of the problem by a single reference cell together with quasi-periodic boundary conditions.
This Bloch-ansatz reduces the problem to calculating the so-called “dispersion diagram”, i.e., the
functional relation between the excitation frequency ω and the (complex) propagation constant γ. A
finite element discretization then leads to a parameter-dependent Galerkin system, which upon fur-
ther reduction (and invocation of the quasi-periodic boundary conditions) becomes a T -palindromic
quadratic eigenvalue problem

(γ2A + γB + AT )v = 0, with BT = B.

Note that A and B both depend on the parameter ω. If absorbing boundary conditions (necessary
for volume wave radiation) are included in the model, then A and B are complex, otherwise real.

Example 3.3. (Quadratic ∗-palindromic matrix polynomials)
In [12], bisection and level set methods are presented to compute the Crawford number

γ(A,B) := min
z∈C

n

‖z‖
2
=1

√
(z∗Az)2 + (z∗Bz)2

for two Hermitian matrices A,B ∈ C
n×n. It is shown in [12, Theorem 2.2] that γ(A,B) measures

the distance of a Hermitian pair (A,B) to the nearest non-definite pair in the 2-norm. From [12,
formula (2.8)]

γ(A,B) = max

(
max

0≤θ≤2π
λmin(A cos θ + B sin θ), 0

)
,

the problem of computing the Crawford number can be reduced to the computation of

max {λmin(M(z)) : |z| = 1} ,

where M(z) = (z−1C + zC∗)/2 and C = A + iB. It is easy to check that M(z) is Hermitian on the
unit circle. Since for a given ξ ∈ R, the equivalence

det
(
M(z) − ξI

)
= 0 ⇐⇒ det

(
C − 2ξzI + z2C∗) = 0

holds, the authors of [12] discuss the following strategy as a base for a bisection algorithm. Select
a value ξ ∈ R and compute the 2n eigenvalues zj of the ∗-palindromic matrix polynomial P (z) =
C − 2ξzI + z2C∗. For each zj on the unit circle compute the smallest eigenvalue λmin(M(zj)) of
M(zj). If λmin(M(zj)) = ξ then γ(A,B) ≥ λmin(M(zj)), otherwise we have γ(A,B) < λmin(M(zj)),
and thus, γ(A,B) can be approximated via a bisection method.

Example 3.4. (Quadratic T -even matrix polynomials)
The study of corner singularities in anisotropic elastic materials [2], [3], [17], [21], [28], [30] leads to
quadratic eigenvalue problems of the form

P (λ)v = λ2Mv + λGv + Kv = 0,
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with M = MT , G = −GT , K = KT in R
n×n. The coefficient matrices are large and sparse,

having been produced by a finite element discretization. Here, M is a positive definite mass matrix
and −K is a stiffness matrix. Since the coefficient matrices alternate between real symmetric and
skew-symmetric matrices, we see that P T (−λ) = P (λ), and thus the matrix polynomial is T -even.

Example 3.5. (Higher degree ∗-even matrix polynomials)
The linear quadratic optimal control problem for higher order systems of ordinary differential equa-
tions leads to the two-point boundary value problem for 2(k − 1)th order ordinary differential equa-
tions of the form

k−1∑

j=1

[
(−1)j−1Qj M∗

2j

M2j 0

] [
x(2j)

µ(2j)

]
+

k−1∑

j=1

[
0 −M∗

2j−1

M2j−1 0

] [
x(2j−1)

µ(2j−1)

]
+

[
−Q0 M∗

0

M0 −BW−1B∗

] [
x
µ

]
= 0 ,

where W and Qj are Hermitian for j = 1, . . . , k−1, see [2], [3], [26], [29]. The substitution
[

x
µ

]
= eλtv

then yields the eigenvalue problem P (λ)v = 0 with the underlying ∗-even matrix polynomial of degree
2(k − 1) given by

k−1∑

j=1

(
λ2j

[
(−1)j−1Qj M∗

2j

M2j 0

]
+ λ2j−1

[
0 −M∗

2j−1

M2j−1 0

])
+

[
−Q0 M∗

0

M0 −BW−1B∗

]
.

Example 3.6. (Higher degree ∗-palindromic matrix polynomials)
Consider the discrete time optimal control problem to minimize

∞∑

j=0

[
xj

uj

]∗
Q
[

xj

uj

]
, Q =

[
Q S
S∗ R

]
(3.1)

subject to the discrete time control

2∑̀

i=0

Mixi+` = Bui,

with x0, x1, . . . , x2`−1 given. Here the coefficients are assumed to satisfy Q = Q∗ ∈ F
n×n, Mi ∈ F

n×n

for i = 0, . . . , 2`, S,B ∈ F
n×m, and R = R∗ ∈ F

m×m. (We discuss only the even degree case k = 2` ;
the odd degree case is similar but notationally more involved.)

In the classical application from linear quadratic optimal control, the matrix Q in (3.1) is
symmetric or Hermitian positive semidefinite, with R being positive definite. In applications from
discrete time H∞ control, however, both matrices may be indefinite and singular.

The classical way to solve this problem is to turn it into a first order system and to apply the
classical techniques for first order systems, see, e.g., [26]. Undoing the transformation to first order
leads to a two-point boundary value problem which can be solved via the solution of the polynomial
eigenvalue problem for the matrix polynomial

Ps(λ) = λ2`




0 M0 0
M∗

2` 0 0
0 0 0


 + λ2`−1




0 M1 0
M∗

2`−1 Q 0
0 S∗ 0


 + λ2`−2




0 M2 0
M∗

2`−2 0 0
0 0 0




+ · · · + λ2




0 M2`−2 0
M∗

2 0 0
0 0 0


 + λ




0 M2`−1 0
M∗

1 0 0
−B∗ 0 0


 +




0 M2` −B
M∗

0 0 S
0 0 R


 .
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Then using a non-equivalence transformation, analogous to a technique used in [32], we can trans-
form the matrix polynomial Ps(λ) into a ∗-palindromic matrix polynomial of degree k = 2`. Indeed,
multiplying Ps(λ) on the left by diag(λ`−1In, In, λ`Im) and on the right by diag(In, λ1−`In, Im) leads
to the ∗-palindromic matrix polynomial

Pp(λ)=λ2`




0 M0 0
M∗

2` 0 0
0 S∗ 0


 + λ2`−1




0 M1 0
M∗

2`−1 0 0
0 0 0


 + · · · + λ`+2




0 M`−2 0
M∗

`+2 0 0
0 0 0




+λ`+1




0 M`−1 0
M∗

`+1 0 0
−B∗ 0 0


 + λ`




0 M` 0
M∗

` Q 0
0 0 R


 + λ`−1




0 M`+1 −B
M∗

`−1 0 0
0 0 0




+λ`−2




0 M`+2 0
M∗

`−2 0 0
0 0 0


 + · · · + λ




0 M2`−1 0
M∗

1 0 0
0 0 0


 +




0 M2` 0
M∗

0 0 S
0 0 0


 .

Since det Pp(λ) = λ`m det Ps(λ), it follows that Ps(λ) and Pp(λ) have the same finite eigenvalues
(counted with multiplicities) except for `m additional zero eigenvalues of Pp(λ).

In this section we have presented a wide variety of applications that lead to structured ma-
trix polynomials. In the next section we discuss the relationships between these various types of
polynomials.

4. Cayley transformations of matrix polynomials. It is well known that the Cayley trans-
formation and its generalization to pencils [20], [27] relates Hamiltonian and symplectic matrices
and matrix pencils. By extending the classical definition of this transformation to matrix poly-
nomials, we now develop analogous relationships between (anti-)palindromic and odd/even matrix
polynomials, and their ? -variants.

Our choice of definition is motivated by the following observation: the only Möbius transforma-
tions of the complex plane that map reciprocal pairs (µ, 1/µ) to plus/minus pairs (λ,−λ) are α

(
µ−1
µ+1

)

and β
(

1+µ
1−µ

)
, where α, β ∈ C are nonzero constants. When α = β = 1, these transformations also

map conjugate reciprocal pairs (µ, 1/µ̄) to conjugate plus/minus pairs (λ,−λ̄). Putting this together
with Theorem 2.2, we see that the Möbius transformations µ−1

µ+1 , 1+µ
1−µ

translate the spectral sym-

metries of (anti-)palindromic matrix polynomials and their ? -variants to those of odd/even matrix
polynomials and their ? -variants. Consequently it is reasonable to anticipate that Cayley trans-
formations modelled on these particular Möbius transformations will have an analogous effect on
structure at the level of matrix polynomials.

These observations therefore lead us to adopt the following definition as the natural extension,
given our context, of the Cayley transformation to matrix polynomials.

Definition 4.1. Let P (λ) be a matrix polynomial of degree k as in (1.1). Then the Cayley
transformation of P (λ) with pole at −1 is the matrix polynomial

C−1(P )(µ) := (µ + 1)kP

(
µ − 1

µ + 1

)
, (4.1)

and the Cayley transformation of P (λ) with pole at +1 is the matrix polynomial

C+1(P )(µ) := (1 − µ)kP

(
1 + µ

1 − µ

)
. (4.2)

The next result shows that when viewed as maps on the space of n × n matrix polynomials
of degree k, the Cayley transformations in (4.1) and (4.2) are inverses of each other, except for a
scaling factor.
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Proposition 4.2. Let Id denote the identity map on the space of n × n matrix polynomials of
degree k. Then

C+1 ◦ C−1 = C−1 ◦ C+1 = 2k · Id.

Proof. The proof follows from a direct algebraic calculation.
The next two lemmas give some straightforward observations that are helpful in relating the

structure in a matrix polynomial to that in its Cayley transformations. Recall that ? denotes either
the transpose T or the conjugate transpose ∗.

Lemma 4.3. Let P be a matrix polynomial. Then
(
C−1(P )

)?(µ) = C−1(P
?)(µ), and

(
C+1(P )

)?(µ) = C+1(P
?)(µ). (4.3)

Lemma 4.4. Let P be a matrix polynomial of degree k. Then

rev
(
C−1(P )

)?(µ) = (µ + 1)kP?
(
−µ − 1

µ + 1

)
, µ 6= −1, (4.4a)

rev
(
C+1(P )

)?(µ) = (−1)k(1 − µ)kP?
(
−1 + µ

1 − µ

)
, µ 6= 1. (4.4b)

Proof. We prove (4.4b); the proof of (4.4a) is similar. Since C+1(P ) and hence C+1(P )? are
matrix polynomials of degree k,

rev
(
C+1(P )

)?(µ) = µk
(
C+1(P )

)?
(

1

µ

)
by (2.1)

= µkC+1(P
?)

(
1

µ

)
by (4.3)

= µk(1 − 1/µ)kP?
(

1 + 1/µ

1 − 1/µ

)
by (4.2)

= (−1)k(1 − µ)kP?
(
−1 + µ

1 − µ

)
. 2

Theorem 4.5. Let P (λ) be a matrix polynomial of degree k. Then the correspondence between
structure in P (λ) and in its Cayley transformation is as stated in Tables 4.1 and 4.2.

Table 4.1
Cayley transformations of (anti-)palindromic polynomials

C−1(P )(µ)

P (λ) k even k odd C+1(P )(µ)

palindromic even odd even
? -palindromic ? -even ? -odd ? -even

anti-palindromic odd even odd
? -anti-palindromic ? -odd ? -even ? -odd

Proof. Since the proofs of the equivalences are similar, we only establish one of them. We show
that P (λ) is ? -even if and only if C+1(P )(µ) is ? -palindromic when k is even and ? -anti-palindromic

11



Table 4.2
Cayley transformations of even/odd polynomials

C+1(P )(µ)

P (λ) C−1(P )(µ) k even k odd

even palindromic palindromic anti-palindromic
? -even ? -palindromic ? -palindromic ? -anti-palindromic

odd anti-palindromic anti-palindromic palindromic
? -odd ? -anti-palindromic ? -anti-palindromic ? -palindromic

when k is odd. Now P (λ) being ? -even is equivalent, by definition, to P ?(−λ) = P (λ) for all λ.
Setting λ = 1+µ

1−µ
and multiplying by (1 − µ)k yields

P (λ) is ? -even ⇐⇒ (1 − µ)kP?
(
−1 + µ

1 − µ

)
= (1 − µ)kP

(
1 + µ

1 − µ

)
for all µ 6= 1

⇐⇒ (−1)krev(C+1(P ))?(µ) = C+1(P )(µ) by Lemma 4.4,

from which the desired result follows.
Observe that the results in Tables 4.1 and 4.2 are consistent with C−1(P ) and C+1(P ) being

essentially inverses of each other (see Proposition 4.2).
In this section we have established a relationship between palindromic and odd/even matrix

polynomials via the Cayley transformation. Since ? -odd/even matrix polynomials can be interpreted
as generalizations of Hamiltonian matrices [28], [29] and since it is well known that Hamiltonian
matrices and symplectic matrices are related via the Cayley transformation [26], ? -(anti)-palindromic
matrix polynomials can be thought of as generalizations of symplectic matrices.

5. Vector spaces of linearizations. A general, systematic approach for constructing lin-
earizations of matrix polynomials has recently been presented in [24]. In this section, we summarize
the main results obtained there and then show in the following section how to apply these results
to obtain structured linearizations for the various structured matrix polynomials introduced in Sec-
tion 2.

Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial of degree k as in (1.1). For regular
matrix polynomials, it is well known that linearization preserves algebraic and partial multiplicities
of all finite eigenvalues [9]. In order to preserve the multiplicities of the eigenvalue ∞, one has to
consider linearizations L(λ) which have the additional property that revL(λ) is also a linearization
for revP (λ), see [8]. Such linearizations have been named strong linearizations in [19]. Both the first
and second companion forms are strong linearizations for regular matrix polynomials [8, Proposition
1.1].

The strategy in [24] is to search for strong linearizations for P (λ) among kn×kn matrix pencils
L(λ) = λX + Y that satisfy

L(λ) · (Λ ⊗ In) := L(λ)




λk−1In

...
λIn

In


 =




v1P (λ)
...

vk−1P (λ)
vkP (λ)


 = v ⊗ P (λ) (5.1)

for some vector v ∈ F
k. Here Λ =

[
λk−1 λk−2 . . . λ 1

]T
. The pencils in (5.1) generalize the
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first companion form and collectively form a vector space denoted by

L1(P ) :=
{
L(λ) = λX + Y : L(λ) · (Λ ⊗ In) = v ⊗ P (λ), v ∈ F

k
}

.

The vector v in (5.1) corresponding to L(λ) ∈ L1(P ) is called the right ansatz vector of L(λ), because
L(λ) is multiplied on the right by Λ ⊗ In to give v ⊗ P (λ). Observe that the first companion form
C1(λ) ∈ L1(P ) for any P (λ), since C1(λ) · (Λ ⊗ In) = e1 ⊗ P (λ) always holds.

Example 5.1. Consider the matrix polynomial P (λ) = λ2A2 + λA1 + A0, where Ai ∈ F
n×n

and the pencils

L1(λ) = λX1 + Y1 = λ

[
A2 0
0 In

]
+

[
A1 A0

−In 0

]
,

and

L2(λ) = λX2 + Y2 = λ

[
2A2 A2

A2 A1

]
+

[
2A1 − A2 2A0

0 A0

]
.

A straight-forward computation shows that L1(λ) · (Λ ⊗ In) = e1 ⊗ P (λ) and L2(λ) · (Λ ⊗ In) =
[2, 1]T ⊗P (λ). Hence, L1(λ), L2(λ) ∈ L1(P ). Note that L1(λ) is the first companion form for P (λ).

The pencil space L1(P ) has been designed with the aim of providing an arena of potential
linearizations that is fertile enough to contain linearizations that reflect additional structure in P ,
but small enough that pencils L(λ) ∈ L1(P ) still share the following three properties with the first
companion form:

• L(λ) is easily constructible from the data in P (λ) (see [24, Thm. 3.5]);
• when P (λ) is regular, L(λ) is a strong linearization for P (λ) if and only if L(λ) is regular

[24, Thm. 4.3];
• right eigenvectors of P (λ) are easily recoverable from right eigenvectors of L(λ) (see [24,

Thm. 3.8, Thm. 4.4]).
The following tool will be frequently used to construct pencils in L1(P ).

Definition 5.2 (Column shifted sum).
Let X = (Xij) and Y = (Yij) be matrices in F

kn×kn with blocks Xij , Yij ∈ F
n×n. Then the column

shifted sum of X and Y is defined to be

X ¢→Y :=




X11 · · · X1k 0
...

. . .
...

...
Xk1 · · · Xkk 0


 +




0 Y11 · · · Y1k

...
...

. . .
...

0 Yk1 · · · Ykk


 ,

where the zero blocks are also n × n.

The column shifted sum X ¢→Y is designed to imitate the product of a pencil L(λ) = λX + Y with
the block column matrix Λ ⊗ In in the sense of the following lemma.

Lemma 5.3. For a matrix polynomial P (λ) =
∑k

i=0 λiAi, a pencil L(λ) = λX +Y , and a vector
v ∈ F

k we have

(λX + Y ) · (Λ ⊗ In) = v ⊗ P (λ) ⇐⇒ X ¢→Y = v ⊗ [Ak Ak−1 · · · A0]. (5.2)

Example 5.4. Consider the matrix polynomial P (λ) = λ2A2 + λA1 + A0, and the pencils
L1(λ), L2(λ) ∈ L1(P ) from Example 5.1. Then

X1¢→Y1 =

[
A2 0 0
0 In 0

]
+

[
0 A1 A0

0 −In 0

]
=

[
A2 A1 A0

0 0 0

]
,
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and X2¢→Y2 =

[
2A2 A2 0
A2 A1 0

]
+

[
0 2A1 − A2 2A0

0 0 A0

]
=

[
2A2 2A1 2A0

A2 A1 A0

]
.

The development and analysis of the pencil space L1(P ) has a parallel version which generalizes
the second companion form C2(λ),

L2(P ) :=
{

L(λ) = λX + Y :
(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ), w ∈ F

k
}

.

Here, the vector w such that
(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ) is called the left ansatz vector for

L(λ) ∈ L2(P ). One immediately checks that C2(λ) ∈ L2(P ) with left ansatz vector e1. Instead of
right eigenvectors, now left eigenvectors of P are easily recovered from left eigenvectors of lineariza-
tions in L2(P ) (see [24, Thm. 3.14, Thm. 4.4]).

It is natural to consider pencils in

DL(P ) := L1(P ) ∩ L2(P ),

as both right and left eigenvectors of P are now easily recovered. In fact, it is shown that the left
and right ansatz vectors v and w must coincide for pencils L(λ) ∈ DL(P ).

Theorem 5.5 ([24]). Let P (λ) =
∑k

i=0 λiAi be a (not necessarily regular) matrix polynomial
with coefficients in F

n×n and Ak 6= 0. Then for vectors v, w ∈ F
k, there exists a kn × kn matrix

pencil L(λ) = λX + Y that simultaneously satisfies

L(λ) · (Λ ⊗ I) = v ⊗ P (λ) and (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) (5.3)

if and only if v = w. The pencil L(λ) satisfying (5.3) for given v = w is uniquely determined by v.

Definition 5.6. For a given L(λ) ∈ DL(P ), the vector v = w from Theorem 5.5 satisfying (5.3)
is called the ansatz vector of L(λ).

An important advantage of the pencil space DL(P ) is that there is a simple criterion to char-
acterize the pencils L(λ) ∈ DL(P ) that are strong linearizations for P (λ). Let v = [v1, v2, . . . , vk]T

be the ansatz vector of L(λ), and define the associated v-polynomial to be the scalar polynomial
p(x ; v) := v1x

k−1 + v2x
k−2 + · · · + vk−1x + vk. By convention, we say that ∞ is a root of p(x ; v)

if v1 = 0. Then the following theorem shows how the roots of the v-polynomial determine whether
L(λ) is a linearization or not.

Theorem 5.7 ([24]). Suppose that P (λ) is a regular matrix polynomial and L(λ) is in DL(P )
with ansatz vector v. Then L(λ) is a linearization (indeed a strong linearization) for P (λ) if and only
if no root of the v-polynomial p(x ; v) is an eigenvalue of P (λ). (Note that this statement includes
∞ as one of the possible roots of p(x ; v) or possible eigenvalues of P (λ).)

Example 5.8. Consider again the matrix polynomial P (λ) = λ2A2+λA1+A0 from Example 5.1
and assume that A2 6= 0 and P (λ) is regular. Then one easily verifies that

L(λ) = λ

[
A2 2A2

2A2 2A1 − A0

]
+

[
A1 − 2A2 A0

A0 2A0

]
(5.4)

is in DL(P ) with ansatz vector v = [1, 2]T . The associated v-polynomial is p(x ; v) = x + 2 with
root x = −2. Thus L(λ) is a strong linearization for P (λ) if and only if −2 is not an eigenvalue of
P (λ).

Note that the pencil L(λ) in Example 5.8 is a symmetric linearization, i.e., the matrices in (5.4)
are symmetric if all the coefficient matrices A2, A1, and A0 are symmetric. This is true in general
for pencils from DL(P ). Symmetric linearizations are studied in detail in [11].
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6. Structured linearizations. We now use the results of Section 5 to construct structure
preserving linearizations for matrix polynomials that have one of the structures listed in Table 2.1.
We will restrict ourselves to the ? -variants of these structures (recall that ? stands either for the
transpose T or the conjugate transpose ∗ ), because palindromic, anti-palindromic, even, and odd
matrix polynomials, in general, cannot be linearized in a structure preserving way. Indeed, consider
a regular palindromic polynomial P (λ) of degree k ≥ 2. Any palindromic linearization would
have the form L(λ) = λZ + Z for some matrix Z, and thus have the eigenvalue −1 with geometric
multiplicity kn. However, by [9, Theorem 1.7] a pencil can only be a linearization for a regular matrix
polynomial P (λ) if the geometric multiplicity of each eigenvalue of the pencil is less than or equal to
n. Therefore palindromic matrix polynomials do not admit palindromic linearizations. Analogous
arguments exclude structured linearizations for anti-palindromic, even, and odd polynomials.

We have seen in Section 5 that for a given matrix polynomial P (λ) of degree k a pencil L(λ) ∈
DL(P ) is uniquely determined by its ansatz vector v. Since pencils from DL(P ) are always symmetric
linearizations, it would be too much to expect to find a linearization in DL(P ) that reflects additional
structures of P (λ) as in Table 2.1. Therefore, we will consider the larger space L1(P ) instead. Similar
results hold for L2(P ). Let us start with an example.

Example 6.1. Consider the quadratic T -palindromic matrix polynomial λ2AT
0 + λA1 + A0,

where A1 = AT
1 and A0 6= 0. We try to construct a pencil L(λ) ∈ L1(P ) with a nonzero right ansatz

vector v = [v1, v2]
T ∈ F

2 such that L(λ) is T -palindromic. The latter condition means that L(λ)
must have the block structure

L(λ) = λZ + ZT =: λ

[
D E
F G

]
+

[
DT FT

ET GT

]

with blocks D,E, F,G ∈ F
n×n. Using the column shifted sum ¢→, we can write this as

Z ¢→ZT =

[
D E + DT FT

F G + ET GT

]
=

[
v1A

T
0 v1A1 v1A0

v2A
T
0 v2A1 v2A0

]
.

Comparing blocks in the first and last columns, we obtain D = v1A
T
0 , F = v2A

T
0 = (v1A0)

T , and
G = (v2A0)

T . This forces v1 = v2, since we have assumed that A0 6= 0. From the middle column
we see that E = v1(A1 − A0) and that all the equations are consistent, thus yielding

L(λ) = λZ + ZT = v1

(
λ

[
AT

0 A1 − A0

AT
0 AT

0

]
+

[
A0 A0

A1 − AT
0 A0

])
. (6.1)

Example 6.1 illustrates two facts that turn out to be true in general. First, we see that the
choice of ansatz vectors v for which the corresponding L(λ) ∈ L1(P ) is ? -palindromic is restricted.
On the other hand, once the ansatz vector v has been chosen, the pencil L(λ) ∈ L1(P ) is uniquely
determined by forcing it to be T -palindromic. The restrictions on the vector v can be concisely
described using the reverse identity Rk and the diagonal matrix of alternating signs Σk as in (2.2).

Lemma 6.2. Suppose the matrix polynomial P (λ) is ? -palindromic or ? -anti-palindromic. Then
for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i) and (ii) in Table 6.1 are equivalent.

Proof. We consider all eight cases simultaneously. Let P (λ) be ? -palindromic or ? -anti-palin-
dromic, so that revP?(λ) = χ

P
P (λ) for χ

P
= ±1.

“(i) ⇒ (ii)”: By (i), L(λ) satisfies revL?(λ) = χ
L
L(λ) for χ

L
= ±1. Since L(λ) ∈ L1(P ),

L(λ)(Λ ⊗ I) = v ⊗ P (λ). (6.2)

Taking the reversal of both sides of (6.2), and noting that RΛ = revΛ, we have

revL(λ)(R ⊗ I)(Λ ⊗ I) = revL(λ)
(
(revΛ) ⊗ I

)
= v ⊗ revP (λ). (6.3)
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Table 6.1

Structure of P (λ) (i) L(λ) is (ii) (R ⊗ I)L(λ) ∈ DL(P ) and

T -palindromic T -palindromic Rv = v

T -anti-palindromic Rv = −v

T -anti-palindromic T -palindromic Rv = −v

T -anti-palindromic Rv = v

∗-palindromic ∗-palindromic Rv = v

∗-anti-palindromic Rv = −v

∗-anti-palindromic ∗-palindromic Rv = −v

∗-anti-palindromic Rv = v

Now applying the adjoint ? to both sides, we obtain

(Λ? ⊗ I)(R ⊗ I) revL?(λ?) = v? ⊗ revP?(λ?) , (6.4)

or equivalently,

(ΛT ⊗ I)(R ⊗ I)L(λ) = (χ
P

χ
L
v?) ⊗ P (λ), (6.5)

where we have used the fact that (6.4) is an identity to replace λ? by λ, and that P (λ) and L(λ)
are either ? -palindromic or ? -anti-palindromic. Thus (R ⊗ I)L(λ) ∈ L2(P ) with left ansatz vector
w = χ

P
χ

L
(v?)T . On the other hand, multiplying (6.2) on the left by R ⊗ I yields

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ) , (6.6)

showing that (R ⊗ I)L(λ) is also in L1(P ) with right ansatz vector Rv. Thus from Theorem 5.5
we conclude that (R ⊗ I)L(λ) ∈ DL(P ) with ansatz vector Rv = χ

P
χ

L
(v?)T . All eight variants of

condition (ii) now follow by noting that (v∗)T = v and (vT )T = v.

“(ii) ⇒ (i)”: From L(λ)(Λ ⊗ I) = v ⊗ P (λ), we immediately obtain

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ). (6.7)

Since (R ⊗ I)L(λ) ∈ DL(P ), we have from Theorem 5.5 that
(
(ΛT R) ⊗ I

)
L(λ) = (ΛT ⊗ I)(R ⊗ I)L(λ) = (Rv)T ⊗ P (λ). (6.8)

Applying the adjoint ? to both ends of (6.8) gives

L?(λ?)
(
(R(ΛT )?) ⊗ I

)
= R(vT )? ⊗ P?(λ?),

or equivalently

L?(λ)
(
(RΛ) ⊗ I

)
= R(vT )? ⊗ P?(λ). (6.9)

Note that all cases of condition (ii) are expressed by R(vT )? = εχ
P

v, where ε = ±1. Then taking
the reversal of both sides in (6.9) and using RΛ = revΛ, we obtain

revL?(λ)(Λ ⊗ I) = (εχ
P

v) ⊗ revP?(λ) = (εv) ⊗ P (λ)
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or, equivalently,

ε(R ⊗ I)revL?(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ). (6.10)

Analogously, starting from identity (6.7), we obtain that

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)L?(λ)(R ⊗ I) = (v?R) ⊗ P?(λ) =
(
v? ⊗ P?(λ)

)
(R ⊗ I)

⇐⇒ (ΛT ⊗ I)L?(λ) = v? ⊗ P?(λ)

⇐⇒ (ΛT R ⊗ I) revL?(λ) = v? ⊗ revP?(λ)

⇐⇒ (ΛT R ⊗ I) revL?(λ) = (εχ
P

vT R) ⊗ revP?(λ) = (εvT R) ⊗ P (λ)

⇐⇒ (ΛT ⊗ I) ε(R ⊗ I)revL?(λ) = (Rv)T ⊗ P (λ). (6.11)

Thus by (6.10) and (6.11) we have that ε(R ⊗ I) revL?(λ) is in DL(P ) with ansatz vector Rv. By
(ii) this is also the case for the pencil (R ⊗ I)L(λ). Then the uniqueness property of Theorem 5.5
implies that

ε(R ⊗ I) revL?(λ) = (R ⊗ I)L(λ) ,

or equivalently ε revL?(λ) = L(λ). Hence L(λ) is ? -palindromic or ? -anti-palindromic, depending
on the parameter ε. This implies all the variants of condition (i) in Table 6.2.

Theorem 6.3. Suppose the matrix polynomial P (λ) is ? -palindromic or ? -anti-palindromic, so
that revP?(λ) = χ

P
P (λ) for χ

P
= ±1, and we are seeking a ? -palindromic or ? -anti-palindromic

pencil L(λ) in L1(P ), so that revL?(λ) = χ
L
L(λ) for χ

L
= ±1. Then there exists such a structured

L(λ) in L1(P ) with right ansatz vector v if and only if the vector v satisfies Rv = χ
P

χ
L
(v?)T .

Moreover, whenever such a structured L(λ) exists, it is uniquely determined by v.
If P (λ) is regular, then this unique L(λ) is a linearization (and even a strong linearization) for

P (λ) if and only if no root of the v-polynomial p(x ;Rv) is an eigenvalue of P (λ). (Here it is to be
understood that ∞ is included as a possible root of p(x ;Rv) or eigenvalue of P (λ).)

Proof. The “⇒” direction of the existence statement is just the (i)⇒ (ii) part of Lemma 6.2, so we
turn immediately to the argument for “⇐”. Suppose v ∈ F

k satisfies the condition Rv = χ
P

χ
L
(v?)T .

Then by Theorem 5.5, let L̃(λ) be the unique pencil in DL(P ) with ansatz vector Rv, and define

L(λ) := (R ⊗ I) L̃(λ) . (6.12)

Then it is straightforward to show that L(λ) ∈ L1(P ) with right ansatz vector v, and satisfies
condition (ii) of Lemma 6.2, hence is the desired structured pencil. The uniqueness of L(λ) follows

from Lemma 6.2, together with the uniqueness of L̃(λ) = (R ⊗ I)L(λ) as a pencil in DL(P ) with
given ansatz vector Rv.

Because of (6.12), it is easy to see that L(λ) is a strong linearization for P (λ) if and only if L̃(λ)
is. Thus the last part of the theorem follows immediately from Theorem 5.7.

We next present the analogs of Lemma 6.2 and Theorem 6.3 for ? -even and ? -odd polynomials.

Lemma 6.4. Suppose the matrix polynomial P (λ) is ? -even or ? -odd. Then for pencils
L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i) and (ii) in Table 6.2 are equivalent.

Proof. The proof proceeds in a completely analogous fashion to the proof of Lemma 6.2. The
only difference is that in steps of the proof where we took the reversal of two sides of an equation in
Lemma 6.2, instead we now simply replace λ by −λ. Observe that replacing λ by −λ in Λ has the
same effect as premultiplying it by Σ, that is ΣΛ = [(−λ)k−1, . . . ,−λ, 1]T .
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Table 6.2

Structure of P (λ) (i) L(λ) is (ii) (Σ ⊗ I)L(λ) ∈ DL(P ) and

T -even T -even Σv = v

T -odd Σv = −v

T -odd T -even Σv = −v

T -odd Σv = v

∗-even ∗-even Σv = v

∗-odd Σv = −v

∗-odd ∗-even Σv = −v

∗-odd Σv = v

Theorem 6.5. Suppose the matrix polynomial P (λ) is ? -even or ? -odd, so that
P?(−λ) = ε

P
P (λ) for ε

P
= ±1, and we are seeking a ? -even or ? -odd pencil L(λ) in L1(P ),

so that L?(−λ) = ε
L
L(λ) for ε

L
= ±1. Then there exists such a structured L(λ) in L1(P ) with

right ansatz vector v if and only if the vector v satisfies Σv = ε
P

ε
L
(v?)T . Moreover, whenever such

a structured L(λ) exists, it is uniquely determined by v.
If P (λ) is regular, then this unique L(λ) is a linearization (and even a strong linearization) for

P (λ) if and only if no root of the v-polynomial p(x ;Σv) is an eigenvalue of P (λ). (Here it is to be
understood that ∞ is included as a possible root of p(x ;Σv) or eigenvalue of P (λ).)

Proof. The proof is completely analogous to that of Theorem 6.3. The only changes are that
L̃(λ) is now the unique pencil in DL(P ) with ansatz vector Σv, and L(λ) is defined to be (Σ⊗I) L̃(λ).

We close this section with some observations on the parallels between the structure of the special
ansatz vectors that are admissible for structured linearizations, the structure of the corresponding
v-polynomials and their roots, and the structure of the original matrix polynomial and its eigenvalues.
Notice, for example, that ansatz vectors v satisfying Rv = v are themselves palindromic in the sense
that the list of components of v is identical when read forwards or backwards. Moreover, the
corresponding v-polynomial p(x ;Rv) is T -palindromic (and also palindromic, because it is a scalar
polynomial), so by Theorem 2.2 its roots occur in pairs (r, 1/r). Analogous observations are compiled
in Table 6.3.

7. When pairs degenerate. In the last section, we have seen that the search for structured
linearizations in L1(P ) for structured matrix polynomials leads to the necessity of dealing with ansatz
vectors (and corresponding v-polynomials) that reflect the structure of the matrix polynomial. In
particular, the roots of a particular v-polynomial have to be distinct from the eigenvalues of the
matrix polynomial under consideration in order to ensure that the chosen structured pencil from
L1(P ) is indeed a linearization for the matrix polynomial. This fact becomes delicate when the
matrix polynomial P (λ) has even degree, i.e., an ansatz vector v for a pencil in L1(P ) has even
dimension, because in this case, the corresponding v-polynomial p(x ; v) has an odd number of roots
(counted with multiplicities and including ∞ with multiplicity m if the first m components of v are
zero). Since the roots of the v-polynomial occur in pairs, at least one root must then be from a set of
numbers where this pairing degenerates. In the case of conjugate (anti)-palindromic and conjugate
even/odd ansatz vectors, these are the unit circle and the real line (including ∞), respectively. Thus
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Table 6.3
Special ansatz vectors and structures of corresponding v-polynomials

Condition on Structure of Structure Pairing of
ansatz vector ansatz vector of p(x ; v) roots of p(x ; v)

Rv = v palindromic (T -)palindromic (r, 1/r)

Rv = −v anti-palindromic (T -)anti-palindromic (r, 1/r)

Rv = v conjugate palindromic ∗-palindromic (r, 1/r )

Rv = − v conjugate anti-palindromic ∗-anti-palindromic (r, 1/r )

Σv = v even (T -)even (r,−r)

Σv = −v odd (T -)odd (r,−r)

Σv = v conjugate even ∗-even (r,−r )

Σv = − v conjugate odd ∗-odd (r,−r )

there exists a continuum of numbers from which this distinguished root of the v-polynomial can be
chosen. In particular, this always allows the possibility of choosing an ansatz vector such that the
roots of the corresponding v-polynomial are disjoint from the finite set of eigenvalues of P (λ). In
the case of (anti-)palindromic or even/odd ansatz vectors, however, the pairing degenerates for the
discrete sets {−1,+1} and {0,∞}, respectively. Consequently, it is not always possible to choose
the roots of the v-polynomial to be disjoint from the eigenvalues of P (λ). We illustrate this problem
in the following with the help of some examples for the case of palindromic structures.

Example 7.1. Consider the T -palindromic matrix polynomial λ2AT
0 + λA1 + A0 from Exam-

ple 6.1. Since all palindromic ansatz vectors v ∈ F
2 are of the form v = (v1, v1)

T , we obtain that
any T -palindromic linearization L(λ) ∈ L1(P ) must have the form L(λ) = λZ + ZT as in (6.1). By
Theorem 6.3, we then have (R ⊗ I)L(λ) ∈ DL(P ) with associated vector Rv = v. The associated
v-polynomial is p(x ;Rv) = v1x + v1 having only the root −1. Thus, assuming regularity of P (λ),
the pencil

λZ + ZT = v1

(
λ

[
AT

0 A1 − A0

AT
0 AT

0

]
+

[
A0 A0

A1 − AT
0 A0

])
.

is a (strong) linearization for P (λ) if and only if −1 is not an eigenvalue of P (λ). On the other

hand, in order to construct a T -anti-palindromic linearization L̃(λ) ∈ L1(P ), we have to choose an
anti-palindromic ansatz vector. All such vectors have the form ṽ = (v1,−v1)

T ∈ F
2. The associated

T -anti-palindromic pencil in L1(P ) is

L̃(λ) := v1

(
λ

[
AT

0 A1 + A0

−AT
0 AT

0

]
+

[
−A0 A0

−A1 − AT
0 −A0

])
.

Since the associated v-polynomial is p(x ;Rṽ) = −v1x + v1, we obtain that L̃(λ) is a linearization
for P (λ) if and only if λ = 1 is not an eigenvalue of P (λ).

From the viewpoint of numerical analysis, one of the main features of using structure preserving
methods is the preservation of symmetries in the spectrum. Thus, it makes sense to study both
T -palindromic and T -anti-palindromic linearizations for a T -palindromic matrix polynomial P (λ),
because in view of Theorem 2.2, the eigenvalues of T -anti-palindromic pencils still occur in pairs
(λ, 1/λ). However, Example 7.1 shows that a quadratic T -palindromic matrix polynomial P (λ)
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having both 1,−1 as eigenvalues cannot have a T -palindromic or T -anti-palindromic linearization
from L1(P ). The question arises if in this case P (λ) has a T -palindromic linearization that is not
from L1(P ) or if it has no T -palindromic linearization at all. The following examples show that both
alternatives may occur.

Example 7.2. Consider the scalar T -palindromic matrix polynomial P (λ) = λ2−2λ+1. Then
the only eigenvalue of P (λ) is −1 and by the observation in Example 7.1 we find that P (λ) cannot
have a T -palindromic linearization from L1(P ). Assume that P (λ) has a T -palindromic linearization
L(λ) that is not from L1(P ). Then L(λ) has the form

L(λ) = λZ + ZT = λ

[
w x
y z

]
+

[
w y
x z

]
. (7.1)

Since λ is the only eigenvalue of P (λ) with geometric multiplicity one, the same must be true for
L(λ), that is, rank L(−1) = 1. But inserting λ = −1 in (7.1), we obtain

L(−1) =

[
0 y − x

x − y 0

]

which does not have rank one for any values of x, y. Thus, P (λ) does not have any T -palindromic
linearization.

Example 7.3. Consider the T -palindromic matrix polynomial

P (λ) = λ2

[
0 1
−1 0

]
+

[
0 −1
1 0

]
.

Then P (λ) has the eigenvalues 1 and −1 both with algebraic multiplicity two and thus, P (λ) does
not have a T -palindromic linearization from L1(P ). Starting with the first companion form C1(λ),
we obtain that




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 · C1(λ) ·




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


 = λ




0 0 −1 0
0 0 0 1
0 1 0 0
−1 0 0 0


 +




0 0 0 −1
0 0 1 0
−1 0 0 0
0 1 0 0




is a T -palindromic linearization for P (λ). Observe that this linearization is neither in L1(P ) nor in
L2(P ).

Example 7.4. Consider the scalar T -anti-palindromic matrix polynomial P (λ) = λ2 − 1 with
roots ±1. Assume that Lε(λ) = λZ + εZT is a linearization for P (λ), where ε = ±1. Then
Lε(λ) is T -palindromic if ε = 1 and T -anti-palindromic if ε = −1. Since P (λ) does not have the
eigenvalue ∞, we obtain that Z is invertible and Lε(λ) is equivalent to the pencil λI + εZ−1ZT .
Being a linearization for P (λ), the matrix εZ−1ZT must have eigenvalues +1 and −1, and hence
determinant −1. However, we obtain that

det εZ−1ZT = ε2 1

det Z
detZ = 1

which is a contradiction. Thus, P (λ) neither has a T -palindromic linearization, nor a T -anti-
palindromic linearization.

As the examples show, the eigenvalues −1 and 1 may cause trouble in the context of finding
structure preserving linearizations for T -palindromic or T -anti-palindromic matrix polynomials. A
possibility for circumventing this problem is to first deflate the eigenvalues 1 and −1 with a direct
procedure working on the original matrix polynomial. The resulting matrix polynomial then does
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not have the eigenvalues 1 or −1 and thus, a structure preserving linearization from L1(P ) can be
constructed. Such deflating strategies are currently under investigation.

Recall that the problems concerning the eigenvalues 1 and −1 only occur in the transpose case,
but not in the conjugate transpose case. Indeed, consider a regular ∗-palindromic matrix polynomial
P (λ) of degree k. Then the v-polynomial p(x ;Rv) corresponding to a vector Rv = v is again
∗-palindromic and has k−1 roots (possibly including ∞), that occur in pairs (λ, 1/λ) by Theorem 2.2.
Thus, if k is even, then at least one root of p(x ;Rv) must lie on the unit circle, but v can always
be chosen in such a way that the set of roots of the corresponding v-polynomial p(x ;Rv) and the
spectrum of P (λ) are disjoint. The following example illustrates this fact for the case k = 2.

Example 7.5. Consider a ∗-palindromic matrix polynomial P (λ) = λ2A∗
0 + λA1 + A0, where

A1 = A∗
1 and assume that P (λ) is regular. Furthermore, assume that ζ ∈ C has modulus one and

is not an eigenvalue of P (λ). Let α ∈ C\{0} be such that ζ = −α/α. Then v = (α, α)T satisfies
Rv = v and the v-polynomial associated with Rv is p(x ;Rv) = αx + α having the root ζ. Then the
pencil

L(λ) = λ

[
αA∗

0 αA1 − αA0

αA∗
0 αA∗

0

]
+

[
αA0 αA0

αA1 − αA∗
0 αA0

]
∈ L1(P )

is ∗-palindromic and is a linearization for P (λ) by Theorem 6.3.

8. Construction of structured linearizations. We now discuss an approach for the con-
struction of structured linearizations L(λ) ∈ L1(P ) for ? -even, ? -odd, ? -palindromic, or ? -anti-
palindromic matrix polynomials. (Recall that ? ∈ {T, ∗}.) Since we know from Theorem 6.5 and
Theorem 6.3 that ? -(anti)-palindromic linearizations in L1(P ) satisfy (R ⊗ I)L(λ) ∈ DL(P ) and
? -even or ? -odd linearizations in L1(P ) satisfy (Σ ⊗ I)L(λ) ∈ DL(P ), we could use the explicit
formulas for the blocks of a pencil in DL(P ) given in [24, Theorem 5.3]. Alternatively, one can also
use the following column/block-wise step-by-step procedure, which we first illustrate with the help
of an example.

Given a T -palindromic matrix polynomial P (λ) = λ3AT + λ2BT + λB + A, we construct a
T -palindromic pencil L(λ) ∈ L1(P ). By Theorem 6.3, the corresponding right ansatz vector v
must satisfy Rv = v, so let us choose v = [1,−1, 1]T . The v-polynomial corresponding to Rv is
p(x ;Rv) = x2 − x + 1, whose roots 1

2 (1 ± i
√

3) have to be excluded as eigenvalues of P (λ). Let
λZ + ZT := L(λ). Using the shifted sum ¢→, we obtain

Z ¢→ZT =




AT BT B A
−AT −BT −B −A

AT BT B A


 . (8.1)

By the definition of the shifted sum, the first block column of Z and the last block column of ZT

are now uniquely determined. Hence

λZ + ZT = λ




AT ∗ ∗
−AT ∗ ∗

AT ∗ ∗


 +




∗ ∗ A
∗ ∗ −A
∗ ∗ A


 , (8.2)

where ∗ represents n × n blocks yet to be determined. We now continue by alternately using the
fact that L(λ) is T -palindromic and that L(λ) is in L1(P ). Thus, observing that the second matrix
in (8.2) is just the transpose of the first one, we obtain

λZ + ZT = λ




AT ∗ ∗
−AT ∗ ∗

AT −AT AT


 +




A −A A
∗ ∗ −A
∗ ∗ A


 .
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Then we use (8.1), which forces

λZ + ZT = λ




AT BT − A B + A
−AT ∗ ∗

AT −AT AT


 +




A −A A
∗ ∗ −A

BT + AT B − AT A


 .

Since the second matrix of the pencil is the transpose of the first one, we get

λZ + ZT = λ




AT BT − A B + A
−AT ∗ BT − A

AT −AT AT


 +




A −A A
B − AT ∗ −A
BT + AT B − AT A


 .

Using (8.1) once more, we finally obtain

λZ + ZT = λ




AT BT − A B + A
−AT BT − B + AT BT − A

AT −AT AT


 +




A −A A
B − AT B − BT + A −A
BT + AT B − AT A


 ,

thus completing the construction. This procedure works in general, due to the fact that ? -palindromic
and ? -anti-palindromic pencils in L1(P ) exist and are uniquely determined, if the corresponding vec-
tor Rv satisfies the hypothesis of Theorem 6.3.

More generally, if P (λ) =
∑k

j=1 λjAj is a ? -palindromic or ? -anti-palindromic matrix polyno-

mial and L(λ) = λZ + εZT with ε = ±1, then we construct the pencil in a block-column/row-wise
fashion following the order displayed in (8.3). Here, each panel (that is, each block column or block
row) labelled with an odd number is determined by using information from the shifted sum property
Z ¢→(εZT ) = w⊗

[
Ak · · · A0

]
, and each panel labelled with an even number is determined by

using the fact that L(λ) is ? -palindromic or ? -anti-palindromic, respectively.

λ




1

2

3

45

6

7

8. . .




+




1

3

2

4 5

7

6

8 . . .




(8.3)

The construction of ? -even or ? -odd linearizations for ? -even or ? -odd matrix polynomials is carried
out along similar lines, following the pattern in (8.4).

λ




1

3

2

45

7

6

8. . .




+




1

2

3

4 5

6

7

8 . . .




(8.4)
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Again, each panel labelled with an odd number is constructed using information from the fact
that the desired pencil is in L1(P ), while each panel labelled with an even number is constructed
using information on the structure of the matrices of the pencil. A complete list of structured
linearizations for structured matrix polynomials of degree two is given in Table 9.1. We do not
list ∗-odd and ∗-anti-palindromic matrix polynomials, because they can be easily transformed into
∗-even and ∗-palindromic matrix polynomials by multiplication with the imaginary unit i. Some
selected structured linearizations for ? -palindromic and ? -even matrix polynomials of degree three
are given in Table 9.2 and Table 9.3.

9. Concluding Summary. For matrix polynomials that are ? -even/odd or ? -(anti)-palin-
dromic, we have shown that pencils with the same (or “opposite”) structure can always be found in
L1(P ), the vector space of potential linearizations introduced in [24]. We have presented an effective
procedure to systematically construct these structured pencils, and developed a simple criterion to
determine when these pencils are linearizations. As shown in [13], [14], numerical methods based on
these structured linearizations are expected to be more effective in computing accurate eigenvalues
in practical applications.
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Table 9.1
Structured linearizations for λ2A + λB + C. Except for the parameters r ∈ R and z ∈ C, the linearizations are

unique up to a (suitable) scalar factor. The last column lists the roots of the v-polynomial p(x ; Tv) corresponding to
T = R or T = Σ, respectively.

structure structure v L(λ) corresponding to v root

of P (λ) of L(λ) of p(x ; Tv)

T -palin-
dromic

T -palin-
dromic

»

1
1

–

λ

»

A B − C
A A

–

+

»

C C
B − A C

–

−1

A = CT

B = BT

anti-
T -palin-
dromic.

»

1
−1

–

λ

»

A B + C
−A A

–

+

»

−C C
−B − A −C

–

1

anti-
T -palin-
dromic.

T -palin-
dromic

»

1
−1

–

λ

»

A B + C
−A A

–

+

»

−C C
−B − A −C

–

1

A = −CT

B = −BT

anti-
T -palin-
dromic

»

1
1

–

λ

»

A B − C
A A

–

+

»

C C
B − A C

–

−1

∗-palin-
dromic

∗-palin-
dromic

»

z
z̄

–

λ

»

zA zB − z̄C
z̄A zA

–

+

»

z̄C zC
z̄B − zA z̄C

–

−z/z̄

A = C∗

B = B∗

anti-
∗-palin-
dromic

»

z
−z̄

–

λ

»

zA zB + z̄C
−z̄A zA

–

+

»

−z̄C zC
−z̄B − zA −z̄C

–

z/z̄

T -even T -even

»

0
1

–

λ

»

0 −A
A B

–

+

»

A 0
0 C

–

∞

A = AT

B = −BT

C = CT

T -odd

»

1
0

–

λ

»

A 0
0 C

–

+

»

B C
−C 0

–

0

T -odd T -even

»

1
0

–

λ

»

A 0
0 C

–

+

»

B C
−C 0

–

0

A = −AT

B = BT

C = −CT

T -odd

»

0
1

–

λ

»

0 −A
A B

–

+

»

A 0
0 C

–

∞

∗-even ∗-even

»

i
r

–

λ

»

iA −rA
rA rB + iC

–

+

»

rA + iB iC
−iC rC

–

ir

A = A∗

B = −B∗

C = C∗
∗-odd

»

r
i

–

λ

»

rA −iA
iA iB + rC

–

+

»

iA + rB rC
−rC iC

–

−
i

r
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Table 9.2
?-palindromic linearizations for the cubic ?-palindromic matrix polynomial λ3A? + λ2B? + λB + A. The last

column lists the roots of the v-polynomial p(x ; Rv) corresponding to Rv. The third linearization can be seen to be a
linear combination of the first two linearizations. (Recall that ? is either T or ∗.)

v L(λ) corresponding to v roots

of p(x ; Rv)

2

4

0
1
0

3

5 λ

2

4

0 0 −A
A? B? 0
0 A? 0

3

5 +

2

4

0 A 0
0 B A

−A? 0 0

3

5 0,∞

2

4

1
0
1

3

5 λ

2

4

A? B? − A B
0 A? − B B? − A

A? 0 A?

3

5 +

2

4

A 0 A
B − A? A − B? 0

B? B − A? A

3

5 i,−i

2

4

1
1
1

3

5 λ

2

4

A? B? − A B − A
A? B? + A? − B B? − A
A? A? A?

3

5 +

2

4

A A A
B − A? B + A − B? A
B? − A? B − A? A

3

5

−1 ± i
√

3

2

Table 9.3
?-even linearizations for the ?-even matrix polynomial λ3A+λ2B+λC+D, where A = −A?, B = B?, C = −C?,

D = D?. The last column lists the roots of the v-polynomial p(x ; Σv) corresponding to Σv. The third linearization
can be seen to be a linear combination of the first two linearizations. (Recall that ? is either T or ∗.)

v L(λ) corresponding to v roots

of p(x ; Σv)

2

4

0
0
1

3

5 λ

2

4

0 0 A

0 −A −B

A B C

3

5 +

2

4

0 −A 0
A B 0
0 0 D

3

5 ∞

2

4

1
0
0

3

5 λ

2

4

A 0 0
0 C D

0 −D 0

3

5 +

2

4

B C D

−C −D 0
D 0 0

3

5 0

2

4

1
0
4

3

5 λ

2

4

A 0 4A

0 C − 4A D − 4B

4A 4B − D 4C

3

5 +

2

4

B C − 4A D

4A − C 4B − D 0
D 0 4D

3

5 2i,−2i
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