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One of the most powerful tools for solving large and sparse systems oflinear algebraic equa-
tions is a class of iterative methods called Krylov subspace methods. Theirsignificant ad-
vantages like low memory requirements and good approximation properties make them very
popular, and they are widely used in applications throughout science andengineering. The
use of the Krylov subspaces in iterative methods for linear systems is even counted among
the “Top 10” algorithmic ideas of the 20th century. Convergence analysisof these methods
is not only of a great theoretical importance but it can also help to answerpractically relevant
questions about improving the performance of these methods. As we show, the question about
the convergence behavior leads to complicated nonlinear problems. Despite intense research
efforts, these problems are not well understood in some cases. The goal of this survey is to
summarize known convergence results for three well-known Krylov subspace methods (CG,
MINRES and GMRES) and to formulate open questions in this area.
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1 Introduction

Krylov subspace methods represent one of the most importantclasses of iterative methods for
solving linear algebraic systems. Their main common ingredient are the Krylov subspaces,
which are spanned by the initial residual and by vectors formed by repeated multiplication
of the initial residual by the system matrix. These subspaces first appeared in a paper by the
Russian scientist and navy general Aleksei Nikolaevich Krylov (1863–1945), published in
1931 [46]. Motivated by an application in naval science, Krylov was interested in analyzing
oscillations of mechanical systems, and proposed a method for computing the minimal poly-
nomial of a given matrix (see, e.g., [22, Section 42], [27, Chapter VII], or [40, Chapter 6]
for detailed accounts of Krylov’s method). Independently of Krylov’s work, the first Krylov
subspace methods for solving linear algebraic systems appeared two decades later with the
publication of the conjugate gradient (CG) method for Hermitian positive definite matrices
by Hestenes and Stiefel [38], and the closely related methods developed by Lanczos [47, 48].
Driven by the need to solve linear systems of vastly increasing dimension and the accompa-
nying rapid development of computational resources, theseKrylov subspace methods were
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4 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

used in many applications, particularly in the engineeringcommunity. In the numerical linear
algebra community, the potential of Krylov subspace methods was fully recognized only after
an influential paper of Reid appeared in 1971 [61]. Subsequently, numerous additional Krylov
subspace methods were developed, with focus on indefinite and non-Hermitian matrices. To-
day, the use of the Krylov subspaces in iterative methods forlinear systems is counted among
the “Top 10” algorithmic ideas of the 20th century [11]. One of the main reasons for this
success is that the Krylov subspaces can be build up using only a function that computes the
multiplication of the system matrix and a vector, so that thesystem matrix itself never has to
be formed or stored explicitly. Hence Krylov subspace methods are particularly well suited
for application to large and sparse linear systems, which today are commonplace throughout
applications in science and engineering.

Mathematically, Krylov subspace methods are based on projection methods. Instead of
solving the potentially very large linear system, the idea is to approximate the systems’ solu-
tion in Krylov subspaces of small dimension. The goal of the convergence analysis of these
methods is todescribe the convergence of this process in terms of input data of the given
problem, i.e. in dependence on properties of the system matrix, the right hand side vector and
the initial guess. Understanding the convergence of Krylovsubspace methods is particularly
important to answer the practically relevant questions howto accelerate the convergence (in
particular how to precondition the system), and how to choose potential restart parameters.

The goal of this paper is to survey the known theory of convergence of Krylov subspace
methods that are based on two basic types of projection methods, namely the Galerkin (orthog-
onal residual (OR)) method and the minimal residual (MR) method. Both types of methods
have been implemented in various commonly used algorithms.An example of the OR Krylov
subspace method is the CG method [38] for Hermitian positivedefinite matrices. Implemen-
tations of the MR Krylov subspace method are the MINRES method [59] for nonsingular
Hermitian indefinite matrices and the GMRES method [65] for general nonsingular matrices.
The distinction between OR and MR methods made in this paper is not new. In fact it has
been extensively used in the past to derive relations between the convergence quantities (e.g.
error or residual norms) of different methods, see, e.g., [13, 15, 39]. Here our focus is on
giving bounds for the convergence quantities of each methodseparately.

If the system matrix is unitarily diagonalizable, i.e. normal, then the (worst-case) conver-
gence behavior of CG, MINRES and GMRES is completely determined by its spectrum. The
convergence analysis then reduces to analyzing a certain min-max approximation problem
on the matrix eigenvalues. In the nonnormal case, however, the convergence behavior of the
GMRES method may not be related to the eigenvalues in any simple way. As a consequence,
other properties of the input data must be considered to describe the convergence. Despite
intense efforts to identify descriptive properties, understanding the convergence of GMRES
in the general nonnormal case still remains a largely open problem.

After a brief introduction to the mathematical background of Krylov subspace methods
(Section 2), we survey in Section 3 the theory of convergenceof these methods. We dis-
tinguish between the normal (Section 3.1) and the nonnormal(Section 3.2) case. Section 4
contains concluding remarks. We point out that all convergence results we state in this paper
were derived assuming exact arithmetic. A recent survey of the numerical stability of Krylov
subspace methods that also discusses effects of finite precision arithmetic on the convergence
is given in [71].
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2 Krylov subspace methods

In this section we briefly describe the mathematical background of the Krylov subspace meth-
ods for solving linear algebraic systems of the form

Ax = b , (1)

whereA is a real or complex nonsingularN by N matrix, andb is a real or complex vector of
lengthN . Suppose thatx0 is an initial guess for the solutionx, and define the initial residual
r0 = b−Ax0. As shown originally by Saad [62, 63] (see his book [64] for a summary), Krylov
subspace methods can be derived from the followingprojection method: Thenth iteratexn,
n = 1, 2, . . . , is of the form

xn ∈ x0 + Sn , (2)

whereSn is somen-dimensional space, called the search space. Because of then degrees
of freedom,n constraints are required to makexn unique. This is done by choosing ann-
dimensional spaceCn, called the constraints space, and by requiring that thenth residual is
orthogonal to that space, i.e.,

rn = b − Axn ∈ r0 + ASn , rn ⊥ Cn . (3)

Orthogonality here is meant in the Euclidean inner product.A similar type of projection
process appears in many areas of mathematics. As an example,consider the Petrov-Galerkin
framework in the context of the finite element method for discretizing partial differential equa-
tions, see e.g. [60, Chapter 5]. There the notions of test andtrial spaces correspond to search
and constraints spaces in (2)–(3).

In this paper we concentrate on the projection method (2)–(3) and two basic relations be-
tweenSn andCn, that to our mind are among the most important ones:

Cn = Sn (Galerkin method), (4)

Cn = ASn (Minimal residual method) . (5)

The Galerkin and the minimal residual (MR) method are calleda Krylov subspace method
when the so-called Krylov subspacesKn(A, r0) are used as search spaces, i.e.

Sn = Kn(A, r0) ≡ span{r0, Ar0, . . . , A
n−1r0} , n = 1, 2, . . . . (6)

Using these spaces in the Galerkin method, we construct residualsrn = b − Axn that are
orthogonal to all previous residualsrn−1, . . . , r0. That is why, in the context of Krylov sub-
spaces, the Galerkin method is often called orthogonal residual (OR) method.

There are many possible choices of Krylov subspaces and their variants (e.g.AKn(A, r0),
Kn(AH , r0), AHKn(AH , r0), etc.) in the projection process (2)–(3). This fact certainly
contributes to the overabundant supply of these methods. Also note that for each mathematical
description there may be several different implementations that in exact arithmetic satisfy (2)–
(3) for given search and constraint spaces, but that may differ in their finite precision behavior.
Particularly comprehensive and systematic surveys of existing Krylov subspace methods from
different viewpoints can be found in [4, 10, 15, 26].
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6 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

The Krylov subspaces form a nested sequence that ends with a subspace of maximal di-
mensiond = dimKN (A, r0), i.e.,

K1(A, r0) ⊂ · · · ⊂ Kd(A, r0) = · · · = KN (A, r0) .

The number of steps of the OR/MR Krylov subspace method is limited by the maximal Krylov
subspace dimensiond. We say that a projection processbreaks downin stepn if no iteratexn

exists, or ifxn is not unique. Naturally, we are interested in projection methods that ensure
existence and uniqueness of their iteratesxn for each stepn ≤ d. Suchwell-definedmethods
terminate with the exact solution in the stepd, which is called thefinite termination property.
Whether a method is well-defined or not, depends on the properties of the matrixA.

In general, the OR Krylov subspace method yields uniquely defined iterates for eachn
whenever zero is outside thefield of valuesof A, which is defined as

F(A) =
{

vHAv : vHv = 1 , v ∈ C
N
}

. (7)

However, in this paper we limit our discussion to the OR Krylov subspace method for Her-
mitian positive definite matrices, since only in this case the given system matrix defines a norm
in which the errors are minimized (see Section 3.1.1 for details). A particular implementation
in this case is the CG method [38].

The MR Krylov subspace method is well defined wheneverA is nonsingular. This feature
makes this method very popular, since it can be used for general matrices. The most well-
known implementations are the MINRES method [59] for Hermitian indefinite matrices and
the GMRES method [65] for general nonsingular matrices.

Finally, note that the conditionsxn ∈ x0 + Kn(A, r0) andrn ∈ r0 + AKn(A, r0) imply
that the errorx − xn and the residualrn can be written in the polynomial form

x − xn = pn(A)(x − x0), rn = pn(A)r0, (8)

wherepn is a polynomial of degree at mostn and with value one at the origin. For a well-
defined OR/MR Krylov subspace method, the polynomialpn is uniquely determined by the
constraint conditions (3).

3 Convergence analysis

In exact arithmetic, well-defined Krylov subspace methods terminate in a finite number of
steps. Therefore no limit can be formed, and terms like “convergence” or “rate of conver-
gence” loose their classical meaning; see, e.g., [37, Chapter 9.4] for a cautioning in this di-
rection. This situation requires approaches that are substantially different from the analysis of
classical fixed point iteration methods such as Gauß-Seidelor SOR. The convergence of the
latter methods has typically been described asymptotically, with the “asymptotic convergence
factor” of the iteration matrix being the central concept. Surprisingly, this principal difference
between the Krylov subspace methods and the classical iteration methods is still not always
accepted. For example, the classical convergenceboundfor the CG method that is based on
the matrix condition number (see equation (15) below) is sometimes confused with the actual
convergencebehaviorof the method. Hence the actual convergence is identified with a bound
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based on the asymptotic convergence factor of the convex hull of the spectrum, without con-
sidering any other properties of the given data. Clearly, this approach can be very misleading
in some situations.

A related difficulty in the convergence analysis is the typical requirement of finding an
acceptable approximate solutionxn in n ≪ N steps. Therefore it is important to understand
the convergence from the very beginning, i.e., in the classical terminology, to understand the
“transient” behavior. This early stage of convergence, however, can depend significantly on
the right hand sideb and the initial guessx0. In general, the non-existing limiting process,
the relevance of the transient phase, and the dependence of this phase onb andx0 make the
convergence analysis of Krylov subspace methods a difficultnonlinear problem – although
the system to be solved is linear. Some of these issues are also addressed in [69, 70].

We divide our discussion about the convergence of Krylov subspace methods into two
parts. In the first part (Section 3.1) we consider normal system matricesA and show that in
this case the spectral information is important for analyzing the convergence. The second part
(Section 3.2) shows the difficulties with estimating the convergence in the nonnormal case.

3.1 Normal matrices

Consider a nonsingular andnormalmatrixA, and let

A = V ΛV H , where V HV = I, Λ = diag(λ1, . . . , λN ) ,

be its eigendecomposition. The orthogonality of the eigenvector basis leads to a significant
simplification in the convergence analysis of Krylov subspace methods: ConsideringAn in
the formV ΛnV H and using (8), the errors and residuals of a Krylov subspace method satisfy

x − xn = V pn(Λ)V H(x − x0), rn = V pn(Λ)V Hr0 . (9)

Because the projection property usually refers to some sortof optimality, we can expect that
Krylov subspace methods for normal matrices solve some weighted polynomial minimiza-
tion problem on the matrix spectrum. In the following subsections we explain that in the
worst case, the convergence speed of well-known Krylov subspace methods (CG, MINRES,
GMRES) is determined by the value

min
p∈πn

max
k

|p(λk)| , (10)

whereπn denotes the set of polynomials of degree at mostn and with value one at the ori-
gin. Note that the value (10) represents a min-max approximation problem on the discrete
set of the matrix eigenvalues. The value (10) depends in a complicated (nonlinear) way
on the eigenvalue distribution. Assume, for simplicity, that all eigenvalues are real and dis-
tinct. The results in [28, 54] show that there exists a subsetof n + 1 (distinct) eigenvalues
{µ1, . . . , µn+1} ⊆ {λ1, . . . , λN}, such that

min
p∈πn

max
k

|p(λk)| =







n+1
∑

j=1

n+1
∏

k=1
k 6=j

|µk|
|µk − µj |







−1

. (11)
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8 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

If at least one eigenvalue ofA is complex, the equality (11) does not hold in general, cf. [54].
Nevertheless, in [54] we formulate a conjecture, supportedby numerical experiments and by
some theoretical results, that there exist a set ofn + 1 eigenvalues such that the value on the
right hand side of (11) is equal to (10) up to a factor between 1and4/π.

Of course, except for model problems and special situations, not all eigenvalues ofA are
known, and hence an analysis based on (11) cannot be applied.In the following we will
concentrate on the practically more relevant approach to estimate the value of (10) using
only a partial knowledge of the spectrum, in particular onlysome set that contains all the
eigenvalues (a so-called inclusion set). An inclusion set is often known a priori or can be
easily estimated. We discuss the resulting convergence bounds for CG (Hermitian positive
definiteA), MINRES (HermitianA) and GMRES (general normalA).

3.1.1 Hermitian positive definite matrices – CG

Consider aHermitian positive definitematrix A. Each such matrix defines a norm (the so-
calledA-norm),

‖u‖A =
(

uHAu
)

1
2 , (12)

and it is well known (see, e.g., [29]) that the OR Krylov subspace iteratesxn are in this case
uniquely defined in each iterative stepn and can be computed using the CG method. The CG
iteratesxn satisfy

‖x − xn‖A = min
p∈πn

‖p(A)(x − x0)‖A . (13)

In other words, the CG method constructs an approximationxn from the affine subspace
x0+Kn(A, r0) with minimalA-norm of the error. It can be shown that theA-norm of the error
is strictly monotonically decreasing, i.e., that‖x − xn‖A < ‖x − xn−1‖A for n = 1, . . . , d.
TheA-norm of the error often has a counterpart in the underlying real-world problem. For
example, when the linear system comes from finite element approximations of self-adjoint
elliptic PDEs, then theA-norm of the error can be interpreted as the discretized measure of
energy which is to be minimized; see, e.g., [1, 2].

A simple algebraic manipulation shows that the value (10) represents an upper bound on
the relativeA-norm of the error,

‖x − xn‖A

‖x − x0‖A
≤ min

p∈πn

max
k

|p(λk)| . (14)

This convergence bound is sharp, i.e., for each iteration stepn there exist a right hand sideb
or an initial guessx0 (depending onn andA) such that equality holds in (14), see [28]. In
this sense, the bound (14) completely describes theworst-case behaviorof the CG method.
When the whole spectrum ofA is known, one can try to determine the value of the right hand
side of (14) using the formula (11). However, it is in generalan open problem which subset
of n + 1 eigenvalues leads to equality in (11).

Obviously, the bound (14) depends only on the matrix eigenvalues and not on any other
properties ofA, b, or x0. If a particular right hand sideb is known, it is sometimes possible
to incorporate the information aboutb into the analysis, and thus to obtain a better estimate of
the actual convergence behavior.
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Estimating the bound (14). Often, the largest and smallest eigenvalue (or at least esti-
mates for them) are known. Then the classical approach is to replace the discrete set of the
matrix eigenvalues by an interval containing all eigenvalues and to use Chebyshev polynomi-
als of the first kind to estimate the min-max approximation (14). This results in the following
well-known upper bound based on the condition number ofA, i.e. the ratio of the largest and
the smallest eigenvalue (see, e.g., [29]),

‖x − xn‖A

‖x − x0‖A
≤ 2

(√
κ − 1√
κ + 1

)n

, κ =
λmax

λmin
. (15)

We stress that there is a principal difference between the bounds (14) and (15). The bound
(14) represents a min-max approximation problem on thediscrete setλ1, . . . , λN , and it de-
scribes the convergence behavior in the worst-case sense. On the other hand, the bound (15)
represents an estimate of the min-max approximation on theinterval [λmin, λmax] containing
all eigenvalues ofA. It therefore bounds the worst-case behavior for all possible eigenvalue
distributions in the given interval. In other words, the bounds (14) and (15) describe different
approximation problems, and thus their values can differ significantly (see [66]). Clearly, the
bound (15) cannot be identified with the CG convergence, and it represents an overestimate
even of the worst-case behavior except for very special eigenvalue distributions in the given
interval (see [53] for further discussion of this fact). Thebound (15) shows, however, that a
small condition number (close to1) implies fast convergence of the CG method. This justifies
the classical goal of “preconditioning”, namely to decrease the condition number of the given
system matrix. On the other hand, the bound (15) doesnotshow that a large condition number
implies slow convergence of the CG method.

Example 3.1 Consider two example eigenvalue distributions in the interval [1/400, 1].
The first eigenvalue set, given by

λk = k2/400 , k = 1, . . . , 20 , (16)

has a cluster close to zero, whereas the second set, given by

λk = log(k)/ log(20) , k = 2, . . . , 20 , λ1 = 1/400 , (17)

has a cluster close to one. Each Hermitian and positive definite matrix having the eigenval-
ues (16) or (17) has the (moderate) condition number400. Fig. 1 shows that the worst-case
CG convergence behavior differs significantly for the eigenvalue set (16) (solid) and for the
eigenvalue set (17) (dashed). Since the bound (15) (dash-dotted) represents an upper bound
on the worst-case CG behavior for any eigenvalue distribution in the given interval, it cannot
describe the actual CG convergence for a particular eigenvalue set like (17).

An alternative estimate for the value (10), based on the ratio of arithmetic and geometric
averages of the eigenvalues (the so-calledK-condition number), was introduced by Kaporin
[43]. This and other related estimates can also be found in [5, Chapter 13]. In [6], Axels-
son and Kaporin propose convergence estimates for the CG method based on a generalized
condition number ofA, which also depends on the initial error.

Superlinear convergence of CG.In many applications it has been observed that theA-
norm of the error in the CG method converges “superlinearly”, which means that speed of
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Fig. 1 For a particular eigenvalue distribution (17), the worst-case CG behavior(dashed) can signifi-
cantly differ from the bound(15) (dash-dotted).

convergence increases during the iteration. Some attemptshave been made to explain this
behavior using the convergence of Ritz values in the Lanczosprocess that underlies the CG
method. An intuitive explanation of the superlinear behavior, given in the early paper [12], is
that when the extremal eigenvalues ofA are well approximated by the Ritz values, then the
CG method proceeds as if the corresponding eigenvectors were not present. This leads to a
smaller “effective” condition number ofA, which in turn might explain the faster convergence.
This situation is discussed and analyzed, for example, in [55, 75, 77]; see [76, Chapter 5.3]
for a recent summary.

The results just mentioned attempt to explain the behavior of the CG method using in-
formation that is generated during the run of the method. A different, and certainly not less
interesting problem is to identify (a priori) properties ofthe input dataA, b andx0 that im-
ply superlinear convergence behavior. This problem is considered in an asymptotic setting
by Beckermann and Kuijlaars [7, 8]. They show that superlinear CG convergence can be ob-
served when solving a sequence of linear systems with Hermitian positive definite matrices
whose eigenvalue distributions are far from an equilibriumdistribution [7] (see, e.g., [23] for
an introduction to these asymptotic concepts). Such favorable eigenvalue distributions occur,
for example, when the system matrices come from the standardfive-point finite difference
discretizations of the two-dimensional Poisson equation.Another situation where superlinear
convergence is observed despite an equilibrium distribution of the eigenvalues is when the
components of the initial error in the eigenvector basis of the system matrices strongly vary in
size [8]. In a finite dimensional setting, analytic examplesfor this phenomenon in the context
of the discretized one-dimensional Poisson equation are given in [53].

Example 3.2 Consider theN by N tridiagonal symmetric and positive definite Toeplitz
matrix A = tridiag(−1, 2,−1) for N = 120, that arises by the central finite difference
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approximation of the one-dimensional Poisson equation. Asproved asymptotically by Beck-
ermann and Kuijlaars [8], CG may for this model problem converge superlinearly when the
initial error exhibits certain distributions of components in the eigenvector basis ofA.

For particular initial errors, the superlinear convergence can in this model problem even
be proved in a finite dimensional setting. In particular, consider an initial error whose com-
ponents in the eigenvector basis ofA are given byγ sin−2(kπ/(2N + 2)), k = 1, . . . , N ,
whereγ represents a nonzero scaling factor; cf. the solid line in the right part of Fig 2. Ap-
parently, these components strongly vary in size, with larger components corresponding to
smaller eigenvalues ofA. Using the results of Naiman et al. [57], it can be shown by an
elementary computation [53], that the CG errors for this initial error satisfy

‖x − xn‖A

‖x − xn−1‖A
=

(

N − n

N − n + 3

)1/2

, n = 1, . . . , N .

The right hand side in the above equation is a strictly decreasing function of the iteration
stepn, which gives an analytic proof for the superlinear CG convergence forA and this initial
error. The superlinear CG convergence curve is shown as the solid line in the left part of Fig. 2.
For comparison, we use an initial error with eigencomponents that are equally distributed; cf.
the dashed line in the right part of Fig 2. As shown by the dashed line in the left part of Fig 2,
no superlinear convergence can be observed in this case.

0 20 40 60 80 100 120

10
−3

10
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10
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10
0

0 20 40 60 80 100 120
10
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10
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10
−2

10
−1

10
0

Fig. 2 CG convergence curves (left part) for two distributions of eigencomponents of the initial error
(right part).

In summary, the convergence behavior of the CG method is relatively well understood,
but some open problems still remain. The right approach for investigating the convergence
behavior is to use all information about the eigenvalue distribution we have at our disposal.
If a particular right hand sideb and initial guessx0 are given, they should be incorporated in
the analysis. An example for such an approach for the model problem of the one-dimensional
Poisson equation is given in [53].

3.1.2 Normal matrices – MINRES and GMRES

In this subsection we consider nonsingular andnormalmatricesA. It is well known (see, e.g.,
[29]) that the iteratesxn of the MR Krylov subspace method are for any such matrix uniquely
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12 J. Liesen and P. Tichý: Analysis of Krylov Subspace Methods

defined in each iterative stepn, and that thenth residualrn = b − Axn satisfies

‖rn‖ = min
p∈πn

‖p(A)r0‖. (18)

The residual norms decrease strictly monotonically whenever zero is outside the field of val-
ues ofA, see [16, 35] for different proofs. However, in general no strict monotonicity is
guaranteed. In fact, any (finite) nonincreasing sequence ofnumbers represents a convergence
curve of the MR Krylov subspace residual norms applied to some linear system with a normal
system matrix [3, 34, 50]. That normal matrix can even be chosen to have all its eigenvalues
on the unit circle.

In the normal case, the relative residual norm of the MR Krylov subspace method can be
bounded similarly as in (14),

‖rn‖
‖r0‖

≤ min
p∈πn

max
k

|p(λk)| (19)

and again, the bound (19) is sharp [33, 42]. In other words, the bound (19) describes the
worst-case behavior of the MR Krylov subspace method. If full spectral information is avail-
able, then the approach in [54] (cf. the discussion of formula (11)) can be used for estimating
the worst-case convergence behavior. Otherwise, one can try to estimate the worst-case bound
(19) similarly as in the Hermitian positive definite case, i.e., by replacing the discrete spec-
trum by a continuous inclusion set. However, as we will see, the estimation of the min-max
approximation becomes much more complicated now.

The Hermitian indefinite case.WhenA is Hermitian indefinite, the MR Krylov subspace
method MINRES can be used. An estimate on the min-max approximation (19) that represents
the worst-case MINRES convergence behavior, can be obtained by replacing the discrete set
of the eigenvalues by the union of two intervals containing all of them andexcluding the
origin, sayI− ∪ I+ ≡ [λmin, λs] ∪ [λs+1, λmax] with λmin ≤ λs < 0 < λs+1 ≤ λmax.
Note that if zero would be contained in the inclusion setI− ∪ I+, then the optimal min-max
polynomial fromπn on this set would be the constant polynomialpn(z) = 1 for all n, and the
resulting convergence bounds would be useless.

When both intervals are of the same length, i.e.,λmax − λs+1 = λs − λmin, the following
bound for the min-max value can be found,

min
p∈πn

max
k

|p(λk)| ≤ min
p∈πn

max
z∈I−∪I+

|p(z)| (20)

≤ 2

(

√

|λminλmax| −
√

|λsλs+1|
√

|λminλmax| +
√

|λsλs+1|

)[k/2]

, (21)

where[k/2] denotes the integer part ofk/2, see [29, Chapter 3]. For an illustration of this
bound suppose that|λmin| = λmax = 1 and|λs| = λs+1. Then the condition number ofA is
κ = λ−1

s+1, and the right hand side of (21) reduces to

2

(

κ − 1

κ + 1

)[k/2]

. (22)

Apparently, (22) corresponds to the value of right hand sideof (15) at step[k/2] for a Her-
mitian positive definite matrix having all its eigenvalues in the interval[λ2

s+1, 1], and thus a
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condition number ofλ−2
s+1. Hence the convergence bound for an indefinite matrix with condi-

tion numberκ needs twice as many steps to decrease to the value of the boundfor a definite
matrix with condition numberκ2. Although neither of the two bounds is sharp, this clearly
indicates that solving indefinite problems represents a significant challenge; see [9] for further
discussion. In the general case when the two intervalsI− andI+ are not of the same length,
the explicit solution of the min-max approximation problemon I− ∪ I+ becomes quite com-
plicated, see, e.g., [23, Chapter 3], and no simple and explicit bound on the min-max value
is known. One may of course extend the smaller interval to match the length of the larger
one, and still apply (21). But this usually results in a significantly weaker convergence bound,
which fails to give relevant information about the actual convergence behavior. Similar as in
the case of the CG method we stress that there is a principal difference between the bounds
(19) and (21). These bounds describe different approximation problems, and thus their values
can differ significantly.

The general normal case. If A is a general normal matrix, the MR Krylov subspace
method GMRES can be used. Again, an estimate of the right handside of (19) can be obtained
by replacing the discrete set of the eigenvalues ofA by some (compact) inclusion setΩ ⊂ C on
which (nearly) optimal polynomials are explicitly known. Usually one works with connected
inclusion sets, since polynomial approximation on disconnected sets is not well understood
(even in the case of two disjoint intervals; see above). Because of the normalization of the
polynomials at zero, the setΩ should not include the origin.

The simplest result is obtained when the spectrum ofA is contained in a disk in the com-
plex plane (that excludes the origin), say with radiusr > 0 and center atc ∈ C. Then the
polynomialpn(z) = ((c − z)/c)n ∈ πn can be used to show that

min
p∈πn

max
k

|p(λk)| ≤
∣

∣

∣

r

c

∣

∣

∣

n

.

In particular, a disk of small radius that is far from the origin guarantees fast convergence of
the GMRES residual norms.

More refined bounds can be obtained using the convex hullE of an ellipse instead of a disk.
For example, suppose that the spectrum is contained in an ellipse with center atc ∈ R, focal
distanced > 0 and major semi axisa > 0. If 0 /∈ E , it can be shown that

min
p∈πn

max
k

|p(λk)| ≤ Cn(a/d)

|Cn(c/d)| ≈
(

a +
√

a2 − d2

c +
√

c2 − d2

)n

,

whereCn(z) denotes thenth complex Chebyshev polynomial, see, e.g., [62]. We remark
that, as shown by Fischer and Freund [24], the polynomialsCn(z)/Cn(0) are in general not
the optimal min-max polynomials fromπn onE . However, these polynomials are asymptoti-
cally optimal and hence predict the correct rate of convergence of the min-max approximation
problem onE . For more details we refer to [64].

Of course, one would like to find a setΩ in the complex plane that yields the smallest
possible upper bound on the right hand side of (19). Both a disk and the convex hull of an
ellipse are convex, so one can probably improve the convergence bound by using the smallest
convex set containing all the eigenvalues, i.e., the convexhull of the eigenvalues. SinceA
is assumed normal, this set coincides with the field of valuesF(A). Hence the bound (28)
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Fig. 3 Tight inclusion of the eigenvalues of the GRCAR matrix by two elements of the class of sets
introduced in [45, 49].

studied below in the context of nonnormal matrices can in principle be used in the normal case
as well. However, all convex inclusion setsΩ are limited in their applicability by the strict
requirement that0 /∈ Ω. In particular, if zero is inside the convex hull of the eigenvalues ofA,
then no convex inclusion set for these points can be used. Moreover, if the convex hull is close
to the origin, then any bound derived from this set will be poor, regardless of the distance of
the eigenvalues to the origin. Another difficulty with usingthe convex hull of the eigenvalues
(or any other inclusion set bounded by a polygon) is that the boundary of this set is not smooth
and hence the computation of (nearly) optimal polynomials on these sets such as the Faber
polynomials is complicated, see, e.g., [68].

To overcome such difficulties, a parameterized class of non-convex sets with analytic
boundaries is constructed in [49] (also see [45]), for whichthe Faber polynomials are ex-
plicitly known. These polynomials give rise to analytic andeasily computable bounds for the
min-max approximation problem; see [49] for details. Two examples of the inclusion sets
are show in Fig. 3. The plus signs in this figure show the eigenvalues of the so-called Grcar
matrix of order 250, generated by the MATLAB commandgallery(’grcar’,250,6).
Obviously, the convex hull of these eigenvalues contains the origin (indicated by the star). On
the other hand, none of the eigenvalues is particularly close to the origin, which should be
exploited by the choice of the inclusion set. The boundariesof the two example inclusion sets
are shown by the dashed and the solid curves.

3.2 Nonnormal matrices

In this section we consider the case of a general nonsingularandnonnormalmatrix A. In
this general case, an MR Krylov subspace method such as GMRESyields uniquely defined
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iteratesxn so that thenth residualrn = b − Axn satisfies

‖rn‖ = min
p∈πn

‖p(A)r0‖. (23)

Similarly to the convergence analysis for normal matrices presented above, we are interested
in finding a (sharp) bound on the right hand side of (23).

Eigenvalues and convergence.If A is diagonalizable,A = V ΛV −1, Λ = diag(λ1, . . . , λN ),
then the following convergence bound easily follows from (23),

‖rn‖
‖r0‖

= min
p∈πn

‖V p(Λ)V −1r0‖
‖r0‖

≤ κ(V ) min
p∈πn

max
k

|p(λk)| , (24)

see, e.g., [65]. Hereκ(V ) = ‖V ‖ ‖V −1‖ denotes the condition number of the eigenvector
matrixV . A bound similar to (24) can be derived for nondiagonalizable matrices.

The bound (24) frequently is the basis for discussions of theGMRES convergence be-
havior. As mentioned in Section 3.1.2, this bound is sharp whenA is normal. Whenκ(V )
is small, the right hand side of (24) typically represents a good convergence bound, and its
value can be estimated using the tools described above. However, whenV is far from unitary,
the bound (24) may fail to provide any reasonable information about the GMRES conver-
gence. To see this, note that when the eigenvector matrixV is ill-conditioned, then some
components of the vectorV −1r0 can be very large, potentially much larger than‖r0‖. On the
other hand,‖rn‖ in (24) is bounded from above by‖r0‖. Therefore, the linear combination
V [p(Λ)V −1r0] can contain a significant cancellation, which is not reflected in the minimiza-
tion problem on the right hand side of (24). Apart from the fact, that the factorκ(V ) can be
very large in case of ill-conditioned eigenvectors, the principal weakness of the bound (24) is
that the min-max problem on the matrix eigenvalues need not have any connection with the
GMRES convergence for the given nonnormal matrix. As a consequence, the curve produced
by the min-max approximations on matrix eigenvalues can be substantially different from
the (worst-case) GMRES convergence curve and the bound can fail to give any reasonable
convergence information.

Example 3.3 For a numerical illustration consider the twoN by N tridiagonal Toeplitz
matrices

Aλ = tridiag(−1, λ,−1) and Bλ = tridiag(−λ, λ,−1/λ) ,

whereλ ≥ 2 is a real parameter. BothAλ andBλ havethe same eigenvalues, namelyλ −
2 cos(kπ/(N + 1)), k = 1, . . . , N . While Aλ is symmetric positive definite,Bλ is highly
nonnormal (e.g. a MATLAB computation yieldsκ(V ) ≈ 1027 for N = 40 andλ = 3). The
relative GMRES residual norms forx0 = 0 and the order 40 systemsAλx = [1, 0, . . . , 0]T

andBλx = [1, 0, . . . , 0]T , for λ = 3, 4, . . . , 18, are shown in Fig. 4. The relative residual
norms for the systems withAλ are plotted by solid lines (faster convergence corresponds
to largerλ), and for the systems withBλ they are plotted by dashed lines (essentially the
same for allλ). We observe that the GMRES convergence speed forAλ increases when
the spectrum moves away from the origin. On the other hand, for Bλ spectral information
is obviously useless for describing the GMRES convergence.In this example essentially
nothing happens during the firstN − 1 steps, and then termination occurs in the final stepN .
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Fig. 4 Relative GMRES residual norms for the normal matricesAλ (solid) and the nonnormal matrices
Bλ (dashed) forλ = 3, 4, . . . , 18 andr0 = [1, 0, . . . , 0]T .

Moreover, the spectrum ofBλ gives no information about the convergence behavior after
some “transient delay”, which some authors attribute to thepotentially large constantκ(V )
in (24). See [51, 54] for further discussion of the convergence of GMRES for tridiagonal
Toeplitz matrices.

The above example for the matricesBλ clearly shows that in the nonnormal case eigen-
value information is not sufficient for describing the convergence behavior of GMRES (see,
e.g., [56] for further examples). In fact, in this case the eigenvalues may have nothing to do
with the convergence behavior at all. As shown in [3, 34], anynonincreasing convergence
curve of relative GMRES residual norms is attainable for a system matrixA having any pre-
scribed eigenvalues. On the other hand, it needs to be stressed that from an analytic point of
view the principal difficulty of nonnormality isnot the often met belief that the convergence
is slower for nonnormal than for normal matrices. This belief is incorrect because for each
nonnormal matrixA there exists a normal matrixB for which the same convergence behavior
can be observed (for the same initial residualr0), cf. [3, 34, 35, 50]. Unfortunately, the map-
ping from the matrixA to the normal matrixB is highly nonlinear, and it depends strongly on
r0. Hence it is not suitable for an a priori analysis of the GMRESconvergence behavior for
the givenA andr0.

The idea to analyze the given nonnormal problem using a related normal problem is also
used by Huhtanen and Nevanlinna [41]. They propose to split the matrixA into A = Ã + E,
whereÃ is normal andE is of smallest possible rank. Using such splitting, lower bounds for
the quantityminp∈πn

‖p(A)‖ (cf. (26) below) can be given in terms of certain eigenvaluesof
Ã; see [41] for details.

Worst-case GMRES analysis in the nonnormal case.It should be clear by now that
in the nonnormal case the GMRES convergence behavior issignificantly more difficult to
analyzethan in the normal case. A general approach to understand theworst-case GMRES
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convergence in the nonnormal case is to replace the complicated minimization problem (23)
by another one that is easier to analyze and that, in some sense, approximates the original
problem (23). Natural bounds on the GMRES residual norm arise by excluding the influence
of the initial residualr0,

‖rn‖
‖r0‖

= min
p∈πn

‖p(A)r0‖
‖r0‖

(GMRES)

≤ max
‖v‖=1

min
p∈πn

‖p(A)v‖ (worst-case GMRES) (25)

≤ min
p∈πn

‖p(A)‖ (ideal GMRES). (26)

The bound (25) corresponds to theworst-caseGMRES behavior and represents a sharp upper
bound, i.e. a bound that is attainable by the GMRES residual norm. In this sense, (25) is
the best bound on‖rn‖/‖r0‖ that is independent ofr0. Despite the independence ofr0, it
is not clear in general, which properties ofA influence the bound (25); see, e.g., [21]. The
expression (25) can be bounded by theideal GMRES approximation problem (26), which
was introduced by Greenbaum and Trefethen [36]. To justify the relevance of the bound (26),
several researchers tried to identify cases in which (25) isequal to (26). The best known result
of this type is that (25) is equal to (26) wheneverA is normal [33, 42]. Despite the existence
of some counterexamples [21, 73], it is still an open question whether (25) is equal or close to
(26) for larger classes of nonnormal matrices. In [72] we consider this problem for a Jordan
block, a representative of a nonnormal matrix, and prove equality of the expressions (25) and
(26) in some steps.

A possible way to approximate the value of the matrix approximation problem (26) is to
determine setsΩ ⊂ C and Ω̂ ⊂ C, that are somehow associated withA, and that provide
lower and upper bounds on (26),

c1 min
p∈πn

max
z∈Ω

|p(z)| ≤ min
p∈πn

‖p(A)‖ ≤ c2 min
p∈πn

max
z∈Ω̂

|p(z)|.

Herec1 andc2 should be some (moderate size) constants depending onA and possibly onn.
This approach represents a generalization of the idea for normal matrices, where the appro-
priate set associated withA is the spectrum ofA andc1 = c2 = 1.

Trefethen [74] has suggested takingΩ̂ to be theǫ-pseudospectrumof A,

Λǫ(A) =
{

z ∈ C : ‖(zI − A)−1‖ ≥ ǫ−1
}

.

Denoting byL the arc length of the boundary ofΛǫ(A), the following bound can be derived,

min
p∈πn

‖p(A)‖ ≤ L

2πǫ
min
p∈πn

max
z∈Λǫ(A)

‖p(z)‖ , (27)

see, e.g., [56]. The parameterǫ gives some flexibility, but choosing a good value can be tricky.
Note that in order to make the right hand side of (27) reasonably small, one must chooseǫ
large enough to make the constantL/2πǫ small, but small enough to make the setΛǫ(A)
not too large. The bound (27) works well in some situations (see, e.g., [18]), but it is easy
to construct examples for which no choice ofǫ gives a tight estimate of the ideal GMRES
approximation problem (see, e.g., [35]).
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Another approach is based on thefield of valuesof A, cf. (7). Denote byν(F(A)) the
distance ofF(A) from the origin,ν(F(A)) = minz∈F(A) |z|, then

min
p∈πn

‖p(A)‖ ≤
(

1 − ν(F(A))ν(F(A−1))
)n/2

, (28)

see, e.g., [15]. Suppose thatM = (A + AH)/2, the Hermitian part ofA, is positive definite.
Then a special case of (28) is

min
p∈πn

‖p(A)‖ ≤
(

1 − λmin(M)

λmax(AHA)

)n/2

,

which is one of the earliest convergence results for the MR Krylov subspace method [16,
17]. SinceF(A) is a convex set that contains the convex hull of the eigenvalues ofA, the
requirement0 /∈ F(A) makes the bound (28) useless in many situations. However, the field of
values analysis can be very useful when the given linear system comes from the discretization
of elliptic PDEs by the Galerkin finite element method. In such cases the coefficients of the
N by N system matrixA are given byAij = a(φi, φj), wherea(u, v) is the bilinear form
from the weak formulation of the PDE, andφ1, . . . , φN are the nodal basis functions. Let
Vh denote the finite element space. Then a functionuh ∈ Vh is represented by a vector
uN ∈ R

N that contains the values ofuh at the nodes of the triangulation. The matrixA
satisfiesuT

NAvN = a(uh, vh) for all uh, vh ∈ Vh. These relations can be exploited to give
bounds for the quantitya(x−xn, x−xn) = (x−xn)T A(x−xn), wherex is the exact solution
of the discretized PDE, andxn is a Krylov subspace iterate. This leads naturally to bounds
of the type (28) involving the smallest real parts ofF(A) andF(A−1); see, e.g., [44, 67]
for more details. Note that under the usual assumption that the bilinear form is coercive, the
smallest real parts ofF(A) andF(A−1) are both positive. In a more abstract setting, the field
of values has been used in the convergence analysis by Eiermann [14].

A generalization of the field of values ofA is thepolynomial numerical hull, introduced
by Nevanlinna [58], and defined as

Hn(A) = {z ∈ C : ‖p(A)‖ ≥ |p(z)| for all p ∈ Pn} ,

wherePn denotes the set of polynomials of degreen or less. It can be shown thatF(A) =
H1(A). The setHn(A) provides a lower bound on (26),

min
p∈πn

max
z∈Hn(A)

|p(z)| ≤ min
p∈πn

‖p(A)‖. (29)

In some way,Hn(A) reflects the complicated relation between the polynomial ofdegreen
and the matrixA, and provides often a very good estimate of the value of the ideal GMRES
approximation (26). Greenbaum and her co-workers [20, 30, 31, 32] have obtained theoretical
results aboutHn(A) for Jordan blocks, banded triangular Toeplitz matrices andblock diag-
onal matrices with triangular Toeplitz blocks. Clearly, for a larger applicability of the bound
(29), the class of matrices for whichHn(A) is known needs to be extended. But in general,
the determination of these sets represents a nontrivial open problem.

The bounds stated above are certainly useful to obtain a priori convergence estimates in
terms of properties ofA, and possibly to analyze the effectiveness of preconditioning tech-
niques. However, the worst-case behavior of GMRES for nonnormal matrices is still not well
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understood. We again point out that the bound (26) is not sharp, and that it is in many situa-
tions unclear how closely the ideal GMRES approximates the worst-case GMRES. Moreover,
none of the bounds stated above is able tocharacterizesatisfactorily in terms of matrix prop-
erties, which approximation problem is solved by the worst-case GMRES in the nonnormal
case.

The influence of the initial residual: A model problem. Users of Krylov subspace meth-
ods usually want to solve a particular linear system, and hence a worst-case analysis may be
of lesser interest to them. In such context one needs to understand also how the convergence is
influenced by the particular right hand side or initial residual r0. For Hermitian positive defi-
nite matrices and the CG method this influence is discussed inSection 3.1.1 above. In case of
nonnormal matrices and the GMRES method, the influence of theinitial residual may be even
more significant. However, no systematic study of this influence exists, and given the lack of
understanding of even the worst-case behavior, it is unlikely that a complete understanding of
the influence ofr0 on the convergence will be obtained in the near future.

In the context of discretized PDEs,r0 is directly related to the boundary conditions and/or
the source terms. It is of great importance to understand howsuch PDE data influence the
convergence of an iterative solver like GMRES, as understanding of these relations will pave
the way to efficient preconditioning techniques. Recently,this topic was addressed in an
analysis of the GMRES convergence behavior for a well known convection-diffusion model
problem [52], that was introduced in [25]. Here the convergence of GMRES applied to the
discretized system is characterized by an initial phase of slow convergence, followed by a
faster decrease of the residual norms. The length of the initial phase depends on the initial
residual, which is determined by the boundary conditions (for simplicity, the source term in
the PDE and the initial guessx0 are chosen equal to zero in [52]). Typical examples for the
convergence behavior are shown in Fig. 5. The GMRES convergence curves in this figure

0 5 10 15 20 25 30 35
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Fig. 5 Relative GMRES residual norms for the discretized convection-diffusion model problem consid-
ered in [52]. Different behavior corresponds to the same discretizedoperator but to different boundary
conditions.
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correspond to the same discretized operator but to different boundary conditions. For the con-
sidered model problem, the convergence analysis confirms anearlier conjecture of Ernst [19],
that the duration of the initial phase is governed by the timeit takes for boundary information
to pass from the inflow boundary across the domain following the longest streamline of the
velocity field. The paper [52] also discusses the question why the convergence in the second
phase accelerates. Numerical results show that the speed ofconvergence after the initial delay
is slower for larger mesh Peclet numbers, but a complete quantitative understanding of this
phenomenon remains a difficult open problem.

4 Concluding remarks

The worst-case convergence behavior of many well known Krylov subspace methods (CG,
MINRES, GMRES) for normal matrices is described by the min-max approximation problem
on the discrete set of the matrix eigenvalues,

min
p∈πn

max
k

|p(λk)| . (30)

In this sense, the worst-case convergence behavior is well understood. Still, for a given eigen-
value distribution the min-max value is often not known, andhas to be estimated. Such es-
timation is of course always necessary, when only partial information about the spectrum is
known. A general approach tries to find inclusion sets for (the estimate of) the spectrum, and
uses (close to) optimal polynomials on these sets to approximate the min-max value. However,
this approach solves a different kind of approximation problem and can provide misleading
information about the convergence.

For nonnormal matrices, the situation is even less clear. Tobound the worst-case GMRES
residual norm, one can use the ideal GMRES approximation

min
p∈πn

‖p(A)‖ , (31)

that represents a matrix approximation problem. Although the value (31) need not describe
GMRES worst-case behavior, it can be considered as a good approximation of the worst-
case approximation in many practical cases. A general approach for approximating this value
consists in finding a set in the complex plain associated withthe matrixA and bounding the
value (31) by the min-max approximation on this set. However, theoretical results in this field
are still very partial.

Finally, it is important to note that the convergence can depend strongly on the right hand
side or the initial guess so that the values (30) and (31) can overestimate the actual conver-
gence of a Krylov subspace method.
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http://archiv.ub.uni-bielefeld.de/disshabi/mathe.htm.

[50] J. LIESEN, Computable convergence bounds for GMRES, SIAM J. Matrix Anal. Appl., 21 (2000),
pp. 882–903.
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[71] Z. STRAKOŠ AND J. LIESEN, On numerical stability in large scale linear algebraic computations,
Z. Angew. Math. Mech., (to appear).
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