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Abstract

We present a computer program based on bistellar operations that provides a useful tool for
the construction of simplicial manifolds with few vertices. As an example, we obtain a 16-vertex
triangulation of the Poincaré homology 3-sphere; we construct an infinite series of non-PL d-
dimensional spheres with d+ 13 vertices for d > 5; and we show that if a d-manifold admits any
triangulation on n vertices, then it admits a non-combinatorial triangulation on n + 12 vertices
(d>5).

1 Introduction

In the early days of topology, manifolds were often studied via triangulations. The
combinatorial structure makes the computation of various invariants possible, and
theorems can be proved based on the assumption of a suitable triangulation. See e.g.
[29], [40] and [51] for accounts of some main lines in the historical development. Since
the manifolds themselves, and not their combinatorial structure, are the real objects
of interest in topology, there was a growing desire to get away from triangulations.
In the 1930’s and 40’s algebraic tools gradually replaced the combinatorial ones, and
to the extent that from this time on there still was an interest in decomposing a
manifold, the more economical CW complexes gained popularity.

While triangulations always remained of interest to discrete geometers and geomet-
ric and PL topologists, the emergence of computers has subtly changed the general
situation. It is now possible (at least in principle) to study compact manifolds and
compute their invariants on a machine. But a fundamental question naturally arises:
How do you present the manifold to a computer? It is clear that some finite combina-
torial encoding must be used. A decomposition as a CW complex may be elegant and
also economical in terms of the number of cells, but it is in general difficult to explain
the attaching maps to a computer. One needs something like a regular CW complex,
where the attaching maps are determined by the combinatorics of inclusion of closed
cells. However, the conceptually easiest presentation is as a simplicial complex, say,
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given as the list of its facets (maximal faces). Such an encoding is clear and simple,
as long as it is not too large. Thus, the matter of the size of a triangulation has taken
on practical significance. It is of interest to say something about the number of ver-
tices, or the total number of faces, of a triangulation, and also to explicitly construct
minimal or otherwise optimal triangulations.

For earlier work on the topic of minimal triangulations we refer to [2], 3], [5], [9],
[10], [26], [27], [28] and [54]; and for algorithmic approaches to recognition problems
for manifolds to the papers [38], [41] and [52].

The work reported in this paper grew out of a desire to have a computer tool for
experimentation with triangulations. We had three purposes in mind:

1. To be able to start with some triangulation of a manifold and let the
computer search for smaller triangulations.

2. To be able to determine, via a heuristic, the homeomorphism type of a
manifold and, in particular, to recognize (combinatorial) spheres.

3. To be able to search for counterexamples to conjectures, where such ex-
amples might be hard to find due to their size or complexity.

Since to determine the homeomorphism type of a manifold is a delicate and much stud-
ied matter, the second point needs immediate clarification. What we have in mind is
a procedure for heuristically comparing a given test manifold with reference manifolds
having similar invariants from a library of standard manifolds on few vertices, with no
guarantee for success. In future work the combinatorial ideas of this paper can hope-
fully be expanded and combined with algorithms for computing topological invariants
(not only homology, but also fundamental group, characteristic classes, intersection
forms, multiplicative structure of cohomology, ... ) to create a truly versatile tool for
manipulation and identification of manifolds.

A computer program, BISTELLAR, [35], was written which repeatedly modifies a
triangulation by local so called “bistellar operations”. Such operations for dimensions
2 and 3 are illustrated in Figures 1 and 2; we defer the formal definition to Section 2.
The program accepts as input a simplicial manifold M (or any pure simplicial complex)
presented via the list of its facets. It then searches through other triangulations of
M via bistellar moves, using randomness controlled by a “simulated annealing” type
strategy, to be explained in Section 3.

The program has turned out to be quite useful for the first two purposes. For rea-
sons that will be explained later (searching for counterexamples to the “g-conjecture
for spheres”), we needed non-PL triangulations of the d-sphere (d > 5) of manageable
size. As a stepping stone in the construction we gave BISTELLAR the task to com-
pute a small triangulation of what Rolfsen [46, p. 308] calls “the ubiquitous Poincaré
homology sphere”. As reported in Section 5 the program produced a triangulation
on 16 vertices which seems to be the smallest known triangulation of this manifold.
It follows from work of Walkup [54] that any triangulation must have at least 11 ver-
tices. Thus, it is at the moment impossible to say where between 11 and 16 the truth
about the optimal number of vertices lies. However, after having run our program
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Figure 1: Bistellar moves for d = 2.

over millions of triangulations, we are prepared to believe that 16 vertices might in
fact be best possible for this manifold.

The 16-vertex triangulation of the Poincaré space is the starting point for a proof
that there exist non-PL triangulations of the d-sphere on d+ 13 vertices for all d > 5.
This is in turn used to show that if an arbitrary d-manifold admits some triangulation
on n vertices, then it admits a non-PL triangulation on n+ 12 vertices (d > 5). Also,
the (d + 13)-vertex non-PL spheres complement earlier theorems of Barnette and
Gannon [5] and Brehm and Kiihnel [9]; see Section 6.

The search for minimal triangulations using our program has been continued by
one of us (Lutz), and has led to several new results. They will be presented elsewhere
(see [25], [32] and [33]), but let us summarize the main findings.

Combinatorial triangulations were found for

e 52 x 52 on 11 vertices,
e 53 x 52 on 12 vertices,
e 53 x 53 on 13 vertices,
o (5% x S%)#(S? x S?) on 12 vertices,

e RP* on 16 vertices.

In all these cases, the theoretically minimal numbers of vertices for combinatorial
triangulations of these manifolds are achieved.

The triangulations of S® x S? on 12 and of S® x S on 13 vertices are of particular
interest, since they attain the minimal numbers of vertices that any (non-spherical)
combinatorial 5- or 6-manifold can have. They therefore establish that the Brehm-
Kiihnel [9] lower bound for the number of vertices of combinatorial d-manifolds is



Figure 2: Bistellar moves for d = 3.

sharp in dimensions 5 and 6. For a statement of this bound see Theorem 8 and the
sentence following it.

An extended version of the program, BISTELLAR_EQUIVALENT [36], was used
to determine the homeomorphism type of a large number of manifolds, e.g. of all tri-
angulated 3-manifolds that have a vertex-transitive automorphism group on n < 15
vertices (cf. [25]). The idea behind this is to first construct reference triangulations of
interesting manifolds with few vertices. If then a test object has the same homology
as a particular reference manifold (this can be checked with the computer program
HOMOLOGY by Heckenbach [18]), it was possible in many cases to find a bistellar
equivalence between the two manifolds, and thus to show that they are PL homeo-
morphic. For this we first searched for a small triangulation of the test object, and
then applied further bistellar flips until, eventually, we were able to show that the
modified test object is combinatorially isomorphic to the reference manifold.

Naturally, this works particularly well for manifolds with a unique minimal trian-
gulation, such as PL d-spheres that can be minimally triangulated as the boundary
complex of the (d + 1)-dimensional simplex. Therefore the program can be used, at
least as a heuristic, to determine whether a given simplicial complex is a combinatorial
manifold (i.e., whether all vertex links are PL spheres). Other manifolds that have
a unique minimal triangulation are e.g. the twisted sphere product (or 3-dimensional
Klein bottle) S?x St (cf. [2], [3], [54]) and the complex projective plane CP? [28], in
both cases on 9 vertices.

The program has not yet achieved any success for the third purpose, that of finding
counterexamples. At the end of Section 2 we report on some experiments of this kind.

The paper is structured as follows. In the next section we review some definitions
and some general facts about triangulations of manifolds, bistellar flips and the count-
ing of faces. Section 3 presents the program. In Section 4 we discuss the Poincaré



homology 3-sphere and construct some highly symmetric triangulations for input into
BISTELLAR. Section 5 presents the 16-vertex triangulation that was found. In Sec-
tion 6 we derive via multiple suspensions the non-PL d-spheres on few vertices, and
discuss how their existence relates to the existing theoretical bounds for such objects.
In the brief Section 7, finally, we construct a highly symmetric triangulation of RP 3
using the same general technique as in Section 4.

2 Review of definitions and background

We collect here some definitions and discuss a bit more the background to this paper,
including some general facts concerning triangulations of manifolds. For the general
notions of topology we refer to Stillwell [51] and for PL topology to Glaser [17],
Hudson [19] and Rourke and Sanderson [47].

All manifolds in this paper are compact, connected and closed. Since PL concepts
play such a role here, we recall the following definitions. A PL sphere is a simplicial
complex which is piecewise linearly homeomorphic to the boundary of a simplex. A
combinatorial manifold (or PL manifold) is a triangulation of a topological manifold
such that the link at every vertex is a PL sphere.

For d # 4, a triangulation of the d-sphere is PL in the first sense if and only if it is
a PL manifold in the second sense. For d < 3 this follows from the work of Moise [39]
and for d > 5 from the work of Kirby and Siebenmann [21]; namely, there is a unique
PL structure for spheres in these dimensions. For d = 4 this question is not fully
understood: Is a combinatorial manifold homeomorphic to the 4-sphere necessarily a
PL sphere? Since in dimension 4 the category of PL manifolds is equivalent to the
smooth category, the question is equivalent to: Does there exist an “exotic” 4-sphere?
(We are grateful to M. Kreck for clarifying this distinction.)

It was shown by Rado (in 1924) that all 2-manifolds and by Moise (in 1952) that
all 3-manifolds can be triangulated (cf. [39], [40], [44], [51]). Since the link of a vertex
in a triangulated 2-manifold is a polygon and the link of a vertex in a triangulated
3-manifold is a 2-sphere (and all 2-spheres are PL), 2- and 3-dimensional manifolds
are always PL.

The situation is much more subtle in dimension 4. Freedman constructed in 1982
a non-differentiable analogue of the complex projective plane (see [15], [16, Sect. 8.3
and 10.1]), and this fake CP? provides an example of a 4-manifold that cannot be
triangulated as a combinatorial manifold. By combining work of Casson with that of
Freedman (see [1, p. xvi]) one obtains examples of topological 4-manifolds that cannot
be triangulated at all. For expositions of these triangulation questions and related
matters see e.g. [21, Annex 2 and 3], [29], [30], [37], [40] and [51].

In 1963 Milnor (cf. Lashof [30]) listed seven problems that he thought of as the
toughest and most important problems in geometric topology. Among them is the
question whether every topological manifold can be triangulated, now known to have
a negative answer. Also on the list is the double suspension problem that asks whether
the double suspension of a homology 3-sphere is a topological sphere. This problem
was settled by Edwards [14] in 1974 for the double suspension of the Mazur homology
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3-sphere which he proved is a topological 5-sphere (see [12, Ch. 12]). The theorem
has later been generalized:

Theorem 1 (Cannon [11]) The double suspension S>?H® of any d-dimensional homo-
logy sphere H® is homeomorphic to S92,

It follows that S2H?, although homeomorphic to S92, has a non-PL structure, since
H? appears as the link of some 1-simplex in S2H¢. This fact will be of importance in
Section 6.

We now specialize the discussion to the concepts and tools that will be needed in
this paper.

Definition 2 [42] Let M be a simplicial d-manifold (or any pure d-dimensional sim-
plicial complex). If A is a (d —i)-face of M, 0 < i < d, such that linky(A) is the
boundary Bd(B) of an i-simplex B that is not a face of M, then the operation ® 4 on
M defined by

®,4(M):= (M\(AxBd(B)))U (Bd(A) x B)

1s called o bistellar i-move.

Alternatively, we say bistellar operations or bistellar flips for bistellar moves. Bistellar
i-moves with i > |4] are also called reverse (d — i)-moves. Note that a 0-move adds
a new vertex to a triangulation, while a reverse 0-move deletes a vertex; see Figures 1
and 2. Two pure simplicial complexes are bistellarly equivalent if there exists a finite
sequence of bistellar operations leading from one triangulation to the other (and vice
versa).

It is easy to see that bistellar equivalence implies being P L homeomorphic, for any
simplicial manifolds. For combinatorial triangulations the converse is also true.

Theorem 3 (Pachner [42, Thm. 1]) Two combinatorial manifolds are bistellarly equiv-
alent if and only if they are PL homeomorphic.

Define the bistellar flip graph of a triangulable manifold M to have as nodes the
triangulations of M (or, more precisely, their isomorphism classes up to relabeling
the vertices), and an edge between two nodes if one triangulation can be obtained
via a single bistellar flip from the other (and vice versa). If the dimension of M is at
most 3, then this graph is connected, as shown by the work of Moise [39] together with
Theorem 3. We will see in Section 6 that if d > 5 then this graph has infinitely many
connected components. Of course, the manifolds within each connected component
of the bistellar flip graph are pairwise PL homeomorphic. If M can be triangulated
as a combinatorial manifold, then by Pachner’s theorem the (infinite) space of all
combinatorial triangulations of M is divided into equivalence classes of pairwise PL
homeomorphic triangulations which coincide with connected components of the bi-
stellar flip graph. For a discussion of Pachner’s theorem in a topological environment
see [31].

We now consider counting faces of all dimensions, not just vertices (dimension
zero). For more details and references to this area see the survey [6], and for triangu-
lations of spheres and polytopes [50].



Let f; be the number of i-dimensional faces of a triangulated d-manifold M (with
f-1 = 1), and define numbers h; by

d+1 d+1

Z h; xd—l—l—i — Z fi—l(x _ l)d—l—l—i‘ (1)
=0 =0

The sequence (fo, ..., fq) is called the f-vector of M, and (ho, ..., hgy1) its h-vector.
The corresponding g-vector (go, ..., g|(a+1)/2)) is defined by go = 1 and g; = h; —h;_1,
for ¢ > 1.

It was shown by Klee [23] for any triangulated manifold M that the face num-

bers (fo, ..., fl(a-1)/2)) determine the remaining numbers (f|(a41)/2),- - -, fa) via linear
relations. From (1) we see that this means that (ho,...,R|@+1)/2)), and thus also
(90, - - - 9(d+1)/2)), determine the complete f-vector. In other words, the g-vector of

a triangulated manifold contains complete information about its f-vector.
The relevance of this for our program is the following.

Theorem 4 (Pachner [42, p. 83]) If M’ is obtained from M by a bistellar k-move,
0<k<|(d—1)/2], then

G (M') = g (M) +1
g(M') = g(M) forall i#k+1.

Furthermore, if d is even and k =4, then g;(M') = g;(M) for all i.

This means that it is very easy to follow and control the successive f-vectors during a
sequence of bistellar flips. In our program we compute and store the initial g-vector,
which is then updated with a +1 (or —1) in position k+1 for each k-move (or reverse
k-move). (REMARK: In the case of odd-dimensional manifolds the result implies that
the bistellar flip graph is bipartite — it can be colored by the sum (mod 2) of the
entries of the g-vector. In even dimensions, g—moves do not change the g-vector and
sometimes even lead to a combinatorially isomorphic triangulation of a manifold, that
is, the bistellar flip graph may have loops.)

The linear relations of Klee take on a particularly attractive form if M triangulates

a sphere (the Dehn-Sommerville relations):
hi = hgy1-;. (2)

If furthermore M is polytopal (i.e., combinatorially isomorphic to the boundary com-
plex of a simplicial convex polytope), then by a theorem of Stanley [49]

(905 - - -, 91(d+1)/2)) is an M-sequence. (3)

This combinatorial condition is defined as follows, showing that it can easily be tested
by machine. For integers k,n > 1 there is a unique way of writing

() ) )



so that ayp > ag_1 > --->a; > i > 1. Then define

0*(n) = <a;:__11> + (a’“k‘l_; 1) oot (i‘:;)

Also let 9%(0) = 0. A sequence (ng,ni,...) of nonnegative integers is called an
M-sequence (M for Macaulay) if

ng=1 and 9%(ny) < ny_y, forall k> 2.

Note that a nontrivial consequence of (3) is that g; > 0 for polytopal spheres. The
“g-theorem” states that the conditions (2) and (3) together characterize the f-vectors
of polytopal spheres. The sufficiency of these conditions was proved by Billera and
Lee [7].

The conjecture to which we wanted BISTELLAR to search for counterexamples
is the so called “g-conjecture for spheres” which states that condition (3) is valid
for all triangulated spheres, not just polytopal ones. If correct, this would imply a
characterization of the f-vectors of spheres.

The g-conjecture can be deduced from known results for all d-spheres up to dimen-
sion 4, but is open for d > 5. Attempts during the last 20 years to prove it have so
far been without success. It therefore seemed to us that the possibility of its falsity
should be considered and tested.

In order to look for counterexamples we started with non-PL triangulations of
the 5- and 6-sphere and let the bistellar flip program search through thousands of
triangulations. This purpose is what originally made us look for small triangulations
of the Poincaré 3-sphere and its suspensions; see Section 6 for a description of the
spheres we used to start the computer search. The bistellar flip program guarantees
by Theorem 3 that all triangulations visited during the search are non-PL, and, in
particular, that they are not polytopal. At each step the g-vector is updated, as
described in Theorem 4, and tested for being an M-sequence. The parameters for the
program can be set to put priority on creating a g-vector that is not an M-sequence
(if possible), e.g. a g-vector with some negative entry.

So, what was the result?” No counterexamples to the g-conjecture were found.
Although no conclusions can be drawn, let us hope that this is an indication that the
conjecture is correct.

3 The bistellar flip program

The computer program that will now be presented performs walks on the bistellar
flip graph of triangulations of a manifold M. By necessity we must restrict attention
to some connected component of this graph. For a particular triangulation of M
from this component (the input) we want to perform bistellar modifications with
the objective to obtain “small” (hopefully even minimal), or otherwise sought-after,
triangulations of M (within the component). As an objective function that we want
to optimize, we could take for example the total number of faces of a triangulation.
Nevertheless, the sum G of the entries of the g-vector seems to be a more appropriate



objective function, since any up-move (i.e., i-move with 0 < i < [%1]) increases G
by one and any down-move (reverse up-move) decreases G' by one, so that we have
good control over G. (If d is even, then Z-moves do not change G.) In addition to the
goal of minimizing the objective function G' we perform moves according to priority
rules. Reverse 0-moves are given the highest priority as they delete a vertex, then
come reverse l-moves, reverse 2-moves, etc. If no further reverse moves are available,
this might be due to the fact that we have achieved a global minimum for G' within
our component of triangulations. But we can as well have gotten stuck in some local
minimum.

A concept that is very useful in such situations is simulated annealing [22]. In a
continuous version of simulated annealing (see e.g. [45]) one wants to find a global
minimum z, € R" for a real valued objective function f : R* — R, i.e., x, € R" such
that f(x,) < f(z) for all x € R*. Starting at some initial point y one moves to a
randomly picked neighboring point ¢’ if Af = f(v') — f(y) < 0. If Af >0, then we
move “uphill” to ¢y with probability exp(—Af/3) or otherwise stay put at y. In the
next step a new neighboring point y” of ¢’ (or of y if we have not moved) is chosen
at random and so on. The cooling parameter 5 > 0 describes how likely it is to move
“uphill” and is usually decreased with time (the number of steps).

We now describe an appropriate simulated-annealing-type strategy for bistellar
flips. As soon as we are trapped in a “local” minimum, we perform an up-move.
(Up-moves are also performed according to priority rules, such as “perform a (k + 1)-
move before a k-move”.) Sometimes, this already paves the way for further reverse
moves that lead away from the local minimum. But we might also fall back into the
same local minimum in the following round. After a certain number of up-moves has
become necessary (we call this the relazation parameter) we start “heating up” the
function G, i.e., for a number of steps given by the heating parameter we perform
only up-moves (as long as this is possible), with the exception that we usually do not
perform 0-moves, since this would blow up the size of the complex too quickly. Then
we let the system relax until we have to heat up again. If there is more than one
option for moves of a certain priority, we pick one of these options randomly and then
execute the move.

AN IMPLEMENTATION OF THE BISTELLAR FLIP PROGRAM

We start with some triangulation of a d-manifold, represented by the list of its facets,
and determine all its faces and compute its f- and g-vector. Next, we check for every
(d — i)-face of the triangulation whether it is contained in precisely i + 1 facets. The
collection of these faces (together with their respective links) form the raw options for
bistellar i-moves. If we want to consider proper options for i-moves, then we include
only those raw options for i-moves for which in addition the links satisfy the condition
of being the boundary of an i-simplex that is not a face of the triangulation. This
last condition is easy to check.

When we determine the raw options at the beginning, we have to check for all f;
i-faces how often they are included in one of the f; facets. This amounts to f; - f4
operations. Nevertheless, in the following rounds we do not have to recompute the
raw options from scratch, since with any bistellar flip we simply cut out a ball locally
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and replace it by another ball. All raw options for faces in the interior of the ball that
we remove have to be deleted and raw options for the faces in the interior of the new
ball have to be included. Raw options for faces on the common boundary of the balls
might also change. But altogether, there is only a constant number of faces involved
in updating the raw options. Finally, to find out which of the raw options of a given
priority are proper options, we have to test the condition on links mentioned above

We wrote the program BISTELLAR in GAP [48], as all operations for sets and
lists that we need are available in this computer algebra package. For dimension 3,
the listing of the main part of the program is as follows. Complete information about
BISTELLAR is best obtained by downloading the program
(http://www.math.TU-Berlin.de/diskregeom/stellar/).

## initial settings ##
InputFacets;
Compute_RawOptions;
Compute_f_and_g_vector;
g_min:=g;

## parameters ##
rounds:=1;
relaxation:=0;
heating:=0;

while rounds <= 50000 do
## strategy for options ##
options:=[];

if heating > O then
Include_MoveOptions(1);
if options = [] then
Include_ReverseMoveOptions(1);
heating:=0;
fi;
heating:=heating-1;
else
Include_ReverseMoveOptions (0);
if options = [] then
Include_ReverseMoveOptions(1);
if options = [] then
Include_MoveOptions(1);
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if options = [] then
Include_MoveOptions(0);
fi;

relaxation:=relaxation+1;
if relaxation = 10 then
heating:=15;
relaxation:=0;
fi;
fi;
fi;
fi;
## perform Move or ReverseMove ##
ChooseOptionAtRandom;
ExecutelOption;
Update_RawOptions;
Update_f_and_g_vector;
Print(rounds," ",g,"\n");
if g < g_min then
g_min:=g;
Print ("f-vector = ",f,"\n");
Print (facets,"\n");
fi;

rounds :=rounds+1;

od;

In higher dimensions, the strategy for the options can easily be adapted, although
it takes time and experiments to figure out reasonable parameters for heating and
relaxation. (This is a common problem with simulated annealing algorithms.)

4 The ubiquitous Poincaré homology 3-sphere

The original example by Poincaré of a non-simply-connected manifold with the same
homology as the ordinary 3-sphere appeared in [43]. It was constructed by him from
two solid double tori identified along their boundary surfaces of genus 2. For this and
other constructions of this space see [46, pp. 244-250 and 308-311], [51, pp. 263266
or [55, p. 245]. This manifold, whose existence prompted the still open 3-dimensional
Poincaré conjecture, has had an enormous influence on the subsequent development
of topology. It is discussed in many places in the literature; in addition to the already
mentioned sources, see also e.g. [13], [20], [24] and [53]. We want to particularly
mention the paper [20], where eight different constructions of this space are given and
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proved to be equivalent. Also, several of the given references discuss the fact that
the fundamental group of the Poincaré homology 3-sphere is the “binary icosahedral
group” of order 120.

Triangulations of the Poincaré homology 3-sphere on 17 and 18 vertices were con-
structed by Brehm. This is mentioned in the proof of Proposition 3.28 of [27, p. 55],
but no details are given. The first task for our bistellar flip program was to try to
improve on this.

In order to have a starting triangulation for the program at hand, we first construct
a “small” triangulation of the Poincaré homology 3-sphere. For this, we consider the
description of the Poincaré sphere as the spherical dodecahedron space which is the cell
decomposition of the solid dodecahedron where opposite pentagons on the boundary
are identified by a coherent twist of 7/5 radians; see Threlfall and Seifert [53] or Weber
and Seifert [55].

We triangulate the boundary of the dodecahedron by introducing a midpoint for
every pair of identified opposite pentagons (see Figure 3). Into the interior of the

Figure 3: As-invariant triangulation of the Poincaré 3-sphere.

dodecahedron we place an icosahedron in such a way that every vertex of the icosa-
hedron corresponds to a copy of a midpoint of a pentagon. For every vertex of the
icosahedron we form the cone over the respective pentagon. For every edge of the
icosahedron we include the tetrahedron that is determined by this edge and the edge
that separates the two corresponding neighboring pentagons. Similarly, for any tri-
angle on the boundary of the icosahedron we take the tetrahedron that is made up
by the triangle and the intersection-vertex of the three corresponding neighboring
pentagons. Finally, we triangulate the interior of the icosahedron by introducing a
center point and we take the cone over the boundary of the icosahedron with respect
to the center point. The resulting triangulation of the Poincaré homology 3-sphere
has 546+ 12 4+ 1 = 24 vertices and is invariant under the 60-element group A; of
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rotations of the icosahedron and the dodecahedron.

Instead of an icosahedron, we could also place a bipyramid over a pentagon into the
interior of the dodecahedron. In this case, the north and south pole of the bipyramid
are joined to the dark shaded subcomplexes of Figure 4. Then take one vertex of
the equatorial pentagon of the bipyramid and let it correspond to the light shaded
subcomplex of Figure 4. By rotations of the cyclic group Zs we obtain four additional
equatorial subcomplexes, and the seven subcomplexes that we have described cover
the boundary of the dodecahedron. Now, triangulate the space between the bipyramid

Figure 4: Zs-invariant triangulation of the Poincaré 3-sphere.

and the (identified) boundary of the dodecahedron similarly as before. For the interior
of the bipyramid we introduce an edge connecting north and south pole and then
slice the bipyramid like an orange. This provides us with a Zs-invariant 18-vertex
triangulation of the Poincaré sphere. As was mentioned, such a triangulation was
previously found by Brehm. By some modification of the identified boundary it is not
too difficult to obtain non-symmetric 17-vertex triangulations, but we were unable to
reach 16 vertices by hand.

5 A non-symmetric triangulation X3 on 16 vertices

We applied the bistellar flip program to both the above 18-vertex and the 24-vertex
triangulation. After some running time we obtained a 16-vertex triangulation.

Theorem 5 There exists a triangulation (without any symmetries) of the Poincaré
homology 3-sphere on 16 vertices with f-vector f = (16,106, 180, 90).

Proof: The list of facets

13



1249 12415 126 14 126 15 12914 13412

13415 13710 13712 131015 14912 15613
156 14 15811 15813 151114 161315 17810
17811 171112 181013 191112 191114 1101315
23510 23511 23710 23713 231113 24913
241113 241115 25811 25812 251012 261012
261014 261215 27913 27914 271014 281115
281215 34514 34515 341214 351015 351114
371213 3111314 3121314 4567 456 14 45715
46711 461011 461014 471115 48912 48913
481013 481014 481214 4101113 56713 97913
97915 98912 58913 991012 591015 671112

671213 6101112 6121315 781014 781115 781415
791415 8121415 9101112 9101116 9101516 9111416
9141516 10111316 10131516 11131416 12131415 13141516

determines a 3-dimensional (pure) simplicial complex X% on 16 vertices with f-vector
f = (16,106, 180,90). Since this simplicial complex was obtained via bistellar flips
starting from a triangulation of the Poincaré sphere, it is PL homeomorphic to this
space.

Alternatively, we can assemble the 90 tetrahedra in the interior of the dodecahe-
dron. Once again, we obtain a triangulation of the solid dodecahedron where opposite
pentagons on the boundary are identified by a coherent twist of 7/5 radians. In Fig-
ure 5 we depict the corresponding triangulation of the boundary with the respective
identifications. The vertices 1-11 lie on the boundary of the dodecahedron whereas
the vertices 1216 lie in the interior.

If a combinatorial manifold has a (combinatorial) symmetry, then the links of the
vertices that are mapped onto each other must be combinatorially equivalent. For
33 the links of the vertices {3,6}, {10,13,14} and {2,4,5,7,12} are pairwise com-
binatorially equivalent within each group, and there are no other such equivalences.
Thus, the automorphism group of 37 is a subgroup of Sy x S3 x Ss5. Nevertheless,
none of these 1440 permutations, apart from the identity, is in fact a symmetry, and
therefore 2 has trivial automorphism group. O

What about a 15-vertex triangulation of the Poincaré homology 3-sphere? It follows
from work of Walkup [54, Theorem 4] that at least 11 vertices are needed. (We are
grateful to R. Forman for pointing this out to us.) We let our bistellar flip program run
for up to 10° moves with changing relaxation and heating parameters. From time to
time the triangulation ¥3 appeared or other triangulations on 16 vertices with larger
f-vectors, but never any smaller triangulation or any non-equivalent triangulation
with the same f-vector.

Conjecture 6 The triangulation X3 of the Poincaré homology 3-sphere has the com-
ponent-wise minimal f-vector f = (16,106, 180,90) for a triangulation of this mani-
fold and is the unique triangulation with this f-vector.

The boundary of the identified dodecahedron is a Z-acyclic space with the same
fundamental group as the Poincaré homology 3-sphere [8, p. 57]. In particular, this
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Figure 5: 16-vertex triangulation of the Poincaré 3-sphere.

2-dimensional space is not contractible. What is the minimal number of vertices of a
simplicial complex that is Z-acyclic but not contractible?

By taking the restriction of 3 to the boundary of the identified dodecahedron we
obtain a triangulation on 11 vertices. The bistellar flip program brought this number
down to 10. The corresponding f-vector is f = (10,40,31). Subsequently another
triangulation on 10 vertices with f = (10,40, 31), shown in Figure 6, was found by
hand. Here is the list of its facets:

124 125 136 138 1310 148 149 157
1510 167 169 235 237 238 246 2410
267 268 2810 356 359 379 3710 456
457 458 479 4710 589 5810  689.

We do not know if 10 vertices is best possible for a complex with these properties.

REMARK: Taking instead the restriction of 3, (described in Section 4; see Fig-
ure 3) to the boundary of the identified dodecahedron we obtain a triangulation on
11 vertices, on which As acts transitively on facets and without stationary points.
Its nerve complex provides an 11-dimensional As-invariant vertex-transitive Z-acyclic

simplicial complex on 30 vertices [34].
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Figure 6: Z-acyclic non-contractible complex on 10 vertices.

6 A series of non-PL d-spheres on d+13 vertices for d > 5

It follows from Theorem 1 that if we suspend X7 twice, then we obtain a non-PL
5-sphere. If we suspend further, we obtain non-PL spheres of higher dimensions.

Theorem 7 Let d > 5. Then there are non-PL triangulations of the d-dimensional
sphere on d + 13 wvertices.

Proof: Let us first show that for d > 5 there exist particularly simple non-PL
triangulations of the d-dimensional sphere on d + 14 vertices. For this, we suspend
Y3 (d— 3)-times, i.e., we form (d — 3)-times the join product of ¥3 with S°. By the
associativity of the join product with respect to the PL-structure (cf. [47, 2.24(1))),

(- (B % 8% % 8%) s+ 8 % 8%) = B % (8% % S0 -+ % S0 5 S0) = Bf » 574

If we take for S%* the boundary complex of the (d — 3)-simplex, then the latter
simplicial complex has 16 + (d — 2) vertices. Note also that it has 90 - (d — 2) facets,
and that the list of its facets is easily compiled by concatenation from the list in
Section 5 of the 90 facets of L% with the list of all (d — 3)-subsets of a (d — 2)-set.
An improvement of the number of vertices by one can be obtained if we use Datta’s
trick to construct one-point suspensions of triangulated manifolds M. The Datta
construction is as follows. Suspend M by using two vertices wy; and ws. Then pick a
vertex v of M and replace the collection of facets that contain v by the facets that
we obtain from the (d — 1)-facets of the link of v by adding as an extra vertex either
wy if we is already contained in the respective (d — 1)-facet, or otherwise wy if wy
is already contained. The reverse procedure to this operation is called starring a
verter in “an edge” in an article by Bagchi and Datta [4, Def. 9]. The two authors
remark in that paper that this generalized bistellar operation does not change the
PL homeomorphism type of the suspension if M is a manifold (or a pseudomanifold).
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(We thank W. Kiihnel for pointing out Datta’s trick to us.) If we take (d — 3)-times
the one point Datta-suspension of 7%, then we obtain a non-PL d-sphere with d+13
vertices. O

Theorem 7 complements the following two results, which show that triangulated
manifolds with “few” vertices must be PL spheres.

Theorem 8 Let M be a triangulated d-manifold on n vertices.
(a) (Barnette and Gannon [5]) If n < d+6 and d > 5, then M is a PL sphere.

(b) (Brehm and Kiihnel [9]) If n < 3[4] + 3 and M is combinatorial, then M is a
PL sphere.

Brehm and Kiihnel [9] also show that if n = 3% + 3, then M is either a PL
d-sphere or a “manifold like a projective plane” (the latter case can occur only for
d=2,4,80or 16). The following consequence of Theorem 7 shows that the assumption
“combinatorial” can not be removed from the Brehm-Kiihnel theorem.

Corollary 9 There exist non-PL d-spheres with n < 3% + 3 wvertices for d > 19.
Question 10 Are there non-PL d-spheres for d > 5 with less than d+ 13 vertices?

We tried on this question with BISTELLAR for d = 5. Starting with the (ordinary)
double suspension with 20 vertices of the 16-vertex triangulation of the Poincaré ho-
mology 3-sphere, we were able to get down to 18 vertices, but not further. The f-vector
of the smallest non-PL 5-sphere that we found is f = (18,139,503, 904, 783, 261).

We next show that for d > 5 there exists to any triangulation of a d-manifold M
a non-PL triangulation of M with few additional vertices.

Theorem 11 Let M be a topological d-manifold, d > 5, that can be triangulated with
n vertices. Then there are non-PL triangulations of M with n + 12 vertices.

Proof: Let M be a simplicial d-manifold with n vertices and d > 5. If the triangula-
tion of M is non-PL, then nothing has to be done. So assume that A is combinatorial.
Let (by Theorem 7) ¢ be a simplicial non-PL sphere on d+ 13 vertices. Then there
exists a vertex v of X¢ for which the corresponding link is not a combinatorial sphere.
Choose a facet of ¥¢ that is not contained in the star of v and delete this facet from
4. Also delete some facet from M and glue the remaining complexes together along
the boundaries of the deleted simplices. The resulting manifold is the connected sum
Y44 M. Topologically, 44 M is homeomorphic to M, but on the PL level it provides
a non-PL triangulation of M, since linksa(v) = linky/(v). Let us count the vertices
of ¢4 M. The complexes M and ¢ contribute n and d + 13 vertices respectively.
By the identification of the boundaries of the two d-simplices, we loose d + 1 vertices.
Thus, X?#M has n+ (d+13) — (d+ 1) = n + 12 vertices. O

Finally, we prove the result on connected components of the bistellar flip graph
referred to in Section 2.
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Theorem 12 Let M be a triangulable manifold of dimension d > 5. Then there are
infinitely many connected components of the bistellar flip graph of M.

Proof: Let H be any homology 3-sphere with non-trivial fundamental group 7 (H),
e.g. let H be the Poincaré homology 3-sphere. We construct in three steps infinitely
many triangulations of M that cannot pairwise be reached from one another by bi-
stellar flips.

First, we form k-fold connected sums of H. These connected sums are again ho-
mology spheres, nevertheless they are pairwise non-homeomorphic for different values
of k. This is due to the fact that the fundamental group of a connected sum M#N
of two manifolds M and N, with (non-trivial) fundamental groups 71 (M) and 7, (V)
respectively, is the free product 7 (M) % m(N). Thus the connected sums H#* and
H#! have distinct fundamental groups if k& # [.

In the second step, we take for k # [ the join products of the boundary complex
of a (d — 3)-simplex with H#* and H#¥!. The resulting simplicial complexes, S
respectively S, are non-PL spheres (as in the proof of Theorem 7) that have the
homology spheres H#* and H#! sitting in their respective triangulations as the links
of some (d — 4)-faces. From the combinatorics of the join construction it is easy to
see that the links of (d — 4)-faces in S¢ are all non-homeomorphic to H#! and the
links of (d — 4)-faces in S are all non-homeomorphic to H#*. Now, focus on a copy
of H#* that sits in S¢ as the link of a (d — 4)-face F. If we apply any bistellar flip to
S, then this operation may alter but not delete this copy of H#*. This is so, because
the definition of bistellar flips shows that the face F', or any subface of F', cannot be
the pivot face of a bistellar move, and the link of F' will itself be altered at most by
a bistellar move and thus its homeomorphism type is preserved. The same argument
used in reverse shows that the bistellar flip will not produce H#! as the link of some
(d — 4)-faces in SZ. Tt thus follows that S cannot be reached from S¢ via bistellar
flips, and vice versa.

Finally, we will use the infinite number of examples of pairwise non-bistellarly
equivalent triangulations of d-spheres S to obtain an infinite number of pairwise
non-bistellarly equivalent triangulations of M. For this, let & be the set of those
spheres S such that H#* is not homeomorphic to the link of any of the (d — 4)-faces
of M. The set ® is infinite, since there are only finitely many links in M. Then, just
as in the proof of Theorem 11, form connected sums SZ#M of the spheres S € ®
with M in a way that guarantees that H** remains as the link of some (d — 4)-face
of S¢#M. By the same argument as in the second step, SZ#M and S¢#M cannot
be reached from one another via bistellar flips. O

7 An As-invariant triangulation of RP 3 with 29 vertices

The idea of coherent twists on the dodecahedron can be used to create other interest-
ing 3-manifolds besides the spherical dodecahedron space. For instance, Weber and
Seifert [55] constructed a hyperbolic dodecahedron space, a manifold with homology
H, = (Z,73,0,7), by again identifying the boundary of the solid dodecahedron, this
time with a coherent twist of 37 /5 instead of 7/5 radians.
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If we twist by 57 /5, we obtain RP 3. Figure 7 gives a triangulation of the identified
boundary for the latter manifold (where the identified boundary is the non-orientable
surface RP?). As was done previously for the spherical dodecahedron space, we place

Figure 7: 29-vertex triangulation of RP 3.

an icosahedron with additional center point into the interior of the dodecahedron.
This yields an As-invariant triangulation of RP? with 29 vertices. Moreover, there
is also an As-invariant triangulation of RP?® on 6 + 12 + 1 vertices that is defined
by placing an icosahedron with center point into the interior of an outer icosahedron
with identifications on the boundary by reflection at the origin. For a vertex-minimal
triangulation of RP? on 11 vertices see [10], [25] and [54].
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