Corrigendum to 'Numerical methods for eigenvalues of singular polynomial eigenvalue problems' (LAA 719 (2025) 1–33)

Michiel E. Hochstenbach^a, Christian Mehl^{b,*}, Bor Plestenjak^c

```
a Department of Mathematics and Computer Science, TU Eindhoven, PO Box 513, 5600 MB, The
Netherlands.
b Institut für Mathematik, Technische Universität Berlin, Sekretariat MA 4-5, Straße des 17. Juni 136,
Berlin, Germany.
c IMFM and Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000
Ljubljana, Slovenia.
```

In the appendix of [1], the following lemma was formulated.

3

11

27

```
Lemma A.1. Let p_1(\lambda), \ldots, p_k(\lambda) be complex polynomials such that their greatest common divisor q(\lambda) = \gcd(p_1(\lambda), \ldots, p_k(\lambda)) has simple roots. Then there exists a generic set \Omega \subseteq \mathbb{C}^k such that for all s = (s_1, \ldots, s_k) \in \Omega the polynomial s_1 p_1(\lambda) + \cdots + s_k p_k(\lambda) has only simple roots.
```

In the proof given in [1], the argument only works for the particular case k = 2. Below, we present a corrected proof. Case 1) mainly follows the lines from the original proof, but is adapted to the special case k = 2, while the proof of Case 2) is new.

Proof. First we note that the polynomial $\widetilde{p}(\lambda) := s_1 p_1(\lambda) + \cdots + s_k p_k(\lambda)$ has simple roots if and only if the determinant of the Sylvester matrix $S(\widetilde{p}(\lambda), \widetilde{p}'(\lambda))$ of $\widetilde{p}(\lambda)$ and its derivative $\widetilde{p}'(\lambda)$ is nonzero. Since this determinant is a polynomial in the variables s_1, \ldots, s_k it remains to show that $\det S(\widetilde{p}(\lambda), \widetilde{p}'(\lambda))$ is not the zero polynomial and to this end it is sufficient to find one example $s = (s_1, \ldots, s_k)$ such that the roots of the polynomial $\widetilde{p}(\lambda)$ are simple.

Let $p_i(\lambda) = q(\lambda) h_i(\lambda)$ for i = 1, ..., k, where $\gcd(h_1(\lambda), ..., h_k(\lambda)) = 1$, and let $\eta_1, ..., \eta_\ell \in \mathbb{C}$ be the roots of $q(\lambda)$ that are simple by assumption.

Case 1): k = 2.

If $h_1(\lambda)$ and $h_2(\lambda)$ are both constant polynomials, then $p_1(\lambda)$ and $p_2(\lambda)$ are both multiples of $q(\lambda)$ and hence for any $s = (s_1, s_2) \in \mathbb{C}^2$ such that $s_1 h_1(\lambda) + s_2 h_2(\lambda) \neq 0$ the roots of $s_1 p_1(\lambda) + s_2 p_2(\lambda)$ are $\eta_1, \ldots, \eta_\ell$ and thus simple. Thus, in the following we may assume that one of the polynomials $h_1(\lambda)$ and $h_2(\lambda)$ is not constant, without loss of generality let this be the case for $h_1(\lambda)$.

^{*}Version October 7, 2025. Corresponding author Email addresses: m.e.hochstenbach@tue.nl (Michiel E. Hochstenbach), mehl@math.tu-berlin.de (Christian Mehl), bor.plestenjak@fmf.uni-lj.si (Bor Plestenjak)

Suppose that ξ is a multiple zero of $s_1 h_1(\lambda) + s_2 h_2(\lambda)$ for some $s = (s_1, s_2) \in \mathbb{C}^2$. Then we have $s_1 h_1(\xi) + s_2 h_2(\xi) = 0$ and $s_1 h_1'(\xi) + s_2 h_2'(\xi) = 0$. It follows that s is in the kernel of the matrix $H(\xi)$, where

$$H(\lambda) := \begin{bmatrix} h_1(\lambda) & h_2(\lambda) \\ h'_1(\lambda) & h'_2(\lambda) \end{bmatrix}$$

is defined as a 2×2 polynomial matrix and it does not depend on s. We know that $(h_1(\xi), h_2(\xi)) \neq (0, 0)$ for each $\xi \in \mathbb{C}$ because $\gcd(h_1(\lambda), h_2(\lambda)) = 1$, so rank $(H(\xi)) \geq 1$ for all $\xi \in \mathbb{C}$.

Let us show that nrank $(H(\lambda)) = 2$. To this end, consider the polynomial

$$d(\lambda) := h_1(\lambda) h_2'(\lambda) - h_1'(\lambda) h_2(\lambda).$$

Suppose that $d(\lambda)$ is identically zero. This implies that $h_1(\lambda) h'_2(\lambda) = h'_1(\lambda) h_2(\lambda)$. But then it follows from $\gcd(h_1(\lambda), h_2(\lambda)) = 1$ that $h_1(\lambda)$ divides its derivative $h'_1(\lambda)$, which is not possible, since the degree of $h_1(\lambda)$ is at least one. Therefore $d(\lambda)$ is not identically zero and this shows that $\operatorname{nrank}(H(\lambda)) = 2$.

Then there are only finitely many values ξ_1, \ldots, ξ_r such that rank $(H(\xi_i)) = 1$ for $i = 1, \ldots, r$. Now consider the $r + \ell$ lines $s_1 h_1(\xi_i) + s_2 h_2(\xi_i) = 0$, $i = 1, \ldots, r$, and $s_1 h_1(\eta_j) + s_2 h_2(\eta_j) = 0$, $j = 1, \ldots, \ell$, in \mathbb{C}^2 . If s is not on any of these lines, the roots of $s_1 h_1(\lambda) + s_2 h_2(\lambda)$ are simple and different from $\eta_1, \ldots, \eta_\ell$. But then also the roots of $s_1 h_1(\lambda) + s_2 h_2(\lambda)$ are simple. This proves the claim for the case k = 2.

Case 2): k > 2. Let $\zeta_1, \ldots, \zeta_m \in \mathbb{C}$ be the roots of $h_k(\lambda)$. Consider the polynomial matrix

$$\widetilde{H}(\lambda) = \begin{bmatrix} h_1(\lambda) & \dots & h_{k-1}(\lambda) \end{bmatrix}$$

Since $\gcd(h_1(\lambda),\ldots,h_k(\lambda))=1$ it follows that $\widetilde{H}(\zeta_i)\neq 0$ for $i=1,\ldots,m$. Thus, if $t=(t_1,\ldots,t_{k-1})$ is not from any of the m hyperplanes $\ker\widetilde{H}(\zeta_i)$ for $i=1,\ldots,m$, it follows that $\widetilde{h}(\lambda):=t_1\,h_1(\lambda)+\cdots+t_{k-1}\,h_{k-1}(\lambda)$ has no roots in common with $h_k(\lambda)$, or, in other words, $\gcd\left(\widetilde{h}(\lambda),h_k(\lambda)\right)=1$. But then we can apply Case 1) to find a linear combination of $s_1\,\widetilde{h}(\lambda)+s_2\,h_k(\lambda)$ that has only simple roots that are distinct from the roots of $q(\lambda)$. Then we conclude that also the roots of $s_1\,t_1\,p_1(\lambda)+\cdots+s_1\,t_{k-1}\,p_{k-1}(\lambda)+s_2\,p_k(\lambda)$ are simple.

Acknowledgment. We would like to thank Md Sohidul Alam for pointing out a flaw in the proof of [1, Lemma A.1].

References

[1] M. E. Hochstenbach, C. Mehl, and B. Plestenjak. Numerical methods for eigenvalues of singular polynomial eigenvalue problems. *Linear Algebra Appl.*, 719:1–33, 2025.