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1 Introduction

Many applications in science and engineering require solving large
linear algebraic systems in saddle point form; see [4] for an extensive
survey. A typical system matrix is of the form

[
A BT

B −C

]
, (1.1)

where A = AT ∈ R
n×n is positive definite (A > 0), B ∈ R

m×n

has rank r ≤ m ≤ n, and C = CT ∈ R
m×m is positive semidefinite

(C ≥ 0). The matrix in (1.1) is congruent to the block diagonal matrix
[A 0; 0 S], where S = −(C + BA−1BT ), so that −S = −ST ≥ 0.
Hence this matrix is indefinite, with n positive and rank(S) negative
eigenvalues. Typically, rank(S) is close to m and therefore, unless m
is very small, the matrix in (1.1) is highly indefinite. This feature
often slows down iterative solvers such as Krylov subspace methods.
For a discussion of the convergence properties of these methods in
case of indefinite problems we refer to [4, Section 9.2].

It has been noted by several authors (see [4, p. 23] for references)
that, for solving linear algebraic systems, there is no harm in negating
the second block row in (1.1), and using as system matrix

A ≡

[
A BT

−B C

]
. (1.2)

Symmetry has been abandoned but what, if anything, has been gained?
First, the useful decomposition of a real matrix into its symmetric and
skew-symmetric parts is right before our eyes. Standard results, using
Rayleigh quotients, show that the eigenvalues of A lie in a box with
real parts in the spectral interval of A ⊕ C and imaginary parts in
the interval [0, ‖B‖]. Thus, A is positive semistable, i.e. all its eigen-
values have nonnegative real parts. Moreover, it can be shown that
there exists a “magic” hidden bilinear form with respect to which A
is symmetric. As shown in this paper, this bilinear form is a proper
inner product, if and only if the spectra of A and C are separated,
and the norm of B is small enough. When this is satisfied, A is di-
agonalizable with nonnegative real eigenvalues. Thus, there exists a
conjugate gradient (CG) method for solving linear systems with A.

Some of the theoretical results in this paper, particularly those
concerning the definiteness of the bilinear form, generalize previous
work in [8] and [5]. In these papers the focus is on cases with C = 0.
Moreover, unlike in [8,5], we provide an implementation of a CG
method for solving linear systems with A. In this context we dis-
cuss some subtleties concerning the choice of the inner product for
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constructing a well defined CG method for A. Recent related work
on CG methods in non-standard inner products and with particu-
lar emphasis on saddle point problems is reported in [18,17]. In [18],
some known examples for such non-standard inner products includ-
ing those in [8,5] are surveyed, and a general strategy for generating
new examples from known ones is discussed (so-called combination
preconditioning). The paper [17] focusses on a particular example,
namely the Bramble-Pasciak preconditioner [6], and presents some
new variants of this approach.

Note that transforming a saddle point system with a matrix (1.1)
into one with a matrix of the form (1.2) may be considered a form of
preconditioning. This is the viewpoint taken, e.g., in [18]. It should
not be expected, however, that just by negating the second block row
the speed of convergence of a Krylov subspace method can be im-
proved significantly. For instance, the matrices (1.1) and (1.2) have
the same singular values, and hence a possible ill-conditioning of (1.1)
is not overcome by the transformation into (1.2). To really improve
the speed of convergence, one must combine the negation of the sec-
ond block row with a suitable preconditioning technique, for example
(inexact) block diagonal preconditioning; see [4, Section 10.1.1] for
a detailed discussion of this technique. We believe that the general
idea of negation is of interest, since the behavior of Krylov subspace
methods for problems with positive eigenvalues is better understood
than for problems with eigenvalues on both sides of the origin; see [4,
Section 9.2] for more details. Problems that are better understood
can potentially be preconditioned more effectively. The construction
of such preconditioning techniques, which typically should be tuned
to the application at hand, is beyond the scope of this paper.

The paper is organized as follows. In Sections 2 and 3 we ana-
lyze properties of the matrix A and the bilinear form with respect
to which A is symmetric. In Section 4 we construct a CG method
for solving linear systems with A, discuss when this method is well
defined, and provide an efficient implementation. In Section 5 we dis-
cuss some practical issues in the context of our CG method, including
the conditioning of the CG inner product matrix and error bounds.
In Section 6 we present some numerical experiments that show the
effectiveness of the method.

Notation. The bilinear form defined by a (real) symmetric ma-
trix G is denoted by (u, v)G ≡ vT Gu. In case G is positive definite,
this bilinear form is an inner product, and the associated norm is

given by ‖u‖G ≡ (u, u)
1/2
G . In case G = I, i.e. the Euclidean inner

product and norm, we skip the index and simply write (u, v) and
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‖u‖. A matrix M is called symmetric with respect to a (real) sym-
metric matrix G, or shortly G-symmetric, if GM is symmetric, or,
equivalently, (Mu, v)G = (u, Mv)G for all u, v. The matrix M is called
G-definite, if GM is definite, i.e. (GMu, u) = (Mu, u)G 6= 0 for all
u 6= 0. Of course, if G = I, we simply write symmetric and definite
as usual.

2 Analysis of the matrix A

We consider a matrix A ∈ R
(n+m)×(n+m) as in (1.2), with symmetric

positive definite A ∈ R
n×n, B ∈ R

m×n of rank r ≤ m ≤ n, and sym-
metric positive semidefinite C ∈ R

m×m. As shown in [4, Theorem 3.6],
the matrix A is positive semistable, meaning that all its eigenvalues
have nonnegative real parts, and in case B has full rank m, A is
positive stable, i.e. all its eigenvalues have positive real parts.

The following lemma leads, in a natural manner, to the special
inner product mentioned above.

Lemma 2.1 Let the matrix

J ≡

[
I 0
0 −I

]
(2.1)

be conformally partitioned with A. Then

(1) A is J -symmetric, i.e. JA = ATJ = (JA)T ,

and, for any polynomial p,

(2a) p(A) is J -symmetric, i.e. J p(A) = p(AT )J = (J p(A))T , and
(2b) A is J p(A)-symmetric, i.e.

(J p(A))A = AT (p(AT )J ) = (J p(A)A)T .

Proof Item (1) follows by straightforward computation. Using (1), we
see that

JA2 = (JA)A = (ATJ )A = AT (JA) = (AT )2J ,

which implies (2a) by induction. Using items (1) and (2a),

(J p(A))A = (JA)p(A) = AT (J p(A)) = AT (p(AT )J ),

which proves (2b). ⊓⊔
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Item (1) in Lemma 2.1 shows that A is symmetric with respect
to the symmetric indefinite matrix J . This fact has been exploited
before, e.g., in [5] (also see the discussion in [4, p. 25]). Our goal
here is to determine whether there exists a symmetric positive defi-
nite matrix with respect to which A is symmetric. Our starting point
is the relation (2b) in Lemma 2.1. It shows that A is symmetric with
respect to any matrix of the form J p(A), where p is any polynomial.
As shown by item (2a), any matrix of the form J p(A) is itself sym-
metric. Therefore it suffices to show conditions under which J p(A) is
positive definite. Obviously, when p is of degree zero, this cannot be
satisfied. Choice of a p of degree exceeding one seems too expensive.
Our ansatz will therefore be a polynomial p of degree one. Without
loss of generality we may take the leading coefficient of p to be equal
to one, and write our polynomial in the form p(ζ) = ζ − γ, for some
yet to be determined parameter γ ∈ R. Hence we ask: When is

M(γ) ≡ J p(A) = J (A− γI) =

[
A − γI BT

B γI − C

]
(2.2)

a positive definite matrix? The complete answer to this question is
given in the following theorem.

Theorem 2.2 The symmetric matrix M(γ) is positive definite if and
only if

λmin(A) > γ > λmax(C) , (2.3)

where λmin and λmax denote the smallest and largest eigenvalue, re-
spectively, and

∥∥∥(γI − C)−1/2B(A − γI)−1/2
∥∥∥ < 1 . (2.4)

Proof It is easy to see that M(γ) > 0 holds only if A − γI > 0,
or, equivalently, λmin(A) > γ. If this holds, M(γ) is congruent to
(A − γI) ⊕ S, where

S = (γI − C) − B(A − γI)−1BT .

Therefore, M(γ) is positive definite, if, and only if, λmin(A) > γ and
S > 0. The second inequality is equivalent to

γI − C > B(A − γI)−1BT .
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The matrix on the right hand side is positive semidefinite, which
implies γI −C > 0, or, equivalently, γ > λmax(C). Finally, γI −C >
B(A − γI)−1BT is equivalent to

I >
(
(γI − C)−1/2B(A − γI)−1/2

) (
(γI − C)−1/2B(A − γI)−1/2

)T
,

which in turn is equivalent to (2.4). ⊓⊔

3 Sufficient conditions

From Theorem 2.2 we can derive some useful sufficient conditions
that make M(γ) positive definite.

Corollary 3.1 The matrix M(γ) is symmetric positive definite when
(2.3) holds, and, in addition,

‖B‖2 < (λmin(A) − γ) (γ − λmax(C)) . (3.1)

For γ = γ̂ ≡ 1
2(λmin(A) + λmax(C)), the right hand side of (3.1) is

maximal, and (3.1) reduces to

2‖B‖ < λmin(A) − λmax(C) . (3.2)

Proof A simple computation shows that
∥∥∥(γI − C)−1/2B(A − γI)−1/2

∥∥∥ ≤

‖(γI − C)−1/2‖ ‖B‖ ‖(A − γI)−1/2‖ =

(γ − λmax(C))−1/2 ‖B‖ (λmin(A) − γ)−1/2 .

Hence M(γ) > 0, if (2.3) holds and the right hand side is less than
one, which is equivalent to (3.1). The second part follows from another
simple computation. ⊓⊔

The conditions for positive definiteness of M(γ) yield sufficient
conditions so that A is diagonalizable with a positive real spectrum.

Corollary 3.2 If there exists a γ ∈ R so that M(γ) is positive def-
inite, then A has a nonnegative real spectrum and a complete set of
eigenvectors that are orthonormal with respect to the inner product
defined by M(γ). In case B has full rank, the spectrum of A is real
and positive.
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Proof We know that the matrix A is M(γ)-symmetric. If M(γ) is
positive definite, then M(γ) defines an inner product, and hence A
has real eigenvalues and a complete set of eigenvectors that are or-
thonormal with respect to this inner product (see, e.g., [9, Chap-
ter IX]). Moreover, A is known to be positive semistable (positive
stable if B has full rank), so that its eigenvalues indeed must be real
and nonnegative (real and positive). ⊓⊔

We now show that any saddle point matrix as specified in (1.1)
with full rank B and λmin(A) > λmax(C) can be scaled to give a
matrix of the form (1.2) which is diagonalizable with real and positive
eigenvalues. Let α > 0 be a real parameter and consider

[
αI 0
0 −I

] [
A BT

B −C

] [
αI 0
0 I

]
=

[
α2A αBT

−αB C

]
≡ A(α) . (3.3)

Corollaries 3.1 and 3.2 show that this matrix A(α) is diagonalizable
with real and positive eigenvalues whenever

2α ‖B‖ < α2 λmin(A) − λmax(C) . (3.4)

This condition can always be satisfied by choosing α large enough. Of
course, if ‖B‖ ≫ λmin(A), then α must be chosen very large, and this
might cause numerical problems, or may be incompatible with the
application at hand. For example, in case of an equality-constrained
optimization problem, where B represents the constraints (see [4,
Section 1.1]), scaling with a very large α transforms the original sad-
dle point matrix (in the limit α → ∞) into one that represents an
unconstrained problem.

Our results above generalize several results that appeared in the
literature: Fischer et al. [8] consider A with A = αI > 0 and C = 0.
They show that A has a nonnegative real spectrum when 2‖B‖ < α,
which in this case is equivalent to (3.2). Benzi and Simoncini [5,
Section 3] consider (in our notation) a matrix M(γ) with A = AT > 0
and C = 0. In [5, Proposition 3.1] they show that M(γ̂) is positive
definite when

4λmax(BA−1BT ) < λmin(A). (3.5)

Note that

4λmax(BA−1BT ) = 4‖BA−1/2‖2

≤ 4 ‖B‖2 ‖A−1/2‖2 =
4‖B‖2

λmin(A)
. (3.6)
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Condition (3.2) with C = 0 is equivalent to 4‖B‖2/λmin(A) < λmin(A).
Thus (3.2) implies (3.5).

One of the conditions that make M(γ) symmetric positive definite
is (2.3), namely λmin(A) > γ > λmax(C). Hence, Corollary 3.2 only
yields a condition for a (nonnegative) real spectrum of A when the
spectra of A and C are separated. This separation appears to be
essential, as seen by considering a 2 × 2 matrix of the form

[
α β
−β η

]
, α > 0 , η > 0 .

This matrix has real eigenvalues (necessarily nonnegative) only when
its discriminant (α− η)2 − 4β2 is nonnegative. Thus β must vanish if
α = η, and, by extension to A, if the spectra of A and C overlap, i.e.
λmax(C) ≥ λmin(A), and B 6= 0, it is most unlikely that the spectrum
of A is real.

The discriminant condition we just have derived turns out to be
a special case of [5, Proposition 2.5]. In that result the matrix A is
assumed to be of the form (1.2) with C = ηI > 0. If A ∈ R

2×2,
then the condition that both eigenvalues of A are real is (α + η)2 ≥
4(β2 + αη), or, equivalently, (α − η)2 − 4β2 ≥ 0.

Next let us consider a more representative matrix

A =





1 0 0 β 0
0 2 0 0 β
0 0 3 0 0
−β 0 0 2η −η
0 −β 0 −η 2η




, β 6= 0 , η ≥ 0 .

Here λmin(A) = 1, B has full rank, ‖B‖ = |β|, and λmax(C) = 3η. By
(3.2), A is diagonalizable with a positive and real spectrum when

2|β| < 1 − 3η .

For η = 1/12 the above condition is |β| < 3/8 = 0.375, while MAT-
LAB [13] shows that A has five distinct real and positive eigenvalues
for |β| as large as 0.405. For larger |β|, A has nonreal eigenvalues. On
the other hand, if we choose β = 1/2, then the above condition is not
satisfied for any η ≥ 0, and indeed a MATLAB computation reveals
that the matrix A is not diagonalizable for η = 0, and has nonreal
eigenvalues for η > 0. Therefore, the sufficient condition (3.2) cannot
be relaxed, in general.
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4 Construction of a conjugate gradient (CG) method

In this section we construct a CG method for solving linear systems
with the matrix A.

4.1 The (generic) CG method

As a starting point we consider the following (generic) statement of
the CG method based on a given inner product (u, v)G = vT Gu for
solving a linear system of the form Mx = b, cf. [2, (4.1a)–(4.1g)]. An
alternative approach is discussed in Remark 4.5.

Algorithm 4.1 (The Conjugate Gradient (CG) method)
Input: System matrix M , right hand side b, inner product matrix G,
initial guess x0.
Initialize: r0 = b − Mx0, p0 = r0.
For i = 0, 1, . . . until convergence:

αi =
(x − xi, pi)G

(pi, pi)G
(4.1)

xi+1 = xi + αipi (4.2)

ri+1 = ri − αiMpi (4.3)

βi+1 = −
(ri+1, pi)G

(pi, pi)G
(4.4)

pi+1 = ri+1 + βi+1pi (4.5)

In case M = MT > 0 and G = M , this algorithm corresponds
to the classical Hestenes and Stiefel implementation of CG [11]. Its
requirements and most important properties are summarized in the
following result (see [2] for proofs and further details).

Theorem 4.1 Suppose that the matrix G is symmetric positive def-
inite and hence defines an inner product. If the matrix M is G-
symmetric and G-definite, then (until convergence) the CG method
stated in Algorithm 4.1 has the following properties:

(1) The iterates and residuals satisfy

xi ∈ x0 + Ki(M, r0) and ri = b − Mxi ∈ r0 + MKi(M, r0),

where Ki(M, r0) ≡ span{r0, Mr0, . . . , M
i−1r0} is the ith Krylov

subspace generated by M and r0.
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(2) The direction vectors pi ∈ r0 + MKi(M, r0) satisfy

(pi, pj)G = 0 for i 6= j.

(3) The error vector x − xi+1 ∈ (x − x0) + Ki+1(M, r0) satisfies

(x − xi+1, u)G = 0 for all u ∈ span{p0, . . . , pi}.

(4) The method is optimal in the G-norm, i.e.

‖x − xi+1‖G = min
u∈x0+Ki+1(M,r0)

‖x − u‖G

= min
p∈πi+1

‖p(M)(x − x0)‖G,

where πi+1 denotes the set of polynomials of degree at most i + 1
and with value one at the origin.

When the assumptions of Theorem 4.1 on M and G are satisfied,
and hence the assertions (1)–(4) hold, we say that Algorithm 4.1 is
well defined for M and G.

Remark 4.2 In case M is G-symmetric and G-semidefinite (i.e. M is
singular), Algorithm 4.1 may still be well defined. However, this will
not hold globally for any right hand side b, but just for b ∈ Range(M),
so that a solution of the linear system exists. Details of the CG
method for singular matrices are well discussed in [3, Section 11.2.8].

Note that the numerator of αi in (4.1) contains the unknown so-
lution vector x. Therefore an essential practical requirement for the
CG method, that is not mentioned in Theorem 4.1, is that the inner
product matrix G must be chosen so that the scalar αi is computable.
In the classical CG method of Hestenes and Stiefel, the system ma-
trix M is assumed symmetric positive definite, G = M , and then

(x − xi, pi)G = (x − xi, pi)M = (M(x − xi), pi) = (ri, pi),

which is a computable quantity.

4.2 A CG method for A

From now on we assume that we are given a linear system of the form
Ax = b where A is as in (1.2) with A = AT > 0, full rank B, and
C = CT ≥ 0. Generalizations of the following algorithms and results
may be easily obtained for rank deficient B, cf. Remark 4.2, but here
we have opted for a clean rather than the most general presentation.
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A CG method for solving this system requires a symmetric positive
definite matrix defining an inner product. To make this CG method
well defined, the matrix A and the inner product matrix should satisfy
the assumptions of Theorem 4.1. Moreover, the inner product matrix
must be chosen so that αi is computable. The latter requirement
is not satisfied by the matrix M(γ) in (2.2), since for this matrix
we cannot evaluate the quantity (x − xi, pi)M(γ) unless we know the
solution vector x. Therefore, even if M(γ) is positive definite, this
matrix cannot be used in Algorithm 4.1 to give a computable CG
method for solving Ax = b.

To make αi computable, our choice for the inner product will be
the matrix M(γ)A. From item (2b) in Lemma 2.1 we know that this
matrix is symmetric. The following result gives a sufficient condition
when this matrix is positive definite.

Lemma 4.3 If the (symmetric) matrix M(γ) is positive definite,
then for all nonnegative integers k the matrix M(γ)Ak is also sym-
metric positive definite.

Proof Item (2b) in Lemma 2.1 shows that M(γ)A = ATM(γ) and
therefore, by induction,

M(γ)Ak = (AT )kM(γ) = (M(γ)Ak)T

for all k ≥ 0, i.e. M(γ)Ak is symmetric. Moreover,

Ak = M(γ)−1(AT )kM(γ),

which means that Ak is normal with respect to the symmetric positive
definite matrix M(γ). A result of Givens [10, Theorem 2] implies that
the M(γ)-field of values of Ak, i.e. the set of all

(Aku, u)M(γ)

(u, u)M(γ)
, u 6= 0,

is equal to the convex hull of the eigenvalues of Ak. Since all eigen-
values of Ak are real and positive (cf. Corollary 3.2),

0 < λmin(A
k) ≤

(Aku, u)M(γ)

(u, u)M(γ)
=

(M(γ)Aku, u)

(u, u)M(γ)

≤ λmax(A
k) for all u 6= 0.

Therefore (M(γ)Aku, u) > 0 for all u 6= 0, which shows that M(γ)Ak

is symmetric positive definite. ⊓⊔
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We now derive expressions for αi and βi+1 in Algorithm 4.1, in case
M(γ)A is positive definite and chosen as the inner product matrix.

Lemma 4.4 Suppose that the (symmetric) matrix M(γ) is positive
definite. Then Algorithm 4.1 is well defined for M = A and G =
M(γ)A, and (until convergence) the scalars αi and βi+1, can be com-
puted as

αi =
(ri, ri)M(γ)

(Api, pi)M(γ)
, (4.6)

βi+1 =
(ri+1, ri+1)M(γ)

(ri, ri)M(γ)
. (4.7)

Proof Since M(γ) is positive definite, M(γ)Ak is symmetric positive
definite for all k ≥ 0 (cf. Lemma 4.3). In particular, M(γ)A is sym-
metric positive definite and hence defines an inner product. Moreover,
M(γ)A2 = (M(γ)A)A is symmetric positive definite, which means
that A is both M(γ)A-symmetric and M(γ)A-definite. Therefore,
the assumptions of Theorem 4.1 are satisfied, and Algorithm 4.1 with
M = A and G = M(γ)A is well defined.

It is easy to see that for i ≥ 0 the denominator of αi in (4.1) is
equal to (Api, pi)M(γ). For i = 0, the numerator of αi is equal to

(x − x0, p0)M(γ)A = (A(x − x0), r0)M(γ) = (r0, r0)M(γ),

showing that (4.6) holds for i = 0. For i ≥ 1 we use (4.5) and the
orthogonality relation in item (3) of Theorem 4.1 to obtain

(x − xi, pi)M(γ)A = (x − xi, ri + βipi−1)M(γ)A

= (x − xi, ri)M(γ)A + βi(x − xi, pi−1)M(γ)A

= (A(x − xi), ri)M(γ)

= (ri, ri)M(γ),

which proves (4.6) for i ≥ 1. Note that αi 6= 0 for i ≥ 0.
Next, we consider the numerator of βi+1, i ≥ 0, in (4.4). Here we

use (4.3) and again the orthogonality relation in item (3) of Theo-
rem 4.1 to obtain

(ri+1, pi)M(γ)A = (x − xi+1,Api)M(γ)A

=
(
x − xi+1, α

−1
i (ri − ri+1)

)
M(γ)A

= α−1
i (x − xi+1, ri)M(γ)A − α−1

i (x − xi+1, ri+1)M(γ)A

= −α−1
i (ri+1, ri+1)M(γ).
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Therefore,

βi+1 = −
(ri+1, pi)M(γ)A

(pi, pi)M(γ)A
= α−1

i

(ri+1, ri+1)M(γ)

(Api, pi)M(γ)
=

(ri+1, ri+1)M(γ)

(ri, ri)M(γ)
,

which completes the proof. ⊓⊔

Remark 4.5 The formulas for the scalars αi and βi+1 in Lemma 4.4
are identical to those in the classical CG method of Hestenes and
Stiefel [11], with the exception that there the inner product is the
standard Euclidean one. Hence, a CG method for A can also be de-
rived by starting with the Hestenes and Stiefel CG method, with the
Euclidean inner product replaced by the M(γ)-inner product, and
then showing conditions when this algorithm is well defined. In this
approach, the subtle point that both M(γ) and M(γ)A must be pos-
itive definite to make the method well defined is easily overlooked,
because the formulas (4.6) and (4.7) seem to suggest that positive
definiteness of M(γ) is sufficient.

4.3 An efficient implementation

In step i of Algorithm 4.1 with M = A and G = M(γ)A, we can
compute the scalars αi and βi+1 as shown in (4.6) and (4.7), respec-
tively. We will now show how to replace the M(γ)-inner products by
J -bilinearforms. Since M(γ) = JA − γJ , cf. (2.2), we have for all
vectors u, v ∈ R

n+m,

(u, v)M(γ) = (Au, v)J − γ(u, v)J .

Therefore,

(ri, ri)M(γ) = (Ari, ri)J − γ(ri, ri)J , (4.8)

and, since A is M(γ)-symmetric,

(Api, pi)M(γ) = (pi,Api)M(γ) = (Api,Api)J − γ(pi,Api)J . (4.9)

Hence to compute αi and βi+1, the main work lies in evaluating the
bilinear form (u, v)J , which is not more expensive than evaluating the
Euclidean inner product (u, v). Note that we need to have available
both Ari and Api. To avoid the necessity of computing both matrix-
vector products in every step, we store two additional vectors, namely
yi = Ari and wi = Api. The former is computed by multiplying A



14 Jörg Liesen, Beresford N. Parlett

against ri. The latter is computed via an additional recursion in the
following way: Multiplying (4.5) by A yields

Api+1︸ ︷︷ ︸
=wi+1

= Ari+1︸ ︷︷ ︸
=yi+1

+βi+1 Api︸︷︷︸
=wi

.

The complete algorithm looks as follows.

Algorithm 4.2 (CG method for A)
Input: System matrix A, right hand side b, real parameter γ, initial
guess x0.
Initialize: r0 = b −Ax0, p0 = r0, y0 = Ar0, w0 = y0

For i = 0, 1, . . . until convergence:

αi =
(yi, ri)J − γ(ri, ri)J

(wi, wi)J − γ(pi, wi)J
(4.10)

xi+1 = xi + αipi (4.11)

ri+1 = ri − αiwi (4.12)

yi+1 = Ari+1 (4.13)

βi+1 =
(yi+1, ri+1)J − γ(ri+1, ri+1)J

(yi, ri)J − γ(ri, ri)J
(4.14)

pi+1 = ri+1 + βi+1pi (4.15)

wi+1 = yi+1 + βi+1wi (4.16)

Algorithm 4.2 requires five vectors of storage: xi, ri, pi, yi, and wi

are required in step i. Since the denominator of βi+1 is equal to the
numerator of αi, this quantity only has to be evaluated once in every
step. When these scalars are stored, each step requires four evalua-
tions of the bilinear form (u, v)J , i.e. four dot products. In addition,
one matrix-vector product and four vector updates (DAXPY’s) have
to be performed. The following table compares this cost with the
cost of the MINRES algorithm for symmetric indefinite linear sys-
tems [14], in the two-term recurrence implementation given in [16,
Fig. 1, p. 728]:

Algorithm 4.2 MINRES from [16]
vectors to be stored 5 8
matrix-vector products 1 1
vector updates 4 5
dot products 4 2

It is possible to implement MINRES using just six vectors of storage,
when three-term recurrences are used (see, e.g., [7, Algorithm 6.1]).
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In any case, the computational cost of Algorithm 4.2 compares well
with the standard MINRES method.

We summarize the theoretical requirements and properties of Al-
gorithm 4.2 in the following result.

Corollary 4.6 If the (symmetric) matrix M(γ) is positive definite,
then for M = A and G = M(γ)A the assumptions of Theorem 4.1 are
satisfied, and Algorithm 4.2 is a well defined CG method for solving
Ax = b.

5 Practical issues

In this section we discuss some practical issues concerning our CG
method in Algorithm 4.2.

5.1 The condition number of M(γ)

While Algorithm 4.2 is based on the inner product defined by M(γ)A,
we actually compute the scalars αi and βi+1 using the inner product
defined by M(γ), cf. (4.6) and (4.7). Therefore it is of interest to
estimate κ(M(γ)), the condition number of M(γ), in order to as-
sess the numerical stability of the method. The following result is a
generalization of [5, Corollary 3.2].

Lemma 5.1 Suppose that (2.3) and (3.1) hold, so that the matrix
M(γ) is symmetric positive definite. Let ξ ≡ (λmin(A) − γ)(γ −
λmax(C)) − ‖B‖2, then

κ(M(γ)) <
4

ξ
(λmax(A) − γ)(λmin(A) − γ) . (5.1)

Proof By assumption, the matrix M(γ) permits the factorization

[
(A − γI)1/2 0

0 (γI − C)1/2

] [
I XT

X I

] [
(A − γI)1/2 0

0 (γI − C)1/2

]
,

(5.2)
where X ≡ (γI − C)−1/2B(A − γI)−1/2, so that

‖X‖ ≤
‖B‖

(λmin(A) − γ)1/2(γ − λmax(C))1/2
.
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Since (3.1) holds we have ξ > 0, and hence the right hand side is
less than one, giving 1+ ‖X‖ < 2. Moreover, elementary calculations
using the definition of ξ show that

1 − ‖X‖2 ≥
ξ

(λmin(A) − γ) (γ − λmax(C))
,

which will be used below.
For any congruence M = FHF T ,

κ(M) ≤ ‖F‖2 ‖H‖ ‖F−1‖2 ‖H−1‖ = κ(F 2)κ(H) .

Using this in (5.2) yields

κ(M(γ)) ≤ κ

([
A − γI 0

0 γI − C

])
κ

([
I XT

X I

])

=
λmax(A) − γ

γ − λmax(C)

1 + ‖X‖

1 − ‖X‖

=
λmax(A) − γ

γ − λmax(C)

(1 + ‖X‖)2

1 − ‖X‖2

< 4
λmax(A) − γ

γ − λmax(C)

(λmin(A) − γ)(γ − λmax(C))

ξ
,

which concludes the proof. ⊓⊔

The bound (5.1) indicates a relation between κ(M(γ)) and the suf-
ficient condition (3.1) for positive definiteness of M(γ): With larger ξ,
the bound on the condition number of M(γ) becomes smaller, and
vice versa.

The best choice of γ is the one that minimizes κ(M(γ)), but γ = γ̂
as in Corollary 3.1 is a more accessible substitute. For this choice, and
the corresponding value of ξ = ξ̂, (5.1) implies that

κ(M(γ̂)) <
(2λmax(A) − λmax(C)) (λmin(A) − λmax(C))

ξ̂
. (5.3)

In the special case C = 0, (5.3) simplifies to

κ(M(γ̂)) <
2

ξ̂
λmax(A)λmin(A) <

8λmax(A)

λmin(A) − 2‖B‖
.

In this case, Benzi and Simoncini [5, Corollary 3.2] have estimated
κ(M(γ̂)) as

κ(M(γ̂)) ≈
4λmax(A)

λmin(A) − 4λmax(BA−1BT )
.
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From (3.6), it is easy to see that the denominator on the right hand
side is bounded from below by λmin(A)− 2‖B‖, so that the resulting
estimate on the right hand side corresponds to our bound up to a
constant factor of two.

5.2 Error bounds

When the matrix M(γ) is positive definite, the CG method in Al-
gorithm 4.2 is optimal in the (M(γ)A)-norm, see item (4) in The-
orem 4.1. We know that A is (M(γ)A)-symmetric (cf. Lemma 4.3),
and hence A has a complete set of eigenvectors that are orthonormal
with respect to the inner product defined by M(γ)A (cf. the proof
of Corollary 3.2). Hence we may write

A = YΛY−1, where YT (M(γ)A)Y = I .

Suppose that x0 is an initial guess for the solution of Ax = b, and
write the initial error as x − x0 = Yv, for some vector v ∈ R

n+m.
Then the (M(γ)A)-norm of the ith error satisfies (cf. item (4) in
Theorem 4.1)

‖x − xi‖M(γ)A = min
p∈πi

‖p(A)(x − x0)‖M(γ)A

= min
p∈πi

(vT p(Λ)2 v)1/2

≤ ‖x − x0‖M(γ)A min
p∈πi

max
λ∈Λ(A)

|p(λ)| . (5.4)

Here Λ(A) denotes the (real and positive) spectrum of A. The bound
(5.4) and its derivation is completely analogous to the standard con-
vergence bound for the classical CG method in case of a symmetric
positive definite system matrix M and error minimization in the M -
norm. Estimation of the quantity minp∈πi

maxλ∈Λ(A) |p(λ)| using the
eigenvalue distribution of A has been exhaustively done in the liter-
ature, see, e.g., [3, Chapter 13]. The important information given by
(5.4) is that when the spectrum of A is clustered away from the origin,
then fast convergence can be expected. This gives some indication on
how to choose a preconditioner.

To get a computable estimate on the error that is minimized in ev-
ery step, we use that A is (M(γ)A)-symmetric and (M(γ)A)-definite.
In this case [1, Corollary 5.2] applies, and shows that

(
κ̂(A)−1 (ri, ri)M(γ)

(b, b)M(γ)

)1/2

≤
‖x − xi‖M(γ)A

‖x‖M(γ)A



18 Jörg Liesen, Beresford N. Parlett

≤

(
κ̂(A)

(ri, ri)M(γ)

(b, b)M(γ)

)1/2

, (5.5)

where (ri, ri)M(γ) is the numerator of αi (and thus available in every
step at no extra cost), cf. (4.6), and

κ̂(A) ≡
maxλ∈Λ(A) λ

minλ∈Λ(A) λ
.

Bendixon’s Theorem [12, p. 69] yields

min {λmin(A), λmin(C)} ≤ λ ≤ max {λmax(A), λmax(C)}

for all λ ∈ Λ(A), so that

κ̂(A) ≤
max {λmax(A), λmax(C)}

min {λmin(A), λmin(C)}
.

Of course, when C is singular, this estimate is useless. Close estimates
for the eigenvalues of A may be obtained using parameters computed
by the CG method itself. This gives a convergence bound that be-
comes tighter during the run of the method. We will not discuss this
approach here, and refer the interested reader to [1, Section 7].

We next relate the (M(γ)A)-norm of the error to the Euclidean
norm of the residual, which is often used as a stopping criterion for
the CG method (even though this quantity is not minimized, and may
strongly oscillate during the iteration). Since M(γ) = JA−γJ > 0,
we have uTJAu − γuTJ u > 0, or −uTJAu < −γuTJ u, for all
vectors u ∈ R

n+m, so that

‖x − xi‖
2
M(γ)A = (x − xi)

TM(γ)A(x − xi)

= (x − xi)
T (ATJ − γJ )A(x − xi)

= rT
i J ri − γ(x − xi)

TJA(x − xi)

< rT
i J ri − γ2(x − xi)

TJ (x − xi)

= (ri, ri)J − γ2(x − xi, x − xi)J

≤ ‖ri‖
2 + γ2‖x − xi‖

2

= ‖ri‖
2 + γ2‖A−1ri‖

2

≤ ‖ri‖
2

(
1 +

γ2

σ2
min(A)

)
,

where σmin(A) denotes the smallest singular value of A. In particular,
for γ = γ̂ as in Corollary 3.1,

‖x − xi‖M(bγ)A < ‖ri‖

(
1 +

(λmin(A) + λmax(C))2

4σ2
min(A)

)1/2

.
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We see that if A is not too ill conditioned, then the Euclidean norm
of the residual gives a reasonable bound on the (M(γ)A)-norm of the
error.

6 Numerical examples

In this section we present results of numerical experiments with test
problems generated by the MATLAB [13] package Incompressible
Flow Iterative Solution Software (IFISS), version 2.2 [15]. We use the
driver stokes testproblem of this code with default options to set
up a stabilized discretization of a Stokes equations model problem1,
resulting in a linear system of the form

[
A BT

B −1
4 C

] [
u
p

]
=

[
f
g

]
, (6.1)

where A = AT > 0 is of order n = 578, C = CT ≥ 0 is of order
m = 256, and, by construction, rank(B) = m − 2 = 254. To agree
with the notation used in [7], we have written out the stabilization
parameter 1

4 explicitly. The system matrix is of order n + m = 834
and of rank n + m− 1 = 833. However, the system is consistent, and
the singularity of the system matrix represents no difficulty for the
iterative methods considered here. Other parameters relevant for our
context, and computed using MATLAB’s eig routine, are:

λmax(A) = 3.9493, λmin(A) = 0.0764,

λmax(
1
4C) = 0.0156, λmin(

1
4C) = 0.

The spectra of A and 1
4C are separated, so that (2.3) is satisfied.

Since ‖B‖ = 0.2476, the sufficient condition (3.2) is not satisfied.
Nevertheless, with

γ̂ = 1
2 (λmin(A) + λmax(

1
4C)) = 0.0460 ,

we set up the matrix M(γ̂), which is positive definite and rather well
conditioned:

λmax(M(γ̂)) = 3.9191, λmin(M(γ̂)) = 0.0118, κ(M(γ̂)) = 333.3771

1 The default parameters are: lid driven cavity; cavity type: regularized; grid
parameter 4 (16×16 grid); uniform grid; Q1−P0 elements; stabilization parameter
1/4; uniform streamlines. See the IFISS user guide or [7, Chapter 5] for a detailed
description of this test problem.
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(computed using MATLAB’s eig and cond). We negate the second
block row in (6.1) to obtain

[
A BT

−B 1
4 C

] [
u
p

]
=

[
f
−g

]
. (6.2)

We now apply MATLAB’s build-in MINRES algorithm to (6.1) and
our Algorithm 4.2 to (6.2) (both with x0 = 0). The resulting con-
vergence characteristics are shown in Fig. 6.1 To compute the error
norms, xT = [uT , pT ] is obtained by solving the system (6.2) using
the MATLAB backslash operator.

Clearly, Algorithm 4.2 is competitive with MINRES, which is op-
timal for the linear system (6.1) in the sense that it minimizes the
Euclidean norm of the residual over the Krylov subspace generated by
the system matrix and the right hand side. In fact, the convergence of
the Euclidean residual norms of Algorithm 4.2 slightly outperforms
those of MINRES. Note, however, that the Euclidean residual norms
of Algorithm 4.2 are not monotonically decreasing; they do not sat-
isfy a minimization property. On the other hand, the (M(γ̂)A)-norm
of the error is monotonically decreasing, and in this example it is
very close to the Euclidean residual norm. Moreover, a good estimate
of this norm is given by (ri, ri)M(bγ) / (b, b)M(bγ), a quantity that is
available at no additional cost during the iteration (cf. (5.5)).

To obtain a larger test example we again use stokes testproblem,
but this time we choose the grid parameter 6 in IFISS, resulting in a
64× 64 grid, and system dimensions n = 8450 and m = 4096. In this
case the computation of the exact eigenvalues is rather expensive,
and so we only compute estimates in MATLAB:

normest(A) = 3.9965,

λmin(A) ≈ 0.0048 (estimated using eigs with maxit=20),

normest(1
4C) = 9.7656e − 004, normest(B) = 0.0625.

For these estimates (2.3) is satisfied, but again (3.2) is not. The run
of Algorithm 4.2 is based on γ = 1

2(0.0048+normest(1
4C)) = 0.0029.

In Fig. 6.2 we show the convergence characteristics of MINRES and
Algorithm 4.2; the notation corresponds to the one of Fig. 6.1. Obvi-
ously, the qualitative behavior of the algorithms for both test prob-
lems is the same.

7 Concluding remarks

We have considered the idea of negating the second block row in
a saddle point system, which leads to an unsymmetric but positive
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Fig. 6.1. Convergence characteristics for the default stokes testproblem:
‖ri‖/‖r0‖ of MATLAB’s MINRES (dotted); ‖ri‖/‖r0‖ (solid), ‖x−xi‖M(bγ)A/‖x−
x0‖M(bγ)A (dashed), and (ri, ri)M(bγ)/(b, b)M(bγ) (dashed-dotted) of Algorithm 4.2.
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Fig. 6.2. Convergence characteristics for the larger stokes testproblem. The
curves correspond to those in Fig. 6.1.

(semi)definite, rather than symmetric but indefinite system matrix.
We have generalized previous results on the definiteness and condi-
tioning of the bilinear form with respect to which the unsymmetric
saddle point matrix is symmetric. In particular, we have included the
case of a general positive semidefinite block C.
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We have derived an efficient CG method for solving the (unsym-
metric positive definite) saddle point system. In numerical experi-
ments we have seen that this method compares well with the MIN-
RES method, which often is considered the standard solver for (sym-
metric indefinite) saddle point systems. We point out that, unlike our
method, MINRES does not require the estimation of the parameter γ,
which can be a significant practical advantage.

Our goal has been to present the theory and the algorithms in
a clean and easily readable, rather than most general form. Rather
than the end of the story, we consider our paper the starting point
for further work. For example, an analysis is needed of the indefinite
case, i.e. the practically relevant situations when ‖B‖ or ‖C‖ are too
large, or γ has been chosen to yield an indefinite matrix M(γ). In
very large scale applications, where only crude estimates of the rele-
vant eigenvalues are available, the latter situation is not unlikely to
occur. In addition, to make the CG method really useful in practi-
cal applications, preconditioning techniques must be studied, and its
numerical stability must be understood.
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Valeria Simoncini, Petr Tichý, Andy Wathen, and an anonymous referee for their
helpful comments.

References

1. S. F. Ashby, M. J. Holst, T. A. Manteuffel, and P. E. Saylor, The
role of the inner product in stopping criteria for conjugate gradient iterations,
BIT, 41 (2001), pp. 26–52.

2. S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for
conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542–1568.

3. O. Axelsson, Iterative solution methods, Cambridge University Press, Cam-
bridge, 1994.

4. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point
problems, Acta Numer., 14 (2005), pp. 1–137.

5. M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point
matrices, Numer. Math., 103 (2006), pp. 173–196.

6. J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefi-
nite systems resulting from mixed approximations of elliptic problems, Math.
Comp., 50 (1988), pp. 1–17.

7. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and
fast iterative solvers: with applications in incompressible fluid dynamics, Nu-
merical Mathematics and Scientific Computation, Oxford University Press,
New York, 2005.



Nonsymmetric saddle point matrices allowing CG iterations 23

8. B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum
residual methods for augmented systems, BIT, 38 (1998), pp. 527–543.

9. F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Chelsea Publishing
Co., New York, 1959.

10. W. Givens, Fields of values of a matrix, Proc. Amer. Math. Soc., 3 (1952),
pp. 206–209.

11. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solv-
ing linear systems, J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436
(1953).

12. A. S. Householder, The theory of matrices in numerical analysis, Dover
Publications Inc., New York, 1975. Reprint of 1964 edition.

13. The MathWorks Company, Matlab, version 6.5.
http://www.mathworks.com.

14. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of
linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

15. D. J. Silvester, H. C. Elman, and A. Ramage, Incom-
pressible Flow Iterative Solution Software (IFISS), version 2.2.
http://www.manchester.ac.uk/ifiss.

16. G. L. G. Sleijpen, H. A. van der Vorst, and J. Modersitzki, Differences
in the effects of rounding errors in Krylov solvers for symmetric indefinite
linear systems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 726–751.

17. M. Stoll and A. Wathen, The Bramble-Pasciak preconditioner for sad-
dle point problems, Numerical Analysis Group Research Report NA-07/13,
Oxford University, Computing Laboratory, 2007.

18. , Combination preconditioning and self-adjointness in non-standard in-
ner products with application to saddle point problems, Numerical Analysis
Group Research Report NA-07/11, Oxford University, Computing Labora-
tory, 2007.


