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Abstract. Canonical forms are developed for several sets of matrices that are normal with
respect to an indefinite inner product induced by a nonsingular Hermitian, symmetric, or skew-
symmetric matrix. The most general result covers the case of polynomially normal matrices, i.e.,
matrices whose adjoint with respect to the indefinite inner product is a polynomial of the original
matrix. From this result, canonical forms for complex matrices that are selfadjoint, skewadjoint, or
unitary with respect to the given indefinite inner product are derived. Most of the canonical forms
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of this paper to present a general theory that allows the unified treatment of all different cases and
to collect known results and new results such that all canonical forms for the complex case can be
found in a single source.
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1. Introduction. Let F denote one of the fields R or C, and let H ∈ Fn×n

be invertible. If H is (skew-)symmetric, then H induces a nondegenerate (skew-)
symmetric bilinear form on Fn via [x, y] := yT Hx for x, y ∈ Fn. Analogously, if
F = C and H is Hermitian, then H induces a nondegenerate Hermitian sesquilinear
form on Cn via [x, y] := y∗Hx for x, y ∈ Cn.

For a matrix M ∈ Fn×n, the H-adjoint of M is defined to be the unique matrix
M [?] satisfying

[x,My] = [M [?]x, y] for all x, y ∈ Fn.

Thus, M [?] = H−1M?H. (Here and throughout the remainder of the paper, M?

denotes MT in the case that [·, ·] is a bilinear form, and M∗ (the conjugate transpose
of M) in the case that [·, ·] is a sesquilinear form.) A matrix M ∈ Fn×n is called H-
selfadjoint, H-skew-adjoint, or H-unitary, respectively, if M [?] = M , M [?] = −M , or
M [?] = M−1, respectively. These three types of matrices have been widely discussed
in the literature, both in terms of theory and numerical analysis, in particular for the
case of a sesquilinear form or under the additional assumptions F = R. Extensive
lists of references can be found in [1, 14, 19, 21].

H-selfadjoint, H-skewadjoint, and H-unitary matrices are special cases of H-
normal matrices. A matrix M ∈ Cn×n is called H-normal if M commutes with its
H-adjoint, i.e., if MM [?] = M [?]M . Observe that the structure of pairs (M,H) is
invariant under transformations of the form

(M,H) 7→ (P−1MP,P?HP ), P ∈ Fn×n nonsingular.(1.1)
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(This corresponds to a change of bases x 7→ Px in the space Fn.) Thus, M is
H-selfadjoint, H-skewadjoint, H-unitary, or H-normal, respectively, if and only if
P−1MP is P?HP -selfadjoint, P?HP -skewadjoint, P?HP -unitary, or P?HP -normal,
respectively.

Canonical forms for H-selfadjoint and H-skewadjoint matrices under transforma-
tions of the form (1.1) are well known for the case of Hermitian H (see, e.g., [3, 6, 14])
and for F = R in the case of symmetric or skew-symmetric H (see, e.g., [3, 4, 14]).
They are implicitly known for F = C and the case of symmetric or skew-symmetric
H by the canonical forms for pairs of complex symmetric or skew-symmetric matrices
given in [26]. (Observe that, for example, for symmetric H, a matrix M ∈ Cn×n

is H-selfadjoint if and only if HM is symmetric. Thus, a canonical form for the
pair (M,H) under transformations of the form (1.1) can be easily obtained from
the canonical form for the pair (HM,H) of symmetric matrices under simultaneous
congruence.)

Canonical forms for H-unitary matrices seem to be less familiar. For the case of
Hermitian H, they have been developed in [8], and for F = R and the case of skew-
symmetric H, they can be obtained from [24, Theorem 5]. For the case F = R and
symmetric H, a canonical form is given in [23] in general and in [2] for the special case
that M is diagonalizable (over the complex field). In addition, canonical forms for
H-unitary matrices for some particular choices of H have been developed in [17, 22]
under similarity transformations that leave H invariant.

On the other hand, the problem of finding a canonical form for H-normal matrices
has been proven to be as difficult as classifying pairs of commuting matrices under
simultaneous similarity, see [7]. So far, a classification of H-normal matrices has only
been obtained for some special cases, see [7, 10, 11].

From this point of view, the set of all H-normal matrices is “too large” and it
makes sense to look for proper subsets for which a complete classification can be
obtained. A first approach in this direction has been made in [8], where block-Toeplitz
H-normal matrices have been defined (see Section 2 for the definition). Two years
later, a complete classification for block-Toeplitz H-normal matrices has be given in
[9] for the case that H induces a Hermitian sesquilinear form. However, in the case
that H induces a complex or real bilinear form that is symmetric or skew-symmetric,
there exist H-selfadjoint, H-skewadjoint, or H-unitary matrices that fail to be block-
Toeplitz H-normal (see Section 2 for details). Thus, the approach via block-Toeplitz
H-normal matrices only makes sense for the case of a Hermitian sesquilinear form.

In [20], several subsets of the set of H-normal matrices have been considered
with the emphasis of finding a subset that is ‘large enough’ in order to contain all
H-selfadjoint, H-skewadjoint, and H-unitary matrices, but that is still ‘small enough’
such that a complete classification its elements can be obtained. A suitable set with
these properties is the set of polynomially H-normal matrices. By definition, a matrix
X ∈ Cn×n is polynomially H-normal if there exists a polynomial p ∈ C[t] such that
X? = p(X).

In this paper, we develop canonical forms for polynomially H-normal matrices.
It will turn out that canonical forms for H-selfadjoint, H-skewadjoint, and H-unitary
matrices are special cases of the general form. We mainly consider the case F = C
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here, but we will extend results to the real case, whenever this easily achievable.
However, the investigation of the real case in full detail needs additional discussions
and is referred to the subsequent paper [18].

The paper is organized as follows. In Section 2, we compare the notions of block-
Toeplitz H-normal matrices and polynomially H-normal matrices and we introduce
the notion of H-decomposability. In Section 3, we discuss how to decompose a matrix
into a block diagonal matrix with indecomposables diagonal blocks. Section 4 is
devoted to similarity transformations that leave the set of upper triangular Toeplitz
matrices invariant. These similarity transformations will be used in Section 5 to obtain
canonical forms for polynomially H-normal matrices that are similar to a Jordan
block. Finally, we present canonical forms for polynomially H-normal matrices and
deduce from the general result canonical forms for H-selfadjoint, H-skewadjoint, and
H-unitary matrices. Section 6 contains the case of Hermitian H, Section 7 the case
of symmetric H, and Section 8 the case of skew-symmetric H. Most of the canonical
forms presented in Sections 6–8 are known in the literature, but it is the aim of this
paper to present a general theory that allows a unified treatment of H-selfadjoint,
H-skewadjoint, and H-unitary matrices and to provide a forum, where all forms for
the case F = C are collected in a single source.

Throughout the paper, we use the following notation. N is the set of natural
numbers (excluding zero). If it is not explicitly stated otherwise, H always denotes
an n × n invertible matrix that is either Hermitian and induces a sesquilinear form
[ ·, ·], or it is symmetric or skew-symmetric and induces a bilinear form [ ·, ·]. A matrix
A = A1⊕· · ·⊕Ak denotes a block diagonal matrix A with diagonal blocks A1, . . . , Ak

(in that order). ei is the i-th unit vector in Fn. A = (aα(i),β(j)) ∈ Fm×n, where
α(i), β(j) are functions of the row and column indices i or j, respectively, denotes a
matrix A whose (i, j)-entry is given by aα(i),β(j) for i = 1, . . . ,m; j = 1, . . . , n. The
symbols Rn and Σn denote the n× n reverse identity and the n× n reverse identity
with alternating signs, respectively, i.e.,

Rn =

 0 1
. . .

1 0

 , Σn =

 0 (−1)0
. . .

(−1)n−1 0

 .

Moreover, Jn(λ) denotes the upper triangular Jordan block of size n associated with
the eigenvalue λ. A matrix A ∈ Fn×n is called anti-diagonal if RnA is diagonal. Also,
recall that M∗ is the conjugate transpose of the matrix M and that M? (or M [?], re-
spectively) stands for MT (or H−1MT H, respectively) whenever we consider the case
of symmetric or skew-symmetric H, and it stands for M∗ (or H−1M∗H, respectively)
whenever we consider the case of Hermitian H. Finally, M−? := (M?)−1 = (M−1)?.

2. Block-Toeplitz H-normal matrices and polynomially H-normal ma-
trices. An important notion in the context of classification of matrices that are struc-
tured with respect to indefinite inner products is the notion of H-decomposability.
A matrix X ∈ Fn×n is called H-decomposable if there exists a nonsingular matrix
P ∈ Fn×n such that

P−1XP = X1 ⊕X2, P?HP = H1 ⊕H2,
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where X1,H1 ∈ Fm×m and X2,H2 ∈ F(n−m)×(n−m) for some 0 < m < n. Otherwise,
X is called H-indecomposable. Clearly, any matrix X can always be decomposed as

P−1XP = X1 ⊕ · · · ⊕Xk, P?HP = H1 ⊕ · · · ⊕Hk,(2.1)

where Xj is Hj-indecomposable, j = 1, . . . , k. Thus, it remains to classify indecom-
posable matrices.

As pointed out in the introduction, block-Toeplitz H-normal matrices have been
investigated in [8, 9] in order to obtain a complete classification for matrices from a
subset of the set of H-normal matrices. An H-normal matrix X is called block-Toeplitz
if there exists a decomposition as in (2.1) such that each indecomposable block Xj is
similar to either one Jordan block or to a matrix with two Jordan blocks associated
with two distinct eigenvalues. The reason for the notion “block-Toeplitz H-normal”
is obvious by the following theorem (proved in [8]).

Theorem 2.1. Let X ∈ Cn×n and let H ∈ Cn×n be Hermitian. Then X is
block-Toeplitz H-normal if and only if there exists a nonsingular matrix P ∈ Cn×n

such that

P−1XP = X1 ⊕ · · · ⊕Xk and P ∗HP = H1 ⊕ · · · ⊕Hk(2.2)

where, for each j, the matrices Xj and Hj have the same size, Xj is indecomposable,
and the pair (Xj ,Hj) has one and only one of the following forms:

1) Hj = εRpj , where ε ∈ {1,−1} and Xj is an upper triangular Toeplitz matrix
with nonzero superdiagonal element;

2) Xj = Xj1 ⊕Xj2 and Hj = R2pj
, where Xj1, Xj2 ∈ Cpj×pj are upper trian-

gular Toeplitz matrices with nonzero superdiagonal elements and the spectra
of Xj1 and Xj2 are disjoint.

In [20], it has been shown that polynomially H-normal matrices are block-Toeplitz
H-normal in the case of a Hermitian form. (The converse is false, i.e., there are block-
Toeplitz H-normal matrices that are not polynomially H-normal, see [20].) However,
this is no longer true for the case of a (skew-)symmetric bilinear form, because the
following examples show that already H-selfadjoint and H-skewadjoint matrices need
not be block Toeplitz H-normal.

Example 2.2. Let S = J2(0). Then there exists no invertible symmetric matrix
H ∈ F2×2 such that S is skewadjoint with respect to the bilinear form induced by H.
Indeed, setting H = (hij), h21 = h12, we obtain from the identity ST H = −HS that[

0 0
h11 h12

]
=
[

0 −h11

0 −h12

]
.

This implies h11 = h12 = 0 in contrast to the invertibility of H. Next consider

S̃ =
[
J2(0) 0

0 −J2(0)

]
, H̃ = R4.

It is easily seen that S̃ is skewadjoint with respect to the bilinear form induced by H̃.
By the above, S̃ must be H̃-indecomposable, but S̃ has two Jordan blocks associated
with 0. Thus, S̃ is not block-Toeplitz H-normal.
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Example 2.3. Let A = 0 ∈ F2×2 and H = Σ2. Then H is skew-symmetric
and A is selfadjoint with respect to the bilinear form induced by H. Clearly, A is
H-indecomposable, because there do not exist invertible skew-symmetric matrices of
odd dimension. But A has two Jordan blocks associated with 0. Thus, A is not
block-Toeplitz H-normal.

These examples show that the set of block-Toeplitz H-normal matrices does not
contain all H-selfadjoint and H-skewadjoint matrices in the case of bilinear forms.
(Similarly, one can construct examples of H-unitary matrices that are not block-
Toeplitz H-normal.) Therefore, we suggest to investigate polynomially H-normal
matrices instead. Indeed, any H-selfadjoint matrix A, H-skewadjoint matrix S, and
H-unitary matrix U is always polynomially H-normal. This follows immediately from
the identities A? = A, S? = −S, and U? = U−1, using in the latter case that the
inverse of an invertible matrix U is a polynomial in U . We conclude this section
by listing some useful properties of polynomially H-normal matrices. Recall that a
Jordan chain (v1, . . . , vl) for X ∈ Fn×n associated with λ ∈ C is an ordered set of
nonzero vectors such that Xv1 = λv1 and Xvj = λvj + vj−1, for j = 2, . . . , l.

Proposition 2.4. Let H ∈ Fn×n be Hermitian or (skew-)symmetric and let
X ∈ Fn×n satisfy X [?] = p̃(X) for some polynomial p̃ ∈ F[t], that is, X is polynomially
H-normal.

1) There is a unique polynomial p ∈ F[t] of minimal degree with X [?] = p(X).
2) If (v1, . . . , vl) is a (possibly complex) Jordan chain for X associated with

λ ∈ C, then

p(X)vj =
j−1∑
ν=0

1
ν!

p(ν)(λ)vj−ν , j = 1, . . . l.(2.3)

3) We have p
(
Jk(λ)

)
= p(λ)Ik + p0

(
Jk(0)

)
, where

p0(t) = p′(λ)t +
1
2!

p′′(λ)t2 + . . . +
1

(k − 1)!
p(k−1)(λ)tk−1.(2.4)

4) p′(λ) 6= 0 for all eigenvalues λ ∈ C of X having partial multiplicities larger
than one.

5) If H induces a sesquilinear form, then p
(
p(X)

)
= X. If H induces a bilinear

form, then p
(
p(X)

)
= X.

Proof. 1) follows easily from [12, Theorem 6.1.9] noting that the Lagrange-
Hermite interpolation problem always has a unique solution, while 2) and 3) follow
from [12] formula 6.1.8 which is

p
(
Jn(λ)

)
=



p(λ) p′(λ) 1
2!p

′′(λ) . . . 1
(n−1)!p

(n−1)(λ)

0 p(λ) p′(λ)
. . .

...
... 0 p(λ)

. . .
...

...
...

. . . . . . p′(λ)
0 . . . . . . 0 p(λ)


.(2.5)
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The same formula implies 4), because p(X) = H−1X?H. Thus, the dimensions
of the spaces Eig(X) and Eig

(
p(X)

)
generated by all eigenvectors of X and p(X),

respectively, must be equal. Finally, 5) follows from

X = (X [T ])[T ] =
(
p(X)

)[T ] = H−1p(X)T H = p(H−1XT H) = p(X [T ]) = p
(
p(X)

)
in the case that H induces a bilinear form, and in the case that H induces a sesquilin-
ear form, 5) follows from

X =
(
p(X)

)[∗] = H−1p(X)∗H = p(H−1X∗H) = p(X [∗]) = p
(
p(X)

)
.

Observe that the assumption on H of being Hermitian or (skew-)symmetric is not
needed in the proof of 1)–4), but only for 5) because of the use of X = (X [?])[?].

Definition 2.5. Let X ∈ Fn×n be such that X [?] = p̃(X) for some polynomial
p̃ ∈ F[t]. Then the unique polynomial p ∈ F[t] of minimal degree with X [?] = p(X) is
called the H-normality polynomial of X.

3. Decomposition of polynomially H-normal matrices. In this section,
we investigate decomposability of polynomially H-normal matrices and discuss spec-
tral properties of indecomposable such matrices. The first result shows that H-
decomposability can be deduced from the existence of nontrivial H-nondegenerate
invariant subspaces. A nonzero subspace V ⊆ Fn is called H-nondegenerate if for
each v ∈ V there exists w ∈ V such that [v, w] 6= 0.

Proposition 3.1. Let X ∈ Fn×n be polynomially H-normal and V ⊆ Fn a non-
trivial X-invariant subspace that is H-nondegenerate. Then X is H-decomposable.

Proof. Without loss of generality, we may assume that (e1, . . . , em) is a basis of
V. (Otherwise apply a suitable transformation on X and H.) Then X and H have
the block forms

X =
[

X11 X12

0 X22

]
and H =

[
H11 H12

±H?
12 H22

]
,

where X11,H11 ∈ Fm×m. Then 1 ≤ m ≤ n − 1, because V is nontrivial. Since V is
H-nondegenerate, we obtain that H11 is nonsingular. Setting

P =
[

Im H−1
11 H12

0 In−m

]
,

we obtain that

X̃ = P−1XP =
[

X11 X̃12

0 X22

]
and H̃ = P?HP =

[
H11 0
0 H̃22

]
,

with suitable matrices X̃12, H̃22. Note that with X̃ also p(X̃) is block upper triangular.
Then the identity X̃?H̃ = H̃p(X̃) implies X̃12 = 0. Thus, X is H-decomposable.

In order to check invariant subspaces for H-nondegeneracy, the following technical
lemma will be necessary.
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Proposition 3.2. Let X ∈ Fn×n be polynomially H-normal with H-normality
polynomial p and let λ, µ ∈ C be eigenvalues of X. Furthermore, let (v1, . . . , vl) be a
Jordan chain for X with respect to λ and let (w1, . . . , wm) be a Jordan chain for X
with respect to µ, where m ≥ l. (Both chains are allowed to be complex in the case
F = R.) Then for all i = 1, . . . , l, j = 1, . . . ,m, and η = 0, . . . ,min(i− 1,m− j) the
following conditions are satisfied:

1) if F = C and H induces a sesquilinear form:
a) [wj , vi] =

(
p′(λ)

)η[wj+η, vi−η] whenever µ = p(λ) and [wσ, vν ] = 0 for
σ + ν < i + j;

b) [wj , vi] = 0 if i + j ≤ m;
c) [wj , vi] = 0 if i + j > m and µ 6= p(λ);

2) if H induces a bilinear form:
a) [wj , vi] =

(
p′(λ)

)η[wj+η, vi−η] whenever µ = p(λ) and [wσ, vν ] = 0 for
σ + ν < i + j;

b) [wj , vi] = 0 if i + j ≤ m;
c) [wj , vi] = 0 if i + j > m and µ 6= p(λ).

Proof. We only prove the result for the case that H is Hermitian and induces
a sesquilinear form. The proof in the case of a bilinear form proceeds completely
analogously. Let v0 := 0 and w0 := 0. Then

p(X)vi =
i∑

ν=0

1
ν!

p(ν)(λ)vi−ν and Xwj = µwj + wj−1

for i = 1, . . . , l; j = 1, . . . ,m, because of (2.3) and because (w1, . . . , wm) is a Jordan
chain. If µ = p(λ) and if j < m and i > 1 are such that [wσ, vν ] = 0 for σ + ν < i + j
then

[wj , vi] = [Xwj+1, vi]− µ[wj+1, vi] = [wj+1, p(X)vi]− p(λ)[wj+1, vi]

=

[
wj+1 ,

i∑
ν=0

1
ν!

p(ν)(λ)vi−ν

]
− [wj+1, p(λ)vi]

=

[
wj+1 ,

i∑
ν=1

1
ν!

p(ν)(λ)vi−ν

]
= p′(λ)[wj+1, vi−1].

Repeating this argument implies a). The remainder of the proof proceeds by induction
on k = i + j (including the cases i = 0 and j = 0). The case k = 1 is trivial. Thus,
assume k > 1. If i = 0 or j = 0 then there is nothing to prove. Thus, let i, j > 0. First
let us assume p(λ) = µ and k ≤ m. Using j + i − 1 < m, the induction hypothesis
[wσ, vν ] = 0 for σ + ν < k, and a), we obtain that

[wj , vi] =
(
p′(λ)

)i−1

[wj+i−1, v1] =
(
p′(λ)

)i−1(
[Xwj+i, v1]− µ[wj+i, v1]

)
=
(
p′(λ)

)i−1(
[wj+i, p(X)v1]− p(λ)[wj+i, v1]

)
= 0.
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Next consider the case p(λ) 6= µ. Then the induction hypothesis yields [wj−1, vi] = 0
and [wj , vν ] = 0 for ν < i. Thus, we obtain that

µ[wj , vi] = [µwj , vi] = [Xwj , vi]− [wj−1, vi] = [Xwj , vi] = [wj , p(X)vi]

=

[
wj ,

i∑
ν=0

1
ν!

p(ν)(λ)vi−ν

]
= p(λ)[wj , vi]

which implies [wj , vi] = 0. This concludes the proof of b) and c).
With the help of the results of Proposition 3.2, we can now give some criteria for

the H-nondegeneracy of invariant subspaces.
Proposition 3.3. Let X ∈ Fn×n be polynomially H-normal with H-normality

polynomial p, let (v1, . . . , vl) be a Jordan chain for X, and let V := Span(v1, . . . , vl).
i) V is nondegenerate if and only if [v1, vl] 6= 0.
ii) Let B := (v1, . . . , vn) be an extension of (v1, . . . , vl) to a basis of Cn that

consists of Jordan chains for X. If every Jordan chain in B different from
(v1, . . . , vl) has length smaller than l, then V is nondegenerate.

Proof. If [v1, vl] = 0, then by condition b) in Proposition 3.2 we have [v1, vj ] = 0
for j = 1, . . . , l and hence V is degenerate. To prove the converse, assume V is
degenerate and let v ∈ V \ {0} be such that [vj , v] = 0 for j = 1, . . . , l. Then
v = c1v1 + · · · + clvl for some c1, . . . , cl ∈ C. Let ν be the largest index for which
cν 6= 0. Then

0 = [v, vl−ν+1] = cν [vν , vl−ν+1] = ζl−νcν [vl, v1],

by conditions a) and b) in Proposition 3.2. Here ζ = p′(λ) in the case of a bilinear form
or ζ = p′(λ) in the case of a sesquilinear form, where λ is the eigenvalue associated
with the Jordan chain (v1, . . . , vl). In particular, ζl−ν 6= 0. (For l > 1 this follows
from condition 4) in Proposition 2.4 and for l = 1 the exponent l − ν is zero.) But
then, we necessarily have [vl, v1] = 0. This conludes the proof of i).

For the proof of ii), assume that V is degenerate. Then by i) we have [vl, v1] = 0.
Moreover, the fact that all Jordan chains in (vl+1, . . . , vn) have size smaller than l and
condition b) in Proposition 3.2 imply that [vj , v1] = 0 for j = 1, . . . , n. This contra-
dicts H being nonsingular and the inner product being nondegenerate. Consequently,
V is nondegenerate.

As an application of Proposition 3.3, we obtain a classification of H-indecom-
posable polynomially H-normal matrices in terms of maximal numbers of linearly
independent eigenvectors.

Proposition 3.4. Let X ∈ Fn×n be an H-indecomposable polynomially H-
normal matrix with H-normality polynomial p and let EigF(X) ⊆ Fn be the space
generated by all eigenvectors of X (over F). Then:

a) dim EigF(X) ≤ 2.
b) If dim EigF(X) = 1, then X is similar to a Jordan block associated with an

eigenvalue λ ∈ F. Moreover, p(λ) = λ if H induces a Hermitian sesquilinear
form or p(λ) = λ if H induces a (skew-)symmetric bilinear form.
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c) If dim EigF(X) = 2, then there exist two Jordan chains (v1, . . . , vm) and
(w1, . . . , wm) for X associated with the eigenvalues λ, µ ∈ F, respectively, such
that Fn = V+̇W, where V := Span(v1, . . . , vm) and W := Span(w1, . . . , wm)
are H-neutral. In particular, n = 2m is even.
Moreover, p(λ) = µ 6= λ = p(µ) if H induces a Hermitian sesquilinear form.
If HT = δH, δ = ±1 induces a bilinear form, then p(λ) = µ and p(µ) = λ
and we have µ = λ only if δp′(λ)m−1 = −1.

Proof. If F = R and if X has no real eigenvalues, then dim EigR(X) = 0 and there
is nothing to prove. Thus, assume that X has an eigenvalue λ ∈ F and let (v1, . . . , vm)
be a Jordan chain (over F) for X of maximal length m associated with λ.

If [vm, v1] 6= 0 then V = Span(v1, . . . , vm) is nondegenerate by condition i)
in Proposition 3.3. But if V is nondegenerate, then Proposition 3.1 and the H-
indecomposability of X imply n = m and hence X is similar to a Jordan block and
dim EigF(X) = 1. Moreover, condition c) in Proposition 3.2 implies p(λ) = λ in the
case H induces a sesquilinear form and p(λ) = λ in the case H induces a bilinear
form.

If [vm, v1] = 0 then the fact that the inner product is nondegenerate implies that
there exists a Jordan chain (w1, . . . , wl) for X (over C) associated with an eigenvalue
µ ∈ C such that [wl, v1] 6= 0. Condition c) of Proposition 3.2 implies µ = p(λ) in the
case of a (skew-)symmetric bilinear form and µ = p(λ) in the case of a Hermitian form.
In particular, µ = p(λ) is real in the case F = R and the Jordan chain (w1, . . . , wl) can
be chosen real. (Indeed, [wl, v1] 6= 0 implies [Re(wl), v1] 6= 0 or [Im(wl), v1] 6= 0, so
either choose the Jordan chain (Re(w1), . . . ,Re(wl)) or (Im(w1), . . . , Im(wl)).) Then
condition b) in Proposition 3.2 implies l ≥ m, in fact l = m due to the maximality
assumption. Furthermore, [wm, w1] = 0, because otherwise Span(w1, . . . , wm) would
be nondegenerate in constrast to the H-indecomposability of X. We claim that the
space U = Span(v1, . . . , vm, w1, . . . , wl) is nondegenerate. Indeed, let

v = α1v1 + · · ·+ αmvm + β1w1 + · · ·+ βmwm, α1, . . . , αm, β1, . . . , βm ∈ F

be such that [v, z] = 0 for all z ∈ V. Assume v 6= 0 and let k be the largest index
such that αk 6= 0 or βk 6= 0. Then conditions a) and b) in Proposition 3.2 and
[vm, v1] = 0 = [wm, w1] (or, equivalently, [vk, vm−k+1] = 0 = [wk, wm−k+1]) imply

0 = [v, wm−k+1] = αk[vk, wm−k+1] = ζαk[vm, w1],
0 = [v, vm−k+1] = βk[wk, vm−k+1] = ξβk[w1, vm],

where ζ and ξ are nonzero constants. Thus, we obtain αk = βk = 0, a contradiction.
Hence v = 0, i.e., U is nondegenerate. Then Proposition 3.1 implies n = 2m and,
therefore, dim EigF(X) = 2. Next, we show that the Jordan chains (v1, . . . , vm) and
(w1, . . . , wm) can be chosen in such a way that they span H-neutral subspaces. We
consider two cases.

Case (i): µ 6= λ. By condition c) in Proposition 3.2, we obtain from [wm, v1] 6= 0
that λ = p(µ) in the case of a Hermitian form and λ = p(µ) in the case of a (skew-)
symmetric bilinear form. In view of condition 5) of Proposition 2.4 this implies
λ 6= p(λ) in the case of a Hermitian form and λ 6= p(λ) in the case of a (skew-)
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symmetric bilinear form. Hence, by condition c) in Proposition 3.2, both V and W
are necessarily H-neutral.

Case (ii): µ = λ. First, we consider the case of a Hermitian form. Then

[w1, vm] = p′(λ)
m−1

[wm, v1] = p′(λ)
m−1

[v1, wm].

Now let α ∈ C and consider (v1 + αw1, . . . , vm + αwm) which is a Jordan chain
associated with λ. Clearly, α can be chosen such that

[v1 + αw1, vm + αwm] = α[w1, vm] + α[v1, wm] = αp′(λ)
m−1

[v1, wm] + α[v1, wm] 6= 0

(For example, choose α = 1 if [v1, wm] 6= −p′(λ)
m−1

[v1, wm] and α = i otherwise.)
But then Span(v1 + αw1, . . . , vm + αwm) is nondegenerate by Proposition 3.3 in con-
trast to the H-indecomposability of X. Thus, case (ii) does not occur in the case of
a Hermitian form.

Next, consider the case that H = δHT induces a bilinear form. Repeating the
argument from the previous paragraph for α = 1, we obtain that (v1+w1, . . . , vm+wm)
is a Jordan chain associated with λ satisfying

[v1 + w1, vm + wm] = (1 + δp′(λ)m−1)[v1, wm]

which is nonzero unless δp′(λ)m−1 = −1. Thus, case (ii) only occurs in the case that
δp′(λ)m−1 = −1, because otherwise X would be H-decomposable.

Assume that the Jordan chains (v1, . . . , vm) and (w1, . . . , wm) associated with λ
and µ = p(λ), respectively, are chosen in such a way that

[vm, vj ] = 0 = [wm, wj ]

for j = 1, . . . , k, where k is maximal. Then k ≥ 1 because [vm, v1] = 0 = [wm, w1].
Let V = Span(v1, . . . , vm) and W = Span(w1, . . . , wm). Clearly, V and W are H-
neutral if and only if k = m. Assume k < m. Then [vm, vk+1] 6= 0 or [wm, wk+1] 6= 0.
Without loss of generality, we may assume that [vm, vk+1] 6= 0. Then by condition a)
in Proposition 3.2, we have that

[vm, vk+1] = δ[vk+1, vm] = δp′(λ)m−k−1[vm, vk+1],

which implies δp′(λ)m−k−1 = 1. Set

c := − [vm, vk+1]
2[vm, w1]

and ṽj :=
{

vj for j ≤ k
vj + cwj−k for j > k

Then (ṽ1, . . . , ṽm) is a Jordan chain for X associated with λ and

[ṽm, ṽj ] = [vm, vj ] + c[wm−k, vj ] = 0

for j = 1, . . . , k because of m − k + j ≤ m and condition b) in Proposition 3.2. On
the other hand, we obtain from

[wm−k, vk+1] = δ[vk+1, wm−k] = δp′(λ)m−k−1[vm, w1] = [vm, w1]
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and [wm−k, w1] = 0 that

[ṽm, ṽk+1] = [vm, vk+1] + c[vm, w1] + c[wm−k, vk+1] + c2[wm−k, w1] = 0.

If necessary, an analogous modification of the Jordan chain (w1, . . . , wm) yields a
Jordan chain (w̃1, . . . , w̃m), where [w̃m, w̃j ] = 0 for j = 1, . . . , k + 1. (Note that the
vectors ṽ1, . . . , ṽm, w̃1, . . . , w̃m are linearly independent, because the vectors ṽ1 = v1

and w̃1 = w1 are.) This contradicts the maximality assumption on k. Hence k = m,
and V and W are H-neutral.

Corollary 3.5. Let X ∈ Fn×n be an H-indecomposable polynomially H-normal
matrix with H-normality polynomial p. If there exist two linearly independent eigen-
vectors of X in Fn, then n = 2m is even and there exists a nonsingular matrix
P ∈ Fn×n such that

P−1XP =
[
Jm(λ) 0

0 p
(
Jm(λ)

)? ] , P?HP =
[

0 Im

δIm 0

]
(3.1)

where δ = 1 and λ 6= p(λ) in the case H induces a Hermitian form, and λ 6= p(λ) or
λ = p(λ) and δp′(λ)m−1 = −1 in the case that HT = δH, δ = ±1 induces a bilinear
form.

Proof. By Proposition 3.4, we may assume that, after an appropriate change of
bases, X and H have the forms

X =
[
Jm(λ) 0

0 Jm(µ)

]
, H =

[
0 H12

H21 0

]
.

It is clear that H12 is nonsingular and H21 = δH?
12, where δ and λ satisfy the con-

ditions in the statement of the corollary. Hence, setting P = Im ⊕ H−1
12 , we obtain

using X? = p(X) that P−1XP and P?HP have the forms (3.1).

4. Transforming upper triangular Toeplitz matrices. In this section, we
will collect some technical results that will be used in the following section for the
reduction of polynomially H-normal matrices towards canonical form. Let us start
with a nilpotent Jordan block Jn(0). If H is such that Jn(0) is polynomially H-
normal with H-normality polynomial p, then Jn(0)∗H = Jn(0)T H = Hp

(
Jn(0)

)
or,

equivalently,

(RnH)−1Jn(0)RnH = p
(
Jn(0)

)
which implies that the similarity transformation with RnH transforms Jn(0) to an
upper triangular Toeplitz matrix. (Here, we used that RnJn(0)Rn = Jn(0)T or, more
generally, RnTRn = TT for any Toeplitz matrix T ∈ Fn×n.) In this section, we will
focus on transformation matrices such as RnH and analyze their structure.

It is well known that a matrix T commutes with Jn(0) if and only if T is an upper
triangular Toeplitz matrix, see [5]. These matrices will play an important role in the
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following and we use the following notation for them: for a0, . . . , an−1 ∈ C we denote

T (a0, . . . , an−1) :=


a0 a1 . . . an−1

0 a0
. . .

...

0 0
. . . a1

0 0 0 a0

 .

Moreover, we denote

T (n) : set of all n× n upper triangular Toeplitz matrices
Tk(n) : set of all n× n upper triangular Toeplitz matrices T (a0, a1, . . . , an−1),

where a0 = · · · = ak−1 = 0, ak 6= 0.

In particular, T1(n) consists of all upper triangular Toeplitz matrices that are similar
to the Jordan block Jn(0). This means that for a1, . . . , an−1 ∈ F, a1 6= 0, there exists
a nonsingular matrix Q such that Q−1Jn(0)Q = T (0, a1, . . . , an−1). The set of all
transformations of this form will be denoted by G(n), i.e.,

G(n) = {Q ∈ Fn×n |Q−1Jn(0)Q ∈ T1(n)}.

Proposition 4.1. The set G(n) is a group. Moreover, if Q ∈ G(n), then we also
have RnQ∗Rn ∈ G(n) and RnQT Rn ∈ G(n).

Proof. Clearly, G(n) is closed under matrix multiplication, since elements of T1(n)
are just sums of powers of Jn(0). Let Q ∈ G(n), that is, T := Q−1Jn(0)Q ∈ T1(n).
We show by induction on k that QJn(0)kQ−1 ∈ Tk(n) for k = n− 1, . . . , 1. Then the
statement for k = 1 implies Q−1 ∈ G(n). First, let k = n− 1. Then

Q−1Jn(0)n−1Q = Tn−1 = αJn(0)n−1

for some α 6= 0, because Tn−1 ∈ Tn−1(n). This implies QJn(0)n−1Q−1 = 1
αJn(0)n−1.

Next, let k < n− 1. Then

Q−1Jn(0)kQ = T k =
n−1∑
j=k

βjJn(0)j

for some βk, . . . , βn−1 ∈ F, where βk 6= 0. The induction hypothesis for k+1, . . . , n−1
implies

QJn(0)kQ−1 =
1
βk

(
Jn(0)k −

n−1∑
j=k+1

βjQJn(0)jQ−1

︸ ︷︷ ︸
∈Tk+1

)
∈ Tk(n),

which concludes the induction proof. Hence, G(n) is a group. For the remainder of
the proof, let Q ∈ G(n) be such that

Q−1Jn(0)Q = T (0, a1, . . . , an−1).
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Then noting that RnT ∗Rn = T for any T ∈ T (n), we obtain that

(RnQ−∗Rn)−1Jn(0)(RnQ−∗Rn) = (RnQ∗Rn)(RnJn(0)T Rn)(RnQ−∗Rn)
= RnQ∗Jn(0)T Q−∗Rn = Rn(Q−1Jn(0)Q)∗Rn

= RnT (0, a1, . . . , an−1)∗Rn = T (0, a1, . . . , an−1).

Thus, RnQ−∗Rn ∈ G(n) and since G(n) is a group, we also have RnQ∗Rn ∈ G(n).
The proof for RnQT Rn ∈ G(n) is analogous.

What do the elements of G(n) look like? The answer is given in a more general
sense in the next result.

Proposition 4.2. Let a1, . . . , an−1 ∈ F, a1 6= 0, let T := T (0, a1, . . . , an−1), and
let p ≥ n. Then for any q ∈ Fn, the matrix Q̃ = (qij) ∈ Fp×n given by

Q̃ =
[ n

n Q
p − n 0

]
, Q =


qT

qT T
...

qT Tn−1

(4.1)

satisfies

Jp(0)Q̃ = Q̃T.(4.2)

On the other hand, any matrix Q̃ satisfying (4.2) is uniquely determined by its first
row, say qT , and has the form (4.1). In particular, Q is upper triangular, and for
k = 1, . . . , n, l = 0, . . . , n− k, we obtain that

qkk = ak−1
1 q11;(4.3)

qk,k+l =
l+1∑
i=1

aiqk−1,k+l−i;(4.4)

qk,k+l = (k − 1)ak−2
1 al+1q11 + ak−1

1 q1,l+1 + fkl(a1, . . . , al, q11, . . . , q1l),(4.5)

where fkl ∈ F depends on a1, . . . , al, q11, . . . , q1l, but not on al+1 or q1,l+1, and where
an := 0.

Proof. It is well known (see, e.g., [5] chapter VIII, §1) that the solutions X of
the equation Jp(0)X = XT form a vector space of dimension n. A straightforward
computation shows that any Q of the form (4.1) is indeed a solution to Jp(0)X = XT .
Thus, Q is uniquely determined by the n entries of the first row qT and we immediately
obtain the identities (4.3) and (4.4) by comparing the two sides in (4.1). We will now
prove identity (4.5) by induction on k. If k = 1, then (4.5) is trivially satisfied with
f1l = 0 for l = 0, . . . , n− k. If k > 1 and l ∈ {0, . . . , n− k − 1}, then (4.4) implies

qk+1,k+1+l =
l+1∑
j=1

ajqk,k+l−j+1 = al+1qkk + a1qk,k+l +
l∑

j=2

ajqk,k+l−j+1.(4.6)
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By the induction hypothesis, we obtain that qk,k+l−j+1 does neither depend on al+1

nor on q1,l+1 for j = 2, . . . , l. Moreover, using (4.3) and the induction hypothesis for
qk,k+l, we obtain that

qk+1,k+1+l = al+1qkk + a1qk,k+l + f̃kl

= ak−1
1 al+1q11 + a1

(
(k − 1)ak−2

1 al+1q11 + ak−1
1 q1,l+1 + fkl

)
+ f̃kl

= kak−1
1 al+1q11 + ak

1q1,l+1 + fk+1,l,

where f̃kl ∈ F and fk+1,l = f̃kl + a1fkl may depend on a1, . . . , al, q11, . . . , q1l, but do
neither depend on al+1 nor on q1,l+1. This concludes the proof.

Example 4.3. Any matrix Q ∈ F4×4 satisfying J4(0)Q = QT (0, a1, a2, a3) has
the form

Q =


q11 q12 q13 q14

0 a1q11 a2q11 + a1q12 a3q11 + a2q12 + a1q13

0 0 a2
1q11 2a1a2q11 + a2

1q12

0 0 0 a3
1q11


for some q11, q12, q13, q14 ∈ F.

Proposition 4.4. Let n ≥ 2 and let H be such that RnH ∈ G(n), i.e.,
H is invertible and there exists a matrix T := T (0, a1, . . . , an) ∈ T1(n) such that
Jn(0)T H = HT .

1) If H is symmetric, then a1 = 1 if n is even, or a1 = ±1 if n is odd.
2) If H is skew-symmetric, then n is even and a1 = −1.
3) If H is Hermitian, then a1 = |hν+1,ν |2

h2
ν+1,ν

if n = 2ν is even or a1 = ± |hν+2,ν |
hν+2,ν

if

n = 2ν + 1 is odd.
If one of the conditions 1)–3) is satisfied and if, in addition, the last row of H is a
multiple of the first unit vector eT

1 , then a2 = . . . = an−1 = 0 and H is anti-diagonal.
Proof. Let M = RnH = (mij) = (hn+1−i,j). Then

Jn(0)M = Rn(RnJn(0)Rn)H = RnJn(0)T H = RnHT = MT

and M is upper triangular by Proposition 4.2. Since M is nonsingular, we have
furthermore that m11 6= 0. First, let n = 2ν be even. Then Proposition 4.2 implies
that

mνν =

 mν+1,ν+1 = a1mνν , if H is symmetric;
−mν+1,ν+1 =−a1mνν , if H is skew-symmetric;

mν+1,ν+1 = a1 mνν , if H is Hermitian.

Thus, a1 = 1 if H is symmetric, a1 = −1 if H is skew-symmetric, and a1 = |mνν |2

m2
νν

if
H is Hermitian. On the other hand, if n = 2ν +1 is odd, then Proposition 4.2 implies
that

mνν =
{

mν+2,ν+2 = a2
1mνν , if H is symmetric;

mν+2,ν+2 = a1
2 mνν , if H is Hermitian.
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Thus, a1 = ±1 if H is symmetric and a1 = ± |mν,ν |
mν,ν

if H is Hermitian. (The case that
H is skew-symmetric does not appear, because H is assumed to be invertible.)

Finally, assume that the last row of H is a multiple of the first unit vector, that
is, m12 = . . . = m1n = 0. Then Proposition 4.2 implies that M has the form

M = m11


eT
1

eT
1 T
...

eT
1 Tn−1

 ,

i.e., the rows of M are just the first rows of I, T , . . . , Tn−1 multiplied by m11. Since
each T k is an upper triangular Toeplitz matrix, it is completely determined by its
first row and we immediately obtain that

T k =
mk+1,k+1

m11
Jn(0)k + · · ·+ mk+1,n

m11
Jn(0)n−1, k = 1, . . . , n− 1.(4.7)

Assume that not all aj , j = 2, . . . , n−1 are zero. Let l ∈ {2, . . . , n−1} be the smallest
index such that al 6= 0, i.e.,

T = a1Jn(0) + alJn(0)l + · · ·+ an−1Jn(0)n−1.(4.8)

By (4.7), mn−l+1,n

m11
is the coefficient of Jn(0)n−1 in Tn−l. On the other hand, us-

ing (4.8) to compute Tn−l, we obtain that

Tn−l = an−l
1 Jn(0)n−l + (n− l)an−l−1

1 alJn(0)n−1.

This implies mn−l+1,n = m11(n − l)an−l−1
1 al. However, we have mn−l−1,n = ±m1l

if H is (skew-)symmetric or mn−l−1,n = ±m1l if H is Hermitian, and we have that
m1l = 0. This implies al = 0 in contradiction to the assumption. Thus, we have that
a2 = . . . = an−1 = 0. In particular, T is just a scalar multiple of a Jordan block and
it follows from (4.7) that mk+1,j = 0 for j = k + 2, . . . , n, k = 1, . . . , n− 1. Thus, M
is diagonal, i.e., H is anti-diagonal.

5. H-normal matrices similar to a Jordan block. As an application of
the results in Section 4, we obtain a canonical form for H-normal matrices that are
similar to a Jordan block. For the case of a Hermitian sesquilinear form, the reduction
technique is based on ideas that are similar to the ideas used in [9]. However, an
independent proof is given here in order to make the paper self-contained and to be
able to emphasize the differences in the cases of a Hermitian sesquilinear form and
a (skew-)symmetric bilinear form. We start with a remark that can be verified by a
straightforward calculation.

Remark 5.1. Let A = (aij), B = (bij), C = (cij) ∈ Fn×n and D = (dij) = ABC.
1) RnA = (an+1−i,j) and ARn = (ai,n+1−j).
2) If A, B, and C are upper triangular, then for l, k = 1, . . . , n we have

dlk =
k∑

i=l

i∑
j=l

aljbjicik.
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Theorem 5.2. Let X ∈ Fn×n, n ≥ 2 be similar to the Jordan block Jn(λ).
Furthermore, let X be polynomially H-normal with H-normality polynomial p ∈ F[t].

1) If H induces a Hermitian sesquilinear form, then p(λ) = λ and |p′(λ)| = 1.
Moreover, there exists a nonsingular matrix Q ∈ Cn×n such that

Q−1XQ = λIn + eiθ T (0, 1, ir2, . . . , irn−1)(5.1)
Q∗HQ = εRn,(5.2)

where the parameter ε = ±1 is uniquely determined, and the parameters
θ ∈ [0, π) and r2, . . . , rn−1 ∈ R are uniquely determined by λ and the coeffi-
cients of the polynomial p and can be computed from the identity

λIn + e−iθT (0, 1,−ir2, . . . ,−irn−1) = p
(
λIn + eiθ T (0, 1, ir2, . . . , irn−1)

)
.

2) If H = δHT , δ = ±1 induces a bilinear form, then p(λ) = λ and p′(λ)n = −δ.
In particular, one of the following cases applies:

2a) if p′(λ) = 1, then H is symmetric and there exists a nonsingular matrix
Q ∈ Fn×n such that

Q−1XQ = Jn(λ), QT HQ = εRn,(5.3)

where ε is uniquely determined and ε = 1 if F = C and ε = ±1 if F = R;
2b) if p′(λ) = −1, then H is symmetric if n is odd and skew-symmetric if n is

even; moreover there exists a nonsingular matrix Q ∈ Fn×n such that

Q−1XQ = T (λ, 1, a2, a3, . . . , an−1) = T (λ, 1, a2, 0, a4, 0, . . .)(5.4)
QT HQ = εΣn,(5.5)

where ε = is uniquely determined and ε = 1 if F = C or ε = ±1 if F = R,
and where aj = 0 for odd j and the parameters aj for even j are uniquely
determined by λ and the coefficients of the polynomial p and can be computed
from the identity T (λ,−1, a2, 0, a4, 0, . . .) = p

(
T (λ, 1, a2, 0, a4, 0, . . .)

)
.

Proof. Without loss of generality, we may assume that X = Jn(λ). From the
identity X? = p(X), we immediately obtain that p(λ) = λ in the case of a Hermitian
form and p(λ) = λ in the case of a bilinear form. Without loss of generality, we may
assume λ = 0. Indeed, it follows from Proposition 2.4.3 that Y = X −λIn = Jn(0) is
polynomially H-normal with H-normality polynomial p0, where p0 is given in (2.4),
because of

H−1Y ∗H = H−1(X∗ − λIn)H = p
(
Jn(λ)

)
− λIn = p0

(
Jn(0)

)
= p0(Y )

in the case of a Hermitian form or

H−1Y T H = H−1(XT − λIn)H = p
(
Jn(λ)

)
− λIn = p0

(
Jn(0)

)
= p0(Y )

in the case of a bilinear form. (Recall that by (2.4) the coefficients of p0 depend on λ
and on the coefficients of p.)
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Thus, let λ = 0 and p(t) = α0 + α1t + . . . + αn−1t
n−1. Then the fact that X is

polynomially H-normal implies

Jn(0)T H = Hp
(
Jn(0)

)
= HT (α0, . . . , αn).(5.6)

Clearly, we have α0 = 0. Moreover, (5.6) implies Jn(0)RnH = RnHT (α0, . . . , αn),
that is, RnH ∈ G(n) and hence, RnH is upper triangular. The idea is now to simplify
H by applying a congruence transformation on H with a matrix Q = (qij) ∈ G(n). By
Proposition 4.2, the matrix Q satisfying Q−1Jn(0)Q = T (0, a1, . . . , an−1) is uniquely
determined by the parameters q11, . . . , q1n, a1, . . . , an−1. It is our aim to choose these
parameters in a way such that the transformed matrices X and H become as simple
as possible. We will consider two different cases.

Case (1): H is Hermitian and induces a sesquilinear form. Then Proposition 4.4
implies |α1| = 1. Consider M := (mij) := RnQ∗HQ = (RnQ∗Rn)(RnH)Q and let
(hij) := H. Then by Remark 5.1 the elements of the first row of M satisfy

m1k =
k∑

i=1

i∑
j=1

qn−j+1,n hn−j+1,iqik, k = 1, . . . , n.(5.7)

By (4.5), the only summands in (5.7) that do possibly depend on ak or q1k (where
an := 0) are qnn hn1q1k and qn−k+1,n hn−k+1,kqkk. Identity (4.3) of Proposition 4.2
implies that hn−k+1,k = αk−1

1 hn1 and qkk = ak−1
1 q11. Using this and (4.5), we obtain

that m1k has the form

m1k = an−1
1 q11 hn1q1k+

(
(n−k)an−k−1

1 ak q11 +an−k
1 q1k

)
αk−1

1 hn1a
k−1
1 q11+Sk,(5.8)

where Sk = Sk(a1, . . . , ak−1, q11, . . . , q1,k−1) does neither depend on ak nor on q1k.
Now choose a1 = eiθ to be the square root of α1 with argument θ ∈ [0, π). Then
α1 = a1

2 and (5.8) becomes

m1k = an−1
1 q11 hn1q1k +

(
(n− k)an−2

1 ak q11 + an−1
1 q1k

)
q11hn1 + Sk,

= an−1
1 hn1

(
q11 q1k + q1k q11 + (n− k)a1ak |q11|2 +

an−1
1

hn1
Sk

)
.(5.9)

Note that an−1
1 hn1 is real. Indeed,

an−1
1 hn1 = an−1

1 hn1 = an−1
1 h1n = an−1

1 αn−1
1 hn1 = an−1

1 hn1.

Then we set q11 = 1/
√
|an−1

1 hn1| and we successively choose

ak =
1

(n− k)q2
11

Im
(

an−1
1

hn1
Sk

)
ieiθ, q1k = − 1

2q11
Re
(

an−1
1

hn1
Sk

)
, k = 2, . . . , n− 1

which implies m1k = 0 for k = 2, . . . , n − 1. Observe that (5.9) for k = n takes the
form

m1n = an−1
1 hn1q11

(
q1n + q1n

)
+ Sn.
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Since an−1
1 hn1, q11, and m1n = hnn are real, so must be Sn. Then choosing

q1n = − 1
2q11

an−1
1

hn1
Sn

gives m1n = 0. Since RnH,Q ∈ G(n), we obtain that RnQ∗Rn ∈ G(n) and then
also M = RnQ∗HQ ∈ G(n). But then, Proposition 4.4 implies that Q∗HQ is anti-
diagonal. Observe that the anti-diagonal elements of H̃ := (h̃ij) := Q∗HQ have the
forms

h̃n+1−k,k = qn+1−k,n+1−khn+1−k,kqkk = an−k
1 q11α

k−1
1 hn1a

k−1
1 q11 =

an−1
1 hn1

|an−1
1 hn1|

= ε,

where ε = 1 if an−1
1 hn1 > 0 and ε = −1 otherwise. (We have hn1 6= 0, because of the

nonsingularity of H.) Thus, Q∗HQ = εRn. By construction, we have that

Q−1AQ = T (0, a1, . . . , an−1) = eiθT (0, 1, ir2, . . . , irn−1),

where r2, . . . , rn−1 ∈ R. It remains to show uniqueness of these forms. First, we show
that the parameters r2, . . . , rn−1 ∈ R and θ ∈ [0, π) are uniquely determined by the
coefficients of the polynomial p. Indeed, since p(t) = α1t + α2t

2 + . . . + αn−1t
n−1, we

obtain from the special structure of X̃ := Q−1XQ that

p(X̃) = α1e
iθT (0, 1, ir2, . . . , irn−1) + T (0, 0, s2, s3, . . . , sn−1),

where sj may depend on α2, . . . , αj , r2, . . . , rj−1, but not on rj . A straightforward
computation shows H̃−1X̃∗H̃ = e−iθT (0, 1,−ir2, . . . ,−irn−1), because H̃ = εRn.
Then we obtain from the identity p(X̃) = H̃−1X̃∗H̃ that

α1e
iθT (0, 1, ir2 + s2, . . . , irn1 + sn1) = e−iθT (0, 1,−ir2, . . . ,−irn−1).(5.10)

Thus, θ ∈ [0, π) is uniquely determined by the identity α1e
iθ = e−iθ and the param-

eters rj can be successively obtained as the unique solutions of 2irj = −sj , because
sj only depends on ri for i < j. Thus, the parameters r2, . . . , rn−1 are uniquely de-
termined by the coefficients of p. Concerning uniqueness of the parameter ε, assume
that Z−1X̃Z = X̃. Since X̃ is an upper triangular Toeplitz matrix with nonzero su-
perdiagonal element a1, it follows easily that Z = (zij) must be an upper triangular
Toeplitz matrix as well. Then considering Ĥ := Z∗H̃Z = Rn(RnZ∗Rn)RnH̃Z, it
follows by Remark 5.1 that the (1, n)-entry ĥ1n of Ĥ has the form

ĥ1n = z11h1nznn = ε|z11|2.

Thus, we can never change the sign of ε with a transformation that leaves X̃ invariant.
This proves uniqueness of the parameter ε and concludes the proof of Case (1).

Case (2): H is (skew-)symmetric and induces a bilinear form. Then Proposi-
tion 4.4 implies α1 = ±1. Consider the matrix M := (mij) := RnQT HQ. Then a
calculation analogous to the calculation that lead us to (5.8) yields

m1k = an−1
1 q11hn1q1k+

(
(n−k)an−k−1

1 akq11+an−k
1 q1k

)
αk−1

1 hn1a
k−1
1 q11+Sk,(5.11)
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where Sk = Sk(a1, . . . , ak−1, q11, . . . , q1,k−1) neither depends on ak nor on q1k. We
now distinguish two subcases.

Subcase (2a): α1 = 1.
In this case H is necessarily symmetric by Proposition 4.4 and (5.11) becomes

m1k = 2an−1
1 q11hn1q1k + (n− k)an−2

1 akq2
11hn1 + Sk,(5.12)

Set a2 = . . . = an−1 = 0 and q11 = 1/
√

h11 if F = C, or q11 = 1/
√
|h11| if F = R,

respectively. Then successively define

q1k =
−Sk

2an−1
1 q11hn1

for k = 2, . . . , n. Then m1k = 0 and as in Case (1), we conclude that QT HQ is
anti-diagonal. In particular, QT HQ and Q−1XQ have the forms (5.3), where ε = 1
if F = C or ε = h11/|h11| = ±1 if F = R, respectively. Uniqueness of ε is shown as in
Case (1).

Subcase (2b): α1 = −1.
By Proposition 4.4, H is symmetric if n is odd and skew-symmetric if n is even.
Moreover, (5.11) becomes

m1k = an−1
1 q11hn1q1k

(
1 + (−1)k−1

)
+ (n− k)an−2

1 akq2
11hn1(−1)k−1 + Sk,(5.13)

Then we set q11 = 1/
√

h11 if F = C, or q11 = 1/
√
|h11| if F = R, respectively, and

then successively

q1k := 0, ak :=
Sk

(n− k)an−2
1 hn1q2

11

if k is even,

ak := 0, q1k :=
−Sk

2an−1
1 q11hn1

if k is odd,

for k = 2, . . . , n − 1, and q1n := 0 if n is even or q1n := −Sn/2an−1
1 q11hn1 if n is

odd. Then we obtain m1k = 0 for k = 2, . . . , n. (Note that if n is even then m1n = 0
follows from the fact that H is skew-symmetric.) Then we conclude as in Case (1)
that H̃ := QT HQ is anti-diagonal. In particular, QT HQ and X̃ := Q−1XQ have
the forms (5.4) and (5.5), where ε = 1 if F = C or ε = h11/|h11| = ±1 if F = R,
respectively. Uniqueness of the parameters ε and aj for even j is shown analogously
to Case (1). Indeed, the identity H̃−1X̃T H̃ = p(X̃) now becomes

T (0,−1, a2, 0, a4, 0, . . .) = T (0,−1,−a2 + s2, s3,−a4 + s4, s5, . . .),(5.14)

where sj may depend on α2, . . . , αj and ai for i < j, but it does not depend on aj .
Thus, the parameters a2, a4, . . . can be successively obtained as the unique solutions
of the identities 2a2j = s2j and, consequently, they are uniquely determined by the
coefficients of p.
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Remark 5.3. The uniqueness property of Theorem 5.2 is the reason why we
transformed the matrix X in Subcase (2b) to the special upper triangular Toeplitz
form where every other superdiagonal is zero. Because if X̃ = T (0, 1, a2, a3, . . . , an−1),
then (5.14) becomes

T
(
0,−1, (−1)2a2, . . . , (−1)n−1an−1

)
= T

(
0,−1,−a2 + s2, . . . ,−an−1 + sn−1

)
.

Thus, only the parameters aj with even index j are determined by s2, . . . , sn−2 and
the parameters aj with odd index j have to be specified in another way. We did this
by setting all of them to zero.

6. The case of a Hermitian sesquilinear form. In this section, we present
a canonical form for polynomially H-normal matrices for the case that H is Her-
mitian and induces a sesquilinear form. Then, we recover from the general result
the well-known forms for H-selfadjoint and H-unitary matrices. We do not consider
H-skewadjoint matrices, because a matrix S ∈ Cn×n is H-skewadjoint if and only
if iS is H-selfadjoint and thus, the canonical form for H-skewadjoint matrices is an
immediate consequence of the canonical form for H-selfadjoint matrices.

Theorem 6.1 (Canonical form for polynomially H-normal matrices). Let the
matrix X ∈ Cn×n be polynomially H-normal with H-normality polynomial p. Then
there exists a nonsingular matrix Q such that

Q−1XQ = X1 ⊕ · · · ⊕Xp, Q∗HQ = H1 ⊕ · · · ⊕Hp,(6.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:
i) blocks associated with eigenvalues λj ∈ C satisfying p(λj) = λj:

Xj = λjInj + eiθj T (0, 1, irj,2, . . . , irj,nj−1), Hj = εjRnj ,(6.2)

where nj ∈ N, εj = ±1, θj ∈ [0, π), and rj,2, . . . , rj,nj−1 ∈ R;
ii) blocks associated with a pair (λj , µj) of eigenvalues, where µj = p(λj) 6= λj,

p(µj) = λj, and Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Xj =
[
Jmj (λj) 0

0 p
(
Jmj

(λj)
)∗ ] , Hj =

[
0 Imj

Imj 0

]
,(6.3)

where mj ∈ N.
Moreover, the form (6.1) is unique up to the permutation of blocks, and the parameters
θj, and rj,2, . . . , rj,nj−1 in (6.2) are uniquely determined by λj and the coefficients of
p and can be computed from the identity

λjInj
+ e−iθj T (0, 1,−irj,2, . . . ,−irj,nj−1) = p

(
λjInj

+ eiθj T (0, 1, irj,2, . . . , irj,nj−1)
)
.

Proof. Clearly, X can be decomposed as in (6.1) into blocks Xj that are Hj-inde-
composable. Thus, it is sufficient to investigate the case that X is H-indecomposable.
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Let Eig(X) be the space generated by all eigenvectors of X. Then dim Eig(X) ≤ 2
by Proposition 3.4.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar
to the Jordan block Jn(λ) and thus, Theorem 5.2 implies the desired result.
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. In
particular, λ 6= µ = p(λ).
It remains to show uniqueness of the form (6.1). Thus, let us consider two canonical
forms (Q−1

1 XQ1, Q
∗
1HQ1) and (Q−1

2 XQ2, Q
∗
2HQ2) for the pair (X, H). Then the fact

that the parameters rj,2, . . . , rj,nj−1 and θj are uniquely determined by λj and the
coefficients of the polynomial p and the uniqueness of the Jordan canonical form of X
imply that, apart from permutations of blocks, these two forms can only differ in the
parameters εj in blocks of the form (6.2). After eventually having permuted blocks
in a suitable way, assume that

Q−1
1 XQ1 = X11 ⊕ · · · ⊕X1`, Q∗

1HQ1 = H11 ⊕ · · · ⊕H1`(6.4)
Q−1

2 XQ2 = X21 ⊕ · · · ⊕X2`, Q∗
2HQ2 = H21 ⊕ · · · ⊕H2`(6.5)

are partitioned conformably such that X1j = X2j , for j = 1, . . . , `, that each X1j has
only one eigenvalue λj with p(λj) = λj for j = 1, . . . , `− 1, X1` only has eigenvalues
λk with p(λk) 6= λk, and that the spectra of X1i and X1j are disjoint for i 6= j,
i, j = 1, . . . , `. (Thus, X1` = X2` contains all blocks of the forms as in (6.3).) Let
P ∈ Cn×n be such that

P−1Q−1
1 XQ1P = Q−1

2 XQ2 and P ∗Q∗
1HQ1P = Q∗

2HQ2.

Then X1j = X2j and the disjointness of spectra of X1i and X1j for i 6= j imply that P
is block diagonal with a diagonal block form P = P1⊕ . . .⊕P` conformable with (6.4).
(This follows from the well-known fact that the Sylvester equation AY −Y B = 0 has
the unique solution Y = 0 if the spectra of A and B are disjoint.) In particular,

P−1
j X1jPj = X2j = X1j and P ∗

j H1jPj = H2j .

Hence, it suffices to consider the case that X has only one eigenvalue λ satisfying
p(λ) = λ. To this end, assume that

X̃ := Q−1
1 XQ1 = X11 ⊕ · · · ⊕X1k, H̃1 := Q∗

1HQ1 = ε1Rn1 ⊕ · · · ⊕ εkRnk
(6.6)

Q−1
2 XQ2 = X21 ⊕ · · · ⊕X2k, H̃2 := Q∗

2HQ2 = δ1Rn1 ⊕ · · · ⊕ δkRnk
(6.7)

where X1j = X2j = T (λ, eiθ, a2, . . . , anj−1), εj , δj ∈ {−1,+1} for j = 1, . . . , k and,
furthermore, n1 ≥ · · · ≥ nk. Then all we have to show is that for a fixed size, say nm,
where

n1 ≥ · · · ≥ nm−1 > nm = · · · = nm+` > nm+`+1 ≥ · · · ≥ nk,

the tuple of signs (εm, . . . , εm+`) is a permutation of the tuple of signs (δm, . . . , δm+`).
Let Q := Q−1

1 Q2. Then Q−1X̃Q = X̃ and Q∗H̃1Q = H̃2. Partition Q conformably
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with (6.6).

Q =

 Q11 . . . Q1k

...
. . .

...
Qk1 . . . Qkk

 .

Then the blocks Qi,m+j ∈ Cn1×nm+j , j = 0, . . . , `, have the forms

Qi,m+j =
[ nm

nm Q̂i,m+j

ni − nm 0

]
for ni ≥ nm,

or Qi,m+j =
[ nm − ni ni

ni 0 Q̂i,m+j

]
for ni < nm,

where Q̂i,m+j is upper triangular. Indeed, we have that X1,m+jQi,m+j = Qi,m+jX2i.
Since X1,m+j is an upper triangular Toeplitz matrix with nonzero superdiagonal,
there exists Pm+j ∈ G(nm) such that Pm+j(X1,m+j − λInm

)P−1
m+j = Jnm

(0). then

Jnm
(0)Pm+jQi,m+j = Pm+jQi,m+jX2i

and for the case ni ≥ nm, the matrix Pm+jQi,m+j has the form (4.1) by Proposi-
tion 4.2. Since Pm+j is upper triangular, it follows that Qi,m+j has the desired form.
(For the case ni < nm use a corresponding variant of Proposition 4.2.) Note that for
i, j = 0, . . . , `, we have in particular that X1,m+i = X2,m+j . Thus, we can choose
Pm+j = Pm+i and we find that Pm+jQm+i,m+jP

−1
m+i commutes with Jnm

(0). But
then, Pm+jQm+i,m+jP

−1
m+i and also Qm+i,m+j are upper triangular Toeplitz matrices

and the diagonal of Qm+i,m+j is constant. Denote the diagonal element of Qm+i,m+j

by qm+i,m+j . Now, consider the equation Q∗H̃1Q = H̃2. Then for the block δm+jRnm

in H̃2, we obtain the identity

δm+jRnm =
k∑

ν=1

ενQ∗
ν,m+jRnν Qν,m+j .(6.8)

Observe that, due to the special structure of the blocks Qν,m+j , only the summands
for ν = m, . . . ,m + ` have an influence on the antidiagonal of δm+jRnm

. Thus,
considering the (nm, 1)-element of the matrix in both sides of (6.8), we obtain that

δm+j =
m+∑̀
ν=m

ενqν,m+` qν,m+`

for j = 0, . . . , `. Then setting

Q̌ :=

 qmm . . . qm+`,m

...
. . .

...
qm,m+` . . . qm+`,m+`

 ,
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we obtain that diag(δm, . . . , δm+`) = Q̌∗ diag(εm, . . . , εm+`)Q̌. But then Sylvester’s
Law of Inertia implies that (εm, . . . , εm+`) is a permutation of (δm, . . . , δm+`).

Remark 6.2. The proof of uniqueness of the parameter εj uses the same tech-
niques as does the proof of uniqueness for the case of H-selfadjoint X. For this case,
uniqueness has been shown in various sources, see, e.g., [6, 15]. Here, the proof of
uniqueness has been included for the sake of selfcontainment of the paper.

At this point, it is interesting to point out the difference in the canonical forms
given in Theorem 6.1 and Theorem 2.1. As one can immediately see, there are no
restrictions on the entries in the strict upper triangular parts in the upper triangular
Toeplitz blocks in the form (2.2). In particular, a block-Toeplitz H-normal matrix
in canonical form may have several upper triangular Toeplitz blocks associated with
the same eigenvalue λ, but with different entries in the strict upper triangular part.
On the other hand, each block Xj in the form (6.1) is uniquely determined by the
associated eigenvalue λj and the H-normality polynomial p which imposes restriction
on the entries in the strict upper triangular parts. We quote the following example
from [20] for illustrating this fact:

X =


0 1 0 0
0 0 0 0
0 0 0 i
0 0 0 0

 , H =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


By definition, X is block-Toeplitz H-normal, but a straightforward computation re-
veals that there exists no polynomial p such that X [∗] = p(X). The argument just
explained cannot be used if the geometric multiplicity of every eigenvalue of X does
not exceed one, i.e., if X is nonderogatory. In fact, it is easy to prove that for
nonderogatory matrices H-normality already implies block-Toeplitz H-normality and
polynomially H-normality.

Proposition 6.3. Let X ∈ Cn×n be H-normal and nonderogotary. Then X is
polynomially H-normal (and thus, also block-Toeplitz H-normal.)

Proof. It is a well known fact that any matrix that commutes with a nonderoga-
tory matrix X is a polynomial in X. Thus, since H-normality means that X [∗]

commutes with X, we immediately obtain that X is polynomially H-normal.
In the following, we recover from Theorem 6.1 canonical forms for H-selfadjoint

and H-unitary matrices.
Theorem 6.4 (Canonical form for H-selfadjoint matrices). Let A ∈ Cn×n be

H-selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ = A1 ⊕ · · · ⊕Ap, Q∗HQ = H1 ⊕ · · · ⊕Hp,(6.9)

where Aj is Hj-indecomposable and where Aj and Hj have one of the following forms:
i) blocks associated with real eigenvalues λj ∈ R:

Aj = Jnj
(λj), Hj = εjRnj

,(6.10)

where nj ∈ N, εj = ±1;
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ii) blocks associated with a pair (λj , λj) of conjugate complex eigenvalues:

Aj =
[
Jmj (λj) 0

0 Jmj
(λj)∗

]
, Hj =

[
0 Imj

Imj
0

]
,(6.11)

where mj ∈ N and Im(λj) > 0.
Moreover, the form (6.9) is unique up to the permutation of blocks.

Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-
normality polynomial p(t) = t. Thus p(λ) = λ if and only if λ ∈ R. Moreover,
p′(t) = 1 for all t ∈ C. Then, the result follows directly from Theorem 6.1. Indeed,
the blocks of the form (6.2) in Theorem 6.1 satisfy

λjInj + e−iθj T (0, 1,−irj,2, . . . ,−irj,nj−1) = λjInj + eiθj T (0, 1, irj,2, . . . , irj,nj−1)

which implies θj = 0, and rj,2 = · · · = rj,nj−1 = 0.
Remark 6.5. Theorem 6.4 coincides with the canonical form for H-selfadjoint

matrices derived in [6]. This form is related to the canonical form for pairs of Her-
mitian under congruence, see [25, 15]. Indeed, if (G,H) is the canonical form for the
pair (HA, H) under congruence, then (H−1G,H) is the canonical form for the pair
(A,H) under the transformation (1.1).

Theorem 6.6 (Canonical form for H-unitary matrices). Let U ∈ Cn×n be H-
unitary. Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, Q∗HQ = H1 ⊕ · · · ⊕Hp,(6.12)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:
i) blocks associated with unimodular eigenvalues λj ∈ C, |λj | = 1:

Uj = λjInj + iλjT (0, 1, ir2, . . . , irn−1), Hj = εjRnj ,(6.13)

where nj ∈ N and εj = ±1. Moreover, rk = 0 for odd k and the parameters
rk for even k are real and uniquely determined by the recursive formula

r2 =
1
2
, rk =

1
2

 k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ nj ;(6.14)

ii) blocks associated with a pair (λj , λ
−1

j ) of nonunimodular eigenvalues:

Uj =
[
Jmj (λj) 0

0 Jmj
(λj)−∗

]
, Hj =

[
0 Imj

Imj
0

]
,(6.15)

where mj ∈ N and |λj | > 1.
Moreover, the form (6.12) is unique up to the permutation of blocks.

Proof. Since U is H-unitary, we have U−1 = p(U). (In particular, this implies
p(λ) = λ−1 for all eigenvalues λ ∈ C of U .) Thus, the result is a special case of
Theorem 6.1 and the parameters θj and r2, . . . , rn−1 are uniquely determined by
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λj and the coefficients of p. The formula for θj and the recursive formula for the
parameters rj in blocks of the form (6.13) follow from equating to zero the entries in
the matrix UU [∗] − I, i.e.,(

λjInj
+ eiθj T (0, 1, ir2, . . . , irn−1)

)(
λjInj

+ e−iθj T (0, 1,−ir2, . . . ,−irn−1)
)

= Inj
.

Comparing the (1, 2)-elements in both sides, we obtain λje
iθj + λje

−iθj = 0. If
arg(λj) = φ, i.e., λj = eiφ, we obtain that ei(θj−φ) + ei(φ−θj) = 0 or, equivalently,
e2i(φ−θj) = −1 which reduces to

2(φ− θj) = π + 2kπ for some k ∈ N ∪ {0}.

Thus, noting that θj ∈ [0, π), we obtain that it has the form

θj =


φj + π

2 for φj ∈ [0, π
2 )

φj − π
2 for φj ∈ [π

2 , 3π
2 )

φj − 3π
2 for φj ∈ [ 3π

2 , 2π)

In particular, λje
iθj = i if φj ∈ [0, π

2 )∪[ 3π
2 , 2π) and λje

iθj = −i otherwise. Applying a
transformation with the diagonal matrix diag(1,−1, (−1)2, . . . , (−1)nj−1) in the case
φj ∈ [π

2 , 3π
2 ) (which has the effect of switching the sign of the superdiagonal elements

of Uj while leaving the other parameters uneffected, and changing Hj to −Hj if nj is
even) sets the superdiagonal element of Uj equal to iλj for all φj ∈ [0, 2π). Comparing
then the (1, 3)-elements in both sides of(

λjInj+iλjT (0, 1, ir2, ..., irn−1)
)(

λjInj−iλjT (0, 1,−ir2, ...,−irn−1)
)

= Inj ,(6.16)

we obtain

ir2λj(iλj) + 1− ir2λj(−iλj)

which implies r2 = 1
2 . Finally, comparing the (1, k+1)-elements in both sides of (6.16),

we obtain that

irkλj(iλj) + irk−1 +

(
k−2∑
ν=2

rνrk−ν

)
− irk−1 − irkλj(−iλj) = 0

for k = 3, . . . , n− 1 which implies rk = 0 for odd k and

rk =
1
2

 k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ nj ;

for even k. This gives the representations of Uj and Hj as in (6.13). Concerning the
blocks of the form (6.15) note that p

(
Jmj

(λj)
)∗ = Jmj

(λj)−∗.
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Remark 6.7. A slightly different version of Theorem 6.6 has been proved in [9].
The difference of the forms lies in the representation of the blocks of the form (6.15). In
[9], the corresponding block is represented as Q−1UjQ = T1⊕T2 and Q∗HjQ = R2nj

,
where T1, T2 ∈ Cnj×nj are upper triangular Toeplitz matrices. Moreover, the first ten
parameters r2, . . . , r20 are listed in [9]. These are

r2 = 1
2 , r4 = 1

8 , r6 = 1
16 , r8 = 5

128 , r10 = 7
256 ,

r12 = 21
1024 , r14 = 33

2048 , r16 = 429
32768 , r18 = 715

65536 , r20 = 2431
262144 .

Remark 6.8. It is interesting to observe that the blocks of the form (6.13) share
the property with the blocks of the form (5.4) that every other superdiagonal is zero.

7. The case of symmetric bilinear forms. In this section, we derive canoni-
cal forms for the case that H is symmetric. Here, we have to distinguish H-selfadjoint
and H-skewadjoint matrices, because both sets of matrices are invariant under mul-
tiplication with complex numbers, and thus, if A is H-selfadjoint then so is iA.

Theorem 7.1 (Canonical form for polynomially H-normal matrices). Let the
matrix X ∈ Cn×n be polynomially H-normal with H-normality polynomial p. Then
there exists a nonsingular matrix Q such that

Q−1XQ = X1 ⊕ · · · ⊕Xp, QT HQ = H1 ⊕ · · · ⊕Hp,(7.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:
i) blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = 1 if nj > 1:

Xj = Jnj
(λ), Hj = Rnj

,(7.2)

where nj ∈ N;
ii) odd-sized blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = −1:

Xj = T (λj , 1, a2, . . . , anj−1), Hj = Σnj
,(7.3)

where nj ∈ N is odd, nj ≥ 3, and ak = 0 for odd k;
iii) paired even-sized blocks associated with λj ∈ C satisfying p(λj) = λj and

p′(λj) = −1:

Xj =
[ Jmj (λj) 0

0 p
(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

Imj
0

]
,(7.4)

where mj ∈ N is even.
iv) blocks associated with a pair (λj , µj) ∈ C×C, satisfying µj = p(λj) 6= λj and

Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Xj =
[ Jmj (λj) 0

0 p
(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

Imj 0

]
,(7.5)

where mj ∈ N.
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Moreover, the form (7.1) is unique up to the permutation of blocks and the nonzero
parameters ak in (7.3) are uniquely determined by λj and the coefficients of p and can
be computed from the identity T (λj ,−1, a2, 0, a4, 0, . . .) = p

(
T (λj , 1, a2, 0, a4, 0, . . .)

)
.

Proof. Again, X can be decomposed as in (7.1) into blocks Xj that are Hj-inde-
composable and it is sufficient to investigate the case that X is H-indecomposable.
Let Eig(X) be the space generated by all eigenvectors of X. Then dim Eig(X) ≤ 2
by Proposition 3.4.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar
to the Jordan block Jn(λ) and thus, Theorem 5.2 yields the existence of blocks of the
forms (7.2) and (7.3). Indeed, note that in the case p′(λ) = −1, Theorem 5.2 implies
that n is necessarily odd.
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ
denotes one of the eigenvalues of X, then we have, in particular, either λ 6= µ = p(λ)
or λ = p(λ) and p′(λ)m−1 = −1 which is only possible for the case that p′(λ) = −1
and m is even. (In the latter case, the block is indeed Hj-indecomposable, because
blocks of type (7.3) must be odd-dimensional.)
Uniqueness of the form (7.1) follows immediately from the uniqueness of the Jordan
canonical form of X and the uniqueness statement in Theorem 5.2.

Theorem 7.2 (Canonical form for H-selfadjoint matrices). Let A ∈ Cn×n be
H-selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ = Jn1(λ1)⊕ · · · ⊕ Jnp(λp), QT HQ = Rn1 ⊕ · · · ⊕Rnp .(7.6)

Moreover, the form (7.6) is unique up to the permutation of blocks.
Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-

normality polynomial p(t) = t. Then p′(t) = 1 for all t ∈ C and p(λ) = λ for all
eigenvalues λ ∈ C of A. Thus, the result follows immediately from Theorem 7.1.

Theorem 7.3 (Canonical forms for H-skewadjoint matrices). Let S ∈ Cn×n be
H-skewadjoint. Then there exists a nonsingular matrix Q such that

Q−1SQ = S1 ⊕ · · · ⊕ Sp, QT HQ = H1 ⊕ · · · ⊕Hp,(7.7)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:
i) blocks associated with λj = 0, where nj ∈ N is odd:

Sj = Jnj (0), Hj = Σnj ;(7.8)

ii) paired blocks associated with λj = 0, where mj ∈ N is even:

Sj =
[ Jmj (0) 0

0 −
(
Jmj

(0)
)T ]

, Hj =
[

0 Imj

Imj
0

]
;(7.9)

iii) blocks associated with a pair (λj ,−λj) ∈ C × C, satifying Re(λj) > 0 and
mj ∈ N:

Sj =
[ Jmj

(λj) 0
0 −

(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

Imj
0

]
.(7.10)
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Moreover, the form (7.1) is unique up to the permutation of blocks.
Proof. S is H-selfadjoint if and only if S is polynomially H-normal with H-

normality polynomial p(t) = −t. Then p′(t) = −1 for all t ∈ C. Thus, the result
follows immediately from Theorem 7.1. Note that the parameters ak in the blocks of
the form (7.3) are zero because of T (0,−1, a2, 0, a4, . . .) = −T (0, 1, a2, 0, a4, . . .).

Remark 7.4. The canonical forms for H-selfadjoint and H-skewadjoint matrices
are related to the canonical forms for pairs of symmetric matrices or a pair consisting
of a symmetric and a skew-symmetric matrix given in [26, 16]. (See also Remark 6.5).

Theorem 7.5 (Canonical form for H-unitary matrices). Let U ∈ Cn×n be H-
unitary. Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, QT HQ = H1 ⊕ · · · ⊕Hp,(7.11)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:
i) blocks associated with λj = δ = ±1, where nj ∈ N is odd:

Uj = T (δ, 1, r2, . . . , rnj−1), Hj = Σnj
.(7.12)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and
uniquely determined by the recursive formula

r2 =
1
2
δ, rk = −1

2
δ

 k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ nj ;(7.13)

ii) paired blocks associated with λj = ±1, where mj ∈ N is even:

Uj =
[ Jmj (λj) 0

0
(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

Imj
0

]
,(7.14)

iii) blocks associated with a pair (λj , λ
−1
j ) ∈ C × C, where Re(λj) > Re(λ−1

j ) or
Im(λj) > Im(λ−1

j ) if Re(λj) = Re(λ−1
j ), and mj ∈ N:

Uj =
[ Jmj (λj) 0

0
(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

Imj
0

]
.(7.15)

Moreover, the form (7.11) is unique up to the permutation of blocks.
Proof. The result is a special case of Theorem 7.1. Since U is H-unitary, U is

polynomially H-normal and the H-normality polynomial satisfies U−1 = p(U). In
particular, this implies p(λ) = λ−1 for all eigenvalues λ ∈ C of U . Thus p(λ) = λ if
and only if λ = ±1. Let Q̃ be such that Ũ := Q̃−1UQ̃ is in Jordan canonical form.
Then

Ũp(Ũ) = Q̃−1UQ̃Q̃−1p(U)Q̃ = I.

In particular, if Jν(λ) is a Jordan block of Ũ , we obtain that Jν(λ)p(Jν(λ)) = Iν .
Observing that p(Jν(λ)) has the form as in (2.5), we obtain that λp′(λ) + p(λ) = 0
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whenever there exists a Jordan block of size larger than one associated with λ. Thus,
if p(λ) = λ (or, equivalently, λ = ±1) and if there exists a Jordan block of size
larger than one associated with λ, then p′(λ) = −1. Thus, the result follows from
Theorem 7.1. The recursive formula for the parameters rj in blocks of the form (7.12)
follow from equating to zero the entries in the matrix UU [T ] − I as in the proof of
Theorem 6.6. Here, the equations become

2δr2 − 1 = 0 and 2δrk +
k−2∑
ν=2

rνrk−ν = 0 for k = 3, . . . , nj − 1. �

Remark 7.6. It seems that the result in Theorem 7.5 has not appeared as explicit
in the literature before. However, other canonical forms and sets of invariants for H-
unitary matrices have been known earlier. For example, Jordan canonical forms for
complex orthogonal matrices under arbitrary similarity have been presented in [13].

8. The case of a skew-symmetric bilinear form. In this section, we present
a canonical form for polynomially H-normal matrices for the case that H is skew-
symmetric. Again, we have to distinguish H-selfadjoint and H-skewadjoint matrices.

Theorem 8.1 (Canonical form for polynomially H-normal matrices). Let the
matrix X ∈ Cn×n be polynomially H-normal with H-normality polynomial p. Then
there exists a nonsingular matrix Q such that

Q−1XQ = X1 ⊕ · · · ⊕Xp, QT HQ = H1 ⊕ · · · ⊕Hp,(8.1)

where Xj is Hj-indecomposable and where Xj and Hj have one of the following forms:
i) even-sized blocks associated with λj ∈ C, where p(λj) = λj and p′(λj) = −1:

Xj = T (λj , 1, a2, . . . , anj−1), Hj = Σnj
,(8.2)

where nj ∈ N is even, ak = 0 for odd k, and p′(λj) = −1;
ii) paired odd-sized blocks associated with λj ∈ C satisfying p(λj) = λj and

p′(λj) = −1 if mj > 1:

Xj =
[ Jmj (λj) 0

0 p
(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

−Imj 0

]
,(8.3)

where mj ∈ N is odd;
iii) paired blocks associated with λj ∈ C satisfying p(λj) = λj and p′(λj) = 1:

Xj =
[ Jmj

(λj) 0
0 p

(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

−Imj
0

]
,(8.4)

where mj ∈ N, mj > 1;
iv) blocks associated with a pair (λj , µj) ∈ C×C, satisfying µj = p(λj) 6= λj and

Re(λj) > Re(µj) or Im(λj) > Im(µj) if Re(λj) = Re(µj):

Xj =
[ Jmj

(λj) 0
0 p

(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

−Imj
0

]
,(8.5)

where mj ∈ N.
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Moreover, the form (8.1) is unique up to the permutation of blocks and the nonzero
parameters a2·k in (8.2) are uniquely determined by λj and the coefficients of p and can
be computed from the identity T (λj ,−1, a2, 0, a4, 0, . . .) = p

(
T (λj , 1, a2, 0, a4, 0, . . .)

)
.

Proof. Clearly, X can be decomposed as in (8.1) into blocks Xj that are Hj-inde-
composable and it is sufficient to investigate the case that X is H-indecomposable.
Let Eig(X) be the space generated by all eigenvectors of X. Then dim Eig(X) ≤ 2
by Proposition 3.4.
Case (1): dim Eig(X) = 1. Let λ be the eigenvalue of X. In particular, X is similar
to the Jordan block Jn(λ) and thus, by Theorem 5.2, we have that p′(λ) = −1, that
n is even, and that X and H can be transformed into the forms (8.2).
Case (2): dim Eig(X) = 2. Then, the result follows directly from Corollary 3.5. If λ
denotes one of the eigenvalues of X then, in particular, we either have λ 6= µ = p(λ)
or λ = p(λ) and p′(λ)m−1 = 1 (if m > 2)) which is possible for m = 1, for p′(λ) = −1
and odd m > 1, or for p′(λ) = 1 and m > 1.
Uniqueness of the form (8.1) follows immediately from the uniqueness of the Jordan
canonical form of X and the uniqueness statement in Theorem 5.2.

Theorem 8.2 (Canonical form for H-selfadjoint matrices). Let A ∈ Cn×n be
H-selfadjoint. Then there exists a nonsingular matrix Q such that

Q−1AQ =
[
Jm1(λ1) 0

0 Jm1(λ1)T

]
⊕ · · · ⊕

[
Jmp(λp) 0

0 Jmp
(λp)T

]
,(8.6)

QT HQ =
[

0 Im1

−Im1 0

]
⊕ · · · ⊕

[
0 Imp

−Imp 0

]
.(8.7)

Moreover, the form (8.6)–(8.7) is unique up to the permutation of blocks.
Proof. A is H-selfadjoint if and only if A is polynomially H-normal with H-

normality polynomial p(t) = t. Then p′(t) = 1 for all t ∈ C and p(λ) = λ for all
eigenvalues λ ∈ C of A. Thus, the result follows immediately from Theorem 8.1.

Theorem 8.3 (Canonical form for H-skewadjoint matrices). Let S ∈ Cn×n be
H-skewadjoint. Then there exists a nonsingular matrix Q such that

Q−1SQ = S1 ⊕ · · · ⊕ Sp, QT HQ = H1 ⊕ · · · ⊕Hp,(8.8)

where Sj is Hj-indecomposable and where Sj and Hj have one of the following forms:
i) blocks associated with λj = 0, where nj ∈ N is even:

Sj = Jnj (0), Hj = Σnj ;(8.9)

ii) paired blocks associated with λj = 0, where mj ∈ N is odd:

Sj =
[ Jmj

(0) 0
0 −

(
Jmj (0)

)T ]
, Hj =

[
0 Imj

−Imj 0

]
;(8.10)

iii) blocks associated with a pair (λj ,−λj) ∈ C×C, where Re(λj) > 0 and mj ∈ N:

Sj =
[ Jmj

(λj) 0
0 −

(
Jmj (λj)

)T ]
, Hj =

[
0 Imj

−Imj
0

]
.(8.11)
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Moreover, the form (8.1) is unique up to the permutation of blocks.
Proof. S is H-skewadjoint if and only if S is polynomially H-normal with H-

normality polynomial p(t) = −t. Then p′(t) = −1 for all t ∈ C. Thus, the result
follows immediately from Theorem 7.1. Note that the parameters a2·` in the blocks of
the form (7.3) are zero because of T (0,−1, a2, 0, a4, . . .) = −T (0, 1, a2, 0, a4, . . .).

Remark 8.4. The canonical forms for H-selfadjoint and H-skewadjoint matrices
are related to the canonical forms for pairs of skew-symmetric matrices or a pair
consisting of a symmetric and a skew-symmetric matrix given in [26, 16]. (See also
Remark 6.5).

Theorem 8.5 (Canonical form for H-unitary matrices). Let U ∈ Cn×n be H-
unitary. Then there exists a nonsingular matrix Q such that

Q−1UQ = U1 ⊕ · · · ⊕ Up, QT HQ = H1 ⊕ · · · ⊕Hp,(8.12)

where Uj is Hj-indecomposable and where Uj and Hj have one of the following forms:
i) even-sized blocks associated with λj = δ = ±1, where nj ∈ N is even:

Uj = T (δ, 1, r2, . . . , rnj−1), Hj = Σnj ,(8.13)

Moreover, rk = 0 for odd k and the parameters rk for even k are real and
uniquely determined by the recursive formula

r2 =
1
2
δ, rk = −1

2
δ

 k
2−1∑
ν=1

r2·νr2·( k
2−ν)

 , 4 ≤ k ≤ nj ;(8.14)

ii) paired blocks associated with λj = ±1, where mj ∈ N is odd:

Uj =
[ Jmj (λj) 0

0
(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

−Imj
0

]
;(8.15)

iii) blocks associated with a pair (λj , λ
−1
j ) ∈ C×C, satisfying Re(λj) > Re(λ−1

j )
or Im(λj) > Im(λ−1

j ) if Re(λj) = Re(λ−1
j ), where mj ∈ N:

Uj =
[ Jmj

(λj) 0
0

(
Jmj

(λj)
)−T

]
, Hj =

[
0 Imj

−Imj
0

]
.(8.16)

Moreover, the form (8.12) is unique up to the permutation of blocks.
Proof. The proof is analogous to the proof of Theorem 7.5.
Remark 8.6. It seems that the result in Theorem 8.5 has not appeared as

explicit in the literature before. However, other canonical forms and sets of invariants
for H-unitary matrices have been known earlier.

9. The real case. So far, mainly the complex case has been studied, but some
of the general results in Sections 3 and 4 apply to the real case as well. These
results allow a classification of polynomially H-normal matrices under the additional
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hypothesis that the spectrum is real. For the case of a nonreal spectrum, further
considerations are necessary, see [18] for details.

Theorem 9.1. Let δ = ±1 be such that HT = δH and X ∈ Rn×n be polynomially
H-normal with H-normalily polynomial p ∈ R[t]. If σ(X) ⊆ R, then there exists a
nonsingular matrix P ∈ Rn×n such that

P−1XP = X1 ⊕ · · · ⊕Xp, PT HP = H1 ⊕ · · · ⊕Hp,(9.1)

where Xj is Hj-indecomposable, and Xj and Hj have one of the following forms:
i) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = 1 if nj > 1:

if δ = +1 : Xj = Jnj
(λj), Hj = εjRnj

,(9.2)

if δ = −1 : Xj =
[ Jmj

(λj) 0
0 p

(
Jmj (λj)

)T ] , Hj =
[

0 Imj

−Imj 0

]
,(9.3)

where εj = ±1 and nj ∈ N if δ = +1 and nj = 2mj ∈ N is even if δ = −1;
ii) blocks associated with λj ∈ R satisfying p(λj) = λj and p′(λj) = −1:

Xj = T (λj , 1, aj,2, . . . , aj,nj−1), Hj = εjΣnj
,(9.4)

where nj > 1 is odd if δ = 1 and even if δ = −1, aj,2, . . . , aj,nj−1 ∈ R,
aj,k = 0 for odd k, and εj = ±1;

iii) blocks associated with λj ∈ R satisfying p(λj) = λj and satisfying p′(λj) = −1
if mj > 1:

Xj =
[ Jmj

(λj) 0
0 p

(
Jmj (λj)

)T ]
, Hj =

[
0 Imj

δImj 0

]
,(9.5)

where mj ∈ N is even if δ = +1 and odd if δ = −1;
iv) blocks associated with a pair (λj , µj) ∈ R× R with µj = p(λj) < λj = p(µj):

Xj =
[ Jmj (λj) 0

0 p
(
Jmj

(λj)
)T ]

, Hj =
[

0 Imj

δImj
0

]
,(9.6)

where mj ∈ N.
The form (9.1) is unique up to permutation of blocks and the nonzero parameters aj,k

in (9.4) are uniquely determined by λj and the coefficients of p and can be computed
from the identity T (λj ,−1, aj,2, 0, aj,4, 0, . . .) = p

(
T (λj , 1, aj,2, 0, aj,4, 0, . . .)

)
.

Proof. Clearly, X can be decomposed as in (9.1) into blocks Xj that are Hj-inde-
composable. Thus, it is sufficient to investigate the case that X is H-indecomposable.
Taking into account that X has real eigenvalues only, the result immediately follows
from Proposition 3.4, Corollary 3.5, and Theorem 5.2. Concerning uniqueness note
that if (X̃1, H̃1) and (X̃2, H̃2) are two canonical forms for (X, H) as in (9.1), then the
fact that X̃1 and X̃2 must have the same Jordan canonical form and the uniqueness
statements in Corollary 3.5, and Theorem 5.2 imply that the two canonical forms
(X̃1, H̃1) and (X̃2, H̃2) may only differ in the parameters εj in (9.2) and (9.4). The
proof of uniqueness of these parameters follows exactly the same lines as the proof in
Theorem 6.1 that deals with the complex case.
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10. Conclusions. The set of polynomially H-normals turns out to be an ade-
quate set of H-normal matrices that simultaneously describes the behaviour of the
sets of H-selfadjoint, H-skewadjoint, and H-unitary matrices in the context of classifi-
cation. The typical scheme of the canonical form for polynomially H-normal matrices
can also be observed in the canonical forms for H-selfadjoint, H-skewadjoint, and H-
unitary matrices, not only in the case that H is Hermitian and induces a sesquilinear
form, but also in the case that H is symmetric or skew-symmetric and induces a
bilinear form. There are basically two types of eigenvalues of polynomially H-normal
matrices:

1) eigenvalues that occur in pairs
(
λ, p(λ)

)
, λ 6= p(λ) or

(
λ, p(λ)

)
, λ 6= p(λ),

respectively;
2) eigenvalues λ for which the pairing degenerates, because of λ = p(λ) or

λ = p(λ), respectively.
In the case of Hermitian H, the set {λ ∈ C |λ = p(λ)} may be infinite. In the case of
H-selfadjoint matrices it is the real line and in the case of H-unitary matrices it is the
unit circle. In the case of symmetric or skew-symmetric H, the set {λ ∈ C |λ = p(λ)}
is either C (as in the case of H-selfadjoint matrices when H is symmetric) or finite
(possibly empty). Moreover, Jordan blocks for a fixed size m that are associated with
an eigenvalue of type 2) may be forced to occur in pairs. Information on whether this
happens or not can be obtained from the value p′(λ). In particular, this implies that
polynomially H-normal matrices need not be block-Toeplitz H-normal in the case
that H is symmetric or skew-symmetric.
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