#################################################################################### #################################################################################### #################################################################################### ### ### ### ### ### LIBRARY OF TRIANGULATIONS ### ### by Bruno Benedetti and Frank H. Lutz ### ### http://page.math.tu-berlin.de/~lutz/stellar/library_of_triangulations.html ### ### ### ### ### ### name of example: ### ### ### ### HMT_4 ### ### ### ### ### ### description: ### ### ### ### 2-dimensional simplicial complex with torsion ### ### derived from a valid sequence for the Hadamard matrix H(4) ### ### ### ### ### ### properties: ### ### ### ### f=(19,78,60), ### ### H_*=(Z,(Z_2)^2 * Z_4,0), ### ### perfect discrete Morse vector: (1,3,3) ### ### ### ### ### ### references: ### ### ### ### D. Lofano and F. H. Lutz. ### ### Hadamard matrix torsion. ### ### Arxiv:2109.13052 (2021). ### ### ### ### J. J. Sylvester. ### ### Thoughts on inverse orthogonal matrices, simultaneous sign successions, ### ### and tessellated pavements in two or more colours, with applications to ### ### Newton's rule, ornamental tile-work, and the theory of numbers. ### ### The London, Edinburgh and Dublin Philosophical Magazine and Journal ### ### of Science 34, 461-475 (1867). ### ### ### ### ### ### ### #################################################################################### #################################################################################### #################################################################################### facets:=[ [ 0, 1, 4 ], [ 0, 1, 6 ], [ 0, 1, 12 ], [ 0, 1, 14 ], [ 0, 2, 3 ], [ 0, 2, 5 ], [ 0, 2, 11 ], [ 0, 2, 13 ], [ 0, 3, 6 ], [ 0, 3, 8 ], [ 0, 4, 5 ], [ 0, 4, 9 ], [ 0, 5, 8 ], [ 0, 6, 9 ], [ 0, 7, 10 ], [ 0, 7, 12 ], [ 0, 7, 14 ], [ 0, 8, 9 ], [ 0, 10, 11 ], [ 0, 10, 13 ], [ 0, 11, 14 ], [ 0, 12, 13 ], [ 1, 2, 15 ], [ 1, 2, 16 ], [ 1, 2, 17 ], [ 1, 2, 18 ], [ 1, 4, 18 ], [ 1, 6, 17 ], [ 1, 12, 16 ], [ 1, 14, 15 ], [ 2, 3, 16 ], [ 2, 5, 15 ], [ 2, 11, 17 ], [ 2, 13, 18 ], [ 3, 4, 5 ], [ 3, 4, 16 ], [ 3, 4, 18 ], [ 3, 5, 6 ], [ 3, 8, 18 ], [ 4, 9, 16 ], [ 5, 6, 15 ], [ 5, 6, 17 ], [ 5, 8, 17 ], [ 6, 9, 15 ], [ 7, 8, 9 ], [ 7, 8, 17 ], [ 7, 8, 18 ], [ 7, 9, 10 ], [ 7, 12, 17 ], [ 7, 14, 18 ], [ 9, 10, 15 ], [ 9, 10, 16 ], [ 10, 11, 16 ], [ 10, 13, 15 ], [ 11, 12, 13 ], [ 11, 12, 16 ], [ 11, 12, 17 ], [ 11, 13, 14 ], [ 13, 14, 15 ], [ 13, 14, 18 ] ];