Triangulations, Discriminants, and Teichmüller Theory

Robert Löwe

Technische Universität Berlin

Overview

Use polyhedral geometry to study:

1. fundamental questions in algebraic geometry

- regular triangulations and discriminants

2. decorated Teichmüller space

- secondary fans and secondary polyhedra of punctured Riemann surfaces

Regular Subdivisions of Point Configurations

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

Regular Subdivisions of Point Configurations

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

Regular Subdivisions of Point Configurations

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

Regular Subdivisions of Point Configurations

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

Secondary Fan of a Point Configuration

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

Secondary Fan of a Point Configuration

A regular subdivision of a point configuration $A \subset \mathbb{R}^{d}$ is obtained by:

1. lifting points by weight function $\omega \in \mathbb{R}^{A}$,
2. projecting upper faces.

The secondary fan of A stratifies the weight space \mathbb{R}^{A} according to the induced regular subdivisions.

Secondary Polytope of a Point Configuration

Theorem (Gelfand, Kapranov, Zelevinsky)
Let $A \subset \mathbb{R}^{d}$ be a point configuration. There is a convex polytope, the secondary polytope of A, whose normal fan is the secondary fan of A.

Towards the Discriminant of a Quaternary Cubic

Theorem (Kastner, L 2019)
The point configuration $A=\left\{z \in \mathbb{Z}_{\geq 0}^{4} \mid z_{1}+z_{2}+z_{3}+z_{4}=3\right\}$ admits 910974879 regular triangulations up to S_{4}-symmetry.

The A-discriminant

$$
f=a_{00}+a_{01} \cdot y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{11} \cdot x y+a_{20} \cdot x^{2}
$$

$$
A=\operatorname{supp}(f)=\text { • • }
$$

The A-discriminant

$$
f=a_{00}+a_{01} \cdot y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{11} \cdot x y+a_{20} \cdot x^{2} \quad A=\operatorname{supp}(f)=\bullet \bullet .
$$

$$
V(f) \text { singular hypersurface } \Leftrightarrow D_{A}=0
$$

The A-discriminant

$$
f=a_{00}+a_{01} \cdot y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{11} \cdot x y+a_{20} \cdot x^{2}
$$

$$
A=\operatorname{supp}(f)=
$$

$$
V(f) \text { singular hypersurface } \Leftrightarrow D_{A}=0
$$

$$
D_{A}=a_{00} a_{11}^{2}+a_{01}^{2} a_{20}+a_{02} a_{10}^{2}-a_{01} a_{10} a_{11}-4 a_{00} a_{02} a_{20}
$$

The A-discriminant

$$
f=a_{00}+a_{01} \cdot y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{11} \cdot x y+a_{20} \cdot x^{2} \quad A=\operatorname{supp}(f)=
$$

$V(f)$ singular hypersurface $\Leftrightarrow D_{A}=0$

$$
D_{A}=a_{00} a_{11}^{2}+a_{01}^{2} a_{20}+a_{02} a_{10}{ }^{2}-a_{01} a_{10} a_{11}-4 a_{00} a_{02} a_{20}
$$

The A-discriminant

$$
f=a_{00}+a_{01} \cdot y+a_{02} \cdot y^{2}+a_{10} \cdot x+a_{11} \cdot x y+a_{20} \cdot x^{2}
$$

$$
A=\operatorname{supp}(f)=\bullet \bullet
$$

$$
V(f) \text { singular hypersurface } \Leftrightarrow D_{A}=0
$$

$$
D_{A}=a_{00} a_{11}^{2}+a_{01}^{2} a_{20}+a_{02} a_{10}^{2}-a_{01} a_{10} a_{11}-4 a_{00} a_{02} a_{20}
$$

Theorem (Gelfand, Kapranov, Zelevinsky)
The Newton polytope of the A-discriminant is a Minkowski summand of the secondary polytope of A.

Discriminant of a Quaternary Cubic

Theorem (Kastner, L 2019)

The point configuration $A=\left\{z \in \mathbb{Z}_{\geq 0}^{4} \mid z_{1}+z_{2}+z_{3}+z_{4}=3\right\}$ admits 910974879 regular triangulations up to S_{4}-symmetry.

Theorem (Kastner, L 2019)

The Newton polytope of the A-discriminant has 166104 vertices that split into $7132 S_{4}$-orbits. Equivalently, A admits 166104
D-equivalence classes of regular triangulations.

Secondary Polyhedra of Punctured Riemann Surfaces

Theorem (Joswig, L, Springborn 2019)
For each punctured hyperbolic Riemann surface its secondary fan is the normal fan of an unbounded secondary polyhedron.

Hyperbolic Surfaces with Cusps

- \mathbb{H} hyperbolic plane
- $\Gamma<\operatorname{lsom}^{+}(\mathbb{H})$ discrete, non-cocompact subgroup
- $\mathscr{R}=\mathbb{H} / \Gamma$ hyperbolic surface with cusps

Example (Sphere with three cusps)

$$
\Gamma=\langle A, B\rangle<\mathrm{PSL}_{2}(\mathbb{R}) \quad \text { where } \quad A(z)=z+2, \quad B(z)=\frac{z}{2 z+1}
$$

Epstein-Penner Convex Hull Construction

Fix surface $\mathscr{R}=\mathbb{H} / \Gamma$:

1. Decorate each cusp with a horocycle.
2. Take convex hull of corresponding Γ-orbits in positive light-cone.
3. Project facets to \mathscr{R} to obtain subdivision into ideal polygons.

Epstein-Penner Convex Hull Construction

Fix surface $\mathscr{R}=\mathbb{H} / \Gamma$:

1. Decorate each cusp with a horocycle.
2. Take convex hull of corresponding Γ-orbits in positive light-cone.
3. Project facets to \mathscr{R} to obtain subdivision into ideal polygons.

- Parametrize decorating horocycles by their lengths $\omega \in \mathbb{R}_{>0}^{n}$.
- Secondary fan of \mathscr{R} stratifies weight space $\mathbb{R}_{>0}^{n}$ according to induced ideal subdivision of \mathscr{R}.

Example: Thrice Punctured Sphere

Example: Thrice Punctured Torus

Secondary Polyhedra of Punctured Riemann Surfaces

Theorem (Joswig, L, Springborn 2019)
For each $x \in \mathscr{R}$, there is an unbounded convex polyhedron Σ-poly (\mathscr{R}, x), the secondary polyhedron, whose normal fan is the secondary fan.

- key idea: switch to hemisphere model and define analogs of GKZ vectors

Example: Thrice Punctured Torus

Summary

1. regular triangulations and secondary polytopes of point configurations

- study cubic surfaces

2. secondary fans and secondary polyhedra of punctured Riemann surfaces

- study decorated Teichmüller space

Future Research

- direct computation of D-equivalence classes
- Viros patchworking
- dependence of secondary polyhedron Σ-poly (\mathscr{R}, x) on choice of $x \in \mathscr{R}$, canonical secondary polyhedron
- connections to surface cluster algebras
- hyperbolic manifolds
- secondary fans and secondary polyhedra for convex projective structures

