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Abstract. This paper deals with the effect of generic but structured low
rank perturbations on the Jordan structure and sign characteristic of
matrices that have structure in an indefinite inner product space. The
paper is a follow-up of earlier papers in which the effect of rank one
perturbations was considered. Several results that are in contrast to
the case of unstructured low rank perturbations of general matrices are
presented here.
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1. Introduction

In the past two decades, the effects of generic low rank perturbations on the
Jordan structure of matrices and matrix pencils with multiple eigenvalues
have been extensively studied, see [5, 9, 20, 21, 23, 24]. Recently, starting with
[15] the same question has been investigated for generic structure-preserving
low rank perturbations of matrices that are structured with respect to some
indefinite inner product. While the references [5, 9, 20, 21, 23, 24] on unstruc-
tured perturbations have dealt with the general case of rank k, [15] and the
follow-up papers [16]–[19] on structure-preserving perturbations focussed on
the special case k = 1. The reason for this restriction was the use of a partic-
ular proof technique that was based on the so-called Brunovsky form which is
handy for the case k = 1 and may be for the case k = 2, but becomes rather
complicated for the case k > 2. Nevertheless, the papers [15]–[19] (see also
[6, 10]) showed that in some situations there are surprising differences in the
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changes of Jordan structure with respect to general and structure-preserving
rank-one perturbations. This mainly has to do with the fact that the possi-
ble Jordan canonical forms for matrices that are structured with respect to
indefinite inner products are restricted. This work has later been generalized
to the case of structured matrix pencils in [1]–[3], see also [4]. Although a few
questions remained open, the effect of generic structure-preserving rank-one
perturbations on the Jordan structure and the sign characteristic of matrices
and matrix pencils that are structured with respect to an indefinite inner
product are now well understood.

In this paper, we will consider the more general case of generic structure-
preserving rank k perturbations, where k ≥ 1. Numerical experiments suggest
that the following meta theorem is true:

Meta-Theorem 1.1. Let A ∈ Fn,n be a matrix that is structured with respect
to some indefinite inner product and let B ∈ Fn,n be a matrix of rank k so
that A+B is from the same structure class as A. Then generically the Jordan
structure and sign characteristic of A+B is the same that one would obtain
by performing a sequence of k generic structured rank-one perturbations on
A.

Here and throughout the paper, F denotes one of the fields R or C.
Moreover, the term generic is understood in the following way. A set A ⊆ Fn
is called algebraic if there exist polynomials pj in n variables, j = 1, . . . , k
such that a ∈ A if and only if

pj(a) = 0 for j = 1, . . . , k.

An algebraic set A ⊆ Fn is called proper if A 6= Fn. Then, a set Ω ⊆ Fn is
called generic if Fn \ Ω is contained in a proper algebraic set.

A proof of Theorem 1.1 on the meta level seems to be hard to achieve.
We illustrate the difficulties for the special case of H-symmetric matrices
A ∈ Cn×n, i.e., matrices satisfying ATH = HA, where H ∈ Cn×n is sym-
metric and invertible. An H-symmetric rank-one perturbation of A has the
form A + uuTH while an H-symmetric rank-two perturbation has the form
A + [u, v][u, v]TH = A + uuTH + vvTH, where u, v ∈ Cn. Here, one can
immediately see that the rank-two perturbation of A can be interpreted as
a sequence of two independent rank-one perturbations, so the only remain-
ing question concerns genericity. Now the statements on generic structure-
preserving rank-one perturbations of H-symmetric matrices from [15] typi-
cally have the form that they assert the existence of a generic set Ω(A) ⊆ Cn
such that for all u ∈ Ω(A) the spectrum of A+ uuTH shows the generic be-
havior stated in the corresponding theorem. Clearly, this set Ω(A) depends
on A and thus, the set of all vectors v ∈ Cn such that the spectrum of the
rank-one perturbation A + uuTH + vvTH of A + uuTH shows the generic
behavior is given by Ω(A+ uuTH). On the other hand, the precise meaning
of a generic H-symmetric rank-two perturbation A + uuTH + vvTH of A is
the existence of a generic set Ω ⊆ Cn × Cn such that (u, v) ∈ Ω. Thus, the
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statement of Theorem 1.1 can be translated by asserting that the set

Ω =
⋃

u∈Ω(A)

(
{u} × Ω(A+ uuTH)

)
is generic. Unfortunately, this fact cannot be proved without more detailed
knowledge on the structure of the generic sets Ω(A) as the following example
shows. Consider the set

C2 \
{

(x, ex)
∣∣x ∈ C

}
=
⋃
x∈C

(
{x} ×

(
C \ {ex}

))
Clearly, the sets C and C \ {ex} are generic for all x ∈ C, but the set C2 \{

(x, ex)
∣∣x ∈ C

}
is not as Γ :=

{
(x, ex)

∣∣x ∈ C
}

is the graph of the function
exp which is not contained in a proper algebraic set.

Still, the set Γ from the previous paragraph is a thin set in the sense
that it is a set of measure zero, so one might have the idea to weaken the
term generic to sets whose complement is contained in a set of measure zero.
However, this approach would have a significant drawback when passing to
the real case. In [17, Lemma 2.2] it was shown that if W ⊆ Cn is a proper
algebraic set in Cn, then W ∩ Rn is a proper algebraic set in Rn – a feature
that allows to easily transfer results on generic rank-one perturbations from
the complex to the real case. Clearly, a generalization of [17, Lemma 2.2] to
sets of measure zero would be wrong as the set Rn itself is a set of measure
zero in Cn. Thus, using the term generic as defined here does not only lead
to stronger statements, but also eases the discussion of the case that the
matrices and perturbations under consideration are real.

The classes of structured matrices we consider in this paper are the
following. Throughout the paper let A? denote either the transpose AT or
the conjugate transpose A∗ of a matrix A. Furthermore, let H? = H ∈ Fn×n
and −JT = J ∈ Fn×n be invertible. Then A ∈ Fn×n is called

1. H-selfadjoint, if ? = ∗ and A∗H = HA;
2. H-symmetric, if ? = T and ATH = HA;
3. J-Hamiltonian, if ? = T and ATJ = −JA.

There is no need to consider H-skew-adjoint matrices A satisfying A?H =
−HA in the case ? = ∗, because this case can be reduced to the case of H-
selfadjoint matrices by considering iA. Similarly, it is not necessary to discuss
inner products induced by a skew-Hermitian matrix S as one can consider iS
instead. On the other hand, we do not consider H-skew-symmetric matrices A
satisfying ATH = −HA or J-skew-Hamiltonian matrices A satisfying ATJ =
JA, because in those cases rank-one perturbations do not exist and thus
Theorem 1.1 cannot be applied. The investigation of these types of matrices
seems to be more difficult and is referred to a later stage.

The remainder of the paper is organized as follows. In section 2 we
provide preliminary results that will be needed in the following. In sections 3
and 4 we consider structure-preserving rank k perturbations of H-symmetric,
H-selfadjoint, and J-Hamiltonian matrices with the focus on the change of
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Jordan structures in section 3 and on the change of the sign characteristig in
section 4.

2. Preliminaries

We start with a series of lemmas that will be key tools in this paper. First,
we recap [2, Lemma 2.2] and also give a proof for completeness.

Lemma 2.1 ([2]). Let B ⊆ F` not be contained in any proper algebraic subset
of F`. Then, B×Fk is not contained in any proper algebraic subset of F`×Fk.

Proof. First, we observe that the hypothesis that B is not contained in any
proper algebraic subset of F` is equivalent to the fact that for any nonzero
polynomial p in ` variables there exists an x ∈ B (possibly depending on
p) such that p(x) 6= 0. Letting now q be any nonzero polynomial in ` + k
variables, then the assertion is equivalent to showing that there exists an
(x, y) ∈ B × Fk such that q(x, y) 6= 0.

Thus, for any such q consider the set

Γq :=
{
y ∈ Fk | q( · , y) is a nonzero polynomial in ` variables

}
which is not empty (otherwise q would be constantly zero). Now, for any
y ∈ Γq, by hypothesis there exists an x ∈ B such that q(x, y) 6= 0 but then
(x, y) ∈ B × Fk. �

Lemma 2.2 ([15]). Let Y (x1, . . . , xr) ∈ Fm×n[x1, . . . , xr] be a matrix whose
entries are polynomials in x1, . . . , xr. If rankY (a1, . . . , ar) = k for some
[a1, . . . , ar]

T ∈ Fr, then the set

{[b1, . . . , br]T ∈ Fr : rankY (b1, . . . , br) ≥ k} (2.1)

is generic.

Lemma 2.3. Let H? = H ∈ Fn×n be invertible and let A ∈ Fn×n have rank
k. If n is even, let also −JT = J ∈ Fn×n be invertible.

(1) If F = C, ? = ∗ or F = R, ? = T , and if A?H = HA, then there
exists a matrix U ∈ Fn×k of rank k and a signature matrix Σ =
diag(s1, . . . , sk) ∈ Rk×k, where sj ∈ {+1,−1}, j = 1, . . . , n such that
A = UΣU?H.

(2) If F = C, ? = T , and A is H-symmetric, then there exists a matrix
U ∈ Cn×k of rank k such that A = UUTH.

(3) If F = R and A is J-Hamiltonian, then there exists a matrix U ∈ Rn×k
of rank k and a signature matrix Σ = diag(s1, . . . , sk) ∈ Rk×k, where
sj ∈ {+1,−1}, j = 1, . . . , n, such that A = UΣUTJ .

(4) If F = C and A is J-Hamiltonian, then there exists a matrix U ∈ Cn×k
of rank k such that A = UUTJ .
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Proof. If ? = ∗ and A isH-selfadjoint, then AH−1 is Hermitian. By Sylvesters

Law of Inertia, there is a nonsingular matrix Ũ ∈ Cn×n and a matrix

Σ̃ = diag(s1, . . . , sn) ∈ Cn×n such that AH−1 = Ũ Σ̃Ũ∗, where s1, . . . , sk ∈
{+1,−1} and sk+1 = · · · = sn = 0 as A has rank k. Letting U ∈ Cn×k

contain the first k columns of Ũ and Σ = diag(s1, . . . , sk) ∈ Ck×k, we obtain
that A = UΣU∗H which proves 1. The other parts of the lemma are proved
analogously using adequate factorizations like a nonunitary version of the
Takagi factorization. �

Lemma 2.4. Let A,G,R ∈ Cn×n, let G,R be invertible, and let A have
the pairwise distinct eigenvalues λ1, . . . , λm ∈ C with algebraic multiplicities
a1, . . . , am. Suppose that the matrix A+URU?G generically (with respect to
the entries of U ∈ Cn×k if ? = T and with respect to the real and imaginary
parts of the entries of U ∈ Cn×k if ? = ∗) has the eigenvalues λ1, . . . , λm
with algebraic multiplicities ã1, . . . , ãm, where ãj ≤ aj for j = 1, . . . ,m.

Furthermore, let ε > 0 be such that the discs

Dj :=
{
µ ∈ C

∣∣ |λj − µ| < ε2/n
}
, j = 1, . . . ,m

are pairwise disjoint. If for each j = 1, . . . ,m there exists a matrix Uj ∈ Cn×k
with ‖Uj‖ < ε such that the matrix A+UjRU

?
j G has exactly (aj− ãj) simple

eigenvalues in Dj different from λj, then generically (with respect to the
entries of U if ? = T and with respect to the real and imaginary parts of the
entries of U if ? = ∗) the eigenvalues of A+URU?G that are different from
the eigenvalues of A are simple.

Lemma 2.4 was proved in [18, Lemma 8.1] for the case k = 1, ? = T ,
and R = Ik, but the proof remains valid (with obvious adaptions) for the
more general statement in Lemma 2.4.

Definition 2.5. Let L1 and L2 be two finite nonincreasing sequences of positive
integers given by n1 ≥ · · · ≥ nm and η1 ≥ · · · ≥ η`, respectively. We say that
L2 dominates L1 if ` ≥ m and ηj ≥ nj for j = 1, . . . ,m.

Theorem 2.6. Let A,G,R ∈ Cn×n, let G,R be invertible, and let k ∈ N\{0}.
Furthermore, let λ ∈ C be an eigenvalue of A with geometric multiplicity
m > k and suppose that n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan
blocks associated with λ in the Jordan canonical form of A, i.e., the Jordan
canonical form of A takes the form

Jn1
(λ)⊕ Jn2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,

where λ 6∈ σ(J̃ ). Then, the following statements hold:

(1) If U0 ∈ Cn×k, then the Jordan canonical form of A+U0RU
?
0G is given

by

Jη1(λ)⊕ Jη2(λ)⊕ · · · ⊕ Jη`(λ)⊕ Ĵ ; η1 ≥ · · · ≥ η`,

where λ 6∈ σ(Ĵ ) and where (η1, . . . , η`) dominates (nk+1, . . . , nm), that
is, we have ` ≥ m− k, and ηj ≥ nj+k for j = 1, . . . ,m− k.
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(2) Assume that for all U ∈ Cn×k the algebraic multiplicity aU of λ as an
eigenvalue of A + URU?G satisfies aU ≥ a0 for some a0 ∈ N. If there
exists one matrix U0 ∈ Cn×k such that aU0 = a0, then the set

Ω := {U ∈ Cn×k |U has full column rank and aU = a0}
is generic (with respect to the entries of U if ? = T and with respect to
the real and imaginary parts of the entries of U if ? = ∗).

(3) Assume that there exists a matrix U0 ∈ Cn×k such that the Jordan
canonical form of A + U0RU

?
0G is described as in the statements (a)

and (b) below:
(a) The Jordan structure at λ is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ Ĵ ,

where λ 6∈ σ(Ĵ ).
(b) All eigenvalues of A+ U0RU

?
0G that are not eigenvalues of A are

simple.
Then, there exists a generic set Ω ⊆ Cn×k (with respect to the entries of
U ∈ Cn×k if ? = T and with respect to the real and imaginary parts of
the entries of U ∈ Cn×k if ? = ∗) such that the Jordan canonical form
of A+ URU?G is as described in (a) and (b) for all U ∈ Ω.

Proof. (1) is a particular case of [5, Lemma 2.1].
(2) In the rest of this proof, the term generic is meant it the sense

‘generic with respect to the real and imaginary parts of the entries of U ∈
Cn×k if ? = ∗’. Using Lemma 2.2 for Y = (A+ URU?G− λIn)n shows that
the set

Ω′ := {U ∈ Cn×k |U has full column rank and aU ≤ a0}
is generic. But Ω = Ω′ as by hypothesis aU ≥ a0 for all U ∈ Cn×k.

(3) Combining (1) and (2) shows that the set Ω1 of all U ∈ Cn×k
satisfying condition (a) is generic. Moreover, by Lemma 2.4 the set Ω2 of all
U ∈ Cn×k satisfying condition (b) is also generic. Thus, Ω = Ω1 ∩ Ω2 is the
desired set. �

We end this section by collecting important facts about the canonical
forms of matrices that are structured with respect to some indefinite inner
products. These forms are available in many sources, see, e.g., [8, 11, 14]
or [12, 13, 26] in terms of pairs of Hermitian or symmetric and/or skew-
symmetric matrices. We do not need the explicit structures of the canonical
forms for the purpose of this paper, but only information on paring of cer-
tain Jordan blocks and on the sign characteristic. The sign characteristic is
an important invariant of matrices that are structured with respect to indef-
inite inner products, we refer the reader to [7, 8] for details. To give a brief
impression, consider the following example.

Example 2.7. Let λ ∈ R and consider the matrices

H =

[
0 1
1 0

]
, A1 = J2(λ) :=

[
λ 1
0 λ

]
, A2 =

[
λ −1
0 λ

]
.
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Then A1 and A2 are both H-selfadjoint and they are similar. However, they
are not equivalent as H-selfadjoint matrices in the sense that there does
not exists a nonsingular matrix S ∈ C2×2 such that S−1A1S = A2 and
S∗HS = H. (Note that this transformations corresponds to a change of basis
in C2 with transformation matrix S). Indeed, any transformation matrix S
that changes A1 into A2 would transform H into −H. In fact, (J2(λ), H)
and (J2(λ),−H) are the canonical forms of the pairs (A1, H) and (A2, H),
respectively, and they differ by a sign σ ∈ {+1,−1} as a scalar factor of
the matrix inducing the indefinite inner product. This sign is an additional
invariant that can be thought of as being attached to the partial multiplicity
2 of the eigenvalue λ of A1 (or A2).

In general, if H ∈ Cn×n is invertible and λ ∈ R is an eigenvalue of the
H-selfadjoint matrix A ∈ Cn×n, then in the canonical form of (A,H) there
is a sign for any partial multiplicity ni of λ as an eigenvalue of A. The col-
lection of all these signs then forms the sign characteristic of the eigenvalue
λ. As in the example, we interpret the sign to be attached to the particular
partial multiplicity. The following theorem states which eigenvalues of matri-
ces that are structured with respect to indefinite inner products have a sign
characteristic and it also lists possible restrictions in the Jordan structure of
particular eigenvalues if there are any.

Theorem 2.8 (Restriction of Jordan structures). Let H? = H ∈ Fn×n be
invertible and let A ∈ Fn×n. If n is even, let also −JT = J ∈ Fn×n be
invertible. Furthermore, let λ ∈ C be an eigenvalue of A.

(1) Let either F = C and ? = ∗ or F = R and ? = T , and let A?H = HA.
If λ is real, then each partial multiplicity of λ has a sign in the sign
characteristic of λ.

(2) Let F = C and ? = T , and let A be H-symmetric. Then λ does not have
a sign characteristic.

(3) Let F = C and ? = T , and let A be J-Hamiltonian. Then λ does not
have a sign characteristic. If λ = 0, then the partial multiplicities of λ
as an eigenvalue of A of each fixed odd size n0 occur an even number of
times.

(4) Let F = R and ? = T , and let A be J-Hamiltonian. If λ 6= 0 is purely
imaginary, then each partial multiplicity of λ has a sign in the sign
characteristic of λ. If λ = 0, then the partial multiplicities of λ as an
eigenvalue of A of each fixed odd size n0 occur an even number of times.
Furthermore, each even partial multiplicity of the eigenvalue λ = 0 has
a sign in the sign characteristic of λ.

3. Jordan structure under rank-k perturbations

In this section, we aim to investigate the effect of structure-preserving rank-k
perturbations on the Jordan structure of H-selfadjoint, H-symmetric, and
J-Hamiltonian matrices.



8 Batzke, Mehl, Ran and Rodman

In the first theorem, we consider both H-symmetric and H-selfadjoint
matrices simultaneously. By Lemma 2.3, the form of a structure-preserving
rank k perturbation of A depends on both the underlying field and on ? being
equal to ∗ or T .

Theorem 3.1. Let H ∈ Fn,n be invertible with H? = H and let A ∈ Fn,n be
H-symmetric in case ? = T and H-selfadjoint in case ? = ∗. Furthermore
let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} for j = 1, . . . , k if A is either
H-selfadjoint or real H-symmetric, and with sj = 1 for j = 1, . . . , k if A
is complex H-symmetric. Then, there exists a generic set Ωk ⊆ Fn×k (with
respect to the entries of U ∈ Fn×k if ? = T and with respect to the real and
imaginary parts of the entries of U ∈ Cn×k if ? = ∗) such that for all U ∈ Ωk
and B := UΣU?H the following statements hold:

(1) Let λ ∈ C be any eigenvalue of A and let m denote its geometric mul-
tiplicity. If k ≥ m, then λ is not an eigenvalue of A + B. Otherwise,
suppose that n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks
associated with λ in the Jordan canonical form of A, i.e., the Jordan
canonical form of A takes the form

Jn1
(λ)⊕ Jn2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,

where λ 6∈ σ(J̃ ). Then, the Jordan canonical form of A+B is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ Ĵ ,

where λ 6∈ σ(Ĵ ).
(2) If µ ∈ C is an eigenvalue of A + B, but not of A, then µ is a simple

eigenvalue of A+B.

Proof. We prove this theorem in the complex case only, since the real case is
then obtained by the fact that for a generic set Ωk ⊆ Cn,k, the set Ωk ∩Rn,k
is generic as well, see [17, Lemma 2.2]. We show that there exist two generic
subsets Ωk,1 and Ωk,2 of Cn,k so that property (1) is satisfied on Ωk,1 and
property (2) on Ωk,2. Then, Ωk := Ωk,1 ∩ Ωk,2 is the desired generic set.

Concerning (1): By part (3) of Theorem 2.6 it is sufficient to construct
one particular H-symmetric or H-selfadjoint rank-k perturbation, respec-
tively, such that the Jordan structure is as claimed. We do this by construct-
ing a sequence of k rank-one perturbations with the desired properties.

Now, by [15, Theorem 5.1] if ? = T and by [16, Theorem 3.3] if ? = ∗,
for a generic rank-1 perturbation of the form s1uu

?H the perturbed matrix
A+ s1uu

?H will have the partial multiplicities n2, . . . , nm at each eigenvalue
λ. We consider now a fixed u1 so that A1 := A+ s1u1u

?
1H has this property.

Then [15, Theorem 5.1] or [16, Theorem 3.3], respectively, can be applied
anew to the matrix A1 showing that there exists a vector u2 such that A2 =
A + s1u1u

?
1H + s2u2u

?
2H has the partial multiplicities n3, . . . , nm at each

eigenvalue λ. Repeating this step k−2 more times results in an H-symmetric
or H-selfadjoint matrix Ak = A + s1u1u

?
1H + · · · + skuku

?
kH that has the

partial multiplicities nk+1, . . . , nm at each eigenvalue λ.
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Concerning (2): We assert that the particular rank-k perturbation of
the form A+ u1u

?
1H + · · ·+ uku

?
kH constructed above has the property that

all eigenvalues different from those of A are simple. In fact, since in each
step j = 2, . . . , k we generate Aj := Aj−1 + sjuju

?
jH, only the eigenvalues of

Aj that have been eigenvalues of Aj−1 can be multiple, so that these have
been also eigenvalues of A. Thus, the existence of the desired generic set Ωk,2
follows from Lemma 2.4. �

Now, we turn to J-Hamiltonian matrices. As we saw in Theorem 2.8,
the Jordan blocks of Hamiltonian matrices at 0 have to be paired in a certain
way. This restriction produced surprising results in the case of Hamiltonian
rank-one perturbations of Hamiltonian matrices, see [15, Theorem 4.2]. We
will in the following see that also in the case of rank-k perturbations, taking
care of this pairing of certain blocks will be the most challenging task.

Theorem 3.2. Let J ∈ Fn,n be skew-symmetric and invertible, let A ∈ Fn,n be
J-Hamiltonian. Furthermore, let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} for
j = 1, . . . , k if F = R and with sj = 1 for j = 1, . . . , k if F = C. Then, there
exists a generic set Ωk ⊆ Fn×k such that for all U ∈ Ωk and B := UΣUTJ
the following statements hold:

(1) Let λ ∈ C be any eigenvalue of A and let m denote its geometric mul-
tiplicity. If k ≥ m, then λ is not an eigenvalue of A + B. Otherwise,
suppose that n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks
associated with λ in the Jordan canonical form of A, i.e., the Jordan
canonical form of A takes the form

Jn1
(λ)⊕ Jn2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,

where λ 6∈ σ(J̃ ). Then:
(1a) If either λ 6= 0 or λ = 0 and n1 + · · ·+nk is even, then the Jordan

canonical form of A+B is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ)⊕ Ĵ ,

where λ 6∈ σ(Ĵ ).
(1b) If λ = 0 and n1 + · · ·+ nk is odd, then the Jordan canonical form

of A+B is given by

Jnk+1+1(λ)⊕ Jnk+2
(λ)⊕ · · · ⊕ Jnm(λ)⊕ Ĵ ,

where λ 6∈ σ(Ĵ ).
(2) If µ ∈ C is an eigenvalue of A + B, but not of A, then µ is a simple

eigenvalue of A+B.

Proof. We show that there exist two generic sets Ωk,1 and Ωk,2 so that prop-
erty (1) is satisfied on Ωk,1 and property (2) on Ωk,2. Then, Ωk := Ωk,1∩Ωk,2
is the desired generic set.

Proof of (1): We first mention that in the case λ = 0, all odd-sized multi-
plicities have to occur an even number of times by Theorem 2.8. This implies
in paticular that n1 + · · ·+nm is even. Therefore, if the number n1 + · · ·+nk
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is even, then odd entries in both subsequences n1, . . . , nk and nk+1, . . . , nm
occur an even number of times so that, in particular, there is no fundamental
obstruction to the sequence nk+1, . . . , nm of partial multiplicities occurring
in some Hamiltonian matrix at 0.

On the other hand, if n1 + · · · + nk is odd, then there must occur an
odd number of blocks of size nk = nk+1 in both subsequences n1, . . . , nk and
nk+1, . . . , nm. In particular, it is thus not possible for the partial multiplicities
nk+1, . . . , nm to be realized in some Hamiltonian matrix at 0.

Case (1a): By part (3) of Theorem 2.6 it is sufficient to construct a se-
quence of k Hamiltonian rank-one perturbations such that the Jordan struc-
ture is as claimed.

If λ 6= 0, then by [15, Theorem 4.2] for a generic rank-1 perturbation
of the form s1uu

TJ , the perturbed matrix A+ s1uu
TJ will have the partial

multiplicities n2, . . . , nm at λ (if s1 = −1, this also holds by passing from
u to iu). We consider now a fixed u1 so that A1 := A + s1u1u

T
1 J has this

property. Then [15, Theorem 4.2] can be applied anew to the matrix A1.
Repeating this step k − 1 more times results in a Hamiltonian matrix Ak =
A+s1u1u

T
1 J+ · · ·+skuku

T
k J that has the partial multiplicities nk+1, . . . , nm

at λ.

Next, let us consider the case that λ = 0 but n1 + · · · + nk is even.
We aim to proceed as for λ 6= 0 applying [15, Theorem 4.2]. In this case, a
generic rank-1 perturbation of the form s1uu

TJ will in the perturbed matrix
A+ s1uu

TJ at 0 create the partial multiplicities n2, . . . , nm if n1 is even and
n2 + 1, n3, . . . , nm if n1 is odd. We now fix u1 so that

A1 := A+ s1u1u
T
1 J

has this property. Again, by [15, Theorem 4.2] for generic v the matrix A1 +
s2vv

TJ will at 0 have the partial multiplicities n3, . . . , nm if n1 + n2 is even
(this includes the case that n1 = n2 are odd as in this case the block of size
n2 + 1 will simply disappear) and n3 + 1, n4, . . . , nm if n1 +n2 is odd. We fix
u2 with this property setting

A2 := A+ s1u1u
T
1 J + s2u2u

T
2 J.

After k − 2 more steps of this procedure, we obtain a Hamiltonian matrix
Ak = A+s1u1u

T
1 J+· · ·+skukuTk J with the partial multiplicities nk+1, . . . , nm

at 0 as n1 + · · ·+ nk is even.

Case (1b): Let us assume that λ = 0 and n1 + · · · + nk is odd, which
immediately implies k + 1 ≤ m. As mentioned above, the partial multiplic-
ity sequence nk+1, . . . , nm contains the odd entry nk+1 an odd number of
times, and thus cannot be realized in a Hamiltonian matrix at 0. Hence, the
minimum algebraic multiplicity of A+B at zero is nk+1 + · · ·+ nm + 1. By
Theorem 2.6(2), this is the generic algebraic multiplicity of A + B at 0 if
we can find a particular perturbation that creates this algebraic multiplicity.
However, such a perturbation is easily constructed as in Case (1a), λ = 0,
using [15, Theorem 4.2].
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In order to determine the precise partial multiplicities of A+B in this
case, we employ an argument that was initally used to prove [2, Theorem
3.4]: In the following we assume that B = UΣUTJ , where U is an element of

a generic set Ω̃k ⊆ Cn×k such that (1a) holds for all nonzero eigenvalues of
A and the algebraic multiplicity of A+ B at zero is nk+1 + · · ·+ nm + 1. It
remains to determine the generic partial multiplicities of A+B at 0. Let us
group together Jordan blocks of the same size, i.e., let

(n1, n2, n3, . . . , nm) = (s1, . . . , s1︸ ︷︷ ︸
t1 times

, s2, . . . , s2︸ ︷︷ ︸
t2 times

, . . . , sν , . . . , sν︸ ︷︷ ︸
tν times

),

and let ` be such that s` = nk = nk+1. Then ` is odd, t` is even, and

(nk+1, . . . , nm) = (s`, . . . , s`︸ ︷︷ ︸
d times

, s`+1, . . . , s`+1︸ ︷︷ ︸
t`+1 times

, . . . , sν . . . , sν︸ ︷︷ ︸
tν times

),

where d is odd. Now, A+B has the algebraic multiplicity nk+1 + · · ·+nm+1
at zero and by Theorem 2.6, the list of descending partial multiplicities of
A+B at zero dominates (nk+1, . . . , nm). Therefore, either one of the blocks
corresponding to the partial multiplicities nk, . . . , nm has grown in size by
exactly one, or a new block of size one has been created. Moreover, the
Hamiltonian matrix A + B must have an even number of Jordan blocks of
size s` at 0. If ν > ` and s`+1 < s` − 1 then these restrictions can only be
realized by the list of partial multiplicities given by

(s` + 1, s`, . . . , s`︸ ︷︷ ︸
(d−1) times

, s`+1, . . . , s`+1︸ ︷︷ ︸
t`+1 times

, . . . , sν . . . , sν︸ ︷︷ ︸
tν times

). (3.2)

Only when ν > ` and s`+1 = s` − 1, or when ν = ` and s` = 1 then also a
list different from (3.2) can be realized, namely

( s`, . . . , s`︸ ︷︷ ︸
(d+1) times

, s`+1, . . . , s`+1︸ ︷︷ ︸
(t`+1−1) times

, . . . , sν . . . , sν︸ ︷︷ ︸
tν times

). (3.3)

Hereby, in the latter case of ν = ` and s` = 1, the above list is given by
(s`, . . . , s`) (repeated (d+ 1) times), and this interpretation shall be applied
to the following lists as well. Then, aiming to prove that the partial multiplic-
ities in (3.2) are generically realized in A+B at 0, let us assume the opposite:
assume for some Hamiltonian matrix A that A+B has the partial multiplic-
ities from (3.3) at 0 for all U ∈ B, where B is not contained in any proper
algebraic subset of Cn,k. Then, we apply a further Hamiltonian rank-1 per-
turbation suuTJ to A+B (again, s ∈ {−1,+1}). By Theorem 2.6(1), for all
[U, u] ∈ B×Cn, the sequence of partial multiplicities at 0 of the Hamiltonian
matrix A+B + suuTJ dominates

(s`, . . . , s`︸ ︷︷ ︸
d times

, s`+1, . . . , s`+1︸ ︷︷ ︸
(t`+1−1) times

, . . . , sν . . . , sν︸ ︷︷ ︸
tν times

). (3.4)

On the other hand, applying the already proved part (1a) to the case k + 1,
we find that there exists a generic set Γ ⊆ Cn×(k+1) such that the partial
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multiplicities of A+ [U, u](Σ⊕ [s])[U, u]TJ at 0 are given by

( s`, . . . , s`︸ ︷︷ ︸
(d−1) times

, s`+1, . . . , s`+1︸ ︷︷ ︸
t`+1 times

, . . . , sν . . . , sν︸ ︷︷ ︸
tν times

),

for all [U, u] ∈ Γ. Observe that the latter sequence does not dominate the one
in (3.4). Thus, a contradiction is obtained as by Lemma 2.1 the set B × Cn
is not contained in any proper algebraic subset of Cn,k+1 and thus, clearly,
(B × Cn) ∩ Γ is not empty.

Proof of (2): Analogous to (2) of Theorem 3.1. �

4. Sign characteristic under rank-k perturbations

Since the behavior of the Jordan structure of matrices under rank-k pertur-
bations was already established in the previous section, we now turn to the
question of the change of the sign characteristic of H-selfadjoint, real H-
symmetric, and real J-Hamiltonian matrices. We recall that by Theorem 2.8
each partial multiplicity nij of a real eigenvalue λi of a matrix A that is
H-selfadjoint or real H-symmetric has a sign σij ∈ {+1,−1} in the sign
characteristic of λi.

We go on to prove a theorem without an explicit genericity hypothesis
that will hence be applicable to both H-selfadjoint and real H-symmetric
matrices.

Theorem 4.1. Let H ∈ Cn×n be invertible and Hermitian let A ∈ Cn×n be
H-selfadjoint. Let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} and let λ1, . . . , λp
be the pairwise distinct real eigenvalues of A and λp+1, . . . , λq be the pairwise
distinct nonreal eigenvalues of A. Further, (in difference to before) let n1,j >
· · · > nmj ,j be the distinct block sizes of A at some eigenvalue λj such that
there exist `i,j blocks of size ni,j at λj and, whenever j ∈ {1, . . . , p}, let A
have the signs {σ1,i,j , . . . , σ`i,j ,i,j} attached to its blocks of size ni,j at λj.

Then, whenever U ∈ Cn,k is such that for B := UΣU∗H the statement
(1) below is satisfied, also (2) holds.

(1) The perturbed matrix A+B has the Jordan structure as described in (1)
of Theorem 3.1. More precisely, for each j = 1, . . . , q, the matrix A+B
has the distinct block sizes nκj ,j > nκj+1,j > · · · > nmj ,j occuring
`′κj ,j , `κj+1,j , . . . , `mj ,j times, respectively, at λj, where `′κj ,j = `1,j +

· · ·+ `κj ,j − k and κj is the smallest integer with `′κj ,j ≥ 1.

(2) For each j = 1, . . . , p, let {σ′1,κj ,j , . . . , σ
′
`′κj,j

,κj ,j
} be the signs of A+ B

at blocks of size nκj ,j at λj and let {σ′1,i,j , . . . , σ′`i,j ,i,j} be the signs at

blocks of size ni,j at λj for i = κj + 1, . . . ,mj. Then,

`i,j∑
s=1

σs,i,j =

`i,j∑
s=1

σ′s,i,j , i = κj + 1, . . . ,mj , j = 1, . . . , p (4.5)
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and∣∣∣∣∣∣∣
`κj,j∑
s=1

σs,κj ,j −
`′κj,j∑
s=1

σ′s,κj ,j

∣∣∣∣∣∣∣ ≤ `κj ,j − `′κj ,j , j = 1, . . . , p. (4.6)

Proof. In the first step of the proof, we show that there exists some Ω′k ⊆
Cn,k, that is generic with respect to the real and imaginary parts of its entries,
so that for all U ∈ Ω′k, the statements from (1) and (2) above hold.

Letting Ω1, . . . ,Ωk be the sets constructed in Theorem 3.1, that are
generic with respect to the real and imaginary parts of their entries, we
define

Ω′k := (Ω1 × Cn,k−1) ∩ (Ω2 × Cn,k−2) ∩ · · · ∩ Ωk,

which is (as the intersection of finitely many generic sets) clearly a generic
subset of Cn,k (with respect to the real and imaginary parts of its entries).
Now, let U := [u1, . . . , uk] ∈ Ω′k, then clearly the Jordan structure of A1 :=
A+s1u1u

∗
1H is as described in (1) and (2) of Theorem 3.1 for k = 1. Therefore,

by [19, Theorem 4.6] for all j = 1, . . . , p all signs of A attached to blocks at
λj of size n2,j , . . . , nmj ,j are preserved, i.e., they are the same in A and A1.
Further, of the `1,j signs attached to blocks of size n1,j in A at λj , exactly
`1,j − 1 are attached to blocks of size n1,j in A1, i.e., if η is the sum of the
`1,j signs attached to blocks of size n1,j in A at λj and if η̃ is the sum of
the `1,j − 1 signs attached to blocks of size n1,j in A1, then |η − η̃| = 1. (If
there are both signs +1 and −1 among the list of `1,j signs attached to the
blocks of size n1,j , then it depends on the particular perturbations whether
the sign that has been dropped to obtain the list of `1,j − 1 signs is positive
or negative).

Now, we consider the perturbed matrix A2 := A1 + s2u2u
∗
2H. Since

[u1, u2] ∈ Ω2, clearly A2 has the Jordan structure as described in (1) and
(2) of Theorem 3.1 for k = 1, whereby we consider A1 instead of A as the
unperturbed matrix in that theorem. Hence, again applying [19, Theorem 4.6]
for all j = 1, . . . , p, all signs of A1 attached to blocks of size n3,j , . . . , nmj ,j
are preserved, i.e., they are the same in A2 and A1. Further, if `1,j ≥ 2,
then also all signs of A1 at blocks of size n2,j at λj are preserved and of the
`1,j − 1 signs of A1 at blocks of size n1,j , exactly `1,j − 2 are preserved, i.e.,
attached to blocks of size n1,j in A2 (the remaining sign does not occur any
more since the corresponding block was destroyed under perturbation). In
the remaining case `1,j = 1, the matrix A1 does not have a Jordan block of
size n1,j at λj , thus of its `2,j signs attached to blocks of size n2,j , exactly
`2,j − 1 are attached to blocks of size n2,j in A2.

Now, repeating this argument k−2 more times, we arrive at Ak = A+B
letting the largest Jordan block of Ak at λj have size nκj ,j with exactly `′κj ,j =

`1,j + · · ·+`κj ,j−k copies. Then, the signs at blocks of size nκj+1,j , . . . , nmj ,j
are preserved, i.e., they are the same in A and in Ak (4.5), and of the signs
attached to blocks of size nκj ,j in A, exactly `κ′

j ,j
are attached to blocks of

size nκj ,j in Ak which is equivalent to (4.6).
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At last, we turn to the second step of the proof by following the lines
of the proof of [19, Theorem 4.6]. Thus, let us assume for some U ∈ Cn,k
that the property (1) from above holds but U /∈ Ω′k. Then, by [22, Theorem
3.4], there exists δ > 0 such that for every U0 ∈ Cn,k with ‖U − U0‖ < δ
and with (A + U0ΣU0H,H) satisfying property (1) (where B is replaced by
U0ΣU0H), the sign characteristic of (A+U0ΣU0H,H) coincides with that of
(A+ UΣUH,H). It remains to choose U0 ∈ Ω′k, which is possible in view of
the genericity of Ω′k. �

Now, if A is H-selfadjoint, it is immediately clear that for the generic
(with respect to the real and imaginary parts of the entries) set Ωk ⊆ Cn,k
from Theorem 3.1, both (1) and (2) from the above Theorem hold. Then
again, if H is real symmetric and A is real H-symmetric, the same is true for
the real generic set Ωk ⊆ Rn,k predicted by Theorem 3.1 in the case F = R.
Note that since there was no explicit genericity hypothesis in Theorem 4.1,
it is applicable in both the H-selfadjoint and the H-symmetric case, despite
the two different notions of genericity.

Next, let us turn to rank-k perturbations of real J-Hamiltonian matri-
ces, whereby Theorem 4.1 will be a key ingredient. Again, the J-Hamiltonian
case will prove to be more difficult since the partial multiplicities of a J-
Hamiltonian matrix behave differently under structured low-rank perturba-
tions. By Theorem 2.8, if λ = 0 is an eigenvalue of a J-Hamiltonian matrix,
then only even partial multiplicities will have a sign in the sign characteristic.
In order to allow a unified treatment of purely imaginary eigenvalues includ-
ing the eigenvalue λ = 0, we will extend the notion of sign characteristic and
define each odd partial multiplicity at the eigenvalue zero to have the “sign”
zero in the sign characteristic.

Theorem 4.2. Let J ∈ Rn×n be invertible and skew-symmetric and let A ∈
Rn×n be J-Hamiltonian. Let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} and
let λ1, . . . , λp be the purely imaginary eigenvalues of A and λp+1, . . . , λq be
the non purely imaginary eigenvalues of A. Further, let n1,j > · · · > nmj ,j be
the distinct block sizes of A at some eigenvalue λj such that there exist `i,j
blocks of size ni,j at λj and, whenever j ∈ {1, . . . , p}, let A have the signs
{σ1,i,j , . . . , σ`i,j ,i,j} attached to its blocks of size ni,j at λj.

Then, whenever U ∈ Cn,k is such that for B := UΣU∗H the statement
(1) below is satisfied, also (2) holds.

(1) The perturbed matrix A + B has the Jordan structure as described in
(1) of Theorem 3.2. More precisely, for each j = 1, . . . , q, letting `′κj ,j =

`1,j + · · ·+ `κj ,j −k and letting κj be the smallest integer with `′κj ,j ≥ 1,

then:
(a) If either λj 6= 0 or λj = 0 and `1,jn1,j + · · · + `κj−1,jnκj−1,j +

(`κj ,j − `′κj ,j)nκj ,j is even, A+B has the distinct block sizes

nκj ,j > nκj+1,j > · · · > nmj ,j (4.7)

occuring `′κj ,j , `κj+1,j , . . . , `mj ,j times, respectively, at λj.
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(b) If λj = 0 and `1,jn1,j + · · ·+ `κj−1,jnκj−1,j + (`κj ,j − `′κj ,j)nκj ,j is

odd, A+B has the distinct block sizes

nκj ,j + 1 > nκj ,j > nκj+1,j > · · · > nmj ,j (4.8)

occuring 1, (`′κj ,j − 1), `κj+1,j , . . . , `mj ,j times, respectively, at 0.

(2) For each j = 1, . . . , p, let {σ′1,κj ,j , . . . , σ
′
`′κj,j

,κj ,j
} be the signs of A+B at

blocks of size nκj ,j at λj and let {σ′1,i,j , . . . , σ′`i,j ,i,j} be the signs at blocks

of size ni,j at λj for i = κj + 1, . . . ,mj. Then the following statements
hold for j = 1, . . . , p:
(a1) If λj 6= 0, then the signs of A+B satisfy

`i,j∑
s=1

σs,i,j =

`i,j∑
s=1

σ′s,i,j , i = κj + 1, . . . ,mj ,

and ∣∣∣∣∣∣∣
`κj,j∑
s=1

σs,κj ,j −
`′κj,j∑
s=1

σ′s,κj ,j

∣∣∣∣∣∣∣ ≤ `κj ,j − `′κj ,j .
(a2) If λj = 0 and `1,jn1,j + · · ·+ `κj−1,jnκj−1,j + (`κj ,j − `′κj ,j)nκj ,j is

even, the signs of A+B satisfy

`i,j∑
s=1

σs,i,j =

`i,j∑
s=1

σ′s,i,j

for i = κj + 1, . . . ,mj , where both sums are zero whenever ni,j
is odd. Furthermore, if nκj ,j is odd, then the above also holds for
i = nκj ,j (as in that case both sums are zero), and if nκj ,j is even,
then ∣∣∣∣∣∣∣

`κj,j∑
s=1

σs,κj ,j −
`′κj,j∑
s=1

σ′s,κj ,j

∣∣∣∣∣∣∣ ≤ `κj ,j − `′κj ,j .
(b) If λj = 0 and `1,jn1,j + · · ·+ `κj−1,jnκj−1,j + (`κj ,j − `′κj ,j)nκj ,j is

odd, the signs of A+B satisfy

`i,j∑
s=1

σs,i,j =

`i,j∑
s=1

σ′s,i,j

for i = κj + 1, . . . ,mj , where both sums are zero whenever ni,j
is odd. (In particular, nκj ,j is odd, so all corresponding signs are
zero.)

Proof. We proceed using [19, Theorem 4.1] in order to identify the signs
attached to blocks in (A, J) with ones attached to blocks in (iA, iJ), where
iA is an iJ-selfadjoint (complex) matrix.

We first consider the case (a1), i.e., λj = iα is different from zero. Now,
for any U ∈ Rn,k such that the perturbed matrix A+UΣUTJ has the partial
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multiplicities in (4.7) at λj , also iA + iUΣUTJ , which is iJ-selfadjoint, has
these multiplicities at −α. Hence, by Theorem 4.1, the signs of iA+ iUΣUTJ
at −α are obtained as follows: All signs at blocks of sizes nκj+1,j , . . . , nmj ,j
are preserved, and of the signs at blocks of size nκj ,j , exactly `′κj ,j ones are

preserved. Now, the same procedure applies to the signs of A+UΣUTJ by [19,
Theorem 4.1], i.e., the signs satisfy the assertion in (a1).

The next case is (a2), i.e, we have λj = 0 and the number

`1,jn1,j + · · ·+ `κj−1,jnκj−1,j + (`κj ,j − `′κj ,j)nκj ,j
is even. This number is the sum of the sizes of all blocks at λj that are
destroyed under perturbation in this case. Since `1,jn1,j , . . . , `κj−1,jnκj−1,j

are all even, this implies that either `κj ,j − `′κj ,j or nκj ,j is even (or both),

i.e., an even number of odd-sized blocks is destroyed under perturbation.
Again, let U ∈ Rn,k be such that the perturbed matrix A+UΣUTJ has

the partial multiplicities from (4.7) at 0. Then the same is true for the iJ-
selfadjoint matrix iA+iUΣUTJ at 0. Hence, by Theorem 4.1, the signs of iA+
iUΣUTJ are obtained as follows: All signs at blocks of sizes nκj+1,j , . . . , nmj ,j
are preserved, and of the signs at blocks of size nκj ,j , exactly `′κj ,j ones are

preserved. By [19, Theorem 4.1] this translates to the signs of A+UΣUTJ at
0: All signs at blocks of even sizes smaller than nκj ,j are preserved. Further,
if nκj ,j is even, then exactly `′κj ,j signs at this block size are preserved, i.e.,

the signs satisfy the assertion in (a2).
Finally, let λj = 0 and let `1,jn1,j + · · · + `κj−1,jnκj−1,j + (`κj ,j −

`′κj ,j)nκj ,j be odd. From this immediately follows that (`κj ,j − `′κj ,j)nκj ,j
must be odd, i.e., nκj ,j and (`κj ,j − `′κj ,j) are both odd, and since `κj ,j is

even, `′κj ,j is odd. In particular, as nκj ,j is odd, there are no signs attached to

blocks of this size in neither A nor A+UΣUTJ . Also, we note that `′κj ,j − 1

may be 0 so that in the perturbed pencil, there do not occur blocks of this
size.

Concerning the Jordan structure of the perturbed matrix, again we
assume that U ∈ Rn×k is such that the perturbed matrix A + UΣUTJ has
the partial multiplicities in (4.8) at 0. Concerning the sign characteristic, we
cannot apply Theorem 4.1 in this case (note that the partial multiplicities
in (4.8) differ from the ones required in Theorem 4.1) so that we continue
with a strategy similar to the one from the proof of Theorem 3.2:

Let sk+1 ∈ {−1,+1} and let u ∈ Ω1 be a vector from the generic set Ω1

in Theorem 3.1 applied for the case k = 1 to the matrix A+B. Then at the
eigenvalue λj = 0, the matrix A+B+sk+1uu

TJ has the partial multiplicities

nκj ,j > nκj+1,j > · · · > nmj ,j

occurring (`′κj ,j−1), `κj+1,j , . . . , `mj ,j times, respectively, i.e., only the newly

generated block of size nκj ,j + 1 at λj = 0 in A+B has vanished.

Let {σ′′1,i,j , . . . , σ′′`i,j ,i,j} be the signs of A+B + sk+1uu
TJ at blocks of

size ni,j at λj = 0 for i = κj + 1, . . . ,mj . (The signs on the blocks of size
nκj ,j are zero by definition as nκj ,j is odd, so there is no need for considering
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these signs in the following.) Observe that A + B + sk+1uu
TJ is a rank-

one perturbation of A + B that satisfies the hypotheses of (1) and (a2), so
applying the already proved part (a2) for the rank-one case to the matrix
A+B, we obtain that

`i,j∑
s=1

σ′s,i,j =

`i,j∑
s=1

σ′′s,i,j , i = κj + 1, . . . ,mj . (4.9)

On the other hand, the matrix A+B+sk+1uu
TJ is a rank-(k+1) perturbation

of A that also satisfies the hypotheses of (1) and (a2), so applying the already
proved part (a2) for the rank-(k + 1) case to the matrix A, we obtain that

`i,j∑
s=1

σs,i,j =

`i,j∑
s=1

σ′′s,i,j , i = κj + 1, . . . ,mj . (4.10)

Combining (4.9) and (4.10), we see that the assertion in (b) is satisfied. �

In particular, since the case k = 1 is included in the above theorem, we
have hereby proved [19, Conjecture 4.8]. Then again, in the above theorem,
there is no statement on the sign at the newly generated block of (even) size
nκj ,j + 1 in the case (2b). Examples show that this sign can either be +1 or
−1 depending on the particular perturbation; see also [19, Conjecture 4.4],
[4].
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ucts. Birkhäuser, Basel, 1983.

[8] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra and Ap-
plications. Birkhäuser, Basel, 2005.
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