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Abstra
t

We present a 
omputer program based on bistellar operations that provides a useful tool for

the 
onstru
tion of simpli
ial manifolds with few verti
es. As an example, we obtain a 16-vertex

triangulation of the Poin
ar�e homology 3-sphere; we 
onstru
t an in�nite series of non-PL d-

dimensional spheres with d+13 verti
es for d � 5; and we show that if a d-manifold admits any

triangulation on n verti
es, then it admits a non-
ombinatorial triangulation on n+12 verti
es

(d � 5).

1 Introdu
tion

In the early days of topology, manifolds were often studied via triangulations. The


ombinatorial stru
ture makes the 
omputation of various invariants possible, and

theorems 
an be proved based on the assumption of a suitable triangulation. See e.g.

[29℄, [40℄ and [51℄ for a

ounts of some main lines in the histori
al development. Sin
e

the manifolds themselves, and not their 
ombinatorial stru
ture, are the real obje
ts

of interest in topology, there was a growing desire to get away from triangulations.

In the 1930's and 40's algebrai
 tools gradually repla
ed the 
ombinatorial ones, and

to the extent that from this time on there still was an interest in de
omposing a

manifold, the more e
onomi
al CW 
omplexes gained popularity.

While triangulations always remained of interest to dis
rete geometers and geomet-

ri
 and PL topologists, the emergen
e of 
omputers has subtly 
hanged the general

situation. It is now possible (at least in prin
iple) to study 
ompa
t manifolds and


ompute their invariants on a ma
hine. But a fundamental question naturally arises:

How do you present the manifold to a 
omputer? It is 
lear that some �nite 
ombina-

torial en
oding must be used. A de
omposition as a CW 
omplex may be elegant and

also e
onomi
al in terms of the number of 
ells, but it is in general diÆ
ult to explain

the atta
hing maps to a 
omputer. One needs something like a regular CW 
omplex,

where the atta
hing maps are determined by the 
ombinatori
s of in
lusion of 
losed


ells. However, the 
on
eptually easiest presentation is as a simpli
ial 
omplex, say,
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given as the list of its fa
ets (maximal fa
es). Su
h an en
oding is 
lear and simple,

as long as it is not too large. Thus, the matter of the size of a triangulation has taken

on pra
ti
al signi�
an
e. It is of interest to say something about the number of ver-

ti
es, or the total number of fa
es, of a triangulation, and also to expli
itly 
onstru
t

minimal or otherwise optimal triangulations.

For earlier work on the topi
 of minimal triangulations we refer to [2℄, [3℄, [5℄, [9℄,

[10℄, [26℄, [27℄, [28℄ and [54℄; and for algorithmi
 approa
hes to re
ognition problems

for manifolds to the papers [38℄, [41℄ and [52℄.

The work reported in this paper grew out of a desire to have a 
omputer tool for

experimentation with triangulations. We had three purposes in mind:

1. To be able to start with some triangulation of a manifold and let the


omputer sear
h for smaller triangulations.

2. To be able to determine, via a heuristi
, the homeomorphism type of a

manifold and, in parti
ular, to re
ognize (
ombinatorial) spheres.

3. To be able to sear
h for 
ounterexamples to 
onje
tures, where su
h ex-

amples might be hard to �nd due to their size or 
omplexity.

Sin
e to determine the homeomorphism type of a manifold is a deli
ate and mu
h stud-

ied matter, the se
ond point needs immediate 
lari�
ation. What we have in mind is

a pro
edure for heuristi
ally 
omparing a given test manifold with referen
e manifolds

having similar invariants from a library of standard manifolds on few verti
es, with no

guarantee for su

ess. In future work the 
ombinatorial ideas of this paper 
an hope-

fully be expanded and 
ombined with algorithms for 
omputing topologi
al invariants

(not only homology, but also fundamental group, 
hara
teristi
 
lasses, interse
tion

forms, multipli
ative stru
ture of 
ohomology, : : : ) to 
reate a truly versatile tool for

manipulation and identi�
ation of manifolds.

A 
omputer program, BISTELLAR [35℄, was written whi
h repeatedly modi�es a

triangulation by lo
al so 
alled \bistellar operations". Su
h operations for dimensions

2 and 3 are illustrated in Figures 1 and 2; we defer the formal de�nition to Se
tion 2.

The program a

epts as input a simpli
ial manifoldM (or any pure simpli
ial 
omplex)

presented via the list of its fa
ets. It then sear
hes through other triangulations of

M via bistellar moves, using randomness 
ontrolled by a \simulated annealing" type

strategy, to be explained in Se
tion 3.

The program has turned out to be quite useful for the �rst two purposes. For rea-

sons that will be explained later (sear
hing for 
ounterexamples to the \g-
onje
ture

for spheres"), we needed non-PL triangulations of the d-sphere (d � 5) of manageable

size. As a stepping stone in the 
onstru
tion we gave BISTELLAR the task to 
om-

pute a small triangulation of what Rolfsen [46, p. 308℄ 
alls \the ubiquitous Poin
ar�e

homology sphere". As reported in Se
tion 5 the program produ
ed a triangulation

on 16 verti
es whi
h seems to be the smallest known triangulation of this manifold.

It follows from work of Walkup [54℄ that any triangulation must have at least 11 ver-

ti
es. Thus, it is at the moment impossible to say where between 11 and 16 the truth

about the optimal number of verti
es lies. However, after having run our program
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1-move

2-move

0-move

Figure 1: Bistellar moves for d = 2.

over millions of triangulations, we are prepared to believe that 16 verti
es might in

fa
t be best possible for this manifold.

The 16-vertex triangulation of the Poin
ar�e spa
e is the starting point for a proof

that there exist non-PL triangulations of the d-sphere on d+13 verti
es for all d � 5.

This is in turn used to show that if an arbitrary d-manifold admits some triangulation

on n verti
es, then it admits a non-PL triangulation on n+12 verti
es (d � 5). Also,

the (d + 13)-vertex non-PL spheres 
omplement earlier theorems of Barnette and

Gannon [5℄ and Brehm and K�uhnel [9℄; see Se
tion 6.

The sear
h for minimal triangulations using our program has been 
ontinued by

one of us (Lutz), and has led to several new results. They will be presented elsewhere

(see [25℄, [32℄ and [33℄), but let us summarize the main �ndings.

Combinatorial triangulations were found for

� S

2

� S

2

on 11 verti
es,

� S

3

� S

2

on 12 verti
es,

� S

3

� S

3

on 13 verti
es,

� (S

2

� S

2

)#(S

2

� S

2

) on 12 verti
es,

� RP

4

on 16 verti
es.

In all these 
ases, the theoreti
ally minimal numbers of verti
es for 
ombinatorial

triangulations of these manifolds are a
hieved.

The triangulations of S

3

�S

2

on 12 and of S

3

�S

3

on 13 verti
es are of parti
ular

interest, sin
e they attain the minimal numbers of verti
es that any (non-spheri
al)


ombinatorial 5- or 6-manifold 
an have. They therefore establish that the Brehm-

K�uhnel [9℄ lower bound for the number of verti
es of 
ombinatorial d-manifolds is
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0-move

3-move

1-move

2-move

Figure 2: Bistellar moves for d = 3.

sharp in dimensions 5 and 6. For a statement of this bound see Theorem 8 and the

senten
e following it.

An extended version of the program, BISTELLAR EQUIVALENT [36℄, was used

to determine the homeomorphism type of a large number of manifolds, e.g. of all tri-

angulated 3-manifolds that have a vertex-transitive automorphism group on n � 15

verti
es (
f. [25℄). The idea behind this is to �rst 
onstru
t referen
e triangulations of

interesting manifolds with few verti
es. If then a test obje
t has the same homology

as a parti
ular referen
e manifold (this 
an be 
he
ked with the 
omputer program

HOMOLOGY by He
kenba
h [18℄), it was possible in many 
ases to �nd a bistellar

equivalen
e between the two manifolds, and thus to show that they are PL homeo-

morphi
. For this we �rst sear
hed for a small triangulation of the test obje
t, and

then applied further bistellar 
ips until, eventually, we were able to show that the

modi�ed test obje
t is 
ombinatorially isomorphi
 to the referen
e manifold.

Naturally, this works parti
ularly well for manifolds with a unique minimal trian-

gulation, su
h as PL d-spheres that 
an be minimally triangulated as the boundary


omplex of the (d + 1)-dimensional simplex. Therefore the program 
an be used, at

least as a heuristi
, to determine whether a given simpli
ial 
omplex is a 
ombinatorial

manifold (i.e., whether all vertex links are PL spheres). Other manifolds that have

a unique minimal triangulation are e.g. the twisted sphere produ
t (or 3-dimensional

Klein bottle) S

2

�S

1

(
f. [2℄, [3℄, [54℄) and the 
omplex proje
tive plane CP

2

[28℄, in

both 
ases on 9 verti
es.

The program has not yet a
hieved any su

ess for the third purpose, that of �nding


ounterexamples. At the end of Se
tion 2 we report on some experiments of this kind.

The paper is stru
tured as follows. In the next se
tion we review some de�nitions

and some general fa
ts about triangulations of manifolds, bistellar 
ips and the 
ount-

ing of fa
es. Se
tion 3 presents the program. In Se
tion 4 we dis
uss the Poin
ar�e

4



homology 3-sphere and 
onstru
t some highly symmetri
 triangulations for input into

BISTELLAR. Se
tion 5 presents the 16-vertex triangulation that was found. In Se
-

tion 6 we derive via multiple suspensions the non-PL d-spheres on few verti
es, and

dis
uss how their existen
e relates to the existing theoreti
al bounds for su
h obje
ts.

In the brief Se
tion 7, �nally, we 
onstru
t a highly symmetri
 triangulation of RP

3

using the same general te
hnique as in Se
tion 4.

2 Review of de�nitions and ba
kground

We 
olle
t here some de�nitions and dis
uss a bit more the ba
kground to this paper,

in
luding some general fa
ts 
on
erning triangulations of manifolds. For the general

notions of topology we refer to Stillwell [51℄ and for PL topology to Glaser [17℄,

Hudson [19℄ and Rourke and Sanderson [47℄.

All manifolds in this paper are 
ompa
t, 
onne
ted and 
losed. Sin
e PL 
on
epts

play su
h a role here, we re
all the following de�nitions. A PL sphere is a simpli
ial


omplex whi
h is pie
ewise linearly homeomorphi
 to the boundary of a simplex. A


ombinatorial manifold (or PL manifold) is a triangulation of a topologi
al manifold

su
h that the link at every vertex is a PL sphere.

For d 6= 4, a triangulation of the d-sphere is PL in the �rst sense if and only if it is

a PL manifold in the se
ond sense. For d � 3 this follows from the work of Moise [39℄

and for d � 5 from the work of Kirby and Siebenmann [21℄; namely, there is a unique

PL stru
ture for spheres in these dimensions. For d = 4 this question is not fully

understood: Is a 
ombinatorial manifold homeomorphi
 to the 4-sphere ne
essarily a

PL sphere? Sin
e in dimension 4 the 
ategory of PL manifolds is equivalent to the

smooth 
ategory, the question is equivalent to: Does there exist an \exoti
" 4-sphere?

(We are grateful to M. Kre
k for 
larifying this distin
tion.)

It was shown by Rado (in 1924) that all 2-manifolds and by Moise (in 1952) that

all 3-manifolds 
an be triangulated (
f. [39℄, [40℄, [44℄, [51℄). Sin
e the link of a vertex

in a triangulated 2-manifold is a polygon and the link of a vertex in a triangulated

3-manifold is a 2-sphere (and all 2-spheres are PL), 2- and 3-dimensional manifolds

are always PL.

The situation is mu
h more subtle in dimension 4. Freedman 
onstru
ted in 1982

a non-di�erentiable analogue of the 
omplex proje
tive plane (see [15℄, [16, Se
t. 8.3

and 10.1℄), and this fake CP

2

provides an example of a 4-manifold that 
annot be

triangulated as a 
ombinatorial manifold. By 
ombining work of Casson with that of

Freedman (see [1, p. xvi℄) one obtains examples of topologi
al 4-manifolds that 
annot

be triangulated at all. For expositions of these triangulation questions and related

matters see e.g. [21, Annex 2 and 3℄, [29℄, [30℄, [37℄, [40℄ and [51℄.

In 1963 Milnor (
f. Lashof [30℄) listed seven problems that he thought of as the

toughest and most important problems in geometri
 topology. Among them is the

question whether every topologi
al manifold 
an be triangulated, now known to have

a negative answer. Also on the list is the double suspension problem that asks whether

the double suspension of a homology 3-sphere is a topologi
al sphere. This problem

was settled by Edwards [14℄ in 1974 for the double suspension of the Mazur homology
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3-sphere whi
h he proved is a topologi
al 5-sphere (see [12, Ch. 12℄). The theorem

has later been generalized:

Theorem 1 (Cannon [11℄) The double suspension S

2

H

d

of any d-dimensional homo-

logy sphere H

d

is homeomorphi
 to S

d+2

.

It follows that S

2

H

d

, although homeomorphi
 to S

d+2

, has a non-PL stru
ture, sin
e

H

d

appears as the link of some 1-simplex in S

2

H

d

. This fa
t will be of importan
e in

Se
tion 6.

We now spe
ialize the dis
ussion to the 
on
epts and tools that will be needed in

this paper.

De�nition 2 [42℄ Let M be a simpli
ial d-manifold (or any pure d-dimensional sim-

pli
ial 
omplex). If A is a (d � i)-fa
e of M , 0 � i � d, su
h that link

M

(A) is the

boundary Bd(B) of an i-simplex B that is not a fa
e of M , then the operation �

A

on

M de�ned by

�

A

(M) := (Mn(A �Bd(B))) [ (Bd(A) �B)

is 
alled a bistellar i-move.

Alternatively, we say bistellar operations or bistellar 
ips for bistellar moves. Bistellar

i-moves with i > b

d

2


 are also 
alled reverse (d� i)-moves. Note that a 0-move adds

a new vertex to a triangulation, while a reverse 0-move deletes a vertex; see Figures 1

and 2. Two pure simpli
ial 
omplexes are bistellarly equivalent if there exists a �nite

sequen
e of bistellar operations leading from one triangulation to the other (and vi
e

versa).

It is easy to see that bistellar equivalen
e implies being PL homeomorphi
, for any

simpli
ial manifolds. For 
ombinatorial triangulations the 
onverse is also true.

Theorem 3 (Pa
hner [42, Thm. 1℄) Two 
ombinatorial manifolds are bistellarly equiv-

alent if and only if they are PL homeomorphi
.

De�ne the bistellar 
ip graph of a triangulable manifold M to have as nodes the

triangulations of M (or, more pre
isely, their isomorphism 
lasses up to relabeling

the verti
es), and an edge between two nodes if one triangulation 
an be obtained

via a single bistellar 
ip from the other (and vi
e versa). If the dimension of M is at

most 3, then this graph is 
onne
ted, as shown by the work of Moise [39℄ together with

Theorem 3. We will see in Se
tion 6 that if d � 5 then this graph has in�nitely many


onne
ted 
omponents. Of 
ourse, the manifolds within ea
h 
onne
ted 
omponent

of the bistellar 
ip graph are pairwise PL homeomorphi
. If M 
an be triangulated

as a 
ombinatorial manifold, then by Pa
hner's theorem the (in�nite) spa
e of all


ombinatorial triangulations of M is divided into equivalen
e 
lasses of pairwise PL

homeomorphi
 triangulations whi
h 
oin
ide with 
onne
ted 
omponents of the bi-

stellar 
ip graph. For a dis
ussion of Pa
hner's theorem in a topologi
al environment

see [31℄.

We now 
onsider 
ounting fa
es of all dimensions, not just verti
es (dimension

zero). For more details and referen
es to this area see the survey [6℄, and for triangu-

lations of spheres and polytopes [50℄.
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Let f

i

be the number of i-dimensional fa
es of a triangulated d-manifold M (with

f

�1

= 1), and de�ne numbers h

i

by

d+1

X

i=0

h

i

x

d+1�i

=

d+1

X

i=0

f

i�1

(x� 1)

d+1�i

: (1)

The sequen
e (f

0

; : : : ; f

d

) is 
alled the f -ve
tor of M , and (h

0

; : : : ; h

d+1

) its h-ve
tor.

The 
orresponding g-ve
tor (g

0

; : : : ; g

b(d+1)=2


) is de�ned by g

0

= 1 and g

i

= h

i

�h

i�1

,

for i � 1.

It was shown by Klee [23℄ for any triangulated manifold M that the fa
e num-

bers (f

0

; : : : ; f

b(d�1)=2


) determine the remaining numbers (f

b(d+1)=2


; : : : ; f

d

) via linear

relations. From (1) we see that this means that (h

0

; : : : ; h

b(d+1)=2


), and thus also

(g

0

; : : : ; g

b(d+1)=2


), determine the 
omplete f -ve
tor. In other words, the g-ve
tor of

a triangulated manifold 
ontains 
omplete information about its f -ve
tor.

The relevan
e of this for our program is the following.

Theorem 4 (Pa
hner [42, p. 83℄) If M

0

is obtained from M by a bistellar k-move,

0 � k � b(d� 1)=2
, then

g

k+1

(M

0

) = g

k+1

(M) + 1

g

i

(M

0

) = g

i

(M) for all i 6= k + 1:

Furthermore, if d is even and k =

d

2

, then g

i

(M

0

) = g

i

(M) for all i.

This means that it is very easy to follow and 
ontrol the su

essive f -ve
tors during a

sequen
e of bistellar 
ips. In our program we 
ompute and store the initial g-ve
tor,

whi
h is then updated with a +1 (or �1) in position k+1 for ea
h k-move (or reverse

k-move). (Remark: In the 
ase of odd-dimensional manifolds the result implies that

the bistellar 
ip graph is bipartite { it 
an be 
olored by the sum (mod 2) of the

entries of the g-ve
tor. In even dimensions,

d

2

-moves do not 
hange the g-ve
tor and

sometimes even lead to a 
ombinatorially isomorphi
 triangulation of a manifold, that

is, the bistellar 
ip graph may have loops.)

The linear relations of Klee take on a parti
ularly attra
tive form ifM triangulates

a sphere (the Dehn-Sommerville relations):

h

i

= h

d+1�i

: (2)

If furthermore M is polytopal (i.e., 
ombinatorially isomorphi
 to the boundary 
om-

plex of a simpli
ial 
onvex polytope), then by a theorem of Stanley [49℄

(g

0

; : : : ; g

b(d+1)=2


) is an M-sequen
e. (3)

This 
ombinatorial 
ondition is de�ned as follows, showing that it 
an easily be tested

by ma
hine. For integers k; n � 1 there is a unique way of writing

n =

�

a

k

k

�

+

�

a

k�1

k � 1

�

+ � � �+

�

a

i

i

�
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so that a

k

> a

k�1

> � � � > a

i

� i � 1. Then de�ne

�

k

(n) =

�

a

k

� 1

k � 1

�

+

�

a

k�1

� 1

k � 2

�

+ � � �+

�

a

i

� 1

i� 1

�

:

Also let �

k

(0) = 0. A sequen
e (n

0

; n

1

; : : : ) of nonnegative integers is 
alled an

M-sequen
e (M for Ma
aulay) if

n

0

= 1 and �

k

(n

k

) � n

k�1

; for all k � 2.

Note that a nontrivial 
onsequen
e of (3) is that g

i

� 0 for polytopal spheres. The

\g-theorem" states that the 
onditions (2) and (3) together 
hara
terize the f -ve
tors

of polytopal spheres. The suÆ
ien
y of these 
onditions was proved by Billera and

Lee [7℄.

The 
onje
ture to whi
h we wanted BISTELLAR to sear
h for 
ounterexamples

is the so 
alled \g-
onje
ture for spheres" whi
h states that 
ondition (3) is valid

for all triangulated spheres, not just polytopal ones. If 
orre
t, this would imply a


hara
terization of the f -ve
tors of spheres.

The g-
onje
ture 
an be dedu
ed from known results for all d-spheres up to dimen-

sion 4, but is open for d � 5. Attempts during the last 20 years to prove it have so

far been without su

ess. It therefore seemed to us that the possibility of its falsity

should be 
onsidered and tested.

In order to look for 
ounterexamples we started with non-PL triangulations of

the 5- and 6-sphere and let the bistellar 
ip program sear
h through thousands of

triangulations. This purpose is what originally made us look for small triangulations

of the Poin
ar�e 3-sphere and its suspensions; see Se
tion 6 for a des
ription of the

spheres we used to start the 
omputer sear
h. The bistellar 
ip program guarantees

by Theorem 3 that all triangulations visited during the sear
h are non-PL, and, in

parti
ular, that they are not polytopal. At ea
h step the g-ve
tor is updated, as

des
ribed in Theorem 4, and tested for being an M-sequen
e. The parameters for the

program 
an be set to put priority on 
reating a g-ve
tor that is not an M-sequen
e

(if possible), e.g. a g-ve
tor with some negative entry.

So, what was the result? No 
ounterexamples to the g-
onje
ture were found.

Although no 
on
lusions 
an be drawn, let us hope that this is an indi
ation that the


onje
ture is 
orre
t.

3 The bistellar 
ip program

The 
omputer program that will now be presented performs walks on the bistellar


ip graph of triangulations of a manifold M . By ne
essity we must restri
t attention

to some 
onne
ted 
omponent of this graph. For a parti
ular triangulation of M

from this 
omponent (the input) we want to perform bistellar modi�
ations with

the obje
tive to obtain \small" (hopefully even minimal), or otherwise sought-after,

triangulations of M (within the 
omponent). As an obje
tive fun
tion that we want

to optimize, we 
ould take for example the total number of fa
es of a triangulation.

Nevertheless, the sum G of the entries of the g-ve
tor seems to be a more appropriate
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obje
tive fun
tion, sin
e any up-move (i.e., i-move with 0 � i � b

d�1

2


) in
reases G

by one and any down-move (reverse up-move) de
reases G by one, so that we have

good 
ontrol over G. (If d is even, then

d

2

-moves do not 
hange G.) In addition to the

goal of minimizing the obje
tive fun
tion G we perform moves a

ording to priority

rules. Reverse 0-moves are given the highest priority as they delete a vertex, then


ome reverse 1-moves, reverse 2-moves, et
. If no further reverse moves are available,

this might be due to the fa
t that we have a
hieved a global minimum for G within

our 
omponent of triangulations. But we 
an as well have gotten stu
k in some lo
al

minimum.

A 
on
ept that is very useful in su
h situations is simulated annealing [22℄. In a


ontinuous version of simulated annealing (see e.g. [45℄) one wants to �nd a global

minimum x

�

2 R

n

for a real valued obje
tive fun
tion f : R

n

! R, i.e., x

�

2 R

n

su
h

that f(x

�

) � f(x) for all x 2 R

n

. Starting at some initial point y one moves to a

randomly pi
ked neighboring point y

0

if �f = f(y

0

)� f(y) � 0. If �f > 0, then we

move \uphill" to y

0

with probability exp(��f=�) or otherwise stay put at y. In the

next step a new neighboring point y

00

of y

0

(or of y if we have not moved) is 
hosen

at random and so on. The 
ooling parameter � > 0 des
ribes how likely it is to move

\uphill" and is usually de
reased with time (the number of steps).

We now des
ribe an appropriate simulated-annealing-type strategy for bistellar


ips. As soon as we are trapped in a \lo
al" minimum, we perform an up-move.

(Up-moves are also performed a

ording to priority rules, su
h as \perform a (k+1)-

move before a k-move".) Sometimes, this already paves the way for further reverse

moves that lead away from the lo
al minimum. But we might also fall ba
k into the

same lo
al minimum in the following round. After a 
ertain number of up-moves has

be
ome ne
essary (we 
all this the relaxation parameter) we start \heating up" the

fun
tion G, i.e., for a number of steps given by the heating parameter we perform

only up-moves (as long as this is possible), with the ex
eption that we usually do not

perform 0-moves, sin
e this would blow up the size of the 
omplex too qui
kly. Then

we let the system relax until we have to heat up again. If there is more than one

option for moves of a 
ertain priority, we pi
k one of these options randomly and then

exe
ute the move.

An implementation of the bistellar flip program

We start with some triangulation of a d-manifold, represented by the list of its fa
ets,

and determine all its fa
es and 
ompute its f - and g-ve
tor. Next, we 
he
k for every

(d� i)-fa
e of the triangulation whether it is 
ontained in pre
isely i+ 1 fa
ets. The


olle
tion of these fa
es (together with their respe
tive links) form the raw options for

bistellar i-moves. If we want to 
onsider proper options for i-moves, then we in
lude

only those raw options for i-moves for whi
h in addition the links satisfy the 
ondition

of being the boundary of an i-simplex that is not a fa
e of the triangulation. This

last 
ondition is easy to 
he
k.

When we determine the raw options at the beginning, we have to 
he
k for all f

i

i-fa
es how often they are in
luded in one of the f

d

fa
ets. This amounts to f

i

� f

d

operations. Nevertheless, in the following rounds we do not have to re
ompute the

raw options from s
rat
h, sin
e with any bistellar 
ip we simply 
ut out a ball lo
ally

9



and repla
e it by another ball. All raw options for fa
es in the interior of the ball that

we remove have to be deleted and raw options for the fa
es in the interior of the new

ball have to be in
luded. Raw options for fa
es on the 
ommon boundary of the balls

might also 
hange. But altogether, there is only a 
onstant number of fa
es involved

in updating the raw options. Finally, to �nd out whi
h of the raw options of a given

priority are proper options, we have to test the 
ondition on links mentioned above.

We wrote the program BISTELLAR in GAP [48℄, as all operations for sets and

lists that we need are available in this 
omputer algebra pa
kage. For dimension 3,

the listing of the main part of the program is as follows. Complete information about

BISTELLAR is best obtained by downloading the program

(http://www.math.TU-Berlin.de/diskregeom/stellar/).

1 ## initial settings ##

2

3 InputFa
ets;

4 Compute_RawOptions;

5 Compute_f_and_g_ve
tor;

6 g_min:=g;

7

8 ## parameters ##

9

10 rounds:=1;

11 relaxation:=0;

12 heating:=0;

13

14 while rounds <= 50000 do

15

16 ## strategy for options ##

17

18 options:=[℄;

19

20 if heating > 0 then

21 In
lude_MoveOptions(1);

22 if options = [℄ then

23 In
lude_ReverseMoveOptions(1);

24 heating:=0;

25 fi;

26 heating:=heating-1;

27 else

28 In
lude_ReverseMoveOptions(0);

29 if options = [℄ then

30 In
lude_ReverseMoveOptions(1);

31 if options = [℄ then

32 In
lude_MoveOptions(1);

10



33 if options = [℄ then

34 In
lude_MoveOptions(0);

35 fi;

36 relaxation:=relaxation+1;

37 if relaxation = 10 then

38 heating:=15;

39 relaxation:=0;

40 fi;

41 fi;

42 fi;

43 fi;

44

45 ## perform Move or ReverseMove ##

46

47 ChooseOptionAtRandom;

48 Exe
uteOption;

49 Update_RawOptions;

50 Update_f_and_g_ve
tor;

51 Print(rounds," ",g,"\n");

52 if g < g_min then

53 g_min:=g;

54 Print("f-ve
tor = ",f,"\n");

55 Print(fa
ets,"\n");

56 fi;

57

58 rounds:=rounds+1;

59

60 od;

In higher dimensions, the strategy for the options 
an easily be adapted, although

it takes time and experiments to �gure out reasonable parameters for heating and

relaxation. (This is a 
ommon problem with simulated annealing algorithms.)

4 The ubiquitous Poin
ar�e homology 3-sphere

The original example by Poin
ar�e of a non-simply-
onne
ted manifold with the same

homology as the ordinary 3-sphere appeared in [43℄. It was 
onstru
ted by him from

two solid double tori identi�ed along their boundary surfa
es of genus 2. For this and

other 
onstru
tions of this spa
e see [46, pp. 244{250 and 308{311℄, [51, pp. 263{266℄

or [55, p. 245℄. This manifold, whose existen
e prompted the still open 3-dimensional

Poin
ar�e 
onje
ture, has had an enormous in
uen
e on the subsequent development

of topology. It is dis
ussed in many pla
es in the literature; in addition to the already

mentioned sour
es, see also e.g. [13℄, [20℄, [24℄ and [53℄. We want to parti
ularly

mention the paper [20℄, where eight di�erent 
onstru
tions of this spa
e are given and

11



proved to be equivalent. Also, several of the given referen
es dis
uss the fa
t that

the fundamental group of the Poin
ar�e homology 3-sphere is the \binary i
osahedral

group" of order 120.

Triangulations of the Poin
ar�e homology 3-sphere on 17 and 18 verti
es were 
on-

stru
ted by Brehm. This is mentioned in the proof of Proposition 3.28 of [27, p. 55℄,

but no details are given. The �rst task for our bistellar 
ip program was to try to

improve on this.

In order to have a starting triangulation for the program at hand, we �rst 
onstru
t

a \small" triangulation of the Poin
ar�e homology 3-sphere. For this, we 
onsider the

des
ription of the Poin
ar�e sphere as the spheri
al dode
ahedron spa
e whi
h is the 
ell

de
omposition of the solid dode
ahedron where opposite pentagons on the boundary

are identi�ed by a 
oherent twist of �=5 radians; see Threlfall and Seifert [53℄ or Weber

and Seifert [55℄.

We triangulate the boundary of the dode
ahedron by introdu
ing a midpoint for

every pair of identi�ed opposite pentagons (see Figure 3). Into the interior of the
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Figure 3: A

5

-invariant triangulation of the Poin
ar�e 3-sphere.

dode
ahedron we pla
e an i
osahedron in su
h a way that every vertex of the i
osa-

hedron 
orresponds to a 
opy of a midpoint of a pentagon. For every vertex of the

i
osahedron we form the 
one over the respe
tive pentagon. For every edge of the

i
osahedron we in
lude the tetrahedron that is determined by this edge and the edge

that separates the two 
orresponding neighboring pentagons. Similarly, for any tri-

angle on the boundary of the i
osahedron we take the tetrahedron that is made up

by the triangle and the interse
tion-vertex of the three 
orresponding neighboring

pentagons. Finally, we triangulate the interior of the i
osahedron by introdu
ing a


enter point and we take the 
one over the boundary of the i
osahedron with respe
t

to the 
enter point. The resulting triangulation of the Poin
ar�e homology 3-sphere

has 5 + 6 + 12 + 1 = 24 verti
es and is invariant under the 60-element group A

5

of

12



rotations of the i
osahedron and the dode
ahedron.

Instead of an i
osahedron, we 
ould also pla
e a bipyramid over a pentagon into the

interior of the dode
ahedron. In this 
ase, the north and south pole of the bipyramid

are joined to the dark shaded sub
omplexes of Figure 4. Then take one vertex of

the equatorial pentagon of the bipyramid and let it 
orrespond to the light shaded

sub
omplex of Figure 4. By rotations of the 
y
li
 group Z

5

we obtain four additional

equatorial sub
omplexes, and the seven sub
omplexes that we have des
ribed 
over

the boundary of the dode
ahedron. Now, triangulate the spa
e between the bipyramid
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Figure 4: Z

5

-invariant triangulation of the Poin
ar�e 3-sphere.

and the (identi�ed) boundary of the dode
ahedron similarly as before. For the interior

of the bipyramid we introdu
e an edge 
onne
ting north and south pole and then

sli
e the bipyramid like an orange. This provides us with a Z

5

-invariant 18-vertex

triangulation of the Poin
ar�e sphere. As was mentioned, su
h a triangulation was

previously found by Brehm. By some modi�
ation of the identi�ed boundary it is not

too diÆ
ult to obtain non-symmetri
 17-vertex triangulations, but we were unable to

rea
h 16 verti
es by hand.

5 A non-symmetri
 triangulation �

3

16

on 16 verti
es

We applied the bistellar 
ip program to both the above 18-vertex and the 24-vertex

triangulation. After some running time we obtained a 16-vertex triangulation.

Theorem 5 There exists a triangulation (without any symmetries) of the Poin
ar�e

homology 3-sphere on 16 verti
es with f -ve
tor f = (16; 106; 180; 90).

Proof: The list of fa
ets

13



1249 124 15 126 14 126 15 129 14 134 12

134 15 137 10 137 12 13 10 15 149 12 156 13

156 14 158 11 158 13 15 11 14 16 13 15 178 10

178 11 17 11 12 18 10 13 19 11 12 19 11 14 1 10 13 15

235 10 235 11 237 10 237 13 23 11 13 249 13

24 11 13 24 11 15 258 11 258 12 25 10 12 26 10 12

26 10 14 26 12 15 279 13 279 14 27 10 14 28 11 15

28 12 15 345 14 345 15 34 12 14 35 10 15 35 11 14

37 12 13 3 11 13 14 3 12 13 14 4567 456 14 457 15

467 11 46 10 11 46 10 14 47 11 15 489 12 489 13

48 10 13 48 10 14 48 12 14 4 10 11 13 567 13 579 13

579 15 589 12 589 13 59 10 12 59 10 15 67 11 12

67 12 13 6 10 11 12 6 12 13 15 78 10 14 78 11 15 78 14 15

79 14 15 8 12 14 15 9 10 11 12 9 10 11 16 9 10 15 16 9 11 14 16

9 14 15 16 10 11 13 16 10 13 15 16 11 13 14 16 12 13 14 15 13 14 15 16

determines a 3-dimensional (pure) simpli
ial 
omplex �

3

16

on 16 verti
es with f -ve
tor

f = (16; 106; 180; 90). Sin
e this simpli
ial 
omplex was obtained via bistellar 
ips

starting from a triangulation of the Poin
ar�e sphere, it is PL homeomorphi
 to this

spa
e.

Alternatively, we 
an assemble the 90 tetrahedra in the interior of the dode
ahe-

dron. On
e again, we obtain a triangulation of the solid dode
ahedron where opposite

pentagons on the boundary are identi�ed by a 
oherent twist of �=5 radians. In Fig-

ure 5 we depi
t the 
orresponding triangulation of the boundary with the respe
tive

identi�
ations. The verti
es 1{11 lie on the boundary of the dode
ahedron whereas

the verti
es 12{16 lie in the interior.

If a 
ombinatorial manifold has a (
ombinatorial) symmetry, then the links of the

verti
es that are mapped onto ea
h other must be 
ombinatorially equivalent. For

�

3

16

the links of the verti
es f3; 6g, f10; 13; 14g and f2; 4; 5; 7; 12g are pairwise 
om-

binatorially equivalent within ea
h group, and there are no other su
h equivalen
es.

Thus, the automorphism group of �

3

16

is a subgroup of S

2

� S

3

� S

5

. Nevertheless,

none of these 1440 permutations, apart from the identity, is in fa
t a symmetry, and

therefore �

3

16

has trivial automorphism group. 2

What about a 15-vertex triangulation of the Poin
ar�e homology 3-sphere? It follows

from work of Walkup [54, Theorem 4℄ that at least 11 verti
es are needed. (We are

grateful to R. Forman for pointing this out to us.) We let our bistellar 
ip program run

for up to 10

6

moves with 
hanging relaxation and heating parameters. From time to

time the triangulation �

3

16

appeared or other triangulations on 16 verti
es with larger

f -ve
tors, but never any smaller triangulation or any non-equivalent triangulation

with the same f -ve
tor.

Conje
ture 6 The triangulation �

3

16

of the Poin
ar�e homology 3-sphere has the 
om-

ponent-wise minimal f -ve
tor f = (16; 106; 180; 90) for a triangulation of this mani-

fold and is the unique triangulation with this f -ve
tor.

The boundary of the identi�ed dode
ahedron is a Z-a
y
li
 spa
e with the same

fundamental group as the Poin
ar�e homology 3-sphere [8, p. 57℄. In parti
ular, this

14
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Figure 5: 16-vertex triangulation of the Poin
ar�e 3-sphere.

2-dimensional spa
e is not 
ontra
tible. What is the minimal number of verti
es of a

simpli
ial 
omplex that is Z-a
y
li
 but not 
ontra
tible?

By taking the restri
tion of �

3

16

to the boundary of the identi�ed dode
ahedron we

obtain a triangulation on 11 verti
es. The bistellar 
ip program brought this number

down to 10. The 
orresponding f -ve
tor is f = (10; 40; 31). Subsequently another

triangulation on 10 verti
es with f = (10; 40; 31), shown in Figure 6, was found by

hand. Here is the list of its fa
ets:

124 125 136 138 13 10 148 149 157

15 10 167 169 235 237 238 246 24 10

267 268 28 10 356 359 379 37 10 456

457 458 479 47 10 589 58 10 689.

We do not know if 10 verti
es is best possible for a 
omplex with these properties.

Remark: Taking instead the restri
tion of �

3

24

(des
ribed in Se
tion 4; see Fig-

ure 3) to the boundary of the identi�ed dode
ahedron we obtain a triangulation on

11 verti
es, on whi
h A

5

a
ts transitively on fa
ets and without stationary points.

Its nerve 
omplex provides an 11-dimensional A

5

-invariant vertex-transitive Z-a
y
li


simpli
ial 
omplex on 30 verti
es [34℄.
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Figure 6: Z-a
y
li
 non-
ontra
tible 
omplex on 10 verti
es.

6 A series of non-PL d-spheres on d+13 verti
es for d � 5

It follows from Theorem 1 that if we suspend �

3

16

twi
e, then we obtain a non-PL

5-sphere. If we suspend further, we obtain non-PL spheres of higher dimensions.

Theorem 7 Let d � 5. Then there are non-PL triangulations of the d-dimensional

sphere on d+ 13 verti
es.

Proof: Let us �rst show that for d � 5 there exist parti
ularly simple non-PL

triangulations of the d-dimensional sphere on d + 14 verti
es. For this, we suspend

�

3

16

(d� 3)-times, i.e., we form (d� 3)-times the join produ
t of �

3

16

with S

0

. By the

asso
iativity of the join produ
t with respe
t to the PL-stru
ture (
f. [47, 2.24(1)℄),

((� � � ((�

3

16

� S

0

) � S

0

) � � � � � S

0

) � S

0

) = �

3

16

� (S

0

� S

0

� � � � � S

0

� S

0

) = �

3

16

� S

d�4

:

If we take for S

d�4

the boundary 
omplex of the (d � 3)-simplex, then the latter

simpli
ial 
omplex has 16 + (d� 2) verti
es. Note also that it has 90 � (d� 2) fa
ets,

and that the list of its fa
ets is easily 
ompiled by 
on
atenation from the list in

Se
tion 5 of the 90 fa
ets of �

3

16

with the list of all (d� 3)-subsets of a (d� 2)-set.

An improvement of the number of verti
es by one 
an be obtained if we use Datta's

tri
k to 
onstru
t one-point suspensions of triangulated manifolds M . The Datta


onstru
tion is as follows. Suspend M by using two verti
es w

1

and w

2

. Then pi
k a

vertex v of M and repla
e the 
olle
tion of fa
ets that 
ontain v by the fa
ets that

we obtain from the (d� 1)-fa
ets of the link of v by adding as an extra vertex either

w

1

if w

2

is already 
ontained in the respe
tive (d � 1)-fa
et, or otherwise w

2

if w

1

is already 
ontained. The reverse pro
edure to this operation is 
alled starring a

vertex in \an edge" in an arti
le by Bag
hi and Datta [4, Def. 9℄. The two authors

remark in that paper that this generalized bistellar operation does not 
hange the

PL homeomorphism type of the suspension ifM is a manifold (or a pseudomanifold).
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(We thank W. K�uhnel for pointing out Datta's tri
k to us.) If we take (d� 3)-times

the one point Datta-suspension of �

3

16

, then we obtain a non-PL d-sphere with d+13

verti
es. 2

Theorem 7 
omplements the following two results, whi
h show that triangulated

manifolds with \few" verti
es must be PL spheres.

Theorem 8 Let M be a triangulated d-manifold on n verti
es.

(a) (Barnette and Gannon [5℄) If n < d+ 6 and d � 5, then M is a PL sphere.

(b) (Brehm and K�uhnel [9℄) If n < 3d

d

2

e + 3 and M is 
ombinatorial, then M is a

PL sphere.

Brehm and K�uhnel [9℄ also show that if n = 3

d

2

+ 3, then M is either a PL

d-sphere or a \manifold like a proje
tive plane" (the latter 
ase 
an o

ur only for

d = 2, 4, 8 or 16). The following 
onsequen
e of Theorem 7 shows that the assumption

\
ombinatorial" 
an not be removed from the Brehm-K�uhnel theorem.

Corollary 9 There exist non-PL d-spheres with n � 3

d

2

+ 3 verti
es for d � 19.

Question 10 Are there non-PL d-spheres for d � 5 with less than d+ 13 verti
es?

We tried on this question with BISTELLAR for d = 5. Starting with the (ordinary)

double suspension with 20 verti
es of the 16-vertex triangulation of the Poin
ar�e ho-

mology 3-sphere, we were able to get down to 18 verti
es, but not further. The f -ve
tor

of the smallest non-PL 5-sphere that we found is f = (18; 139; 503; 904; 783; 261).

We next show that for d � 5 there exists to any triangulation of a d-manifold M

a non-PL triangulation of M with few additional verti
es.

Theorem 11 Let M be a topologi
al d-manifold, d � 5, that 
an be triangulated with

n verti
es. Then there are non-PL triangulations of M with n+ 12 verti
es.

Proof: Let M be a simpli
ial d-manifold with n verti
es and d � 5. If the triangula-

tion ofM is non-PL, then nothing has to be done. So assume thatM is 
ombinatorial.

Let (by Theorem 7) �

d

be a simpli
ial non-PL sphere on d+13 verti
es. Then there

exists a vertex v of �

d

for whi
h the 
orresponding link is not a 
ombinatorial sphere.

Choose a fa
et of �

d

that is not 
ontained in the star of v and delete this fa
et from

�

d

. Also delete some fa
et from M and glue the remaining 
omplexes together along

the boundaries of the deleted simpli
es. The resulting manifold is the 
onne
ted sum

�

d

#M . Topologi
ally, �

d

#M is homeomorphi
 toM , but on the PL level it provides

a non-PL triangulation of M , sin
e link

�

d(v) = link

M

(v). Let us 
ount the verti
es

of �

d

#M . The 
omplexes M and �

d


ontribute n and d + 13 verti
es respe
tively.

By the identi�
ation of the boundaries of the two d-simpli
es, we loose d+1 verti
es.

Thus, �

d

#M has n + (d+ 13)� (d+ 1) = n + 12 verti
es. 2

Finally, we prove the result on 
onne
ted 
omponents of the bistellar 
ip graph

referred to in Se
tion 2.
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Theorem 12 Let M be a triangulable manifold of dimension d � 5. Then there are

in�nitely many 
onne
ted 
omponents of the bistellar 
ip graph of M .

Proof: Let H be any homology 3-sphere with non-trivial fundamental group �

1

(H),

e.g. let H be the Poin
ar�e homology 3-sphere. We 
onstru
t in three steps in�nitely

many triangulations of M that 
annot pairwise be rea
hed from one another by bi-

stellar 
ips.

First, we form k-fold 
onne
ted sums of H. These 
onne
ted sums are again ho-

mology spheres, nevertheless they are pairwise non-homeomorphi
 for di�erent values

of k. This is due to the fa
t that the fundamental group of a 
onne
ted sum M#N

of two manifolds M and N , with (non-trivial) fundamental groups �

1

(M) and �

1

(N)

respe
tively, is the free produ
t �

1

(M) � �

1

(N). Thus the 
onne
ted sums H

#k

and

H

#l

have distin
t fundamental groups if k 6= l.

In the se
ond step, we take for k 6= l the join produ
ts of the boundary 
omplex

of a (d � 3)-simplex with H

#k

and H

#l

. The resulting simpli
ial 
omplexes, S

d

k

respe
tively S

d

l

, are non-PL spheres (as in the proof of Theorem 7) that have the

homology spheres H

#k

and H

#l

sitting in their respe
tive triangulations as the links

of some (d � 4)-fa
es. From the 
ombinatori
s of the join 
onstru
tion it is easy to

see that the links of (d � 4)-fa
es in S

d

k

are all non-homeomorphi
 to H

#l

, and the

links of (d� 4)-fa
es in S

d

l

are all non-homeomorphi
 to H

#k

. Now, fo
us on a 
opy

of H

#k

that sits in S

d

k

as the link of a (d� 4)-fa
e F . If we apply any bistellar 
ip to

S

d

k

, then this operation may alter but not delete this 
opy of H

#k

. This is so, be
ause

the de�nition of bistellar 
ips shows that the fa
e F , or any subfa
e of F , 
annot be

the pivot fa
e of a bistellar move, and the link of F will itself be altered at most by

a bistellar move and thus its homeomorphism type is preserved. The same argument

used in reverse shows that the bistellar 
ip will not produ
e H

#l

as the link of some

(d � 4)-fa
es in S

d

k

. It thus follows that S

d

l


annot be rea
hed from S

d

k

via bistellar


ips, and vi
e versa.

Finally, we will use the in�nite number of examples of pairwise non-bistellarly

equivalent triangulations of d-spheres S

d

k

to obtain an in�nite number of pairwise

non-bistellarly equivalent triangulations of M . For this, let � be the set of those

spheres S

d

k

su
h that H

#k

is not homeomorphi
 to the link of any of the (d� 4)-fa
es

of M . The set � is in�nite, sin
e there are only �nitely many links in M . Then, just

as in the proof of Theorem 11, form 
onne
ted sums S

d

k

#M of the spheres S

d

k

2 �

with M in a way that guarantees that H

#k

remains as the link of some (d � 4)-fa
e

of S

d

k

#M . By the same argument as in the se
ond step, S

d

k

#M and S

d

l

#M 
annot

be rea
hed from one another via bistellar 
ips. 2

7 An A

5

-invariant triangulation of RP

3

with 29 verti
es

The idea of 
oherent twists on the dode
ahedron 
an be used to 
reate other interest-

ing 3-manifolds besides the spheri
al dode
ahedron spa
e. For instan
e, Weber and

Seifert [55℄ 
onstru
ted a hyperboli
 dode
ahedron spa
e, a manifold with homology

H

�

= (Z;Z

3

5

; 0;Z), by again identifying the boundary of the solid dode
ahedron, this

time with a 
oherent twist of 3�=5 instead of �=5 radians.

18



If we twist by 5�=5, we obtain RP

3

. Figure 7 gives a triangulation of the identi�ed

boundary for the latter manifold (where the identi�ed boundary is the non-orientable

surfa
e RP

2

). As was done previously for the spheri
al dode
ahedron spa
e, we pla
e

1

2
3

4

5

3
4

51

2

10

6

7

8

9

9

8

7

6

10

11

12

13

1415

16

11

12

13

14
15

16

Figure 7: 29-vertex triangulation of RP

3

.

an i
osahedron with additional 
enter point into the interior of the dode
ahedron.

This yields an A

5

-invariant triangulation of RP

3

with 29 verti
es. Moreover, there

is also an A

5

-invariant triangulation of RP

3

on 6 + 12 + 1 verti
es that is de�ned

by pla
ing an i
osahedron with 
enter point into the interior of an outer i
osahedron

with identi�
ations on the boundary by re
e
tion at the origin. For a vertex-minimal

triangulation of RP

3

on 11 verti
es see [10℄, [25℄ and [54℄.
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