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Abstract. A short recurrence for orthogonalizing Krylov subspace bases for a matrix A exists
if and only if the adjoint of A is a low degree polynomial in A (i.e. A is normal of low degree). In
the area of iterative methods, this result is known as the Faber-Manteuffel Theorem (V. Faber and
T. Manteuffel, SIAM J. Numer. Anal., 21 (1984), pp. 352–362). Motivated by the description in
(J. Liesen and Z. Strakoš, On optimal short recurrences for generating orthogonal Krylov subspace
bases, SIAM Rev., to appear), we here formulate this theorem in terms of linear operators on finite
dimensional Hilbert spaces, and give two new proofs of the necessity part. We have chosen the
linear operator rather than the matrix formulation because we found that a matrix-free proof is less
technical. Of course, the linear operator result contains the Faber-Manteuffel Theorem for matrices.

Key words. cyclic subspaces, Krylov subspaces, orthogonal bases, orthogonalization, short
recurrences, normal matrices.

AMS subject classifications. 65F10, 65F25.

1. Introduction. At the Householder Symposium VIII held in Oxford in July
1981, Golub posed as an open question to characterize necessary and sufficient condi-
tions on a matrix A for the existence of a three-term conjugate gradient type method
for solving linear systems with A (cf. SIGNUM Newsletter, vol. 16, no. 4, 1981).
This important question was answered by Faber and Manteuffel in 1984 [4]. They
showed that an (s + 2)-term conjugate gradient type method for A, based on some
given inner product exists if and only if the adjoint of A with respect to the inner
product is a polynomial of degree s in A (i.e. A is normal of degree s). In the area of
iterative methods this result is known as the Faber-Manteuffel Theorem; see, e.g., [7,
Chapter 6] or [13, Chapter 6.10].

The theory of [4] and some further developments have recently been surveyed
in [12]. There the Faber-Manteuffel Theorem is formulated independently of the con-
jugate gradient context, and solely as a result on the existence of a short recurrence
for generating orthogonal bases for Krylov subspaces of the matrix A. A new proof
of the sufficiency part is given, and the normality condition on A is thoroughly char-
acterized. For the proof of the (significantly more difficult) necessity part, however,
the authors refer to [4]. In particular, they suggest that, in light of the fundamental
nature of the result, it is desirable to find an alternative, and possibly simpler proof.

Motivated by the description in [12], we here take a new approach to formulate
and prove the necessity part of the Faber-Manteuffel Theorem. Instead of a matrix
we consider a given linear operator A on a finite dimensional Hilbert space V . By the
cyclic decomposition theorem, the space V decomposes into cyclic invariant subspaces,
i.e. Krylov subspaces, of A (see Section 2 for details). The Faber-Manteuffel Theorem
then gives a necessary (and sufficient) condition on A, so that the standard Gram-
Schmidt algorithm for generating orthogonal bases of the cyclic subspaces reduces
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from a full to a short recurrence.
We have chosen this setting because we believe that the proof of necessity is

easier to follow when we use linear operators rather than matrices. In this paper we
give two different proofs of the necessity part, both based on restriction of the linear
operator A to certain cyclic invariant subspaces. The resulting technicalities in the
matrix formulation would obstruct rather than help the understanding. Moreover,
our formulation may serve as a starting point for extending the results to infinite
dimensional spaces. We are not aware that any such extensions have been obtained
yet.

The paper is organized as follows. In Section 2 we introduce the notation and the
required background from the theory of linear operators. In Section 3 we translate the
matrix concepts introduced in [12] into the language of linear operators. In Section 4
we state and prove several technical lemmas that are required in the proof of the main
result, which is given in Section 5. In Section 6 we give an alternative proof, which
we consider elementary and constructive. This proof involves structure-preserving or-
thogonal transformations of Hessenberg matrices, which may be of interest beyond our
context here. In Section 7 we discuss our rather theoretical analysis in the preceeding
sections. This discussion includes a matrix formulation of the Faber-Manteuffel The-
orem, a “high-level” description of the strategies of our two proofs of the necessity
part, and our reasoning why necessity is more difficult to prove than sufficiency. For
obtaining a more detailed overview of the results in this paper, Section 7 may also be
read before reading the other sections.

2. Notation and background. In this section we introduce the notation and
recall some basic results from the theory of linear operators; see Gantmacher’s book [6,
Chapters VII and IX] for more details.

Let V be a finite dimensional Hilbert space, i.e., a complex vector space equipped
with a (fixed) inner product (·, ·). Let A : V → V be a given invertible linear operator.
For any vector v ∈ V , we can form the sequence

(2.1) v,Av, A2v, . . . .

Since V is finite dimensional, there exists an integer d = d(A, v), such that the vectors
v, Av, . . . , Ad−1v are linearly independent, while Adv is a linear combination of them.
This means that there exist scalars, α1, . . . , αd−1, not all equal to zero, such that

(2.2) Adv = −
d−1∑

j=0

αjA
jv .

Defining the monic polynomial φ(z) = zd + αd−1z
d−1 + · · ·+ α0, we can rewrite (2.2)

as

(2.3) φ(A)v = 0 .

We say that φ annihilates v. It would be more accurate to say “φ annihilates v with
respect to A”, but when it is clear which operator A is meant, the reference to A is
omitted for the sake of brevity. The monic polynomial φ is the uniquely determined
monic polynomial of smallest degree that annihilates v, and it is called the minimal
polynomial of v. Its degree, equal to d(A, v), is called the grade of v, and v is said to
be of grade d(A, v).
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Consider any basis of V , and define the polynomial Φ as the least common multiple
of the minimal polynomials of the basis vectors. Then Φ is the uniquely defined
(independent of the choice of the basis!) monic polynomial of smallest degree that
annihilates all vectors v ∈ V , and it is called the minimal polynomial of A. We denote
its degree by dmin(A). Apparently, dmin(A) ≥ d(A, v) for all v ∈ V , and Φ is divisible
by the minimal polynomial of every vector v ∈ V .

If v ∈ V is any vector of grade d, then

(2.4) span{v, . . . Ad−1v} ≡ Kd(A, v)

is a d-dimensional invariant subspace of A. Because of (2.2) and the special character
of the basis vectors, the subspace Kd(A, v) is called cyclic. The letter K has been
chosen because this space is often called the Krylov subspace of A and v. The vector v
is called the generator of this subspace.

A central result in the theory of linear operators on finite dimensional vector
spaces is that the space V can be decomposed into cyclic subspaces. This result
has several equivalent formulations, and in this paper we will use the one from [6,
Chapter VII, §4, Theorem 3]: There exist vectors w1, . . . , wj ∈ V of respective grades
d1, . . . , dj , such that

(2.5) V = Kd1(A,w1)⊕ · · · ⊕ Kdj (A,wj) ,

where the minimal polynomial of w1 is equal to the minimal polynomial of A, and for
k = 1, . . . , j−1, the minimal polynomial of wk is divisible by the minimal polynomial
of wk+1.

Since the decomposition (2.5) is an important tool in this paper, we illustrate
it by a simple example (adapted from [9, Section 7.2]; also see [10] for a short and
self-contained proof of the decomposition (2.5)). Suppose that A is the linear operator
on V = R3 whose matrix representation in the canonical basis of R3 is




2 −3 −3
−3 2 3

3 −3 −4


 .

The characteristic polynomial of A is (z − 2)(z + 1)2, while the minimal polynomial
is Φ = (z − 2)(z + 1), so that dmin(A) = 2. Any nonzero vector in R3 is either of
grade one (and hence is an eigenvector) or of grade two. It is easy to see that the first
canonical basis vector is not an eigenvector. Thus, w1 ≡ [1, 0, 0]T is of grade d1 = 2,
i.e. Kd1(A,w1) has dimension two, and the minimal polynomial of w1 is Φ. Note that

Kd1(A,w1) = span








1
0
0


 ,




2
−3

3






 =








α
β

−β


 : α, β ∈ R



 .

Since V = R3 has dimension three, it remains to find a vector w2 /∈ Kd1(A,w1) that is
of grade one and has minimal polynomial z + 1, i.e. w2 is an eigenvector with respect
to the eigenvalue −1, that is not contained in Kd1(A,w1). These requirements are
satisfied by w2 ≡ [1, 0, 1]T , giving

R3 = Kd1(A, w1) ⊕ Kd2(A,w2) = span {w1, Aw1} ⊕ span {w2} .
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In the basis of R3 given by w1, Aw1, w2, the linear operator A has the matrix repre-
sentation




0 2
1 1

−1


 .

Here the two diagonal blocks correspond to the decomposition (2.5), where each block
is the companion matrix of the minimal polynomial of the respective cyclic subspace
generators. This matrix representation is sometimes called the rational canonical
form. When this canonical form consists of a single diagonal block in companion
form, A is called non-derogatory. Hence in our example A is derogatory, but the
restriction of A to the cyclic subspace generated by w1 is non-derogatory. Loosely
speaking, this restriction is the “largest non-derogatory part” of A.

3. Orthogonalization of a cyclic subspace basis. Let v ∈ V be a vector
of grade d. For theoretical as well as practical purposes it is often convenient to
orthogonalize the basis v, . . . , Ad−1v of the cyclic subspace Kd(A, v). The classical
approach to orthogonalization, which appears in different mathematical areas, cf.,
e.g., [2, p. 15], [5, p. 74], is the Gram-Schmidt algorithm:

v1 = v ,(3.1)

vn+1 = Avn −
n∑

m=1

hm,nvm ,(3.2)

hm,n =
(Avn, vm)
(vm, vm)

, m = 1, . . . , n , n = 1, . . . , d− 1 .(3.3)

The resulting vectors v1, . . . , vd are mutually orthogonal, and for n = 1, . . . , d they
satisfy span{v1, . . . , vn} = span{v, . . . , An−1v} . We call v (or v1) the initial vector
of the algorithm (3.1)–(3.3). When A is a (square) matrix, this algorithm is usually
referred to as Arnoldi’s method [1]. It can be equivalently written as

v1 = v ,(3.4)

A [v1, . . . , vd−1]︸ ︷︷ ︸
≡ Vd−1

= [v1, . . . , vd]︸ ︷︷ ︸
≡ Vd




h1,1 · · · h1,d−1

1
. . .

...
. . . hd−1,d−1

1




︸ ︷︷ ︸
≡ Hd,d−1

,(3.5)

(3.6) (vi, vj) = 0 for i 6= j , i, j = 1, . . . , d .

The matrix Hd,d−1 is an unreduced upper Hessenberg matrix of size d × (d − 1).
Its band structure determines the length of the recurrence (3.2) that generates the
orthogonal basis. To state this formally, we need the following definition, cf. [12,
Definition 2.1].

Definition 3.1. An unreduced upper Hessenberg matrix is called (s + 2)-band
Hessenberg, when its s-th superdiagonal contains at least one nonzero entry, and all
its entries above its s-th superdiagonal are zero.
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If Hd,d−1 is (s + 2)-band Hessenberg, then for n = 1, . . . , d − 1, the recurrence
(3.2) reduces to

(3.7) vn+1 = Avn −
n∑

m=n−s

hm,nvm ,

and thus the orthogonal basis is generated by an (s + 2)-term recurrence. Since
precisely the latest s + 1 basis vectors vn, . . . , vn−s are required to determine vn+1,
and only one operation with A is performed, an (s + 2)-term recurrence of the form
(3.7) is called optimal.

Definition 3.2. (Linear operator version of [12, Definition 2.4].) Let A be an
invertible linear operator with minimal polynomial degree dmin(A) on a finite dimen-
sional Hilbert space, and let s be a nonnegative integer, s + 2 ≤ dmin(A).

(1) If for an initial vector the matrix Hd,d−1 in (3.4)–(3.6) is (s + 2)-band Hes-
senberg, then we say that A admits for the given initial vector an optimal
(s + 2)-term recurrence.

(2) If A admits for any given initial vector an optimal recurrence of length at
most s + 2, while it admits for at least one given initial vector an optimal
(s + 2)-term recurrence, then we say that A admits an optimal (s + 2)-term
recurrence.

We denote the adjoint of A by A∗. This is the uniquely determined operator that
satisfies (Av,w) = (v,A∗w) for all vectors v and w in the given Hilbert space. The
operator A is called normal if it commutes with its adjoint, AA∗ = A∗A. This holds
if and only if A has a complete orthonormal system of eigenvectors. Equivalently, A∗

can be written as a polynomial in A, A∗ = p(A), where p is completely determined
by the condition that p(λj) = λj for all eigenvalues λj of A (cf. [6, Chapter IX, § 10]).
We will be particularly interested in the degree of this polynomial.

Definition 3.3. Let A be an invertible linear operator on a finite dimensional
Hilbert space. If the adjoint of A satisfies A∗ = p(A), where p is a polynomial of
smallest degree s having this property, then A is called normal of degree s, or, shortly,
normal(s).

The condition that A is normal(s) is sufficient for A to admit an optimal (s + 2)-
term recurrence. The precise formulation of this statement is the following.

Theorem 3.4. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. Let s be a nonnegative integer,
s+2 < dmin(A). If A is normal(s), then A admits an optimal (s+2)-term recurrence.

Proof. A matrix version of this result is given in [12, Theorem 2.9], and the proof
given there can be easily adapted from matrices to linear operators.

The main result we will prove in this paper is that the condition that A is
normal(s) also is necessary.

Theorem 3.5. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. Let s be a nonnegative integer,
s+2 < dmin(A). If A admits an optimal (s+2)-term recurrence, then A is normal(s).
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4. Technical lemmas. We prove Theorem 3.5 in Section 5 below. To do so, we
need several technical lemmas that are stated and proven in this section.

Lemma 4.1. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. If 1 < i < n ≤ dmin(A) and
(u1, Aui) = 0 for every initial vector u1 of grade n, then (v1, Avi) = 0 for every initial
vector v1 of grade m, where i ≤ m ≤ n.
(Here ui, vi are the i-th basis vectors generated by (3.1)–(3.3) with initial vectors
u1, v1, respectively.)

Proof. If m = n, there is nothing to prove. Hence, suppose that m < n, and
let v1 be a vector of grade m, and u1 be a vector of grade n, such that the minimal
polynomial of v1 divides the minimal polynomial of u1. Define

(4.1) x1 ≡ x1(γ) ≡ v1 + γu1 ,

where γ is a scalar parameter. It is clear that, except for finitely many choices of γ,
the vector x1 is of grade n.

Suppose that γ has been chosen so that x1 is of grade n, and consider the corre-
sponding i-th basis vector xi, where 1 < i ≤ m. By construction, xi = p(A)x1, where
p is a polynomial of (exact) degree i − 1. The vector xi is defined uniquely (up to
scaling) by the conditions

(Ajx1, xi) = (Ajx1, p(A)x1) = 0 , j = 0, . . . , i− 2 .

The hypothesis

(x1, Axi) = (x1, Ap(A)x1) = 0

gives one additional condition. We thus have i conditions that translate into i homo-
geneous linear equations for the i coefficients of the polynomial p. The existence of
xi implies that the determinant of the matrix M(x1) of these equations must be zero,
where

M(x1) =




(x1, x1) (x1, Ax1) · · · (x1, A
i−1x1)

(Ax1, x1) (Ax1, Ax1) · · · (Ax1, A
i−1x1)

...
...

...
...

(Ai−2x1, x1) (Ai−2x1, Ax1) · · · (Ai−2x1, A
i−1x1)

(x1, Ax1) (x1, A
2x1) · · · (x1, A

ix1)




.

Now note that det M(x1) is a continuous function of γ. By construction, this
function is zero for all but a finite number of choices of γ. Therefore det M(x1) = 0
for all γ, and in particular, det M(v1) = 0. Consequently, there exists a non-trivial
solution of the linear system with M(v1), defining a vector w = p(A)v1, where p is a
polynomial of degree at most i− 1. The first i− 1 rows mean that w is orthogonal to
v1, . . . , A

i−2v1, so w is a multiple of vi. The last row means that Aw and hence Avi

is orthogonal to v1.

The decomposition (2.5) shows that for any linear operator A on a finite dimen-
sional Hilbert space V , there exists a vector in V whose minimal polynomial coincides
with the minimal polynomial of A. The following result shows that there in fact exists
a basis of V consisting of vectors with this property.
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Lemma 4.2. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space V . Then there exists a basis of V
consisting of vectors that all are of grade dmin(A).

Proof. From the cyclic decomposition theorem, cf. (2.5), we know that there
exist vectors w1, . . . , wj with minimal polynomials φ1, . . . , φj of respective degrees
d1, . . . , dj , such that the space V can be decomposed as

V = Kd1(A,w1)⊕ · · · ⊕ Kdj
(A,wj) ,

where φ1 equals the minimal polynomial of A, and φk is divisible by φk+1 for k =
1, . . . , j − 1. In particular, d1 = dmin(A). Consequently, a basis of V is given by

w1, . . . , A
d1−1w1, w2, . . . , A

d2−1w2, . . . , wj , . . . , A
dj−1wj .

But then it is easy to see that

w1, . . . , A
d1−1w1, w2 + w1, . . . , A

d2−1w2 + w1, . . . , wj + w1, . . . , A
dj−1wj + w1

is a basis of V consisting of vectors that all are of grade d1.

The following result is a generalization of [11, Lemma 4.1], which in turn can be
considered a (considerably) strengthened version of [4, Lemma 2].

Lemma 4.3. Let A be an invertible linear operator with minimal polynomial
degree dmin(A) on a finite dimensional Hilbert space. Let B be a linear operator on
the same space, and let s be a nonnegative integer, s + 2 ≤ dmin(A). If

(4.2) Bv ∈ span{v, . . . , Asv} for all vectors v of grade dmin(A) ,

then AB = BA. In particular, if B = A∗, then A is normal(t) for some t ≤ s.

Proof. For notational convenience, we denote δ = dmin(A). Let v be any vector
of grade δ. Since A is invertible, Kδ(A, v) = Kδ(A,Av). In addition, except possibly
when γ is an eigenvalue of A, the vector w = (A−γI)v satisfies Kδ(A,w) = Kδ(A, v).
In the following, we exclude those values of γ. By assumption, there exist polynomials
pγ , q, and r of degree at most s, which satisfy

Bw = pγ(A)w, B(Av) = q(A)(Av), Bv = r(A)v,

where pγ depends on γ, but q and r do not. We can then write Bw as

Bw = pγ(A)w = pγ(A)Av − γpγ(A)v ,

and

Bw = BAv − γBv = q(A)Av − γr(A)v .

Combining these two identities yields

tγ(A)v = 0 , where tγ(z) = z(pγ(z)− q(z))− γ(pγ(z)− r(z)) .

The polynomial tγ is of degree at most s+1 < s+2 ≤ δ. Thus, except for finitely many
γ, tγ = 0. Some straightforward algebraic manipulation gives, for all but these γ,

γ(q(z)− r(z)) = (z − γ)p̂γ(z) ,



8 V. FABER, J. LIESEN AND P. TICHÝ

where p̂γ ≡ pγ−q is of degree at most s−1. Therefore, every γ that is not an eigenvalue
of A is a root of the polynomial r − q, which consequently must be identically zero.

But then

B(Av) = q(A)(Av) = Aq(A)v = Ar(A)v = A(Bv) .

By Lemma 4.2, there exists a basis consisting of vectors of grade δ. Hence BAv = ABv
for a basis of vectors v, so that BA = AB.

Finally, if B = A∗, then AA∗ = A∗A, so that A is normal and hence A∗ = p(A)
for some polynomial. From (4.2) we see that the degree of p is at most s, so that A
is normal(t) for some t ≤ s.

5. Proof of Theorem 3.5. Let A be an invertible linear operator on a finite
dimensional Hilbert space, and let s be a nonnegative integer, s + 2 < dmin(A).
Suppose that A admits an optimal (s + 2)-term recurrence.

Step 1: Restriction to a cyclic subspace of dimension s + 2.
If u1 is any vector of grade s + 3, then (with the obvious meaning of us+2)

(5.1) 0 = h1,s+2 = (u1, Aus+2) .

Consider any v1 of grade s + 2, and the corresponding cyclic subspace Ks+2(A, v1).
Let Â be the restriction of A to Ks+2(A, v1), i.e. the invertible linear operator

Â : Ks+2(A, v1) → Ks+2(A, v1) , v 7→ Av for v ∈ Ks+2(A, v1) .

Clearly, dmin(Â) = s + 2. Let Ks+2(A, v1) be equipped with the same inner product
as the whole space.

Let y1 ∈ Ks+2(A, v1) be any vector of grade s + 2. Obviously, the grade of y1

with respect to A is the same as the grade of y1 with respect to Â. Since (5.1) holds
for any u1 of grade s + 3 (with respect to A), Lemma 4.1 (with i = m = s + 2 and
n = s + 3) implies that (with the obvious meaning of ys+2)

(5.2) 0 = (y1, Ays+2) = (y1, Âys+2) = (Â∗y1, ys+2) ,

where Â∗ : Ks+2(A, v1) → Ks+2(A, v1) is the adjoint operator of Â. But this means
that

(5.3) Â∗y1 ∈ span{y1, . . . , Â
sy1} .

Since this holds for any vector y1 ∈ Ks+2(A, v1) = Ks+2(Â, v1) of grade s + 2 =
dmin(Â), Lemma 4.3 implies that Â is normal(t) for some t ≤ s. In particular, Â is
normal, and has s + 2 distinct eigenvalues, λk, k = 1, . . . , s + 2, with corresponding
eigenvectors that are mutually orthogonal. Moreover, there exists a polynomial of
degree at most s such that p(λk) = λk, k = 1, . . . , s + 2. By definition, any eigenpair
of Â is an eigenpair of A. Therefore, A acting on any vector of grade s + 2 has s + 2
distinct eigenvalues, and the corresponding eigenvectors are mutually orthogonal in
the given inner product.

Step 2: Extension to the whole space.
Consider the cyclic decomposition of the whole space as in (2.5). Then the cyclic
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subspace Kd1(A,w1), where w1 has the same minimal polynomial as A, can be further
decomposed into

Kd1(A,w1) = Kc1(A, z1)⊕ · · · ⊕ Kc`
(A, z`) ,

where the minimal polynomial of zk is (z− λk)ck , k = 1, . . . , `, and λ1, . . . , λ` are the
distinct eigenvalues of A (cf., e.g., [6, Chapter VII, §2, Theorem 1]). In other words,
Kd1(A, w1) is decomposed into ` cyclic invariant subspaces of A, where each of these
corresponds to one of the ` distinct eigenvalues of A (recall that the restriction of A to
Kd1(A, w1) is non-derogatory; cf. the example at the end of Section 2). In particular,
if A is diagonalizable, then ` = dmin(A), and c1 = · · · = c` = 1, and z1, . . . , z` are
eigenvectors of A corresponding to λ1, . . . , λ`, respectively. In general, we can assume
that c1 ≥ c2 ≥ · · · ≥ c`. If c1 ≥ s + 2, we can determine a vector v1 of grade s + 2
in Kc1(A, z1). But then the above implies that A acting on v1 has s + 2 distinct
eigenvalues, which is a contradiction. Hence c1 < s + 2. We therefore can find an
index m so that c1 + · · ·+ cm−1 + c̃m = s + 2, 0 ≤ c̃m ≤ cm. Let z̃m be any vector of
grade c̃m in Kcm(A, zm), then w = z1 + · · · + zm−1 + z̃m is of grade s + 2. Hence A
acting on w has s + 2 distinct eigenvalues, which shows that c1 = c2 = · · · = c` = 1.
To these eigenvalues correspond s + 2 eigenvectors that are mutually orthogonal in
the given inner product.

In the cyclic decomposition (2.5), the minimal polynomial of wk is divisible by the
minimal polynomial of wk+1. Therefore the whole space completely decomposes into
one-dimensional cyclic subspaces of A, i.e. A has a complete system of eigenvectors.
We know that any s + 2 of these corresponding to distinct eigenvalues of A must
be mutually orthogonal. In the subspaces corresponding to a multiple eigenvalue
we can find an orthogonal basis. Therefore A has a complete orthonormal system of
eigenvectors, and hence A is normal. For every subset of s+2 distinct eigenvalues there
exists a polynomial p of degree at most s that satisfies p(λk) = λk for all eigenvalues
λk in the subset. If we take any two subsets having s + 1 eigenvalues in common,
the two corresponding polynomials must be identical. Thus all the polynomials are
identical, so that A is normal(t) for some t ≤ s.

If t < s, then by the sufficiency result in Theorem 3.4, A admits an optimal
(t + 2)-term recurrence, which contradicts our initial assumption. Hence t = s, so
that A is normal(s), which concludes the proof.

6. Another proof based on the “Rotation Lemma”. In this section we
discuss an elementary and more constructive approach to proving Theorem 3.5, which
is based on orthogonal transformations (“rotations”) of upper Hessenberg matrices.
With this approach, we can prove Theorem 3.5 with the assumption “s+2 < dmin(A)”
replaced by “s + 3 < dmin(A)”. We discuss the “missing case” s + 3 = dmin(A) in
Section 7.

As above, let A be an invertible linear operator with minimal polynomial degree
dmin(A) on a finite dimensional Hilbert space. Let s be a given nonnegative integer,
s + 3 < dmin(A). We assume that

(6.1) A admits an (s + 2)-term recurrence, but A is not normal(s),

and derive a contradiction.

For deriving the contradiction we need some notation. Suppose that the space is
decomposed into cyclic invariant subspaces of A as in (2.5). Let Â be the restriction
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of A to Kd1(A,w1), i.e. the invertible linear operator defined by

Â : Kd1(A, w1) → Kd1(A,w1) , v 7→ Av for v ∈ Kd1(A,w1) .

The operator Â depends on the choice of w1, which we consider fixed here, so Â is fixed
as well. It is clear that d1 = dmin(A) = dmin(Â). We denote d = d1 for simplicity.
Now let v1 ∈ Kd(Â, w1) be any initial vector of grade d, and let v1, . . . , vd be the
corresponding orthogonal basis of Kd(Â, v1) = Kd(Â, w1) generated by (3.1)–(3.3).
Then the matrix representation of the operator Â with respect to this particular basis
is a d× d unreduced upper Hessenberg matrix Hd, which is defined by the equation

(6.2) Â [v1, . . . , vd] = [v1, . . . , vd] Hd .

The matrix formed by the first d − 1 columns of Hd coincides with the d × (d − 1)
upper Hessenberg matrix generated by (3.1)–(3.3) with Â and the initial vector v1,
while the last column of Hd is given by the vector

(6.3) hd =




h1,d

...
hd,d


 , where hm,d =

(Âvd, vm)
(vm, vm)

, m = 1, . . . , d .

In short, Hd = [Hd,d−1, hd]. We now proceed in two steps.

Step 1: Show that there exists a basis for which h1,d 6= 0.
We first show that under assumption (6.1) there exists an initial vector v1 ∈ Kd(Â, w1)
of grade d = dmin(Â) for which the matrix representation Hd of Â has h1,d 6= 0.
Suppose not, i.e., for all v1 ∈ Kd(Â, w1) of grade dmin(Â), we have for the resulting
entry h1,d,

0 = h1,d =
(Âvd, v1)
(v1, v1)

=
(vd, Â

∗v1)
(v1, v1)

,

where Â∗ is the adjoint of Â. In particular, this implies that for all vectors v1 ∈
Kd(Â, w1) of grade d = dmin(Â),

Â∗v1 ∈ {v1, . . . , Â
d−2v1} .

By Lemma 4.3, Â is normal(t) for some t ≤ dmin(Â)− 2. Therefore, A acting on any
vector of grade dmin(A) has dmin(A) distinct eigenvalues and corresponding eigenvec-
tors that are mutually orthogonal. From this it is easy to see that A is normal(t). By
the sufficiency result in Theorem 3.4, A admits an optimal (t + 2)-term recurrence.
However, we have assumed in (6.1) that A admits an optimal (s+2)-term recurrence,
so t = s. But then A is normal(s), which contradicts the second part of the assump-
tion. In summary, there exists an initial vector v1 of grade d = dmin(A), such that
(6.2) holds with Hd = [Hd,d−1, hd], where Hd,d−1 is (s + 2)-band Hessenberg (this
follows from the first part of our assumption), while h1,d 6= 0.

Step 2. “Rotation” of the nonzero entry h1,d.
The following result is called “Rotation Lemma” for reasons apparent from its proof.

Lemma 6.1. (Rotation Lemma) Let s, d be nonnegative integers, s + 3 < d. Let
Hd be a d×d unreduced upper Hessenberg matrix with h1,d 6= 0 and Hd,d−1, the matrix
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Fig. 6.1. Graphical illustration of the “Rotation Lemma”: Shown is the upper right hand
corner of Hd = [Hd,d−1, hd]. We know that Hd,d−1 is (s + 2)-band Hessenberg with s + 3 < d, and

that h1,d 6= 0. We construct an orthogonal transformation G such that the matrix eHd = G∗HdG
remains unreduced upper Hessenberg, while the nonzero entry h1,d 6= 0 is “rotated” to the last column

of eHd,d−1, so that at least one of its entries eh1,d−1 and eh2,d−1 is nonzero.

formed by the first d − 1 columns of Hd, being an (s + 2)-band Hessenberg matrix.
Then there exists a unitary matrix G such that H̃d ≡ G∗HdG is a d × d unreduced
upper Hessenberg matrix with [h̃1,d−1, h̃2,d−1] 6= [0, 0].

Proof. The main idea of this proof is to find d− 1 (complex) Givens rotations of
the form

(6.4) Gi ≡




Id−1−i

ci si

−si ci

Ii−1


 , c2

i + |si|2 = 1, ci ∈ R, i = 1, . . . , d− 1,

which, applied symmetrically to Hd, “rotate” the nonzero entry h1,d to the (d− 1)st
column of the resulting matrix H̃d = (G1 · · ·Gd−1)∗Hd(G1 · · ·Gd−1). To prove the
assertion it suffices to show the following: First, H̃d must be an unreduced upper
Hessenberg matrix, and, second, at least one of its entries h̃1,d−1, h̃2,d−1 is nonzero
(see Fig. 6.1 for an illustration of this idea).

Proceeding in an inductive manner, we denote H (0) ≡ Hd. To start, choose
s1 ∈ R \ {0} and c1 ∈ R such that c2

1 + s2
1 = 1. We have explicitly chosen real

parameters s1, c1 since this simplifies our arguments below. These two parameters
determine our first Givens rotation G1 of the form (6.4). By construction, the matrix
H (1) ≡ G∗1H

(0)G1 is upper Hessenberg except for its entry

h(1)

d,d−2 = s1h
(0)

d−1,d−2.

Since s1 6= 0 and h(0)

d−1,d−2 6= 0 (H (0) is unreduced), we have h(1)

d,d−2 6= 0. The
transformation by G1 modifies only the last two rows and columns of H (0), so that
the entries on the subdiagonal of H (1) satisfy h(1)

i+1,i = h(0)
i+1,i 6= 0, i = 1, . . . , d − 3.

Next, we determine G2 such that its application from the right to H (1) eliminates the
nonzero entry in position (d, d− 2). Application of G∗2 from the left then introduces
a nonzero entry in position (d− 1, d− 3), which we will subsequently eliminate using
G3, and so forth.

In a general step j = 2, . . . , d − 1, suppose that sj−1 6= 0, h(j−1)
i+1,i = h(0)

i+1,i 6= 0,
i = 1, . . . , d− j − 1, and h(j−1)

i+1,i 6= 0 for i = d− j + 2, . . . , d− 1. Next suppose that

H (j−1) ≡ G∗j−1H
(j−2)Gj−1
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is an upper Hessenberg matrix except for its entry

h(j−1)

d−j+2,d−j = sj−1h
(0)

d−j+1,d−j 6= 0.

The next Givens rotation Gj is (uniquely) determined to eliminate this nonzero entry,
i.e. we determine cj and sj by the equation

(6.5) [h(j−1)

d−j+2,d−j , h
(j−1)

d−j+2,d−j+1]
[

cj sj

−sj cj

]
= [0, h(j)

d−j+2,d−j+1].

Since h(j−1)

d−j+2,d−j 6= 0, it is clear that sj 6= 0 and h(j)

d−j+2,d−j+1 6= 0. As a result, the
matrix

H (j) ≡ G∗jH
(j−1)Gj

is an upper Hessenberg except for its entry

h(j)

d−j+1,d−j−1 = sjh
(0)

d−j,d−j−1 6= 0.

The unitary transformation determined by Gj modifies only (d−j)th and (d−j+1)st
rows and columns of H (j−1). Therefore, the subdiagonal entries of H(j) satisfy h(j)

i+1,i =
h(0)

i+1,i 6= 0, for i = 1, . . . , d − j − 2, and, since h(j)

d−j+2,d−j+1 6= 0, we have shown
inductively that indeed h(j)

i+1,i 6= 0 for i = d−j+1, . . . , d−1. In the end, we receive the
unitary matrix G = G1 · · ·Gd−1 and the upper Hessenberg matrix H (d−1) = G∗H(0)G
with h(d−1)

i+1,i 6= 0 for i = 2, . . . , d− 1. To complete the proof we need to show that the
initial parameters s1, c1 can be chosen so that, first, h(d−1)

2,1 6= 0 (H (d−1) is unreduced),
and, second, [ h(d−1)

1,d−1, h
(d−1)

2,d−1 ] 6= [0, 0].

First, if h(d−1)
2,1 = 0, then we must have h(d−1)

1,1 6= 0, for if otherwise H (d−1) would
be singular. From H(d−1) = G∗H (0)G we receive H (0)G = GH (d−1), and thus the first
column of G is an eigenvector of H (0) corresponding to the eigenvalue h(d−1)

1,1 . Note
that the first column of G depends on our choice of s1, while the matrix H (0) is fixed
and has at most d linearly independent eigenvectors. Apparently, the case h(d−1)

2,1 = 0
only happens for a finite number of values of s1 (if any); almost every initial choice
of s1 will yield h(d−1)

2,1 6= 0.

Second, we have assumed that the first d− 1 columns of H (0) form an unreduced
(s+2)-band Hessenberg matrix with s+3 < d, and therefore h(0)

1,d−2 = h(0)

1,d−1 = 0 (cf.
Fig. 6.1). Denote the entries of the (lower Hessenberg) matrix G by gi,j . It is easy
to see that gd,d−1 = −c2s1. Again consider the matrix equation H (0)G = GH (d−1).
Comparing the entries in position (1, d− 1) on both sides shows that

(6.6) −c2s1h
(0)

1,d = g1,1h
(d−1)

1,d−1 + g1,2h
(d−1)

1,d−1 ,

where h(0)

1,d 6= 0 and s1 6= 0. Therefore, to show that [h(d−1)

1,d−1, h
(d−1)

2,d−1] 6= [0, 0], it suffices
to show that c2 6= 0. For c2 it holds that, cf. (6.5),

h(1)

d,d−2c2 − h(1)

d,d−1s2 = 0.

We know that h(1)

d,d−2 6= 0 6= s2. Thus, c2 = 0 if and only if h(1)

d,d−1 = 0, which holds if
and only if

c1s1h
(0)

d−1,d−1 + c2
1h

(0)

d,d−1 − s2
1h

(0)

d−1,d − c1s1h
(0)

d,d = 0.
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We write s1 = sin(θ), c1 = cos(θ), and apply standard identities for trigonometric
functions to see that the above equation is equivalent with

(
h(0)

d−1,d−1 − h(0)

d,d

)
sin(2θ) +

(
h(0)

d,d−1 + h(0)

d−1,d

)
cos(2θ) +

(
h(0)

d,d−1 − h(0)

d−1,d

)
= 0 .

The left hand side in this equation is a nontrivial trigonometric polynomial of degree
two, which has at most two roots in the interval [0, 2π). Consequently, for almost all
choices of s1 we receive c2 6= 0, giving a nonzero right hand side in (6.6). Hence, for
almost all choices of s1, we must have [h(d−1)

1,d−1, h
(d−1)

2,d−1] 6= [0, 0].

We can now derive the contradiction to (6.1). Consider the relation (6.2), where
Hd is of the form assumed in the Lemma 6.1. Without loss of generality we may
assume that the columns of Vd are normalized (normalization does not alter the
nonzero pattern of Hd). By Lemma 6.1, there exists a unitary matrix G such that
H̃d = G∗HdG is unreduced upper Hessenberg with either h̃1,d−1 or h̃2,d−1 nonzero.
Then (6.2) is equivalent with

(6.7) Â(VdG) = (VdG)H̃d .

Denote the entries of G by gi,j , and let VdG ≡ [y1, . . . , yd]. Then, since the basis
v1, . . . , vd is orthonormal and the matrix G is unitary, the basis y1, . . . , yd is orthonor-
mal,

(yi, yj) =

(
d∑

k=1

vkgk,i,

d∑

k=1

vkgk,j

)
=

d∑

k=1

gk,jgk,i = δi,j ,

where δi,j is the Kronecker delta. By (6.7), the vectors y1, . . . , yd form the unique (up
to scaling) basis of Kd(Â, y1) generated by (3.1)–(3.3) with Â and starting vector y1.
But since [h̃1,d−1, h̃2,d−1] 6= [0, 0], we see that Â (and hence A) admits for the given y1

an optimal recurrence of length at least d− 1. Since we have assumed that A admits
an optimal (s + 2)-term recurrence, we must have d − 1 ≤ s + 2, or, equivalently,
d = dmin(A) ≤ s + 3. This is a contradiction since s + 3 < dmin(A).

As claimed at the beginning of this section, we now have shown Theorem 3.5,
with the assumption “s + 2 < dmin(A)” replaced by “s + 3 < dmin(A)”.

7. Concluding discussion. In this section we discuss our rather theoretical
analysis above.

1. Matrix formulation and the Faber-Manteuffel Theorem.
When formulated in terms of matrices rather than linear operators, Theorems 3.4
and 3.5 comprise the Faber-Manteuffel Theorem [4] in the formulation given in [12,
Section 2]. We state this result here for completeness.

Theorem 7.1. Let A be an N ×N nonsingular matrix with minimal polynomial
degree dmin(A). Let B be an N ×N Hermitian positive definite matrix, and let s be
a nonnegative integer, s + 2 < dmin(A). Then A admits for the given B an optimal
(s + 2)-term recurrence if and only if A is B-normal(s).

In this formulation, the Hilbert space from Theorems 3.4 and 3.5 is CN , equipped
with the inner product generated by the Hermitian positive definite matrix B (in case
A is real, we consider B to be real as well, and the adjoint A∗ is the regular transpose
AT ). The matrix A is B-normal(s) if its B-adjoint, i.e. the matrix A+ ≡ B−1A∗B,
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is a polynomial of degree s in A, and s is the smallest degree for which this is true.
A complete characterization of the matrices A and B for which A is B-normal(s) is
given in [12, Section 3].

In this paper we have chosen the linear operator rather than the matrix formula-
tion, because it appears to be a natural generalization. Moreover, both proofs we have
given use the restriction of the linear operator A to certain cyclic invariant subspaces.
In the matrix formulation, such restrictions lead to non-square as well as square but
singular matrices. This involves a more complicated notation, which obstructs rather
than helps the theoretical understanding. For instance, the restriction Â of a nonsin-
gular N × N matrix A to a cyclic invariant subspace of A with (orthonormal) basis
v1, . . . , vd can be represented as Â = V HV ∗, where V = [v1, . . . , vd] and H is a d× d

nonsingular matrix. If d < N , Â is a singular N ×N matrix (more precisely, Â has
rank d < N). Any vector w in the cyclic invariant subspace can be represented as
w = V ω, where ω is a vector of length d containing the coefficients of w in the basis,
so that Aw = Âw = V Hω, where V H is a (non-square) matrix of size N × d. On the
other hand, in the linear operator formulation, Â is invertible, and we may simply
write Âw for the application of Â to any vector w in the space.

2. On the strategies of the two different proofs of Theorem 3.5.
The two different proofs of Theorem 3.5 given in this paper (with the second one
excluding the case “s + 3 = dmin(A)”; see below) follow two different strategies.

The first proof, given in Section 5, is based on vectors of grade s + 2, and “works
its way up” to vectors of full grade dmin(A). This general strategy is similar to
the one in the original paper of Faber and Manteuffel [4]. The details of our proof
here, however, are quite different from [4]. In particular, simple arguments about the
number of roots of certain polynomials (particularly in Lemmas 4.1 and 4.3) have
replaced the continuity and topology arguments in the proof of [4]. We therefore
consider this a simpler proof than the one given in [4].

The second proof, given in Section 6 works immediately with vectors of full grade
dmin(A). We consider this approach more elementary than our first proof. We assume
that the assertion of Theorem 3.5 is false, i.e. that A admits an optimal (s + 2)-term
recurrence, but is not normal(s). We show that if A is not normal(s), there must exist
at least one initial vector v1 of full grade d = dmin(A), for which the corresponding
matrix Hd has a nonzero entry above its sth superdiagonal. If this nonzero entry
already is in Hd,d−1, we are done. However, we cannot guarantee this, and therefore
we need the Rotation Lemma to “rotate” a nonzero from the d-th column of Hd into
the (d − 1)-st column. This shows that A cannot admit an optimal (s + 2)-term
recurrence, contradicting our initial assumption.

3. The Rotation Lemma and the “missing case” s + 3 = dmin(A).
In the Rotation Lemma we “rotate” the nonzero entry h1,d, where d = dmin(A), to
give h̃1,d−1 6= 0 or h̃2,d−1 6= 0, cf. Fig 6.1. Therefore, the matrix H̃d,d−1 is at least
(d−1)-band Hessenberg. The shortest possible optimal recurrence that A may admit
hence is of length d − 1, or s + 2 for s = d − 3. The assumption that A admits an
optimal recurrence of length s + 3 < dmin(A) then leads to a contradiction.

To prove also the “missing case” s + 3 = dmin(A), we need to guarantee that
there exists a choice of s1 so that h̃1,d−1 6= 0, giving a d-band Hessenberg matrix
H̃d,d−1. Since Theorem 3.5 also holds for the case s+3 = dmin(A), we know that such
s1 must exist, but we were unable to prove the existence without using Theorem 3.5.
Note, however, that in practical applications we are interested in recurrences of length
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s+2 ¿ dmin(A). Therefore the “missing case” of the Rotation Lemma is only of rather
theoretical interest.

We point out that the construction given in the Rotation Lemma, namely the
“structure-preserving” unitary transformation of an upper Hessenberg matrix, may
be of interest beyond its application in our current context. To state this idea in a
more general way, we introduce some notation. Let Ωd be the set of the d×d unreduced
upper Hessenberg matrices, and let Ωd(s + 2) be the subset consisting of the (s + 2)-
band Hessenberg matrices (these are unreduced by assumption; cf. Definition 3.1).
Consider a fixed H ∈ Ωd, and define the set

RH ≡ {G∗HG ∈ Ωd : G is unitary } .

Hence RH is the set of all unitary transformations of H that are unreduced upper
Hessenberg. Note that since H ∈ RH , the set RH is nonempty. Using the Rotation
Lemma (for s + 3 < d) and Theorem 3.5 (for s + 3 = d) the following result can be
proven.

Theorem 7.2. Let s, d be given nonnegative integers, s+2 < d. For any H ∈ Ωd,
the following assertions are equivalent:

(1) H is I-normal(s),
i.e. H∗ = p(H) for a polynomial of (smallest possible) degree s.

(2) RH ⊂ Ωd(s + 2).

This result means that an unreduced upper Hessenberg matrix H is I-normal(s)
if and only if H is (s + 2)-band Hessenberg, and all unitary transformations that
preserve the unreduced upper Hessenberg structure of H also preserve the (s + 2)-
band structure of H.

4. What distinguishes Theorem 3.5 from other results about normal operators.
Theorem 3.5 gives a necessary condition when an operator A is normal (of some
degree s). This condition is also sufficient, as shown by Theorem 3.4. Hence this
condition might be taken as a definition of normality, and it might be included among
the numerous equivalent definitions in [8, 3]. We believe, however, that the nature of
the result distinguishes it from the many other equivalent ones. This distinction is
clear from the second proof given in Section 6.

Consider the linear operator A, and any cyclic invariant subspace Kd(A, v1). Then
the matrix representation of A with respect to the orthogonal basis v1, . . . , vd of
Kd(A, v1) generated by (3.1)–(3.3) is a d × d unreduced upper Hessenberg matrix
Hd (cf. (6.2), where this is shown for the restriction of A to Kd(A, v1)). Typically,
equivalent results for normality are derived using knowledge of the whole matrix, Hd

in this case. But Theorem 3.5 is based only on knowledge of a part of the matrix,
namely, the first d − 1 columns of Hd. Our experience in this area shows that this
difference also is the reason why Theorem 3.5 is rather difficult to prove, particularly
when compared with other results about normal matrices or operators.

Acknowledgement. We thank Tom Manteuffel and an anonymous referee for
suggestions that helped us to improve the presentation of the results.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.



16 V. FABER, J. LIESEN AND P. TICHÝ

[2] E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York, 1966.
[3] L. Elsner and K. D. Ikramov, Normal matrices: an update, Linear Algebra Appl., 285 (1998),

pp. 291–303.
[4] V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existence of a

conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352–362.
[5] D. K. Faddeev and V. N. Faddeeva, Computational methods of linear algebra, W. H. Freeman

and Co., San Francisco, 1963.
[6] F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York,

1959.
[7] A. Greenbaum, Iterative methods for solving linear systems, vol. 17 of Frontiers in Applied

Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997.
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